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Abstract. This paper reports a multi-national, multi-institutional study to investigate Computer Sci-
ence students’ understanding of software design and software design criteria. Student participants
were recruited from two groups: students early in their degree studies and students completing
their Bachelor degrees. Computer Science educators were also recruited as a comparison group.
The study, including over 300 participants from 21 institutions in 4 countries, aimed to understand
characteristics of student-generated software designs, to investigate student recognition of require-
ment ambiguities, and to elicit students’ valuation of key design criteria. The results indicate that
with increases in education, students use fewer textual design notations and more graphical and
standardized notations and that they become more aware of ambiguous problem specifications. Yet
increased educational attainment has little effect on students’ valuation of key design characteris-
tics.
Key words: design, software design, empirical study of design, computer science education
research, expert-novice comparison.

1. Introduction

Software design is difficult: dealing with ill-defined and ill-structured problems; having
complex and often conflicting constraints; producing large, complex, dynamic, intan-
gible artefacts; and being deeply embedded in a domain, such as finance or medicine
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(cf. characteristics of the design task described by Goel and Pirolli (1992). As a result,
software design requires a variety of skills and knowledge: within the domain of appli-
cation, in programming (Soloway and Ehrlich, 1984), and in the mapping between the
domain-based problem and software artefacts that carry out the requisite functionality
(McCracken, 2004). Even in professional design behaviour, there are a number of con-
stituent and interacting skills – and potential sources of breakdown – that include such
things as marshalling resources, applying knowledge, prioritising sub-tasks, managing
constraints, evaluating proposed solutions, and managing the design process (Guindonet
al., 1987; Curtis, 1990). These characteristics make software design elusive to character-
ize and difficult to teach.

This paper describes results from a study of the software designs of over 300 Com-
puter Science (CS) students and educators given a simple design task. (A more complete
description of these results can be found in (Fincheret al., 2004).) This study is distinc-
tive from other studies of software design along a number of dimensions. First, it is both
multi-institutional and multi-national, with participants from 21 institutions in 4 coun-
tries, one of the few software design studies with such a diverse participant pool. Only
a multi-institutional study like this allows the assessment of what factors vary across ed-
ucational contexts – and hence are likely to be influenced by educational intervention
– and what factors are invariant. Second, the data that is examined is particularly rich,
with the main components being the written representations and verbal descriptions of
participant-generated software designs. This allows many diverse research questions to
be addressed using multiple methods of analysis. Third, the study is large-scale, with
over 300 participants, which, when combined with the study’s multi-institutional nature,
reduces sample bias and increases generalizability. Given the cost and challenges of car-
rying out empirical research at this scale, there are few precedents for empirical software
studies of this size and scope (but see (McCrackenet al., 2001) and (Petreet al., 2003) for
other such examples). And fourth, the study includes participants at three different levels
of educational attainment, thus allowing the examination of changes in design behaviour
with additional formal education.

2. Background

Models of design in general and software design in particular involve decomposition and
management of the design process (Détienne, 2001; Goel and Pirolli, 1992). This man-
agement includes tracking the relationships among sub-problems and integrating sub-
problems into a coherent structure. Looking at what Adamset al. (2003) call thedesign
expertise continuum, we can gain insight into the different developmental stages of soft-
ware designers which, it is to be hoped, can be incorporated into more effective design
teaching and learning.

Jeffrieset al. (1981) noted that novices differ from experts in their ability to decom-
pose a software problem effectively, to solve sub-problems, and to integrate solutions.
Experts organize information differently than novices, producing different and larger
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“chunks” (summarized in (Kaplanet al., 1986).) In a study of industrial design engi-
neers, Christiaans and Dorst (1992) found that novices tend to scope out a problem less
and seek less information than experienced designers. Rowland (1992) found that novices
made few requests for clarifications relative to a design problem.

Expert software practitioners have codified design expertise associated with robust,
maintainable, testable, and flexible designs, often focusing on the interaction between dif-
ferent computational modules, as in the design principles of Bruegge and Dutoit (2000):
“Ideal subsystem decomposition should minimize coupling and maximize coherence.”
But even when such principles are taught, it is far from clear that student designers have
sufficient skill to apply these principles in practice.

