
Informatics in Education, 2005, Vol. 4, No. 1, 87–100 87
 2005Institute of Mathematics and Informatics, Vilnius

Point-and-Click Logic

Matti NYKÄNEN
Department of Computer Science, FIN-00014 University of Helsinki
P.O. Box 68 (Gustaf Hällströmin katu 2b), Finland
e-mail: matti.nykanen@cs.helsinki.fi

Received: January 2005

Abstract. Students of proof theory, a branch of formal logic, can benefit from computerized tools.
We describe the principles behind one such tool called PROED. This tool is targeted especially at
novice students, and therefore it is designed to support effortless exploratory use. We moreover
argue that focusing on root-first proof construction in Sequent proof systems helps attain this ef-
fortlessness.
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1. Introduction

Kapur (2004) recently wrote: “During the past ten years, theorem proving has been play-
ing an increasingly important role in education. One reason is the improvement in the
friendliness of theorem provers; many are now suitable for the nonspecialist [...] With
computer-based educational tools profoundly changing the way instruction is imparted,
automated reasoning tools are likely to have considerable impact in education and learn-
ing in the future.” Such automated reasoning tools are basically computer implemen-
tations of variousproof theories, or even meta-frameworks extensible with new proof
theories. A proof theory for a logic is a formal system for constructing correct proofs for
statements written in this logic, such as those presented by Negri and von Plato (2001).
These proofs proceed step by step according to specificinference rules.

When the student encounters his first proof theory, he faces the following problem: He
is given the collection of inference rules of the proof theory in question, and he should
start composing proofs of logical formulæ using them. However, merely knowing the
rules themselves is not enough to know how they can be made to work in unison as parts
of a complete formal proof. Instead, the student must experiment with proof construction
in order to see the rules in action.

Constructing a formal proof involves not only the reasoning steps themselves but
also tedious bookkeeping to ensure that these steps really do connect to each other in
an appropriate manner. Such bookkeeping is best left to the computer; otherwise the
student’s experimentation is hampered by mere notation, which distracts him from the
actual subject matter.

This is why for instance the textbook by Negri and von Plato (2001) also provides the
PESCA tool, a computer implementation of its proof theories. PESCA has been used in
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the proof theory courses given by Negri at Helsinki University Computer Science Depart-
ment. Note that it is not an introductory course on logic in general. Instead, the students
should already be familiar with an informal notion of a logical argument, and this course
focuses on its technical counterpart, the formal proof. This affects our perspective some-
what.

PESCA is a vast improvement over pencil and paper with respect to bookkeeping. On
the other hand, its purely textual interface does not lend itself well to experiments like
“What if I appliedthis ruleto that positionof my ongoing proof?”: the student must first
translate his experiment into a PESCA command which explicitly spells out not only the
rule to apply but also the path to the desired position. Worse, if another rule has already
been applied at that position, then the student must firstundoit before the new rule can be
applied in its place. Furthermore, once the student gains more confidence, his experiment
can ask for a wholeseriesof rule applications to be performed starting at the indicated
position. In PESCA, the student must spell out the series of corresponding commands
explicitly.

Our aim is to explain how the student can perform such an experiment with asingle
click or drag-and-drop operation with the mousein a graphical user interface (GUI). We
shall see how the student’s operation suffices to indicate thelastposition and rule to apply.
For certain kinds of proof theories, the computer can then generate the intermediate stages
of the series without any further guidance from the user. This leads to a tool where the
student uses mouse operations to indicate only the key choices in constructing the proof,
while the computer performs the bookkeeping involved in the concomitant series of rule
applications. We feel that such a tool supports effortless experimentation with different
proof construction strategies.

Our presentation runs as follows. Next, Section 2 explains what kinds of proof theo-
ries suit our approach, followed by Section 3 which explains how mouse operations are
translated into meaningful operations in such proof theories. Then Section 4 reports on
the prototype implementation of our design. Finally, Section 5 concludes the presentation.

2. Requirements for the Logics

Let us now examine some main varieties of proof theories with respect to their suitability
for student exploration in the manner described in Section 1.

