
Informatics in Education, 2005, Vol. 4, No. 1, 123–142 123
 2005Institute of Mathematics and Informatics, Vilnius

Delphi Study of the Cognitive Skills of Experienced
Software Developers

Sami SURAKKA, Lauri MALMI
Helsinki University of Technology, Laboratory of Information Processing Science
P.O. Box 5400 (Konemiehentie 2), FIN-02015 HUT, Finland
e-mail: sami.surakka@hut.fi, lauri.malmi@hut.fi

Received: December 2004

Abstract. In the present paper, a qualitative research of the cognitive skills of experienced software
developers is presented. The data for the research was gathered using the Delphi method. The re-
spondents were 11 software developers who have worked at least five years after their graduation.
Two questionnaire rounds were conducted. In the first round, the respondents mentioned altogether
32 different skills. In the second round, 10 of the respondents answered and evaluated the difficulty
of these 32 skills (e.g., does the skill efficiently differentiate experts from novices). The results
are divided into two categories: composition and comprehension. Approximately 40% of the skills
were classified into the category “comprehension.” For each skill, the evaluated degree of diffi-
culty of the skill is presented. In the category comprehension, skills related to comprehension of a
program or a problem as a whole were evaluated as the most difficult.

Key words: cognitive skills, experts, psychology of programming.

1. Introduction

What are cognitive skills? According to ERIC Thesaurus (2004), the termthinking skills
should be used for the termcognitive skills. The description for the term thinking skills
is the following:

Interrelated, generally “higher-order” cognitive skills that enable human
beings to comprehend experiences and information, apply knowledge, ex-
press complex concepts, make decisions, criticize and revise unsuitable
constructs, and solve problems – used frequently for a cognitive approach
to learning that views explicit “thinking skills” at the teachable level.

In the present research, the goal has been to identify cognitive skills that are impor-
tant for expert software developers’ work. Our research origins from the need to better
understand what kind of topics and skills should be included in the master’s level edu-
cation of software systems specialists in the Helsinki University of Technology. Typical
sources for such curriculum development work include various model curriculums such
as Computing Curricula 2001 (Engel and Roberts, 2001). However, they mostly concen-
trate on listing topics to be covered in the curriculum. The skills to be achieved during the
education are covered more vaguely. Since programming is a high-level cognitive skill,



124 S. Surakka, L. Malmi

we wanted to find out in some more detail about what kind of cognitive skills should be
trained in the education.

We decided to search for high-level software development experts and ask from them
which topics in computer science they consider important for their work. Moreover, we
were interested in identifying tacit knowledge needed in software development. Since
such information is difficult to be grasped with simple questionnaires we decided to apply
the Delphi method (Wilhelm, 2001) in which people in the same focus group are queried
two or more times. After each time a summary of results is presented for them followed
by more closely defined questions of the topic of interest. Delphi is a qualitative research
method, where the quality rather than the number of respondents is the more important
factor. The statistical reliability of the results is therefore not the general goal, and thus
the number of respondents need not be very large. In the present research, we selected
11 respondents among a group of recommended 59 experts. Two questionnaire rounds
were performed, and the second round concentrated especially on the tacit knowledge of
software development. In the present paper, we concentrate on the results of the second
questionnaire round.

The present paper is an extended version of our previous conference paper (Surakka
and Malmi, 2004). The structure of the present paper is the following. First, we consider
some related work in Section 2. In Section 3, we describe the research method in some
detail. The results are presented and analyzed in Section 4. A discussion including some
implications to education and evaluation of the present research summarizes the paper.

2. Related Work

We did not find any research papers where the Delphi method has been used in the field
of psychology of programming. This is understandable because it is not common to use
even questionnaires as a research instrument in this field.1 Because the lack of similar
research, some more general references are presented next. At the end of this section
it is explained how these issues relate to our research. Greeno and Simon (1988) wrote
“Computer programming may be characterized ‘as a whole’ as a design task.” Brooks
(1983) wrote about design task domains:

. . ., two fundamental activities in design task domains are composition and
comprehension. Composition is the development of a design and compre-
hension results in an understanding of a design. The essence of the compo-
sition task in programming is to map a description of what the program is to
accomplish, in the language of real-world problem domains, into a detailed
list of instructions to the computer designating exactly how to accomplish
those goals in the programming language domain. Comprehension of a
program may be viewed as the reverse series of transformations from how
to what.

1We found only seven articles where questionnaire has been used, for example (Capretz 2003). However,
none of these articles is really related to our research beside the use of questionnaires.



Delphi Study of the Cognitive Skills of Experienced Software Developers 125

Stanislaw et al. (1994) divided expertise in computer programming into two compo-
nents that were time-based expertise and multiskilling expertise. They wrote (p. 351):
“Time-based expertise corresponds to the conventional notion of expertise, and is a func-
tion solely of the time spent on programming.Multiskilling expertise, by contrast, accrues
through exposure to a variety of programming languages and tasks, and is related to the
cognitive development of higher-level programming schemata.” Détienne (2002, p. 35)
wrote that one of the characteristics that distinguishes “super experts” or “exceptional
designers” from other experts is: “a broader rather than longer experience: the number of
projects in which they have been involved, the number and variety of the programming
languages they know.” In addition, Détienne (2002, p. 35) wrote that experts carry out
some aspects of programming tasks completely automatically. She referred to Wieden-
beck (1985, p. 383) who found that experts were faster and made fewer mistakes than
novices when both groups had to do a series of timed true/false decisions about short,
textbook-type program segments. Perhaps, for example, the following skills are auto-
mated gradually when the programming experience increases: (a) using the basic com-
mands of an editor (such as Emacs) and the programming system frequently used, and
(b) knowing the details of the syntax and the code conventions of a certain programming
language such as C. The previous issues relate to the present research as follows: (a) We
have used two activities, composition and comprehension, to interpret and divide our re-
sults. (b) The division time-based expertise vs. multiskilling expertise was used so that
we required that at least half of the respondents should be characterized as multiskilled
experts. (c) The concept of skill automation was used with the questions about cognitive
skills: the first question concerned higher-level skills and the second question concerned
skills that might be partially or totally automated.

