
Informatics in Education, 2005, Vol. 4, No. 2, 307–319 307
 2005Institute of Mathematics and Informatics, Vilnius

Mini-Projects Development in Computer Science –
Students’ Use of Organization Tools

Zahava SCHERZ
Department of Science Teaching, Weizmann Institute of Science
Rehovot 76100, Israel
e-mail: zahava.scherz@weizmann.ac.il

Bruria HABERMAN
Department of Computer Science, Holon Academic Institute of Technology
Department of Science Teaching, Weizmann Institute of Science
Rehovot 76100, Israel
e-mail: bruria.haberman@weizmann.ac.il

Received: 09 2005

Abstract. This paper describes a study aimed at identifying different profiles of students’ project
development processes. Specifically, we assessed the use of abstract data types for the development
of knowledge-based projects.

The concept of abstract data types was introduced to high school students who took the course
“Computer Science-Logic Programming”. During their studies the students learned and practiced
various tools and methods of project development, one of which was based on the use of abstract
data types as tools for problem solving and knowledge representation.

To this end, a one-day workshop for team development of mini-projects was organized, and the
whole development process was audio and video documented, categorized and analyzed. The pro-
files of team behavior in the project development process were specified. The analysis of the profiles
resulted in identifying four types of project development teams, all of which employed some or-
ganizing tool in developing their projects. Two types of the developing teams used abstract data
types and two used other methods. The findings indicated that the process of project development
of those who used abstract data types was more structured and more organized than others.

Key words: abstract data types, mini-projects in computer science, project organization tools, logic
programming in education.

1. Introduction

A new curriculum in Computer Science (CS) that combines both conceptual and practical
issues has been implemented since 1990 in Israeli high schools. One specific goal of
the curriculum is to provide the students tools that will enable them to understand the
functionality of computer systems and the process of software design (Gal–Ezeret al.,
1995; Gal–Ezer and Harel, 1999). This goal can be achieved by incorporating project
work into the curriculum (Gal–Ezeret al., 1995; Fincheret al., 2001). The academic CS



308 Z. Scherz, B. Haberman

community believes that the role of projects in the CS curriculum is of great importance,
since it is a means for effective learning, and also demonstrates the student’s mastery of
skills appropriate to professional practice (Fincheret al., 2001; Gal–Ezeret al., 1995;
Holcombeet al., 1998).

A 90-hours course ”Computer Science-Logic Programming” (the LP course), which
is part of the new CS curriculum, introduces logic programming as a declarative program-
ming environment (implemented in Prolog) which is suitable for content formalization,
knowledge representation, and problem solving (Sterling and Shapiro, 1994). The de-
tailed syllabus of the course is presented in (Gal–Ezer and Harel, 1999).

Students taking the LP course are required to develop knowledge-based projects as a
final assignment. While developing their projects the students have to undergo a prelim-
inary process: they have to choose a subject, to perform a literature search, to interview
experts, to learn about the knowledge domain, and finally to formally specify the prob-
lem that they are going to solve. Only then, can they start the following recommended
six-phase process: (1) definition of goals, (2) choice of problem predicates, (3) abstrac-
tion, (4) formalization, (5) programming, and (6) testing and debugging. During their
studies the students are introduced to various methods of problem solving and knowl-
edge representation and to various programming techniques, which they may use to solve
problems and to develop projects. In this paper we focus mainly on the use of abstract
data types (Aho and Ullman, 1992; Dale and Walker, 1996; Parnas, 1972) in the devel-
opment process. We developed an instructional package aimed at teaching abstract data
types as tools for problem solving and knowledge representation that may be used to de-
velop small-scale programs as well as complex computer systems. The package includes
an instructional model, learning materials for students, a teacher’s guide, and a software
package of “ADT black boxes” implemented in Prolog (Scherz and Haberman, 1995).

We found that students tend to apply a variety of strategies and techniques when they
use ADTs in problem-solving tasks (Habermanet al., 2002), and they regard ADTs as
useful tools for problem solving and knowledge representation (Haberman and Scherz,
2003). Here we describe a study that monitored the development of students’ projects.
This study focused on students’ project development strategies and on the role of ADTs
in the process of project development.

2. The Study

2.1. Main Questions

The goals of the study were related to the following aspects:

The Structure of the Development Process: The goal was to identify different pro-
files of students’ development processes. Specifically, we asked the following questions
regarding students’ projects:

� What were the project’s development stages?
� What was the order of the stages, and how are they related?