Resolution (Russell and Norvig, 2003; Chapter 9.5) is taught in Artificial Intelli-
gence (AI) courses, because a computer can find proofs in this system efficiently. On
the contrary, it is unsuitable for humans for the following two reasons. First, it negates
the formula to prove, and proceeds to find a contradiction. And second, this negated for-
mula is first converted into a certain normal form which can be processed efficiently but
which is very different from the original formula. After this conversion the student may
no longer recognize the formula he should prove. Furthemore, he should be steering the
proof toward a contradiction, and not toward any tangible result. As a result, the student
may be quite lost.
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Hilbert (or axiomatic) systems(Negri and von Plato, 2001; Chapter 2.5 (b)), taught
in Mathematical Logic courses for their amenability to metamathematical analysis, do
retain the original form of the formula to prove. However, they are unsuitable for another
reason: Theaxioms, or the “obvious” starting points of proofs which require no further
proof of their own, are often very complicated formulæ themselves, such as all tautologies
of a certain form. The student is thus expected to master the use of these complicated
formulæ right from the beginning of his study. A pathological example is the following
complex proof for a simple result:

(A ⇒ ((A ⇒ A) ⇒ A)) ⇒
((A ⇒ (A ⇒ A)) ⇒ (A ⇒ A)) A ⇒ ((A ⇒ A) ⇒ A)

(A ⇒ (A ⇒ A)) ⇒ (A ⇒ A) A ⇒ (A ⇒ A)
A ⇒ A

Note how the proof terminates in instances of the following tautological formula
schemata given as axioms:

(α ⇒ (β ⇒ γ)) ⇒ ((α ⇒ β) ⇒ (α ⇒ γ)) and α ⇒ (β ⇒ α).

Note also how tedious it is to verify that they are indeed instances of the respective
schemata. Constructing such proofs is even more difficult for the beginning student, be-
cause he must also see the instances towards which he should be striving in his proof.

Hence we seek proof theories which both retain the original formulæ and have sim-
ple axioms. Two related candidates areNatural deduction (Negri and von Plato, 2001;
Chapter 1.2) andSequent (or Gentzen) systems(Negri and von Plato, 2001; Chap-
ter 1.3). Natural deduction is taught in philosophical logic courses, because its inference
rules correspond to intuition about how reasoning proceeds: Anintroductionrule brings
a logical connective into the proof, while the correspondingeliminationrule gets rid of
it. For example, the introduction rule⊃ I for implication reads “if assumingA enabled
you to proveB, then you have provedA ⊃ B”.

[A]....
B

A ⊃ B
⊃I

The corresponding elimination rule

A ⊃ B A

[B]....
C

C
⊃E

(1)

is engineered so that introduction immediately followed by elimination cancel each other
out to yield the direct proof without the implication. Natural deduction is chosen by for
example the ETPS system (Andrewset al., 2004) with its emphasis in educational use.
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As natural as this approach is, it too suffers from a drawback. The student is ini-
tially faced with only the conclusionC to prove. Suppose he wanted to experiment with
rule (1). Where would the new assumptionA ⊃ B come from? While a seasoned lo-
gician may well somehow see it fromC, the novice student may not. Coming up with
just the right assumption is certainly a valuable skill to master in constructing proofs; but
here we are designing a tool for learning proof construction to begin with. The situation
is analogous to but easier than in Hilbert systems above: in both cases, the student must
learn to anticipate the appearance of new, previously unseen formulæ into his proofs.

Another related candidate is usinganalytic tableauxas in for example theSTRATUM

system by Janhunenet al. (2004). This method is akin to solving systems of equations
with the form “formulaA is true / false” by repeated decomposition. However, the idea
of Natural deduction and Sequent systems extends in a natural way to modelling other
properties of sentences than their truth- or falsehood; an example are the Lambek calculi
from formal linguistics (Carpenter, 1997; Chapters 5.1 and 5.2). That is, the latter are a
more generally applicable tool then the former. In particular, Sequent systems provide
decomposition rules onproofs instead oftruth valuesas in analytic tableaux. Similarly,
we argue that althoughcalculational reasoningyields spectacular educational results
already at the secondary school level (Peltomäki and Salakoski, 2004), applying it in,
e.g., linguistics does not seem straightforward. We feel that our university-level target
audience benefits from learning widely applicable tools.

