
Informatics in Education, 2005, Vol. 4, No. 1, 69–86 69
 2005Institute of Mathematics and Informatics, Vilnius

Take Note: the Effectiveness of Novice
Programmers’ Annotations on Examinations

Robert MCCARTNEY
Department of Computer Science and Engineering, University of Connecticut
Storrs, CT 06269, USA
e-mail: robert@engr.uconn.edu

Jan Erik MOSTRÖM
Department of Computing Science, Umeå University
905 86 Umeå, Sweden
e-mail: jem@cs.umu.se

Kate SANDERS
Department of Math and Computer Science, Rhode Island College
Providence, RI 02908 USA
e-mail: ksanders@ric.edu

Otto SEPPÄLÄ
Laboratory of Information Processing Science, Helsinki University of Technology
02015 TKK, Finland
e-mail: oseppala@cs.hut.fi

Received: December 2004

Abstract. This paper examines results from a multiple-choice test given to novice programmers at
twelve institutions, with specific focus on annotations made by students on their tests. We found that
the question type affected both student performance and student annotations. Classifying student
answers by question type, annotation type (tracing, elimination, other, or none), and institution, we
found that tracing was most effective for one type of question and elimination for the other, but
overall, any annotation was better than none.

Key words: student assessment, tracing, annotation, code reading, test strategies.

1. Introduction

In summer, 2004, a working group at the ITiCSE conference in Leeds, UK, examined
the code reading and understanding of novice computer programmers. The analysis was
based on data collected from twelve institutions in Australia, Denmark, England, Fin-
land, New Zealand, Sweden, the United States, and Wales. These data were based on a
multiple-choice test administered to beginning programming students, and included the
student answers for all of the questions. For a subset of the students, interview transcripts

70 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

and the actual test forms with any annotations used during the test were also collected.
The working group analyzed a broad range of issues: the kinds of questions, the perfor-
mance of students by institution and quartile, the sorts of annotations used and their gen-
eral effectiveness, student test-taking strategies observed, and others(Listeret al., 2004).

In this paper, we look in detail at a small slice of these issues: the interrelationships
observed between the kinds of annotations used by the students, the style and difficulty
of the individual questions, and the institutions where the students were tested. In partic-
ular, we would like to determine how the likelihood of answering a question correctly is
affected by the various kinds of annotations used.

2. Classifying Annotations

An annotation, referred to as a “doodle” by the Working Group, was defined to be any
kind of marking by a student on his or her exam paper. In Fig. 1 we can see an example
where the user made a number of marks: numbers written over variables, numbers written
under array elements, and many assignment statements setting variables to constants.
In this case, the assignments show the student keeping track of variables as the loop is
executed – a graphical record of the tracing process.

Two of the Working Group members did a data-driven classification of the doodles.
This classification was later independently verified by three other members (see (Lister
et al., 2004) for details). The classification is given in Table 1. Using this, the researchers
classified 56 complete exams: the three from each institution corresponding to the stu-
dents who were interviewed about their tests, plus 20 others chosen at random from the
six researchers who had other tests with them in Leeds. All of the results in this paper are
based on these 56 exams.

As the example in Fig. 1 shows, an answer can contain several different doodle cate-
gories: N, P, and T for this question.

Fig. 1. Example of doodles on test from question 5, showing annotations N, P, and T.

Effectiveness of Novice Programmers’ Annotations on Examinations 71

Table 1

Categorization of annotations. % is percentage of questions showing each type

Name Code Description %

Blank page B No annotations for this question 38

Synchronized trace S Shows values of multiple variables changing, generally in a table. 11

Trace T Shows values of a variable as it changes (more than 1 value) or a
variable’s value is overwritten with new value

32

Odd Trace O Appears to be a trace but neither S nor T, such as linking represen-
tations with arrows

3

Alternate answer A Student changed their answer to the question 4

Ruled out X One or more alternative answers crossed out, answer appeared to
be selected by elimination

9

Computation C An arithmetic or boolean computation (not rewrite of comparison) 4

Keeping tally K Some value counted multiple times, variable not identified 1

Number N Shows single variable value, most often in comparison 28

Position P Picture of correspondence between array indices and values 11

Underlined U Part of question underlined for emphasis 7

Extraneous marks E Markings that appear meaningless or ambiguous (could not be
characterized). Includes arrows, dots, and so forth

13

3. Classifying the Exam Questions

The multiple-choice exam used for this project consisted of twelve questions involving a
variety of array-processing tasks, such as comparing two arrays in order to find elements
that are contained in both, testing to determine whether an array is sorted, filtering some
of the elements of one array into another, searching for a given element in an array, and
deleting the element in a given position from an array.