Mini-Projects Development in Computer Science – Students’ Use of Organization Tools309

� Did the project development follow the six-phase model?

The use of ADT: The goal was to assess students’ use of ADTs in developing their
projects. Specifically, we asked the following questions:

� In what stage of the development process did students find suitable ADTs to solve
the given problem?

� Did students use ADT black boxes in the formalization stage?
� How did the use of ADTs influence the entire project development process?

The use of practical tools: The goal was to specify the role of the computer versus the
pencil-and-paper approach in developing projects. Specifically:

� In what stages of the development process did the students use the computer?
� What different styles of computer usage can be identified?
� In what stages did the students use pencil-and-paper?

2.2. Methodology

A workshop for team project development: A one-day (8 hours) workshop was con-
ducted with a group of 35 students who studied a Computer Science – LP course. Thirteen
teams of 2–5 students developed knowledge-based projects on a variety of subjects, all of
which are related to descriptive topics of a qualitative nature (e.g., Biology, Medicine, Nu-
trition, and Law). The workshop took place in a computer laboratory. Each team worked
independently; therefore interaction between the teams was not possible.

The teams had to decide on a general topic for their project before the workshop and
to bring relevant knowledge sources (literature, an interview with an expert, etc.).

A nearby school library provided the students with additional relevant literature dur-
ing the workshop. At the beginning of the workshop the teams received written instruc-
tions describing the project requirements. During the workshop the students had to spec-
ify the problem and to formalize it in terms of a Prolog program (about 10 meaningful
different rules). At the end of the workshop each team had to present a Prolog program
along with a written final report describing the project and the team development process.
One or two observers watched each team.

The workshop enabled us to follow closely all the development processes of several
teams in parallel in a reasonable period of time. The teamwork required the students to
discuss out loud their project development activities and therefore enabled us to record
their reasoning, and conflicts and ideas throughout the process. This kind of recording is
hard to achieve when students work individually.

2.3. Data Collection

Several tools were used to collect data and to document the team’s development pro-
cesses:

Videotapes: Video cameras were used to videotape six randomly chosen teams.
Audiotapes: All thirteen teams were audio taped.



310 Z. Scherz, B. Haberman

Observers: Each team was watched by one or two observers who took notes on the
team’s activities. The observers were computer science teachers and senior students from
the same school who had completed advanced CS courses and had experience in devel-
oping knowledge-based projects. The observers were instructed not to interfere with the
team’s activities, nor to criticize their project’s development. However, they were allowed
to help the students in case of technical difficulties. The observers were also responsible
for ensuring that the different teams do not share information and do not interact.

Interviews: Each team was interviewed once during the development process and
after finishing the workshop obligations.

Final and Intermediate Products: Each team presented a Prolog program at the
end of the workshop, and a final report about the team development process. All the
intermediate products – handout illustrations and notes that were made were collected.

2.4. Data Analysis

Researches have effectively used verbal protocol analysis to identify how designers intro-
duce information or knowledge into design process (Atman and Bursic, 1998). Protocol
analysis can be applied to students’ verbalization in a design project, coding sentences
into categories such as problem definition, information, analysis etc. (Atman and Bursic,
1996). Verbal protocols data can be analyzed and represented schematically (Chi, 1997;
Schoenfeld, 1985).

A graphic tool that we termed anactivity-chart was devised to enable a concise de-
piction of a project’s development process (see Fig. 1). This graphical illustration displays
a concise description of the development process for each project on a macro level, thus
offering a general impression of its nature.

The work of each team was represented by an activity-chart. The chart was prepared
from the transcriptions of the audiotapes, the observers’ reports, the videotapes (of those
teams that were filmed), the teams’ handout illustrations and notes, and their final prod-
ucts. The X axis of the chart presents the time duration of the workshop. Eight activities
are presented on the Y axis of the chart: (1) choice of subject, (2) definition of goals, (3)
use of abstract data types, (4) choice of problem predicates, (5) formalization, (6) testing
and debugging, (7) use of the computer, and (8) writing the final report.

Activity No 3 refers to various aspects of the use of abstract data types such as adapt-
ing ADTs to the problem, use of ADTs’ graphical illustration to present relations between
problem-predicates, and the use of ADT black boxes to write the program.