We therefore opt for Sequent systems. Natural deduction drew conclusions like “for-
mulaC is true” below the horizontal line of the inference rule. Sequent calculi instead
draw conclusions like “there is a proof ofC from assumptionsΓ”; these are denoted
asΓ ⇒ C. Thus, sequent calculi provide an explicit notation for handling assumptions.
Moreover, these assumptions are kept near the conclusion being drawn, whereas in natu-
ral deduction they may be far removed from it. On the other hand, this notation entails a
lot of redundant bookkeeping, which makes sequent calculi tedious for experimentation
on pencil and paper. However, we can relegate this routine bookkeeping to the comput-
erized tool. In fact, Natural deduction systems can also be equipped with sequent-style
assumption handling. Our student interaction concept, to be presented in Section 3 below,
extends readily to such systems as well.

Consider as our example the proof theory depicted as Table 1. Introduction rules be-
come right rules operating on a formula on the right-hand side of a sequent, while elimina-
tion rules become the corresponding left rules insted. Thus the left ruleL⊃ corresponds
to elimination rule⊃E above. Comparing these two rules shows the effect: the student
is faced with a sequent∆ ⇒ C to prove. However, now his choices are explicitly listed
within it: he can manipulate either its right sideC with the applicable right rule(s) or any
member of its left side∆ with the applicable left rule. Moreover, examining the rules
in Table 1 reveals that every formula above the horizontal line is present already below
the line, either as a partA or B of the formula operated on by the rule or as a member
of Γ, the other assumptions that are retained as is by the rule. Thissubformula property
remedies the drawback of natural deduction noted above.

The proof theory in Table 1 is theintuitionistic propositional one presented by Negri
and von Plato (2001). They also present a classical counterpart titledG3cp (Negri and
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Table 1

The sequent systemG3ip (Negri and von Plato, 2001; Chapter 2.2).

The axioms are

P, Γ ⇒ P (2)

where the formulaP is atomic, or contains none of the connectives ‘&’ (conjunction), ‘∨’ (dis-
junction), ‘⊃’ (implication) or ‘⊥’ (falsum). Each sequent is of the form∆ ⇒ D, where its
right sideD is a formula, and itsleft side∆ is a multiset of formulæ. That is,∆ may contain
multiple distinct copies of the same element. The shorthandA, Γ denotes such a multiset from
which one such copy of its elementA has been singled out whileΓ consists of the other elements
of the multiset. The inference rules are as follows:

left rule right rule(s)

&

A, B, Γ ⇒ C

A&B, Γ ⇒ C
L&

Γ ⇒ A Γ ⇒ B
Γ ⇒ A&B

R&

∨
A, Γ ⇒ C B, Γ ⇒ C

A ∨ B, Γ ⇒ C
L∨

Γ ⇒ A
Γ ⇒ A ∨ B

R∨1

Γ ⇒ B
Γ ⇒ A ∨ B

R∨2

⊃
A ⊃ B, Γ ⇒ A B, Γ ⇒ C

A ⊃ B, Γ ⇒ C
L⊃

A, Γ ⇒ B

Γ ⇒ A ⊃ B
R⊃

⊥ ⊥, Γ ⇒ C
L⊥

no such rule

von Plato, 2001; Chapter 3.1 (a)) whose major difference is that also the right-hand side
of ‘⇒’ is a multiset of formulæ. Our approach coversG3cp as well. However, let us
concentrate here on the proof theory in Table 1 for definiteness.

The aforementioned subformula property suggests a particular proof construction
mode: the student starts with the sequent∆ ⇒ D to prove. He selects from it a particular
formula, eitherD or some member of∆. The computerized tool can in turn extract all
the information needed for displaying the new sequent(s) that should appear immediately
above the starting sequent∆ ⇒ D (separated by the horizontal line). Then the user can
continue with these new sequent(s) in the same manner, until he encounters axioms. Note
that the axioms (2) are now easy to recognize, as they only require that the same for-
mulaP of the simplest possible kind appears on both sides of the sequent; this in turn
remedies the defect of Hilbert systems noted above. This mode of proof construction is
calledroot-first: The proof is in fact a tree of sequents, and this mode grows the tree from
the ground up. (It is also calledtop-downin accordance with the computer scientists’
habit of drawing their trees in an “antipodean” way with the root at the top.)

