
Informatics in Education, 2004, Vol. 3, No. 2, 191–218 191
 2004Institute of Mathematics and Informatics, Vilnius

Virtual SceneBean: a Learning Object Model for
Collaborative Virtual Learning Environment

Jinan FIAIDHI
Department of Computer Science, Advance Technology and Academic Centre, ATAC 5015
Lakehead University
Thunder Bay, Ontario P7B 5E1, Canada
e-mail: jfiaidhi@mail1.lakeheadu.ca

Received: July 2004

Abstract. It is commonly agreed that a well-balanced mix of collaboration, training and simulation
eventually produce a superior learner. Today’s collaborative design and learning environments in-
tegrate variety of interactive objects as well as many technological aspects to achieve such balance.
Unfortunately, the actual profitof the resulting learning systems is largely reduced by poorly rep-
resented interactive objects as well as poor interlinking between such objects. In particular, such
objects appear isolated: they neither can be modified sufficiently (e.g., by choosing parameters or
enhancing functionality) nor be interlinked properly with their context (e.g., by synchronizing with
a guided tour or metadata). We are presenting in this article a model for representing virtual and
3D scenes as learning objects. The model utilizes notions and techniques based on Scene Graphs,
X3D, Java3D, and SceneBeans. The prototype accompanied with a simple client-server protocol
for exchanging and viewing the 3D SceneBeans. This research aims to extend this protocol by
utilizing Sun JXTA primitives to link to the POOL of other learning objects repositories.

Key words: virtual learning environment, virtual/3D learning objects, SceneBeans, X3D, Java3D.

1. Introduction

Virtual learning environments (VLEs) can provide rewarding teaching and learning expe-
riences. In terms of academic results, virtuallearning environments can represent a more
successful learning environment and have proven to be motivating contexts for learning.
In these virtual environments the learningexperience can be flexible, more accessible and
inclusive. Not only are these environments often a more economically viable option, but
they also allow specialist tuition and knowledge to transcend geographical boundaries
(Broganet al., 1998).

Traditionally such environments are used to support distance and online learning.
There are over 100 packages, available on the market, that have been developed by Uni-
versities or commercial companies, most common ones include: Blackboard, WebCT,
WebFuse, CoSE, TopClass, WebEx, VNC, SCORM, and Tango. Although these pack-
ages offer course designers some encouraging built-in facilities (e.g., communication
and collaboration tools, passive interactivity, administrative tools, evaluation tools, and



192 J. Fiaidhi

helpful interfaces), they luck supplying someintrinsic capabilities for the learning mate-
rials reusability, active interactivity, widely acceptable indexing and metadata standard,
interoperability, and of having an open source. These intrinsic capabilities are quite vi-
tal for the future eLearning applications (c.f., semantic web). However, many emerging
standards (e.g., Learning Objects LOs standards) and technologies can be used currently
to enrich and provide greater interactivity within any virtual learning environment. In-
deed, the current technologiesof VLEs have many innovative and exciting possibilities
especially in the direction of virtual reality using 3D modeling, multisensory communi-
cation, and active/immersive interaction. Such technologies provides students with more
learning opportunities way beyond those offered by the eLearning in its current state but
careful modeling, planning and innovation will be required to ensure that the potential for
the scope of delivery is reached (Carpenter and Anderson, 1996). According to Stephen
McWilliam, V.P. of Astound (www.astound.com) a Canadian company specialized in
Web conferencing, who offered statistics about the degree of retention of learned mate-
rial as a function of the medium use:

Read 10%
Visual 20%
Audio 30%
Visual & Audio 70%

In other words, the greater the number of senses involved, the greater the retention.
With virtual reality we may obtain a tremendousdegree of involvement and engagement,
and thus greater learning and retention. In thisdirection, the animated objects are needed
to play the role of teachers or guides, team-mates or competitors, or just to provide a
source of interesting motion in virtual environments. For a virtual environment to be
compelling, the animated objects must have a wide variety of interesting behaviours and
must be responsive to the actions of the user/learner as well as to comply to one of the
learning objects standards. The difficulty of constructing such synthetic object currently
hinders the development of these environments, particularly when reusability, learner-
centered and reprogrammability are required by both the designer and the learner/user.

This article addresses a solution to this problem by providing a new model for VLEs
based on the notions of SceneBeans and Learning Objects. This new model is designed
to provide active student engagement with active learning. This research is part of our
ongoing research to establish multimedia learning objects repository for the academia at
LU as well as to establish a proper search engine for such learning objects (Fiaidhi and
Mohammed, 2004; Fiaidhiet al., 2004; Fiaidhiet al., 2003a), and (Fiaidhiet al., 2003b).