One aspect of cognitive skills is different design strategies. Détienne (2002, p. 26)
wrote that experts have a broader range of more versatile strategies than novices. In addi-
tion, she wrote (p. 26): “Design strategies can be classified along several axes: top-down
vs bottom-up, forward vs backward development, breadth-first vs depth-first, procedu-
ral vs declarative.” See Appendix A for the explanation of these strategies. This division
of strategies was used during the second questionnaire round as will be explained later
in Section 3.2.2. Originally, Visser and Hoc (1990, pp. 241–244) presented these de-
sign strategies and used somewhat different names. However, in the present research the
names presented by Détienne (2002) were used.

3. Method

An overview of the Delphi method can be found, for example, from (Wilhelm, 2001).
The method was originally used to forecast the future; the name originates from “the
oracles of Delphi” where Delphi refers to an ancient Greek island. However, in the present
research, estimating the future was only a small part. Some basic properties of the method
are the following. First, there are several questionnaire rounds. Second, the results from
the previous round are used as material for the next round. Thus the respondents may



126 S. Surakka, L. Malmi

change or tune their previous answers. One of the main reasons for using Delphi was that
it allows group communication without gathering all respondents to the same place at the
same time, which in this case would have been very difficult to achieve. Moreover, in
this way the respondents had more time to consider their answers and make their views
more explicit. Originally, consensus building has been an important part of the Delphi
method. In the present research, however, the second questionnaire round was not used
for building consensus on the whole issue but targeted more to refining the results of an
interesting part of the first questionnaire; that is, cognitive skills. The first questionnaire
had three open questions about cognitive skills required by a software specialist. Based on
the answers in total 36 different skills were identified. In the second round the respondents
defined the level of these skills, that is, how long learning and experience is needed before
such a skill is mastered. The questionnaires are presented in more detail in Section 3.2.

The decision of limiting the second questionnaire to only one area of interest was
based on several reasons: (a) The results from the other areas of the first questionnaire
were satisfactory enough. Thus, the need to conduct a second questionnaire round for
the sake of the other areas was low, (b) The respondents thought that the questions about
cognitive skills were the most difficult to answer. We interpreted this as a hint to explore
more this area, (c) Regardless of the answering difficulties, some respondents thought
cognitive skills as interesting or promising area for this kind of research. This was our
own opinion as well, and finally, (d) In the beginning of the research we promised to
the respondents that participating would take 1–3 hours, and we wished not to break this
promise.

After the cognitive skills were chosen as the topic for the second questionnaire round,
the goal was set to evaluate how demanding or difficult the different cognitive skills that
were mentioned during the first round are.

3.1. Finding Respondents

The goal was to find 10–20 especially good software developers. The respondents were
found using recommendations. Thus, they are not a statistically representative sample
of all software developers but more like a focus group. Probabilistic sampling was not
used because it was difficult to identify the target group using properties such as age,
education, and title. For example, the title and working years are not enough to separate
especially good software developers from poor or intermediate developers. Kitchenham
and Pfleeger (2002, p. 19) wrote that one reason for using a non-probabilistic sample is
that the target population is hard to identify. Our decision fits well with this guideline.

The minimum criteria were a degree, five years working experience after gradua-
tion, at least half of time used to programming during these five years, and at least
100,000 lines of self implemented code. In addition, at least half of the respondents
should have versatile software development experience. Here, versatile means different
kind of projects, for example various programming languages and application domains.
Two extra criteria were that (a) maximum of three respondents can be included from the
same organization and (b) only one respondent can work full-time at the Helsinki Univer-
sity of Technology, where the authors work themselves. The degree could be from other



Delphi Study of the Cognitive Skills of Experienced Software Developers 127

programs than computer science and engineering. For example, some older respondents
had the degree from electrical engineering. The title of the respondent did not need to be
programmer, software developer or software engineer, since the important issue was only
that their work included enough programming.

Altogether, 59 persons were recommended. 40 of them were not asked because of
several different reasons (e.g., the person was graduated less than five years ago). Thus,
19 persons were asked to participate. From these 19 persons, 11 promised to participate.

In most cases, the criterion of any degree was checked from the student register of the
Helsinki University of Technology or the personal WWW pages of the candidates. The
criteria of at least five years of working experience after graduation, at least 100,000 lines
of self-implemented code, and enough programming experience during the last five years
were checked when the person was asked to take part. On other words, we simply asked
the candidates if they fulfilled the criteria. Some candidates declined because of these
three conditions. The criterion of at least half of the respondents should have versatile
software development experience was controlled with the first questionnaire. More than
half of the respondents had versatile software development experience (see Section 4.1).
Thus, no respondents were excluded because of this criterion.

3.2. Questionnaire Rounds

Two questionnaire rounds were conducted. The first questionnaire was answered between
November 2003 and January 2004, the second questionnaire between January and Febru-
ary 2004. During the first round, most respondents answered so that the first author of
the present paper was present during they answered. Thus, the respondents were able to
make questions. The authors of the present paper were not present during answering on
the second round. The mean answering time for the first round was one hour and six
minutes, and 54 minutes for the second round. The original questionnaires are available
in Finnish only at (Surakka, 2004). However, their main properties are presented in the
following two subsections.

3.2.1. First Questionnaire
The first questionnaire had 14 open questions and 14 multiple-choice questions. The top-
ics were (a) background information about the respondent, (b) the importance of various
subjects and skills for software development, such as discrete mathematics and concur-
rent programming, (c) cognitive skills, (d) problem solving techniques, and (e) software
quality. For brevity, only results about the background information, cognitive skills, and
problem solving techniques are presented in the present paper.