Although this root-first proof construction mode yields some proof for any theorem,
the student may well plan his reasoning steps in some other mode as well. A well-known
example is theModus Ponensrule

A ⊃ B A
B

MP
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which lies at the heart of Natural deduction systems and is a special caseC = B of our
example elimination rule (1) (Negri and von Plato, 2001; Chapter 1.2). The natural mode
to use this rule isforward reasoning: from “A impliesB” and “A” infer also “B”. On the
other hand, the corresponding step in our root-first mode is

A ⊃ B, A,∆ ⇒ A B, A,∆ ⇒ B

A ⊃ B, A,∆ ⇒ B
L⊃

where the reasoning proceedsbackwardsinstead: the formulaA ⊃ B is first analyzed
into its constituentsA andB, which are then analyzed further into axioms. Systems like
ETPS (Andrewset al., 2004) and JAPE (Bornat and Sufrin, 1997) allow the student to
proceed in either mode, and even mix these modes within the same proof. However, this
complicates the student’s interaction with the tool: he must indicate both the formulæ to
operate on and the mode of operation. This in turn means that he must be aware of these
two modes as well. We believe that a single-mode tool is a more appropriate one to begin
with.

Incidentally, this distinction between forward and backward chaining of steps arises
also in automated reasoning. There, backward chaining is found to be the more goal-
oriented of the two (Russell and Norvig, 2003; Chapters 9.3 and 9.4). This finding accords
with our discussion above: backward reasoning proceeds by splitting more complicated
formulæ into their simpler constituents, and is therefore always oriented towards the sim-
ple axioms. In contrast, a forward reasoning step does not guarantee progress by itself, but
only together with other choices by the student, as shown by our discussion on rule (1).

The student may naturally also encounter a dead end: a non-axiom sequent where no
rule applies. Hence the student must also be allowed toundohis previous choices. In the
tree metaphor, this amounts to pruning away some part of the tree, so that a new branch
can be grown into its place using a different combination of rules.

Next, Section 3 explains how all this information can be extracted from the student’s
action. However, we must first point out a technicality: the rules in Table 1 have the ad-
ditional property that the unmodified partΓ is passed from the sequent below the line
to every sequent above it. That is, the contextΓ of the rules issharedamong the se-
quents. Another way would be to somehow partition the contextΓ among these sequents.
However, such partition information would be difficult to extract without additional in-
formation from the student.

3. Proof by Pointing

The student’s mouse click must be translated into sufficient information about the proof
steps that should be taken. This can be done with theproof-by-pointingapproach sug-
gested by Bertot and Théry (1998, Section 4) as a user interface concept for interactive
theorem provers. Let us illustrate this approach with an example.

Suppose that the student wants to prove the transitivity of implication:

⇒ ((A⊃B)&(B ⊃ C)) ⊃ (A ⊃ C). (3)



Point-and-Click Logic 93

Suppose further that he clicks the underlinedimplication ‘⊃’. The natural interpretation
is that he wants to apply some inference rule to it, because the user is pointing to it with
the mouse as if saying, “I want to usethat thingin my proof next!”. However, that thing
to use next isnested inside other connectives:

⇒ ( (A⊃B)& (B ⊃ C)) ⊃ (A ⊃ C).

Since the rules apply to the outermost connective only, we must first peel off the outer
boxes one by one. The main connective of the outermost box is an implication ‘⊃’ on the
right side of the ‘⇒’ (the left side being empty). Hence the rule to use must beR⊃:

(A⊃B)& (B ⊃ C) ⇒ A ⊃ C

⇒ ((A ⊃ B)&(B ⊃ C)) ⊃ (A ⊃ C)
R⊃

This leaves the next box to peel off. Its main connective is the conjunction ‘&’ which
has now jumped over the ‘⇒’ on its left side. This jumping behaviour shows why these
boxes must be peeled off from the outside in. The corresponding rule is thereforeL&.
Now the underlined implication ‘⊃’ is finally exposed, and it can be peeled off as well
with the ruleL⊃, leaving the following incomplete proof:

A ⊃ B, B ⊃ C ⇒ A B, B ⊃ C ⇒ A ⊃ C

A ⊃ B, B ⊃ C ⇒ A ⊃ C
L⊃

(A ⊃ B)&(B ⊃ C) ⇒ A ⊃ C
L&

⇒ ((A ⊃ B)&(B ⊃ C)) ⊃ (A ⊃ C)
R⊃

(4)

At this point we stop and wait for the next mouse click from the student, because we have
used up all the information from the previous one.