2. Related Research

Collaborative virtual learning environments (CLEs) traditionally were studied in class-
room-based environment at first for tasks such as industrial team training, collaborative
design and engineering, and multiplayer games (Singhal and Zyda, 1999). Moreover,



A Learning Object Model for Collaborative Virtual Learning Environment 193

much work in the area of enabling effective collaboration in CLEs has focused on de-
veloping the virtual reality metaphor to thepoint where it attempts to completely mimic
collaboration in real environments (Benfordet al., 1995b; Capinet al., 1998). In par-
ticular, much attention has been paid to user embodiment (Benfordet al., 1995; Eraet
al., 1998; Snowdon and Tromp, 1997). However, much more recent work was focused on
Web-Based CLEs (Jianhuaet al., 2001). Web-based CLE systems can be divided into two
categories, one isasynchronous system, and another issynchronous. The influential asyn-
chronous system includes First Class, CSILE/Knowledge Forum, Learning Space, Web-
Board, and WebCT; synchronous system includes Conference MOOS, WebChat Broad-
casting System, and Microsoft Netmeeting.

Although the above mentioned CLE research focused on interactive instructional vi-
sualization, not much of the research work focus on planning for change (i.e., flexible
and easy to adopt to new and changing user requirements as well as to have reusable
learning materials). This eventually means that CLEs systems must be built with open
requirements out of reusable components conforming to a plug-in architecture. Although
the component-based (CB) solutions developed to date are useful, they are inadequate for
developers and instructors building directly CLE systems in which the components must
respond to the meaning of the content as well as comply with certain widely acceptable
standards. Hence it essentially means that the CLE system must be based on the IEEE
learning object metadata notion as well as to be based on CB technology. In this direc-
tion only very few research attempts can be cited in the literature which address CLE as
CB reusable systems (e.g.,multibook CLE of the Technical University of Darmstadt (El
Saddiket al., 2000), the WebDAV-Collaborative Desk of the Institute of Telematics (Qu
et al., 2000) andJASMINE (Shirmohammadiet al., 2003) as well as theJava Multime-
dia Telecollaboration Kits (Oliveiraet al., 2003) from Ottawa University. Indeed the late
mentioned research tried to solve many issues related to CLE design flexibility based on
CB technology and metadata standardization, but the issue that remain to be answered is
how to model their basic visualization objects (i.e., active/flexible and virtual scenes) and
how to structure their accompanying metadata. This article utilizes the notion of Scene
Graph as a model for representing CLE’s active and virtual scenes.

3. Describing Active Scene Using Scene Graph

Scene graph is a common model for storing and retrieving graphical scenes as used in
computer graphics (seehttp://en.wikipedia.org/wiki/Scene_graph). A scene
graph is a general data structure commonly used by vector-based graphics editing ap-
plications. Many graphical applications use the model of scene graph to model flexible
shapes (e.g., AutoCAD, Adobe Illustrator and CorelDraw). The scene graph contains the
pictorial data items that can be edited and displayed. Each node in a scene graph rep-
resents some atomic unit of the document, usually a shape such as an ellipse. However
with scene graphs, shapes themselves can be decomposed further into other nodes. The
simplest type of scene graph uses an array or linked list data structure, and displaying its
shapes is simply a matter of linearly iterating the nodes one by one.



194 J. Fiaidhi

Other common operations, such as checking to see which shape intersects the mouse
pointer (e.g., in a GUI-based applications) are also done via linear searches. For small
scene graphs, this tends to suffice. Larger scene graphs cause linear operations to become
noticeably slow and thus more complex underlying data structures are used, the most pop-
ular being a tree. In this case, the scene graph can contain smaller scene graphs as nodes,
and formal type declarations of such structures often include themselves recursively as
members. These “subscenegraphs”, depending on the application, can be known to the
user and even user-defined and editable. A common feature, for instance, is the ability
to group related shapes into a compound shape which can then be moved, transformed,
selected, etc. as easily as a single shape. An operation applied to a group automatically
propagates its effect to all of its members.In many programs, associating a geometrical
transformation matrix at each group level andconcatenating such matrices together is an
efficient and natural way to process such operations.