The questions about background information were the title, the proportion of time
used to programming, the number of employees under the respondent, lines of code im-
plemented by the respondent, the number of different groups involved, the number of
different projects, personal skills in various subjects (42 subitems such as discrete mathe-
matics and object-oriented programming), skills in various programming languages, and
knowledge of various operating systems.



128 S. Surakka, L. Malmi

Instead of cognitive skills, the concept “tacit knowledge” was used because we as-
sumed that it would be easier to understand for the respondents. An explanation of the
concept including initial division into cognitive skills and technical skills was given be-
fore the questions. Three questions were:

• For a top-level software developer, what are important mental models, beliefs, and
understanding that belong to the cognitive element of tacit knowledge?

• For a top-level software developer, which topics and skills belong to the technical
element of tacit knowledge? These can also be called skills that are located in the
fingertips.

• Do you believe that some area of tacit knowledge will be more important in the
future?

3.2.2. Second Questionnaire
The second questionnaire was based on the respondents’ answers and comments to the
first questionnaire. These were analyzed to identify and separate different skills men-
tioned in the comments. Comments clearly denoting the same skill were joined. Typing
skill was included in the list, based on researcher’s observations, even though the respon-
dents did not mention it. Finally, we had a list of 36 comments each identifying at least
one skill, for the next round. In the second questionnaire, the respondents had to evaluate
the level of these comments according to the following categories:

1) very low-level skill that even novices can learn quickly (during a 1–4 credits basic
course);

2) somewhat low-level skill that requires working experience of 3–6 months to be
learned, for example;

3) somewhat high-level skill that starts to differentiate good programmers from less
good programmers;

4) very high-level skill that takes usually several years to learn and typically only
top-level programmers have this skill.

In the question about problem solving techniques, the respondents were asked to read
or browse three pages of the book (Détienne, 2002, pp. 26–28). The text was about a
strategy-centred approach to software design. After this, the respondent had to answer
the following question:

During the designing of software, have you used these techniques or
strategies (Top-down vs. Bottom-up, Forward vs. Backward Development,
Breadth-first vs. Depth-first, Procedural vs. Declarative, Mental Simula-
tion)? How often? Do you think they are good? Has the use of these
techniques or strategies changed when you have gained more experience
in software development (as it is described in the book)? Do you think
these skills are tacit or explicit knowledge? What do you think the level of
these skills is (the scale is the same as previously: 1 Very low-level skill
. . . 4 Very high-level skill)?

The second questionnaire had questions about typing skills and the use of editor as
well. These questions are not presented here because they were so simple that just pre-
senting the results is enough.



Delphi Study of the Cognitive Skills of Experienced Software Developers 129

4. Results

First, some background information about respondents is presented. Second, the results
about respondents’ opinions from cognitive skills are presented.

4.1. Background Information of Respondents

Background information is presented for 11 respondents who answered the first ques-
tionnaire round. All respondents were male and mean of respondents’ ages was 37.1
years. Their degrees were as follows: one college degree in computer science and engi-
neering (9%), five masters in computer science and engineering (45%), three masters in
other engineering disciplines (27%), one doctor from applied mathematics (9%) and one
doctor from computer science and engineering (9%). The respondents’ positions were
distributed into following groups: senior software engineers and developers 45%, re-
searchers 27%, and managers or directors 27%.

Each respondent was asked how many projects he had participated and how well he
can program with various programming languages. We classified a respondent to have
versatile software development experience if he had participated to at least three projects
and had good or excellent skills in at least three programming languages from different
programming paradigms (typically C, C++, and Lisp). All respondents had participated
to more than three projects but apparently some knew well only one or two programming
paradigms. According to the answers, six (55%) respondents were classified as having
versatile software development experience.

Each respondent was asked to give himself a grade in 42 subjects or skills related to
various fields of computer science, or other sciences (mathematics, physics), and soft-
ware development phases of the waterfall model. In Table 1 are shown the means from
respondents’ answers divided into the same four categories that were used in the question-
naire. Inside each category, the rows are ordered first according to the mean and second
according to the name of the subject or skill.

Table 1

Means (M) and standard deviations (SD) to question “Give yourself a grade in the following subjects or skills”
(scale: 1 poor. . . 4 excellent)

Subject or skill M SD

Mathematics, physics, and theoretical computer science:

Logic (in particular, propositional and predicate logic) 2.5 0.8

Other areas of theoretical computer science (e.g., automata) 2.5 0.9

Discrete mathematics 2.4 0.8

Physics 2.1 0.5

Mathematics for continuous systems 1.8 0.8

To be continued



130 S. Surakka, L. Malmi

Continuation of Table 1

Subject or skill M SD

More technical or part of the operational systems:

Procedural programming 3.8 0.4

Data structures and algorithms 3.5 0.5

Script programming 3.5 0.5

Object-oriented programming 3.4 0.8

Operating systems (operating principles in general) 3.1 0.7

Functional programming 3.0 1.0

Internet protocols 2.8 0.9

Systems programming 2.8 1.1

Compilers 2.7 1.2

Computer/data security 2.6 0.8

Implementing techniques of WWW systems 2.6 0.9

Software architectures 2.6 0.8

Computer architecture 2.5 0.7

Implementing techniques of user interfaces 2.5 0.9

Embedded systems 2.4 0.9

Artificial intelligence and knowledge engineering 2.3 1.3

Concurrent programming 2.3 0.9

Database managements systems 2.3 0.6

Distributed systems 2.3 0.9

Logic programming 2.2 0.6

Computer graphics 2.1 0.7

Extensible Markup Language (XML) techniques 2.1 0.5

Other telecommunications techniques than Internet protocols 2.1 0.8

Real-time systems 2.0 0.6

Software engineering (different phases of life cycle):

Implementation 3.8 0.4

Design 3.4 0.7

Testing 3.1 0.7

Requirements 2.9 0.7

Concept exploration 2.6 0.7

Approval 2.3 1.0

Operation and maintenance 2.3 0.9

Installation and checkout 2.1 0.8

Packaging and delivery 1.7 0.6

Retirement 1.5 0.7

Software engineering (possible in several phases):

Version and configuration management 3.1 0.9

Project management 2.8 0.8

Documenting 2.7 0.5

The sample size is 10 for Computer/data security and 11 for the other items.