Each question on the test can be classified into one of two categories,fixed-codeques-
tions, where the student is given a code fragment and asked questions about the result of
executing it, andskeleton-codequestions, where the student is given an incomplete code
fragment, and asked to complete it so it will perform a given task. There were seven
fixed-code and five skeleton-code questions on the exam; these are given in Appendices
A and B respectively.

Fixed-code questionspresent a single piece of code and ask the student about what
is true after the code is executed. The style of all the fixed-code questions is the same:
“Consider the following code fragment:[code fragment]What is the value of[some int
or array variable]after this code is executed?”, and each of the possible answers is a
constant, either the value of an integer variable (as in questions 1, 2, 3, 4, and 7) or a list

72 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

Table 2

Percentage of questions answered correctly and percentage of questions with annotations observed, by question.
These are based on analysis of 672 questions (56 of each question)

Fixed-code Skeleton-code

1 2 3 4 5 7 10 6 8 9 11 12

% annotated: 68 79 71 86 88 73 71 41 45 39 45 38

% correct: 68 61 71 57 79 66 68 54 45 68 66 45

of the values in an array (as in questions 5 and 10). Other than the code, they require very
little reading.

In contrast,skeleton-code questionsprovide a code fragment containing one or more
blanks, a description of what the code is to accomplish, and a set of choices with which
to fill the blanks. These choices are all code fragments themselves, as opposed to the
numeric values used in the answers to the fixed-code questions. These are longer to read,
as there is a description of the intent of the code (see, in particular, questions 8 and 11),
and the answers are longer since they are code fragments.

The students’ performance was noticeably different on the two types of questions.
Table 2 shows the percent of correct answers broken down by question. It shows that
students in general did better on the fixed-code questions than on the skeleton-code ques-
tions. On the fixed-code questions, from 57% to 79% of all the answers were correct
(depending on the question), with a mean score of 67%. On the skeleton code questions,
45% to 68% of the answers were correct, with a mean score of 55% – a difference of 12%
on average. The overall average exam score was 62%, which indicates that the students
do not have a strong grasp of the basic knowledge in these areas.

4. Analysis

Two issues complicated our analysis of these data. First, the large majority of the anno-
tations were done on the fixed-code questions, as can be seen in Table 2. The difference
between the fixed-code and skeleton-code questions is striking: 77% of the fixed-code
questions are annotated, as opposed to 41% of the skeleton-code questions. Indeed, if we
were to group the questions on the basis of how often they are annotated, without look-
ing at the questions themselves, we would have the same groups: Questions 1–5, 7, and
10, the fixed-code questions (68%–88% annotated) and Questions 6, 8–9, and 11–12, the
skeleton-code questions (38%–45% annotated).

Because the two groups were annotated so differently, there was the danger that over-
all conclusions would be determined by the data from the annotations of the fixed-code
questions. Accordingly, we considered the fixed-code and skeleton-code questions both
together and as two separate groups.

The second issue that complicates this analysis is that the classifications are not dis-
joint; with the exception of Blank, any combination of annotations can occur on any

Effectiveness of Novice Programmers’ Annotations on Examinations 73

given question. The observed non-blank questions had from 1 to 5 different annotation
types represented, with an average of approximately 2. As an example of this problem,
consider class N, numbering, which was relatively common (appearing in just over 28%
of the questions). 90% of the time that there was numbering, however, there were other
classes as well; 77% of the time at least one tracing type was also present.