Note that this box nesting is uniquely determined by the structure of the original
sequent (3) and the location of the mouse clickinside it. That is, we can compute inde-
pendently what the student’s “use that” mouse click means without any additional infor-
mation from him. The crucial requirement for this independent computation is noting that
the rule for peeling off a box is uniquely determinedby its side in the sequent and con-
nective. We opted for sequent systems in Section 2 precisely because they permit such
independent computation in the manner described above. This uniqueness also means
that the student is still in full control of constructing the proof: the tool merely calculates
the effects of his chosen rule applications, it does not choose any rules on its own. Even
so, the student can perform a whole series of rule applications with a single click, as
demonstrated. Or if the novice student finds this confusing, he can still work step by step
instead; in our example above, he then begins by clicking the topmost implication ‘⊃’ in
sequent (3) instead. Thus this approach serves the student not only at the very beginning
but also when he has become confident enough to try several inference steps at once.

In our example above, the final action of the independent computation was to apply
the rule to the connective that the student clicked. However, this final rule application is
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not necessarily unique. Such an ambiguous case is clicking a disjunction on the right side
of the sequent; this click can mean either ruleR∨1 or R∨2 of Table 1. In such a case,
the computation proceeds until the clicked connective is no longer enclosed in any box,
and stops there to wait whether the student chooses subformulaA or B. This choice then
disambiguates between the competing rules. This disambiguation is naturally automatic
for all the rule applications preceding the last one.

The reason our example rules in Table 1 require such disambiguation is that they are
intuitionistic: the proof of a disjunction requires a proof of either disjunct, because using
the rule of excluded middle (“A or notA”) is not permitted. Their classical counterpart
G3cp needs no such disambiguation. However, we chose here the intuitionisticG3ip as
our example in order to show how such disambiguation can be handled within our user
interface concept when needed.

Admittedly one can envison proof systems with multiple different rules to peel off a
box: for instance, the rule might depend on a combination of several connectives instead
of just one as above. However, recalling our discussion in Section 2, this would somehow
mean that these different combinations possess different introduction or elimination rules
in the corresponding Natural deduction system. This would in turn mean that the intended
meanings of these seemingly separate connectives would in some sense be intertwined
after all. We feel that studying proof theory should start with other than such delicate
systems.

The student can subsequently continue his proof (4) by clicking similarly inside either
of its uppermost sequentsA ⊃ B, B ⊃ C ⇒ A or B, B ⊃ C ⇒ A ⊃ C. However, he
soon finds out that the former leads into an infinite regress whereby ruleL⊃ is repeatedly
applied to the formulaA ⊃ B. Thus this attempt at proving the original sequent (3) must
be abandoned. The student can do this simply by clicking some of the sequents inside the
proof (4). For instance, clicking on the implication ‘⊃’ on the right of the third line in
proof (4) substitutes it with

A, (A ⊃ B)&(B ⊃ C) ⇒ C

(A ⊃ B)&(B ⊃ C) ⇒ A ⊃ C
R⊃

⇒ ((A ⊃ B)&(B ⊃ C)) ⊃ (A ⊃ C)
R⊃

(5)

and the student is back on his way towards a completed proof.
In their study, Aitkenet al. (1998, Sections 5.1.4 and 5.4) did not find significant

benefits in this kind of user interaction with a theorem-proving program. However, their
audience were mostly seasoned users of the program, not students of proof theory in
general. Hence the benefits they expected differ from ours.