We made an effort to find a statistical tool that would enable us to compare and cat-
egorize the teams, but no appropriate method was found. Accordingly, the analysis was
carried out using the following method: each of the activity charts was drawn on the same
scale and reproduced onto transparencies, which facilitated the comparison of the devel-
opment processes of the different teams. The transparencies were placed one on top of
the other and were compared and grouped in an effort to identify common (or similar)
patterns.



Mini-Projects Development in Computer Science – Students’ Use of Organization Tools311

Fig. 1. The activity-charts of the four identified types of project development teams.

Additional information, drawn from our observations, recordings, interviews, and stu-
dents’ reports was used besides the activity charts to establish criteria for defining teams’
work profiles.

3. Results and Discussion

The analysis of the activity-charts resulted in identifying four types of project develop-
ment teams. The classification of the teams appears in Table 1, and the typical activity-
charts are presented in Fig. 1.

3.1. Criteria for Identifying Types of Project-Developing Teams

Based on our research questions, we established three criteria according to which the
profiles of the four types were specified: (1) the structure of the development process; (2)
the use of ADTs; and (3) the use of practical tools.

The following section further describes these criteria.

3.1.1. The structure of the development process
The structure of the development process is determined by the following parameters:

Problem analysis: The first step in any project development involves defining the
problem to be solved and its analysis. This activity involves: (a) Breaking up a prob-



312 Z. Scherz, B. Haberman

Table 1

Types of behavior during project development

Type

Type A Type B Type C Type D
Activity

(3 teams) (3 teams) (4 teams) (3 teams)

Definition of
goals

*At the beginning
(all the teams)

* At the beginning
(all the teams)

* At the beginning
(all the teams)

* At the beginning
(all the teams)

* In the continua-
tion (2 teams)

* In the continua-
tion (1 team)

* In the continua-
tion (1 team)
* Toward the end
(1 team)

Use of ADTs List (all teams) Tree (2 teams)
Graph (1 team)

No use of ADTs No use of ADTs

Choice of
problem-
predicates

Immediately after
the initial choice of
ADTs (all teams)

Immediately after
the initial choice
of ADTs (2 teams)
Gradual – after
the initial choice
of ADTs (1 team)

Gradual – parallel
to formalization
(all teams)

Gradual –
beginning at the
start of
development,
parallel to
formalization (all
teams)

The start of the
formalization

Use of predefined
“black box”, after
the initial choice
of predicates

Use of a
self-defined
“black box”
(2 teams)

* Immediately
after the initial
choice of
predicates
* Formalization
alternately
combined with the
choice of problem
predicates

* Immediately at
the start of
development
* Formalization
alternately
combined with the
choice of problem
predicates

Use of computer * From notes to
computer 3 hours
after the start
(3 teams)

* Formalization
on the computer
(2 teams)
* From notes to
computer (1 team)

* Formalization
on the computer
(1 team)
* From notes to
computer
(3 teams)

* From notes to
computer at an
early stage
(3 teams)

Testing and
debugging

After the program
was keyed-in
(1 team)

No uniformity
among the teams

* After program
was keyed-in
(3 teams)
* During
formalization
(1 team)

* After program
keyed-in (1 team)
* During
formalization
(3 teams)

lem into sub-problems in a systematic manner. Each of the sub-problems is then dealt
with separately, and the relations between the sub-problems are well defined. (b) Identi-
fying the entities involved in each sub-problem and determining how they are related. An
organized and systematic analysis of the problem should result in a structured develop-
ment process; this serves as a basis for the initial stages of project development, such as



Mini-Projects Development in Computer Science – Students’ Use of Organization Tools313

defining the project’s goals, the decision regarding problem-predicates, and knowledge
representation.

Stages and order of execution: A project can be developed similarly to the six-phase
model, following a linear order. An iterative development is also possible by means of
backtracking and the stepwise refinement of the different stages. Other kinds of devel-
opment processes may include different stages or disregarding some (or most) of the
six-phase model stages.

Modularity and stage dependencies: A modular process calls for a clear distinction
between the different stages of development, with special attention given to the depen-
dencies between them.

A close examination of the above components should enable defining a project devel-
opment process as structured or unstructured.