Delphi Study of the Cognitive Skills of Experienced Software Developers 131

There are two issues that are worth noticing. First, script programming skills are
ranked very high. This obviously correlates with the heavy use of Unix/Linux environ-
ment in their work. We did not ask more questions on scripting on the second round.
However, our interpretation of this phenomenon is that for this target group scripting is
a regular method for solving simple computational problems, for example, filtering and
manipulating data files, or building auxiliary tools for them. This is strongly related with
the important cognitive skills of recognizing the need for building new tools and choosing
a suitable tool for each purpose.

The second observation is that functional programming is ranked much higher than
the general use of functional programming languages in software production would indi-
cate. We believe that this is related to multiskilling. A plausible explanation is that many
of the respondents have used functional programming during the career and/or hobby
programming. Based on answers to the open question about working experience at least
four (36%) respondents had actually used Lisp in some work project.2

4.2. Respondents Opinions about Cognitive Skills

In the second questionnaire, the statements of skills were divided according to the divi-
sion used in the first questionnaire. However, for the present paper we reclassified the
results into two categories: composition and comprehension. We also combined some
comments. Two comments are not presented in the tables because they are not related
only to software development. These two comments and their means were Being system-
atic 2.1 and Ability to type using ten fingers 2.1. Thus, Tables 2 and 3 contain together
only 30 (17 and 13, respectively) items whereas the second questionnaire contained 36
items. First, the results related to composition are presented in Table 2. The comments
are ordered according to the means. The numbers in the leftmost column are used for
commenting on the items.

Even though statistical analysis was not our main purpose, we were curious to see,
whether the observed differences are significant or not. We assume that a typical reader
is not familiar with nonparametric tests but knows the Student t test that is often used
to compare means. In the present research, the Student t test was not suitable because
the samples were so small. As far as we know, there are no statistical tests available
for comparing means in the situation of this kind and the Mann–Whitney test (Conover,
1999, pp. 271–275) is the most suitable alternative for the Student t test.Note that the
Mann–Whitney test compares the ranks (the order of items) as a whole, not the means.
The test is called as a nonparametric test because “parameters” such as means and stan-
dard deviations are not used. For comparison, the Student t test uses means and standard
deviations.

2Nine (82%) respondents have graduated from the Helsinki University of Technology where Scheme was
the language of the first compulsory programming course in the degree program of computer science and engi-
neering (CSE) during 1989–2003. However, this is not a suitable explanation because all these nine respondents
were admitted before 1989 or were from other degree programs than CSE. That is, the course in question was
not compulsory for them.



132 S. Surakka, L. Malmi

Table 2

Comments classified into category “Composition”: Means (M) to question “What do you think the level of this
skill is?” Scale was: 1 very low-level skill. . . 4 very high-level skill

Number Comment M

1 A good programmer has always a model. The code itself comes from the spine
and brains operate only the model.

3.6*

2a Automating one’s own work using scripts, keyboard macros etc. 3.5*

2b The mastery of a certain programming language or a certain environment 3.5*

4 Writing code so well that it is not even necessary to comment 3.4

5 Design of interfaces 3.3

6 Choosing as optimal data structures and algorithms as possible 3.1

7a Ability to find right abstractions 3.0

7b Mastery of the structures and idioms that are characteristic of each language or
environment

3.0

9 Ability to write code clearly and shortly 2.9

10a Choice of the programming language 2.8

10b Implementing programs as independent of the operating environment as possible 2.8

12 Isolating the implementation behind well-defined (and documented) interfaces 2.7

13 Changing lower level cognitive models/design patterns to code. For example,
table field in C/C++ object and its memory management get/set/constr/destr

2.6

14 Identifying concepts 2.4

15a Ability to find existing Open Source solutions from Net and being familiar with
libraries

2.3

15b Procedural or object-oriented way of thinking about programming 2.3

17 Documenting code 1.9*

A star (*) indicates that the difference of the correspondingranks is statistically significant (p < 0.01).
For brevity, the means of ranks are not presented.

For brevity, we present the results of the Mann–Whitney test in the same column with
the means and do not present the means of ranks at all. The ranks of single items were
compared with the ranks of all items. A star (*) indicates that the difference is statistically
significant (p < 0.01). If the star is missing, the difference is not statistically significant.

In Table 2, there are a few observations which need to be commented. First, the high
mean of item “2a Automating one’s own work using scripts, keyboard macros etc.” obvi-
ously does not indicate the time needed to learn such skills. Instead, it indicates the time
needed to use them efficiently as one’s personal tools, when necessary. Our assumption
is that this is a skill which is analogous to bottom-up software design, where the pro-
grammer recognizes the need for general-purpose procedures and data structures. Thus,
it has a role in differentiating excellent developers from others. Second, the items “Design
of interfaces” and “Isolating the implementation behind well-defined (and documented)
interfaces” are kept separate. The first one is more associated withdesigning and the lat-
ter one withusing interfaces. It is obviously easier to learn to use ready-made interfaces
properly than actually designing interfaces that support good software architecture. Third,
comments 2b and 7b are similar but we think that 2b is broader than 7b. Comment 2b in-



Delphi Study of the Cognitive Skills of Experienced Software Developers 133

Table 3

Comments classified into category “Comprehension”: Means (M) to question “What do you think the level of
this skill is?” Scale was: 1 very low-level skill. . . 4 very high-level skill

Number Comment M

1 Ability to see all possible alternatives from the source code (this comment was
related to debugging)

3.9*

2 Ability to notice isomorfisms with some known problem 3.6

3 Ability to evaluate how the system will operate even before its implementation
has been started

3.5

4a Ability to see esthetic values in solutions 3.4

4c Ability to see the big picture. What is the core of the problem and how it is
connected to the environment around it?