In addition to studying expert/novice differences, some design researchers examine
differences in student designers at different stages in their education. Bogushet al. (2000)
found that freshmen engineers tend to define problems narrowly while more experienced
seniors tend to define problems more broadly. And Atmanet al. (1999) found differences
in both design quality and design behavior between freshmen and senior engineering stu-
dents. For example, seniors made more requests for information, made more than three
times as many assumptions, and made more transitions between design steps, as com-
pared to freshmen. Atmanet al. (2003) also examined the design processes of engineer-
ing educators so as to provide insight into both educators’ actual design practices and its
implications for student learning.

In examining student conceptions of design, Newstetter and McCracken (2001) sur-
veyed freshmen engineering students by having them rank the five most important and
five least important from a list of 16 design activities. They found that the freshmen
ranked as least important those activities that are central to general design process de-
scriptions, (e.g., (Goel and Pirolli, 1992)) such asdecomposing, generating alternatives,
andmaking trade-offs. Adamset al. (2003), additionally provide evidence that expertise
is characterized by matching the design process to the design context: “experts do not
approach every problem in the same way but rather adapt to the inherent constraints of
the task.”

3. The Study

This study used two tasks to explore students’ understanding of the software design pro-
cess: adecomposition task, to examine students’ ability to analyse a problem and then
design an appropriate solution structure, and to elicit students’ understanding-in-action of
fundamental software design concepts; and adesign criteria prioritization task, to elicit
which criteria students consider most and least important for different design scenarios.

3.1. Decomposition Task

Participants were given a one-page specification for a “super alarm clock” to help stu-
dents manage their sleep patterns, and were directed to produce a design meeting these
specifications. The verbatim design brief given to participants is provided in Appendix 5.
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Participants were asked to “(1) produce an initial solution that someone (not necessarily
you) could work from (2) divide your solution into not less than two and not more than
ten parts, giving each a name and adding a short description of what it is and what it does
– in short, why it is a part. If it is important to your design, you may indicate an order
to the parts, or add some additional detail as to how the parts fit together.” In order to
reduce the likelihood of introducing bias, participants were prompted in the design brief
with generic language (e.g.,part rather thanobject or function), to elicit their concept of
what constitutes a part, and how to describe and represent parts.

Participants performed this task individually, and were allowed to talk out loud or
work silently. In response to participant questions, researchers endeavored not to pro-
vide definitions of terms or to provide information that might bias the resulting design.
Participant questions and researcher responses were recorded in each researcher’s notes.

On completion, participants were asked to “talk through” their design and to name
and describe the function of each part. Their spoken descriptions were recorded verbatim
by the experimenter, and researchers were careful not to ask leading questions. The only
elicitative questions asked were for specific clarification of parts of the participant’s rep-
resentations. For example, a researcher might point at an arrow and ask “What does this
mean?”

3.2. Design Criteria Prioritization Task

After completing the decomposition task, participants were given 16 cards, each with a
phrase describing a single design criterion. The phrases represented: Encapsulation, Im-
plementability, High Cohesion, Loose Coupling, Chunking, Intelligibility, Explainability,
Parsimony, Re-usability, Recognition of structure, Clarity, Design-phase testing, Main-
tainability, Engineering, Input re-use, and Clear functionality. The phrases can be found
in Appendix B.

Participants were asked to indicate the five most important and the five least important
criteria for each of four scenarios:

• for the design they had just completed (current task),
• for the current task, but in a team (task in team),
• for the current task – on their own – but delivering a fully-functional result at the

same time tomorrow (extreme time pressure), and
• for the current task, but designing the system as the basis of a product line that

would have a 5-year lifespan (longevity).