In fact, the ease of use outlined above may even become a hindrance in an educational
setting: the student may accidentally arrive at a proof simply by random mouse clicks
without truly understanding the proof. We currently have neither empirical evidence on
whether this really happens or not, nor a solution if it turns out to be the case.



Point-and-Click Logic 95

Table 2

The additional inference rules for the sequent systemG3i Chapter 4.1 (c)).

We assume familiarity with the standard definition for the syntax of first-order predicate logic:
variable symbolsx, y, z, . . . , termst, u, v, . . . built out of these variable symbols and function
symbols, and atomic formulæ built out of these terms and predicate symbols. In addition,A[t/x]

denotes the formula obtained by substituting the termt for every free occurrence of the variable
symbolx in the original formulaA.
Then we add to the connectives and rules of Table 1 the following quantifiers and rules:

left rule right rule

∀
A[t/x],∀x.A, Γ ⇒ C

∀x.A, Γ ⇒ C
L∀

Γ ⇒ A[y/x]

Γ ⇒ ∀x.A
R∀

∃
A[y/x], Γ ⇒ C

∃x.A, Γ ⇒ C
L∃

Γ ⇒ A[t/x]

Γ ⇒ ∃x.A
R∃

However, these new rulesR∀ andL∃ have an additionalrestriction (also known as proviso or
side condition) on their use: The variable symboly substituted forx must not occur free in the
conclusion below the line.

3.1. Quantification

Adding the universal and existential quantifiers ‘∀’ and ‘∃’ to the proof theory in Table 1
is straightforward in theory, and is given in Table 2. However, we must also extend our
“proof by pointing” principles to these new quantifier rules.

The first obstacle is the termt substituted forx in the rulesL∀ andR∃. While the
rules do permit the student to choose any termt he wants, he should choose such a termt

which allows him to complete the proof later. This completion in turn requires suitable
applications of axioms (2), where the form of the atomic formulaP depends on the termt
chosen now. Thus it would seem that choosingt needs more information than can be
extracted from a single mouse click, sincet does not have to appear in the sequent below
the line. Moreover, it seems that the student should know how to choose a goodt even
before he can see what kinds of axioms (2) he will later need to apply. Do we therefore
suffer from the same drawback as rule (1) after all?

Fortunately we do not, because we can incorporatemetavariablesas Paulson (1996;
Chapter 10.4) does in his sequent-based theorem prover with a command-line user inter-
face. A metavariable is simply a kind of bookmark standing for some term whose actual
form does not yet concern us and can be determined later. Then the student can still just
click on a quantifier ‘∀’ on the left or on ‘∃’ on the right side of a sequent: the response
is to create a previously unused metavariable fort when applying the corresponding rule
of Table 2.

These created metavariables receive their eventual values when the student applies ax-
ioms (2). Now the sequent is of the formP, Γ ⇒ P ′ where the atomic formulæP andP ′

do not have to be exactly alike yet because they may contain metavariable occurrences.
We can now reinterpret the axioms to require thatP andP ′ must be made exactly alike
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by selecting suitable values for their metavariables. The student can then select the axiom
he wants bygrabbingP by its propositional symbol with the mouse, dragging it over
the ‘⇒’, and dropping it ontoP ′ (or vice versa). Thus we refine our earlier user interface
concept into drag-and-drop for axioms and point-and-click for other rules.

The standard way to make two expressions alike isunifying them (Paulson, 1996;
Chapter 10.7), (Russell and Norvig, 2003; Chapter 9.2), and it suffices here as well. Once
unification binds some metavariableχ into some valuev, thenv must be substituted forχ
throughout the whole proof under construction. Hence quantification introduces global
dependencies between different parts of the same sequent proof, whereas the effects of
the propositional rules of Table 1 remained local to the sequents in each rule. On the
other hand, the handling of assumptions which may be far away already introduces global
dependencies into the propositional rules of Natural deduction. Conversely, the binding
of v into χ must be undone if the student later abandons this axiom application in favour
of some other strategy.