3.4

6a Ability to distinguish essential matters 3.2

6b Interpreting the program as the whole 3.2

8a Ability to change fluently
• abstraction level (e.g., single line of code vs. procedure or big picture vs.

details)
• perspective (e.g., is the control flow or the data flow of the program ex-

amined)
• concepts (e.g., are the concepts of program or the concepts of application

domain considered)
• view (e.g., users needs vs. maintenance vs. development speed)

3.1

8b Ability to debug 3.1

10 Ability to see symmetries 3.0

11 Exploring the architecture of the existing systems 2.9

12 Ability to see a big problem as several partial problems 2.7

13 Understanding the functioning of programming languages and computer (e.g.,
parameter passing, the order of execution, and concurrency)

1.8*

A star (*) indicates that the difference of the correspondingranks is statistically significant (p < 0.01).
For brevity, the means of ranks are not presented.

cludes also low-level knowledge, for example knowing language’s keywords by heart.
Forth, we think that the low ranked items 15a and 17 are not really cognitive skills, but
other kind skills or knowledge. However, we have not omitted these items from the table
because they are related to composition.

In Table 3 we present the results related to category “Comprehension”. As a gen-
eral note, it is interesting that the respondents have used words like “see” and “notice”
often to describe these skills. We think that item “13 Understanding the function of pro-
gramming languages and computer (e.g., parameter passing, the order of execution, and
concurrency)” is rather explicit than tacit knowledge.

4.3. Respondents Opinions on Problem Solving

Table 4 presents means to the question where the difficulty level of different development
strategies was asked. The strategies are presented in Appendix A. Some respondents did
not answer this question or did not give the level for all strategies. Some respondents



134 S. Surakka, L. Malmi

Table 4

Sample sizes (n) and means (M) to question “What do you think the level of these skills is?” Scale was: 1 very
low-level skill . . . 4 very high-level skill

Strategy n M

Breadth-first vs. depth-first 6 3.3

Procedural vs. declarative 6 3.3

Top-down vs. bottom-up 8 3.1

Forward vs. backward 4 3.1

Mental simulation 4 2.9

gave different values for single strategies, for example, one respondent gave 2 for top-
down and 3 for bottom-up. In this case, the mean 2.5 was used for strategy “Top-down
vs. bottom-up.” It can be noticed that the differences between the means are small. No
statistical tests were conducted to analyze the results because the differences and the
subsamples were so small.

The question had other parts as well. These answers were so mixed that no statistics
are presented. Most respondents commented that they have used all or most of the strate-
gies and they have often used a combination of strategies (e.g., “top-down + verification
by mental bottom-up simulation” or “bottom-up + declarative”). Some respondents com-
mented that single strategies are explicit knowledge but choosing a suitable strategy and
changing fluently between the strategies is tacit knowledge that takes years to achieve.
One respondent commented that the list of strategies did not mention iterative technique
and another that “design by aesthetics” was missing. He explained that design by aes-
thetics is a kind of extreme bottom-up where first, central parts are programmed as the
developer wants them to be. Second, it is considered what has to be done so it is really
possible to use these central parts as they were coded.

4.4. Typing Skills and Use of Editor

To get some data on the lower level practical skills of the respondents, the questionnaire
included a few questions on their typing skills and the editors they use in practical work.
Four (40%) respondents have taken a typing course. Five (50%) respondents could type
with ten fingers, four (40%) used less than ten fingers but did not look at the keyboard
during programming, and only one (10%) respondent had to look at the keyboard while
typing.

We wanted to compare the previous results against some other group. However, we
did not find any records or previous publications how common typing skills are among
general population or among CS graduates in particular. Therefore, we asked similar
question from the students of a basic programming course. The questions were presented
as part of the normal feedback questionnaire at the end of the course. 13% of the students
(N = 216) had taken a typing course and 25% could type using ten fingers. 18% an-
swered that he or she did not have to look at the keyboard during one minute of constant
typing, 47% had to look 1–5 times, and 33% more than five times.



Delphi Study of the Cognitive Skills of Experienced Software Developers 135

According to the Z test for proportions (Milton and Arnold, 2003, p. 324), the dif-
ference between the experienced software developers and the students is statistically not
significant (p � 0.05) for the proportions of ability to type using ten fingers (50% and
25%, respectively). However, we think that looking at the keyboard is more important
than using ten fingers because looking at the keyboard might interrupt thinking. If the
answers are interpreted so that only 10% of experienced software developers had to look
at the keyboard and the corresponding proportion for the students was 82%, then the dif-
ference is statistically very significant (p < 0.001). Thus, there is some evidence that
the typing skills of experienced software developers are better than of students – as one
would expect.

An editor is the basic tool in programming. Good knowledge about the versatile fea-
tures allowed by advanced editors can significantly improve the coding speed. Based
on the background of the respondents, we deduced (even though we did not ask this)
that most if not all had used mainly Emacs in Unix environment in their student days.
According to the answers, most respondents have also continued to use Emacs after grad-
uation, which is well understandable knowing its wide variety of available operations and
support for editing different languages. Six respondents used mainly Emacs, one respon-
dent Epsilon (an Emacs clone), and one respondent used vi. One respondent has changed
from Emacs to Source-Navigator because he thought that Source-Navigator was more
suitable for editing and browsing large programs. Five respondents answered that they
had programmed macros for Emacs, and two answered that they knew basic commands
of Emacs but had not programmed macros. At the time of answering, one respondent
programmed mainly in Windows environment and used Visual Studio. Two respondents
answered that they do not work in Windows environment. Others answered that they have
installed Emacs in Windows when necessary.