3.3. Participants

Participants recruited from 21 institutions of post-secondary education from the USA,
UK, Sweden and New Zealand completed the same tasks. Three types of participant were
represented within the study population:

First competency students (FC).To ensure comparability across institutions, students
were selected at the point in their education where they could be expected to pro-
gram at least one problem from the set proposed by McCrackenet al. (2001). These
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problems involve the simulation of a simple calculator for arithmetic expressions.
The McCracken problem set was used because it references levels of competence,
irrespective of curriculum and was devised for use in one of the first multi-national,
multi-institutional CS Education Research studies. Not all of the FC participants
were Computer Science majors, but all had taken, or were taking, a Computer Sci-
ence course.

Graduating students (GS). Graduating students were defined to be those within the last
eighth of a Bachelor degree program in Computer Science or a related software
intensive degree.

Educators (E). Educators were defined to be those holding faculty positions, and teach-
ing in undergraduate Computer Science (or related) programs.

The total cohort consisted of 314 participants from 21 institutions representing 28
educators, 136 first-competency and 150 graduating students.

For each participant the following material was collected: their written representation
of the design (their “marks on paper”), the number of parts in their design and their name
for each part, the time they took to make the design, and a record of their prioritization
of the design criteria. Full transcriptions of verbalisation during the task were made for a
subset of the students; researcher notes were made for all.

4. Results and Discussion

Three independent analyses were undertaken to provide different perspectives on the data
that was collected. Each analysis is distinguished by the questions explored and the meth-
ods used. Exploratory, data-driven analysis of the design artefacts was undertaken to an-
swer questions about the types and characteristics of representations that participants
used. A directed qualitative analysis focussed on participants’ recognition of ambiguity
in the problem specification and in their information-seeking behaviour. And a quantita-
tive analysis was used to answer questions concerning participants’ prioritization of the
design criteria.

4.1. Characterisation of Design Artefacts

4.1.1. Design Representations
This part of the study was a data-driven examination of the “marks on paper” represen-
tations. A sample of designs were first examined in order to develop a set of distinct
categories into which each design representation would be grouped. These categories
were developed to represent semantically meaningful differences in design notation to
the practitioner-researchers undertaking this research. The categories are:

Standard Graphical. This was used to include recognized notations of software de-
sign. Ten different types were represented in the corpus: Architecture Diagram,
Class Diagram, Class-Responsibility-Collaborator (CRC) Cards, Data Flow Dia-
gram (DFD), Entity-Relationship Diagram (ER), Flowchart, Graphical User Inter-
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face (GUI), Sequence Diagram, State Transition Diagram (STD) and Use Case
Diagram.

Ad-hoc Graphical. This category included diagrams of any form not recognized as stan-
dard notations of software design. Large sections of text were accepted in this cat-
egory providing that they were considered refinements of items identified in the
diagram. In some cases it was difficult to differentiate betweenad hoc diagrams
and standardized graphical representations. In order to characterize the latter cat-
egory, detailed syntax was ignored and benchmarks defined. For example in order
to be recognized as a Class Diagram, it was agreed that a representation should
consist of a box conceptualising both data and functions.

Code or pseudo-code.This was used for any software design that included code seg-
ments such as assignments, iteration and selection.

Textual. This category was used for free text descriptions but allowed an occasional
diagram used for illustration: for example, graphical interface or report layout.

Mixed. This was used when there was no clear dominance between different styles. For
example a participant might start with a textual description then proceed with a
Class Diagram. If there was no connection between the descriptions and the iden-
tified classes then the category was Mixed (Text and Class Diagrams).

Examples of the different representation categories are provided in Fig. 1.
Each design artefact was visually examined, and categorized into exactly one of the

previous disjoint groupings based on its predominating characteristic. To ensure consis-
tency the designs were categorized by three of the researchers and assignment to a cate-
gory required consensus. Fig. 2 shows the results of this analysis. The data show a shift
from textual to standard graphical representations with increases in education, with the
frequency differences between the different subpopulations statistically significant at the
α = .001 significance level using theχ2 test. While 47% of FC participants used predom-
inantly textual representations, only 28% of GS participants and 21% of E participants
did so. These numbers are the opposite for standard graphical representations, with 50%
of E participants, 29% of GS participants, and 15% of FC participants predominantly
using standard graphical representations.