To resolve this issue, we created four disjoint categories, reclassifying each question
as Blank, Some Tracing (S, T, and O, but not A or X), Elimination (A or X), or Other (ev-
erything else). The rationale for these categories is that tracing and process of elimination
are recognizable strategies, and, with Blank, cover 89% of the observations.

We then counted the number and percentage of time the answers were correct for
each category, for fixed-code questions, skeleton-code questions, and for all questions
taken together. The results are given in Tables 3 and 4.

These tables illustrate a number of things:

1. Overall, answers showing explicit tracing are the most likely to be correct: 75%
are correct, compared with 50% for questions without annotation. We see similar
results for FC and SC questions handled separately.

2. Overall, elimination is the second-most effective strategy.
3. Across the board, both overall and for the fixed-code and skeleton-code subsets of

the data, any form of annotation, even Other, is better than no annotation at all.
4. The frequency of tracing is much lower for skeleton code questions than fixed code

questions.Although tracing is used less, it is still highly effective for the skeleton-

Table 3

Percentages of annotation types for each question type. Numbers in parentheses present the counts (questions
having this annotation, all questions)

fixed-code skeleton-code all questions

Blank 23 (92 of 392) 59 (164 of 280) 38 (256 of 672)

Some tracing 61 (238 of 392) 6 (17 of 280) 38 (255 of 672)

Elimination 6 (25 of 392) 21 (59 of 280) 13 (84 of 672)

Other 9 (37 of 392) 14 (40 of 280) 11 (77 of 672)

Table 4

Percentages correct, by question and annotation type. Numbers in parentheses present the counts (correct and
total answers)

fixed-code skeleton-code all questions

Blank 50 (46 of 92) 50 (82 of 164) 50 (128 of 256)

Some tracing 76 (180 of 238) 65 (11 of 17) 75 (191 of 255)

Elimination 48 (12 of 25) 61 (36 of 59) 57 (48 of 84)

Other 54 (20 of 37) 55 (22 of 40) 55 (42 of 77)

Total 66 (258 of 392) 54 (151 of 280) 61 (409 of 672)

74 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

code questions when it is used.
5. The frequency of elimination is much higher for the skeleton code questions (where

it is the most common annotation) than for the fixed code questions. Its effective-
ness for skeleton code questions is slightly better than tracing, and much better than
no annotations.

6. Skeleton-code questions are much more likely than fixed-code questions not to be
annotated at all.

5. Annotations and Overall Performance

In the working group paper (Listeret al., 2004), the authors were able to extract dif-
ferences between questions by observing what students in different quartiles (based on
test score) chose in each question as their answer. We applied similar techniques here,
with the expectation that students who do well on the exam would be more likely to use
the effective annotation techniques. Results from three annotation types can be found in
Fig. 2.

Fig. 2. Percentage of an annotation type used in different quartiles.

Effectiveness of Novice Programmers’ Annotations on Examinations 75

We found that tracing individual variables (T) was used about the same for the top
three quartiles for fixed-code questions, but for skeleton-code questions, the top quartile
was twice as likely to trace as the second and third. The increased likelihood for the top
quartile to use synchronized traces (S) relative to the lower quartiles was even greater,
although the overall use was lower than tracing for the top quartile – possibly because not
all questions required multiple variables to be traced. The data related to blank questions
are less easily explained, however, as the frequency of blank questions does not increase
monotonically as we go from the top to the bottom quartile – the second quartile students
have relatively more blanks than the third quartile for fixed-code questions, and more
than the third or fourth for skeleton-code questions.

6. Annotations and Institutions

While the popularity of annotations varied substantially from institution to institution,
they led to higher scores in almost every institution. Table 5 shows the frequency of an-
notations for the 12 institutions (identified by letter due to confidentiality requirements).

These are large differences. Overall, the percentage of questions with annotations
varies from 28 to 92. The percentages of fixed-code questions with annotations range
from 36 to 100, and for skeleton-code questions, from 10 to 93.