5. Discussion

In this section, the research is evaluated, conclusions are drawn, implications to education
are presented, and possibilities for future research are considered.

5.1. Evaluation of the Research

The present research would have been very different if the original main goal was to
gather information from the cognitive skills of software developers. Questionnaires are
used seldom in the psychology of programming where experimental research setting is
dominant. One source of criticism is that questionnaires measure opinions, not observable
behavior. However, in the present research the purpose was to measure especially the
opinions of experts. In addition, we think that Delphi method was suitable for this type
of research. The follow-up questionnaire round was necessary to describe more explicitly
tacit knowledge that is a more or less vague concept. During the first questionnaire round,
most respondents commented that the questions about the tacit knowledge were the most
difficult to answer. A possible interpretation could be that the used research method was



136 S. Surakka, L. Malmi

not suitable or the questions were poorly designed. However, we interpreted that the
answering difficulties were mainly due from the topic itself; that is, the topic is genuinely
difficult. It is possible that the respondents do not remember or cannot describe skills that
have been automated already several years ago. For example, adults often have difficulties
in describing how a bicycle is ridden or a car is driven. We tried to minimize this problem
by dividing the questions in two parts and adding an explanatory text before the questions.

5.2. Conclusions and Implications to Education

The skills listed can be divided into two main categories: skills associated with com-
position and skills associated with comprehension. The composition category obviously
includes skills that are related to the mastery of the programming languages and environ-
ments used. Other important skills associate with having an inherent model of the goal in
one’s mind, designing interfaces and abstractions, mastering and developing one’s own
working process, for example. The comprehension category includes skills such as un-
derstanding the program as a whole and ability to notice isomorfisms with other known
problems.

On a general level, the results confirm that different comprehension-related tasks are
an important part of the cognitive skills of software developer. Approximately 40% of
the items mentioned by the respondents can be classified as comprehension-related tasks.
Obviously, this is not at all surprising result because according to the definition presented
in the very beginning of the present paper, cognitive skills enable human beings to com-
prehend information. It is obvious that many of the skills listed above cannot be taught
directly in the courses. They are highly related with a long experience gathered when
programming solutions to different problems. The challenge for education is to design
project assignments where students will face problems that require the mentioned skills,
and find a way to present guidelines for adopting such skills.

On a more general level, we assume that the deployment of the results of the present
research might increase the proportion of time used into concept exploration, require-
ments analysis, and design phases but decrease the proportion of time used into imple-
mentation phase. In the following, we mention a few course examples of such develop-
ment.

Refactoring course
This example would be an advanced course that emphasizes comprehension. Dur-
ing the refactoring course, a student should repair and/or partly rewrite a program
(maybe 2000–3000 lines) that contains different kinds of mistakes and bad plan-
ning choices. During the task, a student has to read and thus interpret the structures
and the operation of a program written by others. Moreover, he/she should argue
about the findings made, and how the code should be improved.

Software design workshop
This course would emphasize the composition viewpoint, including analyzing and
decision-making skills related to design. The course would contain an open or



Delphi Study of the Cognitive Skills of Experienced Software Developers 137

semi-open design problem that can be solved using several different strategies and
tools. The student group should compare various options, argue their pros and
cons, and finally evaluate the result.

Project course (customization/tailoring)
In a customization/tailoring course the group faces a problem of designing a pro-
gram for a variety of customers with slightly different needs. They should analyze
the needs in the specification phase and argue what kind of architectural solu-
tion would enable generating different versions of the basic program, and argue
their decisions on the program design. To make the project more challenging they
should implement the first version, and thereafter get the requirements for new
customers, and then analyze how their initial design works in the new situation.

Project course (the combination of student projects)
The main goal here is to force students to read and understand the designs and
implementation of other students, and continue their own work based on these.
For example, a group should split a task into appropriate subgoals and assign
a number of other groups a task to design and/or implement solutions for the
subgoals. Thereafter the original group should compare a number of submitted
designs/implementations and choose one or two of them as a part of their own
project. They would have to use and modify the design/code to match their needs
and argue about the process; that is, reflect on their own decisions when assigning
the subgoals and when comparing the results.

In general, the students should be faced with problems where they have to understand
and modify code written by others, and not necessarily the best quality code with good
documentation. This would promote both comprehension and analysis skills as well as
composition skills. In our opinion, programming education typically relies too much on
implementing everything oneself.

5.3. Automation of Low-Level Skills in Programming

In the second questionnaire, the respondents were asked about typing skills and the use
of an editor as well. This might seem odd because these are so low-level time-based
skills; that is, fast typists who can use their editor well might be faster programmers. In
our opinion, it is not so interesting if software developers were 10% or even 50% faster
but we wonder if learning problems in low-level skills might cause difficulties when
students are learning higher-level programming skills. Based on earlier findings about
skill automation and learning in general, this might be the case. For example, according
to Wiedenbeck (1985, p. 384):

Studying children, Perfetti and Hogaboam (1975) and Perfetti and Gold-
man (1976) found that less-skilled readers were significantly slower at low-
level skills, such as letter and word encoding. This lack of automation of
low-level skills led to inadequate discourse understanding, since memory
for sentence wording decayed while the reader was trying to encode words.



138 S. Surakka, L. Malmi

Fig. 1. Possible hierarchy of some low-level and intermediate-level programming skills or areas of knowledge.
Numbers are means from respondents’ answers in related skills.