4.1.2. Design Complexity
Three indicators of design complexity were examined: 1) the number of parts in each
design, 2) the use of grouping structures among parts, and 3) whether the design contained
an indication of interaction among the parts. This analysis excluded data from one first-
competency subject whose design representation was uninterpretable by the researchers.

Number of Parts. The design task protocol was specified so as to capture the number
of parts for each design, and the name of each part. Table 1 provides descriptive
statistics for each participant subpopulation. A one-way ANOVA shows that the
variation in the mean number of parts for FC (5.1), GS (4.6) and E (6.2) participant
groups is highly significant (p = 0.001), although there is no clear trend over the
educational level of these subgroups (note that GS has the lowest mean). Variation
in mean number of parts by institution (data not shown) is also significant (p <

0.01).
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Fig. 1. Sample design representations.
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Fig. 2. Sample standard graphical representation.

Grouping Structures. Each researcher analysed the designs from their own institution
in terms of grouping by answering the question “Did the design include any hier-
archical, nested, or grouping structure of any kind?” For example, a diagram with
boxes labelledPocket PC, Alarm Handler, andUser Interface, collectively labelled
as User/Front End would count as grouping. There was some difference in fre-
quency of use of grouping structures between the participant subpopulations; 24%
of FC, 27% of GS and 46% of E participants used grouping, with the difference
between the combined student groups and the educators significant at theα = .025
significance level using theχ2 test, but with no significant difference between the
student groups.
There were, however, marked differences in participant responses based on insti-
tution, ranging from a low of 5% of the participants from one institution who used
grouping structures to a high of 86% of the participants of another institution who
did so.

Interactions among Parts. Each researcher also analysed the designs from their own
institution in terms of interaction by answering the question “Are interactions be-
tween any of the parts indicated?” For example, a diagram with two boxes, an arrow
linking the two boxes, and an explanation that one box is providing information to
the other box would count as interaction.
There was significant difference in frequency of use of interaction between the
participant subpopulations; 66% of FC, 81% of GS, and 93% of E participants
indicated interaction, with the difference between these significant at theα = .001
level using theχ2 test, and significant at theα = .05 level when the student groups
are combined.

Table 1

Descriptive statistics for number of parts

N Min Max Mean Median Mode SD

FC 135 2 11 5.1 5.0 3.0 2.2

GS 150 2 12 4.6 4.0 4.0 1.9

E 28 3 14 6.2 5.5 4.0 2.9
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On this measure there was also marked differences in participant responses based
on institution, ranging from a low of 40% of the participants from one institution
who indicated part interactions to a high of 100% of the participants of three insti-
tutions who did so.

Examining the actual design artefacts that students produce provides evidence that
their formal education moves students along the design expertise continuum (Adamset
al., 2003). With increases in education, participants used increasing amounts of notations
that are standards among practicing software developers, relying less on the predomi-
nantly textual descriptions.

And along with increases in educational attainment there were also corresponding
increases in the inclusion of part-part interaction and groupings within the designs, but to
a less extent than that exhibited by the Educators. This provides evidence that in moving
from novices to graduates, students are developing the skills for decomposing problems
into sub-problems, understanding the relationships among sub-problems, and composing
the parts that solve sub-problems into a coherent structure, essential characteristics of all
design (Détienne, 2001; Goel and Pirolli, 1992).

4.2. Recognising Ambiguity in Requirements

An analysis was conducted to investigate participants’ recognition of ambiguous aspects
of the design brief requirements. Recognizing and addressing ambiguity is important be-
cause ambiguities in requirements can propagate to errors in the design solution. It is
cheaper to recognize and resolve ambiguities early, rather than after the design is com-
pleted (Boehm, 1981). Thus, recognizing ambiguity in the design phase is less costly in
terms of time to completion and number of bugs. Observed differences between partici-
pant groups with respect to recognizing and resolving ambiguity can provide insight into
ways to enhance the education of future software designers. For example, if ambiguity is
not commonly part of homework assignment specifications, then students may not have
practice in recognizing it.