To try to isolate the performance effects of annotation, we examined the performance
difference between “strategic” annotations (tracing or elimination) and no annotations for
each institution. (Tracing and eliminations were pooled since the numbers of observations
at each institution are rather low). These data are given in Table 6. This table further
supports the inference that students who annotate their exams tend to perform better: four
of the five highest averages are from institutions in the top five in annotation frequency.
In addition, in ten of the twelve institutions, annotated questions were more often correct
than “blank” questions, which would indicate that the positive effect of tracing is fairly
universal. (It should be noted that the number of blank questions is extremely low for
institutions T, N, C, and P (9, 4, 4, and 3 respectively), so the comparisons for those
institutions are of dubious value.) An intriguing anomaly is observed with institutions E
and J, however: these two had the lowest annotation frequencies, but average-to-above-
average scores.

Table 5

Percentage of questions with any annotations, by institution and question type

Institution
Question type

E J L S Q H O A T N C P

all 28 36 50 51 58 60 69 70 87 89 89 92

fixed code 36 55 62 71 71 89 81 89 98 86 100 100

skeleton code 17 10 33 23 40 20 53 43 73 93 73 80

76 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

Table 6

Percentage of questions correctly answered by institution, for Some tracing or Elimination (labelled S.T. or E)
and Blank. Average score is based on all questions at the institution

Institution

E J L S Q H O A T N C P

S.T. or E. 87 77 87 54 72 59 63 76 78 63 76 58

Blank 62 48 33 66 53 21 45 38 67 100 50 0

Average score 68 57 58 60 61 42 56 63 78 67 75 39

7. Discussion: Making Sense of These Results

Some of the results make obvious sense: for example, tracing through the code on paper
helps; the proportion of correct answers where there is tracing is much higher than where
there is not. One result seem counter intuitive at first glance: students use tracing less
on the harder questions, where such strategies might be expected to be effective. We can
offer three possible explanations:

Too much work Answering a skeleton-code question by tracing through the different al-
ternatives would mean four or five times the work compared to a fixed-code ques-
tion. Many students seem to realize this and instead chose to change their problem
solving strategy: they begin by reading the question and forming a hypothesis of
how the program should work, then look for boundary values that can be used to
rule out different alternatives, and finally they check whether the selected alterna-
tive seem to work. This strategy would also explain the increase in eliminations for
skeleton-code questions as shown in Table 3.

Too abstract The fixed-code questions are simple in the respect that they only require a
knowledge of the syntax/semantics of the language and the ability to carefully trace
the values of different variables. The skeleton-code questions are different in that
they give a textual description of the problem, which the students have to translate
into some problem understanding, they then have to form a hypothesis of a possible
solution based on the alternatives, and then evaluate the different alternatives to
find the correct one possible by creating one or more test cases (compare this to the
software comprehension model described in (Boehm-Davis, 1988)).

Lack of representation Closely related to the explanation above is the lack of repre-
sentation. As described above the student is required tounderstandthe problem
description for skeleton-code questions. This might be difficult to do without rep-
resenting the task at the abstract level, a skill that most novices apparently do not
have. It is observed in (Bransfordet al., 1999) that novices tend to solve problems
concretely (plugging values into equations, e.g.), while experts tend to apply the
(correct) abstract principles – it may be that novices cannot represent the abstract
version of the task.

Effectiveness of Novice Programmers’ Annotations on Examinations 77

From the available data we can not determine which, if any, of these are true, but answer-
ing this is an interesting possible research topic.

Regarding the different amounts of doodling at the different institutions, there are a
number of possible causes – local culture, the way programming is taught, the way the
test was administered, chance, and so forth. It may simply be that the subject pools were
fairly homogeneous within institutions.

8. Related Work

Davies (1993) found that novices and experts have different ways of annotating programs,
and also that experts spend more time annotating than novices. Both Davies’ and our
results indicate that annotations are a successful strategy for finding the correct answer.

Thomaset al. (2004) found that students who drew object diagrams performed better
on tests involving object references, but their attempts to encourage greater use of dia-
grams were largely ineffective. Indeed, even after the benefits of using diagrams were
demonstrated to students, they failed to use them when taking exams.