3.1.2. The use of ADTs
ADTs may be used at various levels and stages throughout the project’s development. We
chose to examine the use of ADTs according to the following parameters:

Abstraction: Adapting suitable ADTs that represent a specific problem. This involves
two aspects: (a) Identifying the general problem that represents a specific concrete prob-
lem, and (b) Mapping the general problem to the appropriate abstract data type model.

Use of ADT black boxes: Mapping the general problem-predicates to the appropriate
ADT interface operations.

3.1.3. The use of practical tools
Use of the computer: The computer can be used at various stages of the development
process and for different tasks. It can be used as an instrument of trial-and-error, as a
word processor to key-in a program that was first formalized on paper, and as a tool
for testing and debugging. It is interesting to note that when do students start to use the
computer, and do they employ it continuously.

Pencil-and-paper: Another aspect of the process relates to the use of pencil-and-paper
in developing the program, specifically how much this method is used, at what stages, and
whether the formalization is done first on paper and then on the computer.

3.2. Types of Project-Developing Teams

We found four types of project-developing teams:

3.2.1. Type A
Type A includes three teams that used predefined ADT black boxes.

All the teams performed problem analysis and defined their goals at the very begin-
ning of the development process. They analyzed their problems at an early stage and
distinguished between the general problem and the specific data of the concrete problem.
The teams decided on ADTs and chose problem-predicates at the beginning of the devel-
opment process. Only then did they begin the formalization in terms of Prolog facts and



314 Z. Scherz, B. Haberman

rules. All three teams chose thelist abstract data type to depict their problems, and used
transparently the predefinedlist black boxto formalize problem-predicates.

The formalization of the initially chosen predicates was performed entirely by means
of pencil-and-paper, without use of the computer. Two of the three teams completed the
entire formalization before starting to work on the computer, whereas the third team per-
formed most of the formalization using pencil-and-paper, and continued to formalize
additional problem-predicates on the computer.

Only at later stage, about three hours after beginning the workshop, did the teams
begin to use the computer, first to type-in and edit the already written facts and rules. All
the teams performed run-and-test activities as soon as the whole program was keyed-in
the computer. Changes in the formalization of the problem-predicates were made as a
result of the debugging process.

Fig. 1 shows that ADTs served as meaningful development tools for Type A teams.
They used ADTs throughout most of the development process.

All the teams displayed a structured linear process in developing the project, exactly in
accordance with the six-phase model suggested above. All the teams followed the same
order in executing the stages of project development, and all made a clear distinction
between the different stages.

We can conclude that for type A teams, abstract data types served as a means for or-
ganizing the entire development process. The use oflist ADT for representing knowledge
and the use of predefinedlist black boxfor formalization encouraged the development of
a systematic structured process.

3.2.2. Type B
Type B includes three teams who used ADTs with no predefined black boxes, and tried
to construct the suitable black boxes during the project development process.

All the Type B teams analyzed their problems at the beginning of the development
process. They started to define their goals immediately as a result of the problem anal-
ysis, and two of the three continued to do so as their work progressed. All three teams
generalized the problem, distinguishing between the specific and the general problems
involved. All of them began their choice of problem-predicates immediately after deter-
mining the abstract data type.

The three teams chose suitable abstract data types for the knowledge representation of
their problems. However, unlike the Type A teams that opted for thelist ADT, the Type
B teams selected thetreeor graph. One of the teams chose thetreeADT at the beginning
of the process, and then decided on a subject that could properly be represented by it.

Since the abstract data type here was not thelist (for which a predefined black box
file was available), but instead thetreeor the graph(for which no such predefined black
box file was available), the formalization stage was not trivial for the students, in fact it
was also very challenging. The students had to write a program to implement thetreeor
graphADT that they had decided to use.

One of the teams performed a mapping between problem-predicates and tree-
predicates that could assist them in their formalization. They started by developing a



Mini-Projects Development in Computer Science – Students’ Use of Organization Tools315

black box to represent thetreeADT, copying the formalization of selected tree-predicates
from the textbook. This was a relatively short process, and since the team relied on the
formalization of tree-predicates in the book, they did not query the program to test the
formalization. Once the black box had been constructed, they used it to formalize the
problem predicates.

Another team attempted to construct their own black box to represent thetreewith-
out consulting the textbook. This was a lengthy process, during which the formalized
tree-predicates were tested and debugged. Like the previous team, they too used the con-
structed black box to formalize problem-predicates.