To study the question regarding participants’ recognition of ambiguity and the level to
which they address requirements, each researcher answered the following questions for
each of the participants at his or her institution:

1. Did the participant ask questions about ambiguities and omissions in the specifi-
cation (as distinct from questions about word meanings or procedural questions)?
(Yes or No)

2. Did the participant make explicit assumptions in the description, representation or
other recorded responses about ambiguities and/or omissions in the specification?
(Yes or No)

3. Did the subject attempt to address the requirements of the specification? (Yes:
100% of requirements addressed, Partially:� 50%, Hardly:< 50%, No: 0%)

These answers were inferred from verbalized questions or assumptions made by the par-
ticipant during the decomposition task, the talk-through afterward, and questions or as-
sumptions explicitly written on the design representation.
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A participant is called an ambiguityrecognizer if they ask a question or make an as-
sumption. Theinformation gatherers comprise that subset of the recognizers who ask
questions. Table 2 shows the relationship between the defined categories (recognizer, in-
formation gatherer) and the behavior with which each is associated.

Fig. 3 indicates the percentage of participants who recognized ambiguity, by partici-
pant group. 216 participants are ambiguity recognizers and 87 are non-recognizers, with
11 participants not being reliably classified. The percentage of recognizers increases with
education: 63% of first competency students, 76% of graduating seniors, and 89% of
educators.

Fig. 4 indicates the percentage of participants who asked questions, by participant
group. There are 138 information gatherers and 165 non information gatherers, with no
data for 11 participants. As with the recognizers the percentage of information gatherers
increases with education; 33% of first competency students, 50% of graduating seniors,
and 81% of educators gathered information during the decomposition task.

Figs. 5 and 6 show for each requirement-addressing categories (yes, partially, hardly,
no), the percentage of recognizers and information gatherers. The general trend is that as
the number of requirements addressed decreases, the percentage of recognizers and infor-
mation gatherers also decreases. This indicates that those who recognized ambiguity and
gathered information had a higher success rate in addressing all requirements than those
who did not. As was the case with the examination of design characteristics, institutional

Table 2

Relationship between categories and behavior

Recognizer Information Gatherer

No questions and no assumptions

No questions and some assumptions
√

Questions and no assumptions
√ √

Questions and assumptions
√ √

Fig. 3. Ambiguity recognizers by participant group.
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Fig. 4. Information gatherers by participant group.

Fig. 5. Percentage of recognizers by requirement-addressing group.

differences were evident. In five institutions all participants were recognizers, while in
three institutions less than half of the participants were recognizers.

The percentage of recognizers and information gatherers increases from first com-
petency students to graduating seniors to educators. Information gatherers are a subset
of recognizers, so this relationship is not surprising. Proportionally more seniors recog-
nize ambiguity and seek information than first competency students, consistent with the
results reported in (Atmanet al., 1999), who observed that more seniors request infor-
mation than freshmen. While only half of those in the first competency group who made
assumptions requested additional information, over 90% of educators recognizing ambi-
guity requested additional information.

The results from analyzing participants’ information-gathering, assumption-making,
and requirements-addressing indicate that as students go from first-competency to gradu-
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Fig. 6. Percentage of information gatherers by requirement-addressing group.

ating seniors, they tend to recognize ambiguities in under-specified problems. Addition-
ally, participants who recognized ambiguity (and the subset who gathered information)
had a higher success rate in addressing all requirements. These results imply that with ex-
perience, students will become more aware of ambiguous specifications and by realizing
that ambiguities exist, they can design software that meets requirements. This suggests
that educators should be more explicit in teaching students how to recognize ambiguity in
problem specifications. A future analysis that looks at variation in ambiguity recognition
and information seeking between institutions, especially comparing students within and
across cultures offers the possibility of discerning the extent to which these behaviors
are influenced by the larger cultural, institutional and/or instructional contexts in which
students are embedded.