Let us then turn to the remaining quantifier rulesL∃ and R∀. At first sight
their restriction seems innocuous: Just pick some previously unused variable symbol
as the newy. But suppose that the sequent below the line contains the metavari-
ablesχ1, χ2, χ3, . . . , χk. (More precisely, they are the metavariablesχi created in this
branch of the proof.) Then the restriction actually demands thaty must not occur in the
valuesv1, v2, v3, . . . , vk that these metavariables will eventually have. The most com-
mon suggestion to ensure this seems to be picking a previously unusedSkolemfunction
symbolfy instead, and using the termu = fy(χ1, χ2, χ3, . . . , χk) instead ofy (Paulson,
1996; Chapter 10.7). Then any unification which tries to includeu in a valuevi fails, be-
cause it would makevi an infinitely long term, and that is prohibited. However, Paulson
(1996; Chapter 10.7) maintains that Skolem functions make the formulæ unreadable, and
this should be avoided in an educational tool. Instead he suggests recording the induced
requirements “y must not occur inχi” and heeding them during unification. The down-
side of his suggestion is that this collection of induced requirements is a new aspect in
our user interaction concept, which up to this point has consisted only of the proof itself,
augmented with metavariables.

Either suggestion points to a more fundamental pedagogical problem: the unification
fails when the axiom requested by the student does not apply. But how should the student
be told why it failed? If the tool silently ignores the student’s request and refuses to
modify the proof, then the student gets no feedback at all and might even think that the
tool is broken. On the other hand, the unification algorithm proceeds differently than the
student, and therefore the position at which the algorithm detects the impossibility of
the request may be meaningless to the student. It remains to be investigated if and how
the execution of a failing unification algorithm can be traced to find the position where
human and machine reasoning started to diverge.

The problem of generating meaningful error messages when unification fails is also
of independent interest, since unification is used in for example compilers of such high-
level programming languages as Standard ML (Paulson, 1996). However, the criteria for
meaningfulness may also differ in logic and programming. That is, humans may use dis-
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tinct reasoning in the two areas, and then finding the divergence position mentioned above
should also be done differently in the two areas. This also remains to be investigated.

Note finally that the quantifier treatment suggested here is compatible with the “peel-
ing off the outermost box” computation suggested above: the student can click inside a
quantified formula, and the quantifiers enclosing the clicked position can be peeled off
automatically with these rules.

3.2. Equality

Using the equalityt = u of two termst andu is so common in proofs that it warrants its
own special treatment. One possibility is having special inference rules (Negri and von
Plato, 2001; Chapter 6.5)

t = t, Γ ⇒ C

Γ ⇒ C
Ref

P [u/y], t = u, P [t/y], Γ ⇒ C

t = u, P [t/y], Γ ⇒ C
Repl

for reasoning about equality. We extend our user interaction concept to these rules as
follows.

The intuition of ruleRepl is that the occurrence of termt at positiony within the
atomic formulaP should be replaced withu. We can refine the drag-and-drop approach
introduced in Section 3.1 by allowing the student to grab not only whole atomic formulæ
but also their terms and subterms. Then the student can simply drag the subterm at posi-
tion y onto the left-hand termt of the equality to use (or vice versa). Again, these terms
can contain metavariables, and they are therefore unified first.

RuleRefresembles the rulesL∀ andR∃ in Table 2 in the sense that it too introduces
some previously unknown termt above the line which has no counterpart below the line.
The difference is that whereas rulesL∀ andR∃ provided the quantifier for the student to
click, ruleRefoffers no such visual disambiguating element. However, we can introduce
such an element, if we make a mild additional assumption on the way the student is likely
to proceed: We expect that he will use the new equalityt = t in the next step. Then we can
also expect that the termt appears already as a subterm below the line. Thus we can refine
our point-and-click approach as follows: clicking on a subtermt means an application of
rule Ref, whereas clicking on a predicate symbol or a connective refers to the rules in
Table 1 as before.

Unfortunately these suggestions do not permit using these rules automatically, in con-
trast to the suggestions in Section 3.1.

4. Implementation

We have a prototype implementation of the proof-by-pointing approach outlined in Sec-
tion 3. This prototype is called PROED for PROof EDitor. Although the presentation of
Section 2 focused onG3ip, an intuitionistic logic, the implementation supports the related
classical logicG3cpas well.
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Fig. 1 presents a screen shot of the tool. The sequent to prove is (3). The student needs
only two mouse clicks to get this far: The first click on the implication ‘⊃’ betweenA

andC yields the incomplete proof (5), and the second click betweenA andB yields the
situation as shown.