Hegarty (2004) looks at relations between externally produced diagrams and internal
visualizations. One of the relations that she proposes is the use of external visualizations
to augment internal visualizations: some of the internal processing and memory is “off-
loaded” to an external representation. Experimental evidence in (Hegarty and Steinhoff,
1997) showed that “low-spatial” subjects who made annotations on an external diagram
performed as well as “high-spatial” subjects when doing problems involving the inference
of mechanical component motion, which suggests that the use of external annotation can
substitute for keeping track of details internally.

Perkinset al. (1989) identify tracing (which they refer to as “close tracking”) as a
fundamental skill required by programmers: even for novices, it can be used to avoid,
diagnose, and repair bugs in programs. They also observed that students fail to trace their
code effectively, and identify a number of reasons for such failure:

1) students do not understand that tracing can be useful, or are not confident that they
can trace effectivly,

2) students do not understand the programming language primitives,
3) students “project intentions” onto the code, and reason from these rather than from

the code itself, and
4) students have differing cognitive styles.

We explicitly observed the third reason, students “recognizing” what a code fragment
does and reasoning from that level, and suspect that the other three also occurred in this
study.

More generally, many previous relevant studies, specifically regarding novice pro-
grammers, use of strategies, and distinguishing comprehension and generation, are cited
in a survey by Robinset al. (2003).

78 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

9. Conclusions

This project used both fixed-code and skeleton-code questions to test concepts and iden-
tify misconceptions in introductory programming students. Performance in both improves
when students annotate their tests, particularly by tracing on paper. There are differences,
however: fixed-code questions require only understanding of how each expression works.
Skeleton-code questions are closer to writing code, and can require more abstract reason-
ing. As they require code to meet a specification, they require students to reason about
aggregate function, determine proper test cases, and so forth. Other strategies, such as
process-of-elimination, may be more appropriate here, as the space of four or five differ-
ent pieces of code and a number of possible test cases may make tracing too tedious.

In addition to the questions as to why students annotate harder questions less, this
work suggests some areas for further study:

Novice/expert annotation. Do the annotation patterns used by individuals change over
time? Some previous work (Davies, 1993) suggests both the number and the type
of annotations differs between novices and experts. Can similar differences be seen
between first and last year students and what would these differences mean?

Institutional differences. Are institutional differences as large as these data (Table 5)
would indicate? Do these differences reflect differences in how programming is
being taught, or culture, or simply differences in the way the data were collected?

MCQs in practice. The results in the paper shows a clear difference between fixed-code
and skeleton-code questions which makes them appropriate for different stages in a
first programming course. How might we best exploit these differences to improve
the student learning experience?

Acknowledgments

Thanks to all of the working group participants (see (Listeret al., 2004)), and the local
arrangements people at Leeds who provided a great work space and plenty of tea and
coffee. Thanks to the organizers, reviewers and participants ofKolin Kolistelut: the or-
ganizers who provided an intellectually stimulating environment, and the reviewers and
participants who asked good questions and offered good ideas on how to improve this
paper and build on these results. Finally, thanks to Sally Fincher, Marian Petre, and Josh
Tenenberg, whose Bootstrapping and Scaffolding workshops (supported by NSF grants
DUE-0122560 and DUE-0243242) had a large positive influence on this work.

Effectiveness of Novice Programmers’ Annotations on Examinations 79

Appendix A. The Fixed-Code Questions

1. Consider the following code fragment:

int[] x = {2, 1, 4, 5, 7};
int limit = 3;
int i = 0;
int sum = 0;

while ((sum<limit) && (i<x.length)) {
++i;
sum += x[i];
}

What value is in the variable “i” after this code is executed?
a) 0
b) 1
c) 2
d) 3

2. Consider the following code fragment.
int[] x1 = {1, 2, 4, 7};
int[] x2 = {1, 2, 5, 7};
int i1 = x1.length-1;
int i2 = x2.length-1;
int count = 0;

while ((i1 > 0) && (i2 > 0)) {
if (x1[i1] == x2[i2]) {

++count;
--i1;
--i2;
}

else if (x1[i1] < x2[i2]) {
--i2;
}

else {
// x1[i1] > x2[i2]
--i1;
}

}

After the above while loop finishes, “count” contains what value?
a) 3
b) 2
c) 1
d) 0