4.3. Design Criteria Prioritization

As described in Section 3.2, after completing the decomposition task, participants were
asked to indicate the five most and five least important design criteria for each of four sce-
narios. Their selections were collected into frequency count tables which were then statis-
tically analyzed in order to better understand how priorities vary over different participant
groups and design scenarios. This task was motivated by discussion with educators and
examination of the practitioner literature such as (CMM Correspondence Group, 1997),
(Bourqueet al., 2002), and (Bruegge and Dutoit, 2000) that suggest there are particular
criteria that should be considered when doing software design. By examining these pri-
oritizations across participant groups, it could be possible to see how (or whether) these
are learned through the curriculum.

Fig. 7 shows the number of times each criterion was ranked as one of the five most
important criteria by each participant group in each of the four scenarios.
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A few observations are worth noting. First, there appears to be considerable agree-
ment across the groups as to what criteria are important in each scenario, although the
agreement is most pronounced under the time pressure scenario. And second, some of the
criteria are ranked as relatively important in most scenarios (e.g.,design-phase testing),
some have importance that is highly scenario-dependent (e.g.,maintainability), and some
are never ranked as important in any of the four scenarios (e.g.,loose coupling).

4.4. Agreement between Subpopulations

In order to determine if any of the apparent differences in criteria valuation between par-
ticipant groups is statistically significant,χ2 tests were performed on3× 16 contingency
tables such as those in Table 3. The rows represent participant groups, the columns rep-
resent the individual criteria, and a cell(i, j) represents the number of participants from
participant groupi ranking criteriaj as most important.

There were four such contingency tables, one per scenario, giving four null hypothe-
ses of the form “there is no statistically significant difference between the three subpop-
ulations in their choices for the most significant criteria in this scenario.”

At the α = 0.05 level, the criteria chosen by different groups differed significantly
only for the Longevity scenario;cohesion was chosen more by E than the other two
subpopulations,clarity was chosen less by E, andloose coupling was chosen less by FC.

An additional observation is that four of the criteria were never considered among the
five most important by either student group in any scenario:loose coupling, cohesion,
chunking, and recognition of structure. In fact, loose coupling is one of the two least
frequently chosen criteria by FC students in every scenario.loose coupling is also one of
the two least frequently chosen design criteria by GS students in each scenario except in
the longevity scenario. Note, however, that neitherloose coupling nor cohesion are ever
among the five most important criteria for educators as well. So although this principle is
sacrosanct for practitioners, it is rarely valued as such among students or their educators,
especially when compared to criteria that might be considered more pragmatic, such as
those related to design expression (e.g.,explainability) or process (e.g.,design-phase
testing).

Table 3

Arrangement of data in3 × 16 contingency table.Oi,j is the number of participants from groupi ranking
Criterionj most important in ScenarioX

ScenarioX

Criterion1 Criterion2 . . . Criterion16

FC OFC,1 OFC,2 . . . OFC,16

GS OGS,1 OGS,2 . . . OGS,16

E OE,1 OE,2 . . . OE,16
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4.5. Variations across Scenarios

As seen in Fig. 7, the prioritization can change dramatically across scenarios – the dif-
ferences between these scenarios are much larger than the differences between groups
within either scenario. The final set of tests consider the degree to which any individ-
ual participant adjusts his or her rankings of the design criteria as the scenarios change.
The measure of how much an individual’s response varied by scenario was calculated as
follows:

1. Each criteria ranking for a single scenario was expressed as a16-element vector,
with positions corresponding to criteria. Each vector element was given the value
−1 if the criterion was in the least important partition,1 if it was in most, and0
otherwise.

2. The mean of the four scenario vectors was calculated.
3. The squared Euclidian distances between the mean vector and each of the four

scenario vectors were computed and then summed.

This sum was taken as a measure of individual variation in criteria priority rankings.
An individual giving the same rankings to criteria in each scenario would have a sum
of 0, while an individual giving maximally different rankings across scenarios would
have a sum of 40. The average sums for the three groups are FC= 23.3, GS= 23.5,
and E= 17.9. A one-way analysis of variance indicated a significant difference at the
α = 0.05 level between the educators and both student groups, with no statistically sig-
nificant difference between the student groups. It is thus clear that all participant groups
are exhibiting context-specific preferences for many of the design criteria, with students
doing so more than educators.