In 2D cases, scene graphs typically render themselves by starting at the tree’s root
node and then recursively drawing the child nodes. The tree’s leaves represent the most
foreground objects. Since drawing proceedsfrom back to front with closer objects sim-
ply overwriting farther ones, the process is known as employing the Painter’s algorithm.
In 3D systems, which often employ depth buffers, it is more efficient to draw the clos-
est objects first, since farther objects oftenneed only be depth-tested instead of actually
rendered. Depending on the particulars of the application’s drawing performance, a large
part of the scene graph’s design can be impacted by rendering efficiency considerations.

In 3D video games such as Quake, for example, binary space partitioning (BSP) trees
are heavily favored to minimize visibility tests. BSP trees, however, take a very long time
to compute from design scene graphs, and must be recomputed if the design scene graph
changes. Scene graphs for dense regular objects such as heightfields and polygon meshes
tend to employ quadtrees and octrees, which are specialized variants of a 3D bounding
box hierarchy. Since a heightfield occupies a box volume itself, recursively subdividing
this box into eight subboxes (hence the ‘oct’ in octree) until individual heightfield ele-
ments are reached is efficient and natural. A quadtree is simply a 2D octree.

4. From Scene Graph to 2D SceneBeans

Originally SceneBeans are introduced as a java component-based 2D animation frame-
work by Pryce and Magee during 2001 (Pryce and Magee, 2001). SceneBeananimation
encapsulates both a scene graph and the behaviours that animate the nodes of that graph.
It acts as the manager for the behaviours encapsulated within it, routing commands and
events. Most importantly, a SceneBean animation is also a scene graph node, since this
means we can compose animations, applying transformation and further animation as
required. SceneBeans conform to industrial standards: Java and XML, and because of
its component nature, allows extensibility ofthe framework within its “domain-specific
visual and behavioural components” (Mageeet al., 2000).

The SceneBeans framework provides programmers with a convenient programming
model for creating and controlling interactive multimedia objects, and a useful set of



A Learning Object Model for Collaborative Virtual Learning Environment 195

components that can be plugged together within that framework. Indeed, it is not practical
to expect learners to write Java programs in order to define animations for example for use
in applications, and even for experienced programmers the edit/compile/debug cycle is
slow and frustrating when fine-tuning animation parameters are involved. To simplify the
authoring/description process XML formathas been used by SceneBeans which requires
a parser to translate the XML document into interactive multimedia or Animation objects.
The XML document type definition (DTD) used by the SceneBeans parser is relatively
minimal compared to DTDs for similar applications, such as the W3C’s Scalable Vector
Graphics (SVG) standard. The DTD does not prescribe a limited number of component
types and their options, but instead describes compositions of components that the parser
loads dynamically and manipulates generically through the JavaBeans APIs.

A SceneBean object is described using an XML metadata. The top-level of the
description is called <animation> which contains five types of sub-elements: a single
<draw> element defines the scene object to be rendered; <define> elements define named
scene graph fragments that can be linked into the visible scene graph; <behaviour> ele-
ments define behaviours that animate the scene graph; <event> elements define the ac-
tions that the animation performs in response to internal events; and <command> ele-
ments name a command that can be invoked upon the animation and define the actions
taken in response to that command. Both <draw> and <define> elements can contain the
elements <primitive>, <transform>, <style> and <compose>.

SceneBeans defines object behaviour with the “behaviour” element and then animat-
ing the parameters of scene graph nodes with the “animate” tag. The behaviour tag is
used to instantiate behaviour beans: the parser maps the algorithm of the behaviour to a
Java class the same way as it does for scene graph nodes, although it searches a different
set of packages. Like scene object nodes, param tags are used to configure behaviours by
setting their Java Bean properties. SceneBeans is a framework for two-dimensional ani-
mations based on Java Beans. An animation in SceneBeans is defined as a “scene graph”
– Java Beans components that form a directed a cyclical graph (DAG). A scene is de-
fined in terms of compositions and transformations of geographic shapes. Animations are
defined in XML documents and contain commands that instantiate and bind Java Beans
components to each other.

Leaves of the DAG draw geographic primitives such as shapes (i.e., ellipses, poly-
gons), text and images. Nodes differently from than leaves combine the primitives into
complex scenes, either by composing more than one scene graph or by modifying the way
a scene graph is rendered. Scene graphs are composed using Composite nodes. There are
six types of Composite node: Layered, Switch, Union, Intersection, Subtraction and Dif-
ference. Layered nodes draw its subgraphs one above the other. Switch nodes draw its
subgraphs at a time selected by a bean property. The other four types of node perform
constructive area geometry operations on their subgraphs.