3. Consider the following code fragment:
int [] x = {1, 2, 3, 3, 3};
boolean b[] = new boolean [x.length];

for (int i = 0; i < b.length; ++i)
b[i] = false;

80 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

for (int i = 0; i < x.length; ++i)
b[x[i]] = true;

int count = 0;
for (int i = 0; i < b.length; ++i) {

if (b[i] == true) ++count;
}

After this code is executed , “count” contains:
a) 1
b) 2
c) 3
d) 4
e) 5

4. Consider the following code fragment.
int[] x1 = {0, 1, 2, 3};
int[] x2 = {1, 2, 2, 3};
int i1 = 0;
int i2 = 0;
int count = 0;

while ((i1 < x1.length) && (i2 < x2.length)) {
if (x1[i1] == x2[i2]) {

++count;
++i2;
}

else if (x1[i1] < x2[i2]) {
++i1;
}

else {
// x1[i1] > x2[i2]
++i2;

}
}

After this code is executed, “count” contains:
a) 0
b) 1
c) 2
d) 3
e) 4

5. Consider the following code fragment.
int[] x = {0, 1, 2, 3};
int temp;
int i = 0;
int j = x.length-1;

while (i < j) {
temp = x[i];
x[i] = x[j];
x[j] = 2*temp;
i++;
j--;
}

Effectiveness of Novice Programmers’ Annotations on Examinations 81

After this code is executed , array “x” contains the values:
a) {3, 2, 2, 0}
b) {0, 1, 2, 3}
c) {3, 2, 1, 0}
d) {0, 2, 4, 6}
e) {6, 4, 2, 0}

7. Consider the following code fragment:
int[] x = {2, 1, 4, 5, 7};
int limit = 7;
int i = 0;
int sum = 0;

while ((sum<limit) && (i<x.length)) {
sum += x[i];
++i;
}

What value is in the variable “i” after this code is executed?
a) 0
b) 1
c) 2
d) 3
e) 4

10. Consider the following code fragment.
int[] array1 = {2, 4, 1, 3};
int[] array2 = {0, 0, 0, 0};
int a2 = 0;
for (int a1=1 ; a1<array1.length ; ++a1) {

if (array1[a1] >= 2) {
array2[a2] = array1[a1];
++a2;
}

}

After this code is executed , the array “array2” contains what values?
a) {4, 3, 0, 0}
b) {4, 1, 3, 0}
c) {2, 4, 3, 0}
d) {2, 4, 1, 3}

Appendix B. The Skeleton-Code Questions

6. The following method “isSorted” should return true if the array is sorted in ascend-
ing order. Otherwise, the method should return false:

public static boolean isSorted (int []x) {
//missing code goes here
}

Which of the following is the missing code from the method “isSorted” ?
a) boolean b = true;

for (int i=0 ; i<x.length-1 ; i++) {

82 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

if (x[i] > x[i+1])
b = false;

else b = true;
}

return b;

b) for (int i=0 ; i<x.length-1 ; i++) {
if (x[i] > x[i+1]) return false;
}

return true;

c) boolean b = false;
for (int i=0 ; i<x.length-1 ; i++) {

if (x[i] > x[i+1]) b = false;
}

return b;

d) boolean b = false;
for (int i=0;i<x.length-1;i++) {

if (x[i] > x[i+1]) b = true;
}

return b;

e) for (int i=0;i<x.length-1;i++) {
if (x[i] > x[i+1]) return true;
}

return false;

8. If any two numbers in an array of integers, not necessarily consecutive numbers

in the array, are out of order (i.e. the number that occurs first in the array is larger

than the number that occurs second), then that is called an inversion. For example,

consider an array “x” that contains the following six numbers:

4 5 6 2 1 3

There are 10 inversions in that array, as:
x[0]=4 > x[3]=2
x[0]=4 > x[4]=1
x[0]=4 > x[5]=3
x[1]=5 > x[3]=2
x[1]=5 > x[4]=1
x[1]=5 > x[5]=3
x[2]=6 > x[3]=2
x[2]=6 > x[4]=1
x[2]=6 > x[5]=3
x[3]=2 > x[4]=1

The skeleton code below is intended to count the number of inversions in an array