5. Conclusion

Each of the three analyses yielded results, with the main ones summarized here.

Design characteristics. There is a progression away from the textual and toward stan-
dard graphical notations with increases in education. In addition, the data indi-
cate that a large number of students underestimate the importance of representing
structural groupings and interactions between design parts. However, this might
be accounted for by differences, including how software design is taught, between
institutions.

Recognition of ambiguity. The percentage of both information gatherers and recogniz-
ers of ambiguity increases from first competency students to graduating students to
educators. And those who recognize ambiguity or gather information had a higher
success rate in addressing all requirements than those who did not. As with rep-
resentation characteristics, there was considerable institutional difference in fre-
quency of ambiguity recognizers and information gatherers.

Design criteria. There was almost complete uniformity of valuation of design criteria
among the different participant groups. Across all scenarios, educators gave sta-
tistically significant differences in criteria valuations than students for only two
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criteria, and students differed from one another for only one criteria in a single
scenario. Principles of loose coupling and high cohesion were not valued highly by
any participant group in any scenario when compared to such pragmatic consider-
ations as clarity of design expression and management of the design process.

Taken in total, these results suggest the following. First, that some design behaviors
appear to bedevelopmental, such as recognition of ambiguity and use of standardized de-
sign representations, in that there are increases in the occurrence of these behaviors with
increases in educational attainment. Second, some design behaviors appear relatively in-
variant with respect to different levels of education within the Bachelor degree, such as
design criteria valuation. It is possible that changes to these behaviors, such as appreci-
ation of certain design criteria, is obtained primarily as a result of hard-won experience
in “real-world” software development contexts. And third, some design behaviors are
context-dependent, such as information gathering and representation of interactions be-
tween parts, suggesting that these behaviors are most amenable to changes in instruction.
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A Design Brief

Getting People to Sleep

In some circles sleep deprivation has become a status symbol. Statements like “I pulled
another all-nighter” and “I’ve slept only three hours in the last two days” are shared with
pride, as listeners nod in admiration. Although celebrating self-deprivation has historical
roots and is not likely to go away soon, it’s troubling when an educated culture rewards
people for hurting themselves, and that includes missing sleep.

As Stanford sleep experts have stated, sleep deprivation is one of the leading health
problems in the modern world. People with high levels of sleep debt get sick more often,
have more difficulties in personal relationships, and are less productive and creative. The
negative effects of sleep debt go on and on. In short, when you have too much sleep debt,
you simply can’t enjoy life fully.

Your brief is to design a “super alarm clock” for University students to help them to
manage their own sleep patterns, and also to provide data to support a research project
into the extent of the problem in this community. You may assume that, for the prototype,
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each student will have a Pocket PC (or similar device) which is permanently connected
to a network.

Your system will need to:

• Allow a student to set an alarm to wake themselves up.
• Allow a student to set an alarm to remind themselves to go to sleep.
• Record when a student tells the system that they are about to go to sleep.
• Record when a student tells the system that they have woken up, and whether it is

due to an alarm or not (within 2 minutes of an alarm going off).
• Make recommendations as to when a student needs to go to sleep. This should

include “yellow alerts” when the student will need sleep soon, and “red alerts”
when they need to sleep now.

• Store the collected data in a server or database for later analysis by researchers.
The server/database system (which will also trigger the yellow/red alerts) will be
designed and implemented by another team. You should, however, indicate in your
design the behaviour you expect from the back-end system.

• Report students who are becoming dangerously sleep-deprived to someone who
cares about them (their mother?). This is indicated by a student being given three
“red alerts” in a row.

• Provide reports to a student showing their sleep patterns over time, allowing them
to see how often they have ignored alarms, and to identify clusters of dangerous,
or beneficial, sleep behaviour.