The third team, which had chosen thegraph, utilized it only at the level of graphi-
cal illustration to present data. Although they stated explicitly that the suitable abstract
data type for their problem was thegraph, they did not show any intention of using a
black box representing thegraph. They made no effort to check if there existed a suit-
able, predefined black box, nor did they attempt to construct one. This team formalized
problem-predicates by means of Prolog if-then rules, while referring to the graphic de-
piction of the abstract data type.

The two teams that constructed atree black boxbegan their formalization directly on
the computer at an early stage of the development process. The team that relied on the
graph to depict the relations between the problem-predicates worked on their formaliza-
tion at the level of pencil-and-paper, and only later copied their notes into the computer.

The teams did not display uniformity in the way in which they tested the program. The
team that had constructed atree black boxon its own, with no use of the textbook, entered
queries at the very beginning of the formalization process so as to test the formalization
of the tree-predicates. The team that had relied on the textbook to construct thetree black
boxdid not query the formalization of the tree-predicates, but rather periodically tested
the problem-predicates as new ones were added. The team that employed thegraphat the
level of graphic depiction alone performed a run-and-test only after entering the entire
program.

Generally speaking, all three Type B teams closely followed the six-stage model in
developing their projects. Like the Type A teams, they displayed a systematic structured
process. We can conclude that for Type B teams, like those in Type A, ADTs served a
means of organizing the development process. Here, however, the lack of a predefined
“black box” complicated this process.

3.2.3. Type C
Type C included four teams. All the teams defined their goals at the beginning of the
process, and one continued to do so during the course of their work. All four teams
started to analyze the problem at the very beginning of the workshop. They identified the
entities involved in each sub-problem and the relations between them. They generalized
the problem, distinguishing between the specific and the general problem involved.

All of the teams chose their problem-predicates by means of a stepwise refinement in
the course of formalization, performing a hierarchical mapping of the various predicates.
They used illustrations to aid in their mapping.



316 Z. Scherz, B. Haberman

None of the teams in this group attempted to identify an ADT suitable for the prob-
lem. Consequently, the solution was developed at the level of the problem alone, without
reference to any formal model to represent it and without the use of general predicates
for formalization.

Formalization began immediately after the initial choice of problem-predicates. The
most prominent feature of this group was the alternating manner of their work, combining
the choice of problem-predicates with their formalization.

Interestingly enough, three of the four teams began their formalization by means of
pencil-and-paper, and only later keyed it into the computer. The fourth team began work-
ing with pencil-and-paper, and then alternated this activity with work on the computer.

Three teams ran and tested their programs only at the end of the formalization process,
and did not add any new problem-predicates according to the results. The fourth team be-
gan to query the program during the choice and formalization of the problem-predicates.

The Type C teams only partially followed the six-stage model in developing their
projects and displayed a fairly structured process, although less organized than the Type
A and Type B teams. We have concluded that while for teams of Type A and Type B,
ADTs were used as a project development organizer, for Type C teams, who did not
use ADTs, the definition of goals and the choice of problem-predicates served as the
organizer for their work.

3.2.4. Type D
Type D consisted of three teams. None of the teams in this group performed problem
analysis, nor defined goals at the beginning of the development process. In fact, one of
the teams never did this at any stage. Another team took a break in the middle of the
development, when the members realized that the process was not proceeding well and
began again, this time defining their goals. The third team only defined the goals at the
end of the development when they were writing up their report and discovered in the
instructions that the description of projects’ goals was to be included in their report.

The teams did not distinguish between specific instances and the general problem
at the start of development. The decision as to which problem-predicates would be for-
malized through data and which through rules was taken throughout the course of the
process.

All the teams continued to choose their problem-predicates throughout most of the
process of development, in parallel with their formalization.

None of the teams made any attempt to identify a suitable abstract data type for the
problem. Consequently, the solution was formulated at the level of the problem itself,
without reference to any formal model to represent it and without the use of general
predicates in the formalization. Only while writing up their final report did one of the
teams retrospectively define the ADT in order to fulfill the requirements of the report.

Formalization began immediately at the start of development, and was done directly
on the computer, without any use of pencil-and-paper. All Type D teams started to work
on the computer at a very early stage.

Only one team performed a run-and-test after entering the entire program. The other
two teams did so in the course of the formalization.