“x”:
int inversionCount = 0;
for (int i=0 ; i<x.length-1 ; i++) {

for xxxxxx {
if (x[i] > x[j]) ++inversionCount;

}
}

Effectiveness of Novice Programmers’ Annotations on Examinations 83

When the above code finishes, the variable “inversionCount” is intended to contain
the number of inversions in array “x”. Therefore, the “xxxxxx” in the above code
should be replaced by:
a) (int j=0 ; j<x.length ; j++)
b) (int j=0 ; j<x.length-1 ; j++)
c) (int j=i+1 ; j<x.length ; j++)
d) (int j=i+1 ; j<x.length-1 ; j++)

9. The skeleton code below is intended to copy into an array of integers called “ar-
ray2” any numbers in another integer array “array1” that are even numbers. For
example, if “array1” contained the numbers:
array1:4 5 6 2 1 3
then after the copying process, “array2” should contain in its first three places:
array2: 4 6 2
The following code assumes that “array2” is big enough to hold all the even num-
bers from “array1”:

int a2 = 0;
for (int a1=0 ; xxx1xxx ; ++a1) {

// if array1[a1] is even
if (array1[a1] % 2 == 0) {

// array1[a1] is even, so copy it
xxx2xxx;
xxx3xxx;
}

}

The missing pieces of code “xxx1xxx”, “xxx2xxx” and “xxx3xxx” in the above
code should be replaced respectively by:
a) a1<array1.length

++a2
array2[a2] = array1[a1]

b) a1<array1.length
array2[a2] = array1[a1]
++a2

c) a1<=array1.length
array2[a2] = array1[a1]
++a2

d) a1<=array1.length
++a2
array2[a2] = array1[a1]

Hint: in all four options above, the second and third parts are the same, just re-
versed.

11. Suppose an array of integers “s” contains zero or more different positive integers,
in ascending order, followed by a zero. For example:
int[] s = {2, 4, 6, 8, 0};

or int[] s = {0};

Consider the following “skeleton” code, where the sequences of “xxxxxx” are sub-

84 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

stitutes for the correct Java code:
int pos = 0;
while ((xxxxxx) && (xxxxxx)) ++pos;

Suppose an integer variable “e” contains a positive integer. The purpose of the
above code is to find the place in “s” occupied by the value stored in “e”. For-
mally, when the above “while” loop terminates, the variable “pos” is determined as
follows:

1. If the value stored in “e” is also stored in the array, then “pos” contains the
index of that position. For example, if e=6 and s = {2, 4, 6, 8, 0}, then pos
should equal 2.

2. If the value stored in “e” is NOT stored in the array, but the value in “e” is
less than some of the values in the array then “pos” contains the index of the
lowest position in the array where the value is larger than in “e”. For example,
if e=7 and s = {2, 4, 6, 8, 0}, then pos should equal 3.

3. If the value stored in “e” is larger than any value in “s”, then “pos” contains
the index of the position containing the zero. For example, if e=9 and s = {2,
4, 6, 8, 0}, then pos should equal 4.

The correct Boolean condition for the above “while” loop is:
a) (pos < e) && (s[pos] != 0)
b) (pos != e) && (s[pos] != 0)
c) (s[pos] < e) && (pos != 0)
d) (s[pos] < e) && (s[pos] != 0)
e) (s[pos] != e) && (s[pos] != 0)

12. This question continues on from the previous question. Assuming we have found
the position in the array “s” containing the same value stored in the variable “e”,
we now wish to write code that deletes that number from the array, but retains the
ascending order of all remaining integers in the array. For example, given:

s = {2, 4, 6, 8, 0};
e = 6;
pos = 2;

The desired outcome is to remove the 6 from “s” to give:
s = {2, 4, 8, 0, 0};

Consider the following “skeleton” code, where “xxxxxx” is a substitute for the
correct Java code:

do {
++pos;
xxxxxx;
} while (s[pos] != 0);

The correct replacement for “xxxxxx” is:
a) s[pos+1] = s[pos];
b) s[pos] = s[pos+1];
c) s[pos] = s[pos-1];
d) s[pos-1] = s[pos];
e) None of the above

Effectiveness of Novice Programmers’ Annotations on Examinations 85

References

Boehm-Davis, D.A. (1988).Handbook of Human-Computer Interaction, Ch. 5 (Software Comprehension).
Elsevier.