In doing this you should (1) produce an initial solution that someone (not necessarily
you) could work from (2) divide your solution into not less than two and not more than
ten parts, giving each a name and adding a short description of what it is and what it
does – in short, why it is a part. If important to your design, you may indicate an order
to the parts, or add some additional detail as to how the parts fit together.

B Design Criteria

These are the phrases that were on the 16 cards given to participants. The one or two
word “short form” used in the paper (italicized here) was not included on the cards.

1. [encapsulation] Hiding the internal workings of each part of the solution from the
user, presenting them with a simple interface to its functionality.

2. [implementability] Knowing how each part of the solution could be implemented.
3. [cohesion] Making sure related things appear together.
4. [loose coupling] Making sure that un-related things are linked via a narrow (inter-

nal) interface.
5. [chunking] Making sure the design is made up of appropriately-sized "chunks".
6. [intelligibility] Being able to explain what each part of the solution is, and what it

does, to yourself.
7. [explainability] Being able to explain what each part of the solution is, and what it

does, to others.
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8. [parsimony] Constructing a solution using the simplest thing that gets the job done.
9. [re-usability] Working to achieve a solution of maximum generality.

10. [recognition of structure] Ensuring that the parts which make up the solution map
onto the structure of the problem.

11. [clarity] Designing so that someone else can implement the solution with little (or
no) additional information or domain expertise.

12. [design-phase testing] “Sanity-checking” the solution, by checking back to the
specification.

13. [maintainability] Designing a system that can be easily maintained.
14. [engineering] Considering the technological implementation (target platform or de-

vice) and designing for efficient use of that resource.
15. [input re-use] Using ideas that I know work.
16. [clear functionality] Expressing the functionality clearly.
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Student ↪u kuriama programin ė ↪iranga: daugianacionalinis,
tarpinstitucinis tyrimas

Josh TENENBERG, Sally FINCHER, Ken BLAHA, Dennis BOUVIER, Tzu-Yi CHEN,
Donald CHINN, Stephen COOPER, Anna ECKERDAL, Hubert JOHNSON,
Robert McCARTNEY, Alvaro MONGE, Jan Erik MOSTRÖM, Marian PETRE,
Kris POWERS, Mark RATCLIFFE, Anthony ROBINS, Dean SANDERS,
Leslie SCHWARTZMAN, Beth SIMON, Carol STOKER, Allison Elliott TEW,
Tammy VanDeGRIFT

Straipsnyje supažindinama su daugianacionaliniu, tarpinstituciniu tyrimu, kuris buvo atliktas
norint išanalizuoti informatikos student↪u turim ↪a samprat↪a apie programiṅes ↪irangos dizain↪a bei
jo kriterijus. Tyrimas iš esṁes ṙemėsi dviem student↪u gruṗemis: jaunesni↪u kurs↪u studentais bei
bakalauro studij↪u program↪a bebaigiaňciais studentais. Vertinant esamus duomenis buvo pasitelkta
ir informatikos ḋestytoj↪u gruṗe. Tyrimu, kuris aṗemė daugiau nei 300 dalyvi↪u iš 4 šali↪u 21 in-
stitucijos, buvo siekiama sudaryti student↪u sukurtos programiṅes ↪irangos dizaino charakteristik↪a,
išnagriṅeti student↪u geḃejimus tvarkytis su reikiam↪u išpildyti s↪alyg ↪u nevienareikšmiškumu, išsiaiš-
kinti, kaip studentai supranta pagrindinius programinės ↪irangos dizaino kriterijus. Gauti rezultatai
rodo, jog pereidami↪i aukštesnius kursus studentai vis mažiau naudojasi tekstinėmis notacijomis,
vis labiau ṁegstamos grafiṅes bei standartiṅes notacijos. Be to, reikia pastebėti, kad gil̇eja student↪u
supratimas apie nevienareikšmes problem↪u specifikacijas. Vis ḋelto, tenka konstatuoti, kad pereinat

↪i aukštesnius kursus, student↪u išmanymas apie pagrindinius programinės ↪irangos dizaino kriterijus
nedaug pakinta.