Mini-Projects Development in Computer Science – Students’ Use of Organization Tools317

The Type D teams followed the six-stage model only to a very minor extent. They
displayed a development process that was highly unstructured and based primarily on
trial and error. The teams displayed no organizing principles throughout much of the
development process. Instead, the computer served as their primary tool in developing
and organizing the program.

4. Conclusion

Table 2 illustrates the categorization of the four types of project development teams.
We found that each team employed some organizing tool in developing their project.

Half of the teams (types A and B) employed abstract data types in one form or another.
The use of abstract data types clearly simplified the development and contributed to a
systematic structured process. Type A teams who used the predefinedlist ADT black
box to formalize problem-predicates, developed their projects in an organized and struc-
tured manner. These teams postponed the use of the computer until the final stages of the
project’s development.

Type B teams that utilized ADTs to present their problems, but did not use predefined
ADT black boxes and instead created black boxes of their own, also worked in a struc-
tured and organized manner. Some teams had difficulties in creating the black boxes, but
this did not interfere with the systematic development process. These teams started to use
the computer at an earlier stage than the Type A teams; since they wanted to test the black
boxes they created.

Half of the teams (Type C and D) did not employ abstract data types in any form, and
worked in a less structured way than the teams that used ADTs. Those teams seemed to
use another tool to organize their development processes. Type C teams that defined the
project’s goals, and chose problem-predicates in the early stages of the process, worked
in a more structured way than the Type D teams that did not bother to define goals at all.
Eventually Type C teams used the definition of the goals and the relationship between

Table 2

Categorization of the project development processes

Use of Abstract Data Types No Use of Abstract Data Types

Type A Type B Type C Type D
(3 teams) (3 teams) (4 teams) (3 teams)

Predefined
ADT black boxes

Self-defined
ADT black boxes

Definition of goals Trial and error

Use of the computer at
a very late stage

Use of the computer at
an early stage

Use of the computer at
a late stage

Intensive use of the
computer from the
beginning

Structured process Structured process Mostly structured
process

Unstructured process



318 Z. Scherz, B. Haberman

problem-predicates as a means of organizing the project development, whereas Type D
teams employed trial and error techniques to develop their projects, and used the com-
puter intensively through the entire development process to test their formalization.

We have concluded that project development requires a solid means of organizing the
construction and direction of the project. Our instructional approach was to introduce to
students a variety of problem-solving tools. Students seemed to use some of these tools as
project organizers. Students’ employment of project organizers influenced the nature of
the entire development process. We found that the choice of ADTs, which are advanced
CS problem-solving tools, resulted in a structured and well-organized development pro-
cess.

References

Aho, A.V., and J.D. Ullman (1992).Foundations of Computer Science. W.H., Freeman and Company.
Atman, C.J., K.M. Bursic and S.L. Lozito (1996). An application of protocol analysis to the engineering de-

sign process. InProceedings of the American Society for Engineering Education Annual Conference, June,
Washington, DC.

Atman, C.J., and K.M. Bursic (1998). Documenting a process: the use of verbal protocol analysis to study
engineering student design.Journal of Engineering Education Special Issue on Assessment, 87(2), 121–132.

Chi, M.T.H. (1997). Quantifying qualitative analysis of verbal data: a practical guide.The Journal of the Learn-
ing Sciences, 6(3), 271–315.

Dale, N., and H.M. Walker (1996).Abstract Data Types – Specifications, Implementations, and Applications.
D.C. Heath and Company.

Fincher, S., M. Petre and M. Clark (Eds.) (2001).Computer Science Project Work Principles and Pragmatics.
Springer-Verlag, London.

Gal–Ezer, J., C. Beeri, D. Harel and A. Yehudai (1995). A high school program in computer science.IEEE
Computer, 28(10), 73–80.

Gal–Ezer, J., and D. Harel (1999). Curriculum and course syllabi for a high school CS program.Computer
Science Education, 9(2), 114–147.

Haberman, B., E. Shapiro and Z. Scherz (2002). Are black boxes transparent? – High school students’ strategies
of using abstract data types.Journal of Educational Computing Research, 27(4), 411–436.

Haberman, B., and Z. Scherz (2003). Abstract data types as tools for project development – high school stu-
dents’ views.Journal of Computer Science Education Online, January 2003. Available:
www.iste.org/sigcs/community/jcseonline/2003/1/haberman.cfm

Holcombe, M., A. Stratton, S. Fincher and G. Griffiths (Eds.) (1998). Projects in the computing curriculum. In
Proceedings of the Project 98 Workshop. Springer-Verlag, London.