In Fig. 1, we propose one possible hierarchy of some low-level and intermediate-level
programming skills or areas of knowledge. On purpose, very high-level skills are not pre-
sented in Fig. 1 because we assume that these skills cannot be automated. We have added
related means from the respondents’ answers into Fig. 1. Next, the means are explained
starting from the bottom of the figure: (a) In the boxes “Recognition of characters,” “Edit-
ing skills,” and “Design patterns” a dash (-) indicates that none of the results was really
related. (b) The mean of the box “Typing skills” was presented in the body text in the
beginning of Section 4.2. (c) The mean of the box “Syntax of programming languages”
refers to Comment 2b in Table 2. (d) The mean of the box “Programming style and id-
ioms” is a combined mean from Comments 2b, 7b, and 13 of Table 2. (e) The mean of
the box “Algorithms and data structures” refers to Comment 6 in Table 2. (f) The mean
of the box “Programming tools and practices” is a combined mean from Comments 2a,
2b, and 9 of Table 2, and Comment 8b of Table 3.

At the moment, we do not have a proper evidence to support the figure; we just give
our arguments, which are based on our experience. First, it is obvious that all students
of an undergraduate programming course know alphabets, and learning the necessary
special characters (brackets, an asterisk, a tilde. . .) is not difficult for them. Second, good
typing skills, especially the ability to concentrate on looking continuously on the screen,
reduces interrupts in thinking. We believe that frequent interruptions in order to look at
the keyboard distract the reasoning process when reading and constructing programming
language idioms.

Third, an editor can significantly reduce the work load of programming by automating
a number of issues. For example, Emacs has different modes for various programming



Delphi Study of the Cognitive Skills of Experienced Software Developers 139

languages such that recognize the syntax, support automatic indentation, show the pairs
of braces or brackets, and provide a number of ready-made keyboard commands to create
various syntactical constructions. An experienced programmer can greatly benefit from
these features if he/she knows them and frequently applies them. For example, automatic
indentation not only saves the time to write the appropriate number of spaces but also
easily points out possible errors when the indentation does not seem to work properly.
Moreover, the keyboard commands are beneficial if a programmer wants to use a mouse
as little as possible. We did not find any really relevant publications about typing or edit-
ing as part of programming but Fry (1997, p. 63) has written: “Switching between mouse
and keyboard is bad. Most hackers I know think in terms of keyboard commands that per-
form equivalent mouse operations, so they don’t have to switch to and from the mouse.”
This is just an anecdotal observation3 but anyhow, we agree with this observation.

The fourth and fifth levels are concerned with knowledge on programming languages.
Experienced programmers know the syntax and semantics of several languages by heart,
which reduces their need to look at manuals and the number of syntactical and semantic
errors they face when processing programs. What is more important is that they know
how the language should be used to implement commonly appearing structures such as
building linked lists.

In the box “Programming tools and practices” tools refer to editing, debugging, com-
piling, and version management tools such as Emacs, GDB, Make, and CVS. Practices
refer to, for example, debugging and unit testing. We placed the box at the top part of
the figure because some practices might be intermediate-level or high-level skills. The
dashed line indicates that editors are related to editing skills.

Finally, the skills related to design patterns, and the selection of data structures and al-
gorithms are intermediate-level or high-level skills. These skills are based both on knowl-
edge about these issues and experience about what works well in practice.

5.4. Future Research

Next are mentioned three possible research settings that we think as interesting for a
follow-up research. On purpose, only research settings that use the Delphi method are
mentioned because our research is a Delphi study.

• The researchers of the psychology of programming could be asked as respondents,
not experienced software developers. For example, the editors of the book Psy-
chology of Programming might be possible candidates. It would be interesting to
compare the results of these two respondent groups. It is possible that researchers
of this field can mention some skills that software developers cannot – and vice
versa. An experienced researcher of psychology of programming might mention,
for example, 10–30 cognitive skills when a respondent of the present research men-
tioned only 3–5 skills.

3The questions concerning typing skills and use of editor were added to the second questionnaire as a con-
sequence of another anecdotal observation. The first author of the present paper noticed that some respondents
typed fast while they answered to the WWW version of the first questionnaire.



140 S. Surakka, L. Malmi

• The respondents could live in another country than in Finland because there might
be some cultural differences. We assume that cultural differences related to the
cognitive skills of software developers are small. However, it would be interesting
to explore if this is the case.

• Also a third questionnaire round could be organized. In our research, we stopped
after the second questionnaire round because we had promised to the respondents
that participating would take 1–3 hours. We did not stop because we though that
nothing interesting could be found during a third questionnaire round.

If a similar research will be repeated in the future, we suggest that (a) the division
composition versus comprehension, and (b) the definition of cognitive skills that is given
at the beginning of Section 1 will be used also in the questionnaires. In addition, we
suggest that the first questionnaire will concentrate completely or mainly on cognitive
skills. In our research, the questions about cognitive skills were only a small part of the
first questionnaire.

Acknowledgements

We thank emeritus professor V. Meisalo from the University of Helsinki for suggesting
the use of the Delphi method and PhD S. Kujala from the Helsinki University of Tech-
nology for commenting on a manuscript of the present paper.

Appendix A: Software Development Strategies

The following texts are quotations from (Détienne, 2002, pp. 26–28):

Top-down vs Bottom-up

A solution may be developed either top-down or bottom-up, that is from the more
abstract to the less abstract or vice versa. In the first case the programmer develops
the solution at an abstract level and then refines it, progressively adding more and
more detail. In the second case, the solution is developed at a very detailed level
before its more abstract structure is identified.

Forward vs Backward Development

A design strategy is described as forward development when the solution is devel-
oped in direction of execution of the procedure. It is described as backward if it is
developed in the direction opposite to that of the execution of the procedure.

Breadth-First vs Depth-First

A breadth-first strategy means developing all the elements of the solution at one
level of abstraction before proceeding to the next, more detailed, level of abstrac-
tion. A depth-first strategy means that one element of the system is developed to
all levels of abstraction before any other element is developed.



Delphi Study of the Cognitive Skills of Experienced Software Developers 141

Procedural vs Declarative

The development of a solution is said to be procedural when it is the structure
of the procedure that controls the solution; the solution is then based on aims or
procedures. The development is said to be declarative when static properties, such
as objects and roles, control the solution.