Two other types of node, Style and Transform, modify the way a graph is drawn. Style
nodes set the fill and line properties used to draw their subgraphs. Transform nodes apply
a positional transformation to their subgraphs. Instead of one type of Transform node
that would require a transformation matrix as a parameter, SceneBeans use four types



196 J. Fiaidhi

to facilitate the composition of animated transformations: Translate, Rotate, Scale and
Shear.

Scene graph nodes, being Java Beans, expose modifiable properties at their interface.
What is done in SceneBeans exclusively is that these properties control their appearance
upon rendering. The Circle bean, for example, exposes a radius property that specifies the
radius of the circle drawn, and the Translate bean exposes x and y properties that specify
the translation to be applied to its subgraph.

SceneBeans provides components, termed behaviours and activities, which automate
the animation of scene graphs instead of explicitly locating nodes in the graph. The an-
imation is then easily accomplished by modifying bean properties in the graph before
drawing each frame. A behaviour bean encapsulates a time-varying value and periodi-
cally announces events that contain the current value. Some types of behaviour are: Dou-
bleBehaviour, which encapsulates a double-precision real number value, PointBehaviour
for point values, ColorBehaviour for a color value, and others. A node in the scene graph
is then animated by registering an event-listener to behaviour. The event-listener then
routes announced changes of the behaviour’s value to a property of the bean.

Behaviours can encapsulate any time-varying values such as the location of the mouse
cursor or the size of a window. However when used within animations, most behaviours
will periodically announce the value of a time-varying function. These behaviours imple-
ment the Activity interface, and are called activities or active behaviours.

The Animation class acts as a façade for a scene graph and the active behaviours
that modify the graph. An Animation is a composite scene graph node that layers its
subgraphs above one another allowing for it to be easily embedded into a larger scene
graph. An animation manages all active behaviours that animate its subgraphs, and is
itself an activity that can be managed (see Fig. 1).

Actually, each activity is managed by an Activity Runner that is responsible for in-
voking its perform Activity method. Activities and their runners can be organized as a
hierarchy. The root activity runner is a thread that iteratively calculates the duration of
each frame and passes the duration down to the activities that it manages. Intermediate
nodes of the hierarchy act both as activities invoked by a higher Activity Runner and as

Fig. 1. SceneBeans execute behaviours, which in turn modify the properties of the Scene Graph.



A Learning Object Model for Collaborative Virtual Learning Environment 197

Activity Runners for lower nodes. The Animation class provides a control interface for
use by applications. Animations can sendcommands to and receive Animation Events
from an animation. Commands and Animation Events are identified by textual names.
Animations respond to commands or internal events by performing one of six types of
actions:

• change the bean parameter values of scene graph nodes or behaviour beans;
• start active behaviours;
• stop active behaviours;
• reset the internal state of an active behaviour to the original values with which it

was created;
• invoke a command of an embedded animation;
• announce an event to the application or animation in which it was embedded.

Complete control over an animation’s behaviour and appearance is almost achieved
using a combination of the above action types.

User interaction with the animation is handled by scene graph beans derived from
the Input class. The Mouse Click and Mouse Motion classes handle mouse input. Mouse
Click indicates that a portion of the scene graph can be clicked on by the mouse and
announces Animation Events when the user presses or releases mouse buttons on the
visible portions of that subgraph. Mouse Motion reacts to the user moving or dragging
the mouse, feeding the location of the mouse pointer and the angle from the origin to the
mouse pointer into other scene beans. Fig. 2 illustrates an XML metadata for an animated
copter scene.

The <primitive> element on line 19 of Fig. 2 instantiates a bean that implements
a Primitive interface. The type attribute defines the concrete type of bean, in this case
a polygon. The SceneBeans parser maps the type name to a Java class by capitalizing
the first letter of the type name and then searching a list of packages for a class with
that name. The <param> element (lines 20 to 24) is used to set the values of the bean
properties. Here, the <param> elements define the polygon to have four points, and give
the coordinates to those points. The primitive on line 19 is defined as a rotor (line 20).

The plural “rotors” is defined on line 28 to be three singular rotors equal-angle apart
from each other. One is pasted to the coordinates assigned. The second is rotated (2 *
pi/3) degrees away from the original coordinates. The third is pasted in between at (4 *
pi/3) degrees from the original coordinates.