Parnas, D.L. (1972). On the criteria to be used in decomposing systems into modules.Communication of the
ACM, 15(12), 1053–1058.

Scherz, Z., and B. Haberman (1995). Logic programming based curriculum for high school students: the use of
abstract data types.SIGCSE Bulletin, 27(1), 331–335.

Schoenfeld, A.H. (1985).Mathematical Problem Solving. Academic Press, Orlando, FL.
Sterling, L., and E. Shapiro (1994).The Art of Prolog, 2nd ed. MIT Press, Cambridge, MA.



Mini-Projects Development in Computer Science – Students’ Use of Organization Tools319

Z. Scherz has a MSc in biophysics, and a PhD in science education. Her postdoctoral
research was performed at the University of Washington’s College of Education. In 1984,
she joined the staff of the Department of Science Teaching at the Weizmann Institute of
Science, where she has led the Logic Programming in Education Group, and currently
heads the chemistry and the scientific communication teams at the junior high level. She
has written many learning materials for the junior high and high school levels in the
areas of logic programming, artificial intelligence, science and technology and high order
skills. Her research has focused on student conceptualization of computer science and
scientific principles, on their learning of high order skills, as well as on the professional
development of leading teachers.

B. Haberman received her PhD degree in science teaching from the Weizmann Institute
of Science in 1999. She is currently an instructor in the Department of Computer Science
in the Holon Academic Institute of Technology. She is also a member of the computer sci-
ence team in the Department of Science Teaching in the Weizmann Institute of Science,
and a leading member of Machshava – the Israeli National Center for high school com-
puter science teachers. She has developed learning materials for high school level in the
areas of logic programming and artificial intelligence, and algorithmic patterns. She has
developed academic programs for undergraduate level in computer science. Her primary
research interests are computer science educational research, students’ conceptualization
of computer science, as well as in-service teacher education and distance learning.

Nedideli ↪u projekt ↪u vystymas informatikoje: moksleivi ↪u gebėjimas
naudotis organizacinėmis priemonėmis

Zahava SCHERZ, Bruria HABERMAN

Straipsnyje aprašoma studija, kuri↪a atliekant nagriṅeti skirtingi student↪u projekt↪u vystymo pro-
filiai. Ypatingas ḋemesys kreipiamas↪i geḃejim ↪a naudoti abstraǩciuosius duomen↪u tipus, skirtus
vystyti žiniomis paremtus projektus.

Abstraǩci ↪uj ↪u duomen↪u tipo koncepcija buvo pristatyta vidurini↪u mokykl ↪u moksleiviams,
lankiusiems „Informatikos – loginio programavimo“ kurs↪a. Pamok↪u metu moksleiviai buvo su-
pažindinti su skirtingomis projekt↪u vystymo priemoṅemis bei metodais, kuri↪u vienas ṙemėsi ab-
straǩci ↪uj ↪u duomen↪u tip ↪u panaudojimu sprendžiant uždavinius bei reprezentuojant žinias.

Kurso pabaigoje, buvo suorganizuotas vien↪a dien↪a truk↪es seminaras mini projekt↪u vystymui
gruṗese, visas vystimo procesas buvo fiksuojamas garso bei vaizdo aparatūra, o v̇eliau sustruk-
tūruotas bei išanalizuotas. Buvo išskirti atskiri grupės elgsenos atliekant projekt↪a profiliai. Išanali-
zavus šiuos profilius buvo išskirti keturi projekto vystymo grupi↪u, – vykdant projekt↪a kiekvienoje iš
j ↪u pasitelktos vienokios ar kitokios organizacinės priemoṅes, – tipai. Dviejuose projekto vystymo
grupi ↪u tipuose buvo pasitektas abstrakči ↪uj ↪u duomen↪u tip ↪u metodas, o kitose dviejose – naudoti
kiti metodai. Tyrimas atskleiḋe, kad tiems, kurie projekto vystymo eigoje pasitelkė abstraǩciuosius
duomen↪u tipus, sek̇esi kur kas geriau ir j↪u darbas buvo labiau struktūruotas bei organizuotas, nei t↪u,
kurie vadovavosi kitais metodais.