Bransford, J.D., A.L. Brown, R.R. Cocking (Eds.) (1999).How People Learn: Brain, Mind, Experience, and
School. National Academy Press, Washington, D.C.

Davies, S. (1993). Externalising information during coding activities: effects of expertise, environment, and
task. InEmpirical Studies of Programmers: 5th Workshop. Ablex, Norwood, NJ, pp. 42–61.

Hegarty, M. (2004). Diagrams in the mind and in the world: relations between internal and external visual-
izations. In: A. Blackwell, K. Marriot, A. Shimojima (Eds.),Diagrams 2004, LNAI, 2980. Springer-Verlag,
Berlin Heidelberg, pp. 1–13.

Hegarty, M., K. Steinhoff (1997). Use of diagrams as external memory in a mechanical reasoning task.Learning
and Individual Differences, 9, 19–42.

Lister, R., E. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm, R. McCartney, J. Moström, K. Sanders,
O. Seppälä, B. Simon, L. Thomas (2004). A multi-national study of reading and tracing skills in novice
programmers.SigCSE Bulletin, 36(4), 119–150.

Perkins, D.N., C. Hancock, R. Hobbs, F. Martin, R. Simmons (1989). Conditions of learning in novice program-
mers. In E. Soloway, J.C. Spohrer (Eds.),Studying the Novice Programmer. Lawrence Erlbaum Associates,
Hillsdale, New Jersey, pp. 261–279.

Robins, A., J. Rountree, and N. Rountree (2003). Learning and teaching programming: a review and discussion.
Computer Science Education, 13(2), 137–172.

Thomas, L., M. Ratcliffe, and B. Thomasson (2004). Scaffolding with object diagrams in first year programming
classes: some unexpected results. InProceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education. Norfolk, USA, pp. 250–254.

R. McCartney is an associate professor in the Department of Computer Science and
Engineering, University of Connecticut, USA. His research interests include computer
science education, diagrammatic reasoning, and cooperative robotics.

J.E. Moström is currently a lecturer at the Department of Computing Science, Umeå
University, Sweden. He has more than 15 years of experience teaching programming, hu-
man computer interaction, realtime systems, operating systems, etc. His current research
interests include computer science education reseach, psychology of programmers and
human computer interaction.

K. Sanders is an associate professor in the Math and Computer Science Department at
Rhode Island College, USA. Her research interests include automated legal reasoning
and computer science education.

O. Seppäläis a researcher and a DSc student at Helsinki University of Technology. His
research interest lies with the use of automatic programming visualization and debugging
tools in CS education.

86 R. McCartney, J.E. Moström, K. Sanders, O. Seppälä

Pradedaňci ↪uj ↪u programuotoj ↪u komentar ↪u apie testavim↪a
efektyvumas

Robert MCCARTNEY, Jan Erik MOSTRÖM, Kate SANDERS, Otto SEPPÄLÄ

Straipsnyje nagriṅejami dvylikos institucij↪u pradedaňci ↪uj ↪u programuotoj↪u atsakym↪u ↪i pasiren-
kamojo pob̄udžio testus suvestiniai rezultatai. Ypatingas dėmesys kreipiamas↪i student↪u pateikia-
mus komentarus apie testus. Iš to daromos išvados, jog pats klausimo pobūdis turi ↪itakos ir student↪u
darbams, ir j↪u pateikiamiems komentarams. Suskirstydami student↪u atsakymus pagal klausim↪u
pob̄ud↪i, komentar↪u tip ↪a (trasavimas, eliminavimas, kita arba be komentar↪u) bei j ↪u atstovaujamas
institucijas, išsiaiškinome, jog trasavimo metodas laikomas efektyviausiu pateikiant vieno tipo
klausimus, o eliminavimas û kito tipo klausimus, tačiau bendru atveju bet koks komentaras kur
kas geriau negu jokio.