Our current implementation restricts itself to propositional logic. That is, it does not
support the refinements suggested in Sections 3.1 and 3.2 yet. On the other hand, the re-
striction to propositional logic also permits some extra features such as automatic detec-
tion of axioms. In addition, our implementation provides facilities to save an incomplete
proof and continue it later, or to print it or parts of it in LATEX.

Adding the refinements suggested in Section 3.1 would be the next step in develop-
ing our implementation further, because then it would cover all the core material of the
introductory proof theory course mentioned in Section 1. The further refinements in Sec-
tion 3.2 would be straightforward after that. Systems like ETPS (Andrewset al., 2004)
andSTRATUM (Janhunenet al., 2004) also offer pedagogical tools for assessing the stu-
dents’ progress, which our PROED currently lacks.

We have offered our implementation to the students of the course. Anecdotal evidence

The tool differs slightly from the proof system in Table 1 in the following three respects: (1)
Axioms are explicitly marked with ’Ax’ to provide an explicit visual clue that this branch has
now been dealt with. (2) Conjunction is denoted with ‘∧’, disjunction with ‘∨’ and implication
with ‘→’. This notation is perhaps more common in mathematics and computer science, while
the former seems to be preferred by philosophers. (3) The left implication ruleL → omits
displaying the repeated formulaA → B to save screen space. Invoking this rule again would
merely lead into an infinite regress, as discussed in Section 3.

Fig. 1. A screen shot of the PROED tool.
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suggests that they preferred it to the PESCA tool also mentioned in Section 1, but no
formal comparisons have been performed. This preference was to be expected anyway,
since users tend to generally prefer graphical to textual user interfaces (at least until they
become more proficient in the task at hand). The course is elective, which means that it
may not be offered regularly, and that its attendance may be small. These aspects of the
course make it harder to gather more substantial evidence.

The current implementation is wholly written in the Java programming language, and
therefore runs on multiple platforms. Bornat and Sufrin (1997) have developed JAPE

which both supports similar functionality and is customizable to different proof theo-
ries. Thus JAPE is an example of a meta-framework in the sense of Section 1, one with
its emphasis on the user interface. Switching from our proprietary implementation into
a JAPE-based one would entail encoding the rules in Table 1 in its logic encoding lan-
guage, together with enough guidance information for the rule selection machinery of
Section 3 to work. Future versions of our tool may well be JAPE-based, if it turns out to
suit our needs. The support for quantifier handling in JAPE would be especially valuable
in implementing the refinements suggested in Sections 3.1 and 3.2. On the other hand,
JAPE seems to offer no pedagogical tool support, so choosing the next implementation
platform involves a tradeoff.

The implementation described here is available at
http://www.cs.helsinki.fi/group/toto/.

5. Conclusion

We have explained the principles behind PROED. This computerized tool is intended for
novice students of propositional sequent systems of logic. The tool frees the student from
tedious but necessary bookkeeping aspects, and lets him concentrate on exploring the
different choices available for proof construction. Such exploration is made especially
easy by providing a graphical user interface where single mouse clicks suffice for disam-
biguating between these choices.
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“Pažymėk ir spragtelk” logika

Matti NYKÄNEN

Mokant studentus↪irodym ↪u teorijos, kuri yra formaliosios logikos atšaka, gali būti pravařcios
ir kompiuteriṅes priemoṅes. Straipsnyje supažindinama su viena iš toki↪u priemoni↪u, kuri pavadin-
ta “ProEd”. Ši priemoṅe skirta pradedantiems studijuoti, todėl ji suprojektuota taip, kad atliekant
tiriam ↪aj↪i darb↪a, j ↪a b̄ut ↪u galima naudoti be didesni↪u pastang↪u. Straipsnyje stengiamasi↪irodyti, jog
susitelkiant ties sekos↪irodym ↪u sistem↪u pirminėmis konstrukcijomis galima užtikrinti ypating↪u pa-
stang↪u nereikalaujaňci ↪a sistem↪a.