Mental Simulation

Simulation can be used to evaluate a solution. In fact, designers often use mental
simulation on a partial or complete solution at a higher or lower level of abstrac-
tion or on passages of code that they are seeking to understand. Simulation pro-
vides a way of verifying that a solution meets the desired objectives and a way of
integrating partial solutions by controlling their interactions.

References

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.International Journal of
Man-Machine Studies, 18 (6), 543–554.

Capretz, L. (2003). Personality types in software engineering.International Journal of Human-Computer Stud-
ies, 58 (2), 207–214.

Conover, W. (1999).Practical Nonparametric Statistics, 3rd edition. John Wiley and Sons, New York.
Détienne, F. (2002).Software Design – Cognitive Aspects. Springer, London.
Engel, G., and E. Roberts (2001).Computing Curricula 2001. Computer Science. Final report, December 15,

2001. IEEE Computer Society and Association for Computing Machinery. Retrieved on October 28, 2004,
from the IEEE Computer Society web site:
http://www.computer.org/education/cc2001/cc2001.pdf

ERIC Thesaurus (2004). Retrieved on April 27, 2004, from the Educator’s Reference Desk web site:
http://www.ericfacility.net/extra/pub/thessearch.cfm

Fry, C. (1997). Programming on an already full brain.Communications of ACM, 40 (4), 55–64.
Greeno, J., and H. Simon (1988). Problem solving and reasoning. In R. C. Atkinson, R.J. Herrstein, G. Lindzey

and R.D. Luce (Eds.),Stevens Handbook of Experimental Psychology, vol. 2.
Kitchenham, B., and S. Pfleeger (2002). Principles of survey research. Part 5: Population and samples.Software

Engineering Notes, 27 (5), 17–20.
Milton, J., and J. Arnold (2003).Introduction to Probability and Statistics, 4th edition. McGrawHill, New York.
Stanislaw, H., B. Hesketh, S. Kanavaros, T. Hesketh and K. Robinson (1994). A note on the quantification of

computer programming skill.International Journal of Human-Computer Studies, 41 (3), 351–362.
Surakka, S. (2004).Supplementary Material for Article “Cognitive Skills of Experienced Software Developer:

Delphi Study”.
URL: http://www.cs.hut.fi/u/ssurakka/papers/Delphi2/index.html

Surakka, S., and L. Malmi (2004). Cognitive skills of experienced software developer: Delphi study. In A.
Korhonen and L. Malmi (Eds.),Kolin Kolistelut–Koli Calling 2004. Proceedings of the Fourth Finnish/Baltic
Sea Conference on Computer Science Education. Koli, Finland, pp. 37–46.

Visser, W., and J-M. Hoc (1990). Expert software design strategies. In Hoc, J.-M., T.R.G. Green, R. Samurçay
and D.J. Gilmore (Eds.),Psychology of Programming. Academic Press, London.

Wiedenbeck, S. (1985). Novice/expert differences in programming skills.International Journal of Man-
Machine Studies, 23 (4), 383–390.

Wilhelm, W. (2001). Alchemy of the Oracle: The Delphi technique.The Delta Pi Epsilon Journal, 43 (1), 6–26.



142 S. Surakka, L. Malmi

S. Surakka is a doctoral student at the Helsinki University of Technology where he re-
ceived master’s degree in 1993. The topic of his doctoral thesis is the evaluation of soft-
ware systems education.

L. Malmi is a professor of computer science in the Helsinki University of Technology
(HUT). He received his doctor of technology diploma in the HUT in 1997. His main
research area is computer science education including software visualization, automatic
assessment, new educational methods, and evaluating how they improve learning.

Patyrusi ↪u programinės ↪irangos kūr ėj ↪u kognityvini ↪u ↪igūdži ↪u tyrimas
remiantis Delphi

Sami SURAKKA, Lauri MALMI

Straipsnyje aptariami patirt↪i turinči ↪u programiṅes ↪irangos k̄urėj ↪u kognityvini ↪u ↪igūdži ↪u koky-
binio tyrimo rezultatai. Tyrimui reikalingi duomenys surinkti pasinaudojantDelphi metodu. Re-
spondentais buvo atrinkti 11 programuotoj↪u, turiňci ↪u, – skaǐciuojant nuo moksl↪u baigimo, – ma-
žiausiai penkerius metus programuotojo darbo patirties. Tyrimu siekta išnagrinėti profesionali↪u
programuotoj↪u ↪igūdžius, toḋel atrenkant respondentus buvo atsižvelgta↪i rekomendacijas. Tokiu
būdu šis tyrimas nelaikytinas statistiškai reprezentatyviu vis↪u programuotoj↪u atžvilgiu, veikiau ↪i
j ↪i reikėt ↪u žvelgti kaip ↪i konkrěcios programiṅes ↪irangos k̄urėj ↪u gruṗes ↪igūdži ↪u analiz↪e. Apklausa
vykdyta dviem ciklais. Atliekant pirm↪a apklausos cikl↪a respondentai paminėjo iš viso 32 skirtin-
gus programuotojui reikiamus turėti ↪igūdžius. Atliekant antr↪aj↪i cikl ↪a, 10 respondent↪u tuṙejo pateikti
savo vertinimus apie kiekvien↪a iš ši↪u 32 ↪igūdži ↪u. Gauti rezultatai buvo suskirstyti↪i dvi kategorijas –
programiṅes ↪irangos k̄urimui ir supratimui reikiami↪igūdžiai. Kiekvienas iš pamiṅet ↪u ↪igūdži ↪u buvo
klasifikuotas pagal sudėtingumo laipsn↪i (pavyzdžiui, ar ši↪igūdži ↪u suḋetingumo gradacija gali b̄uti
veiksminga atliekant ekspert↪u ir pradedaňci ↪uj ↪u diferenciacij↪a).