Documents describe animated graphics by creating and naming behaviour beans with
the <behaviour> element and then animating the parameters of scene graph nodes with
the <animate> tag. In the example given in Fig. 3, a behaviour “rotor-spin” is defined to
spin the rotors like a helicopter would spin them. The <behaviour> tag on line 4 is used
to instantiate behaviour beans. The parser maps the algorithm of the behaviour to a Java
class the same way it does for scene graph nodes – although it searches a different set
of packages. Like scene graph nodes, <param> tags are used to configure behaviours by
setting their Java Bean properties. Behaviours must be identified by an id attribute so they
can be referred by an <animate> element withinthe scene graph. Animate elements create
a binding between behaviour and a property of a bean so that the behaviour modifies the
value of the property over time, therefore creating an animation.



198 J. Fiaidhi

01 <?xml version=“1.0”?>
03 <animation width=“256” height=“256”>
04 <behaviour id=“rotor-spin” algorithm=“Loop” state=“${rotor_state=

stopped}”>
05 <param name=“from” value=“0.0” />
06 <param name=“to” value=“2*pi” />
07 <param name=“duration” value=“1.0” />
08 </behaviour>
10 <command name=“start”>
11 <start behaviour=“rotor-spin” />
12 </command>
14 <command name=“stop”>
15 <stop behaviour=“rotor-spin” />
16 </command>
18 <define id=“rotor”>
19 <primitive type=“polygon”>
20 <param name=“pointCount” value=“4” />
21 <param name=“points” index=“0” value=“(0, 0)” />
22 <param name=“points” index=“1” value=“(-16, 96)” />
23 <param name=“points” index=“2” value=“(0, 100)” />
24 <param name=“points” index=“3” value=“(16, 96)” />
25 </primitive>
26 </define>
28 <define id=“rotors”>
29 <style type=“RGBAColor”>
30 <param name=“color” value=“000000”/>
31 <primitive type=“circle”>
32 <param name=“radius” value=“12” />
33 </primitive>
34 </style>
36 <transform type=“rotate”>
37 <param name=“angle” value=“1.0” />
38 <animate param=“angle” behaviour=“rotor-spin” />
40 <style type=“RGBAColor”>
41 <param name=“color” value=“888888”/>
42
43 <paste object=“rotor” />
45 <transform type=“rotate”>
46 <param name=“angle” value=“2*pi/3” />
47 <paste object=“rotor” />
48 </transform>
50 <transform type=“rotate”>
51 <param name=“angle” value=“4*pi/3” />
52 <paste object=“rotor” />
53 </transform>
54 </style>
55 </transform>
56 </define>
58 <draw>
59 <paste object=“rotors” />
60 </draw>
61 </animation>

Fig. 2. An XML metadata of an animated copter scene.



A Learning Object Model for Collaborative Virtual Learning Environment 199

Fig. 3. SceneBeans interface for rotors.xml.

Commands that can be invoked upon an animation are introduced by <command>
elements which contain one or more action elements of type <set>, <stop>, <start>, <re-
set>, <invoke> or <announce>. In Fig. 2, the “start” and “stop” commands on lines 10
and 14 respectively, start and stop the spinning of the rotors. Where they appear in the
SceneBeans interface can be seen on the left side of Fig. 3.

In the example in Fig. 3, users can double-click any of the options in the Commands
window. The “start” command starts the “rotor-spin” behaviour and makes the rotors spin
like they would on an actual helicopter. The image in Fig. 3 is an altered version of the
image in Fig. 3. It is enhanced to mimic the animation of the SceneBean. Double-clicking
the “stop” command will stop the animation.

The <invoke> tag (not shown in Fig. 2 or 5) invokes another command defined by the
animation. The <event> element (line 1 of Fig. 4) defines the action performed by the
animation in response to an event fired by oneof its constituent beans. Attributes of the
<event> tag identify the source and name of the event. The body of the tag defines the
actions performed in exactly the same way as the <command> tag.

When the copter-track.xml SceneBean is open, the event “flight.landed” is listed in
the Events window (as seen in Fig. 6). When the event occurs, in other words when the
“flight_path” behaviour has completed, the <announce> tag (line 4 of Fig. 5) announces
the event to the user in the Announced window (also seen in Fig. 7). The announced
events in the Announced window, as well as the event list in the Events window, are read-
only and do nothing when clicked on. This differs from the Commands window where
the commands can be invoked by double-clicking.

The Pause checkbox, located under the Events window (see Fig. 6), can be checked
to pause the animation. It can be unchecked to resume the animation. The Center check-
box can be checked to center the origin of the animation to the middle of the window.



200 J. Fiaidhi

Fig. 4. SceneBeans interface for rotors.xml (image enhanced to mimic animation).

01 <event object=“flight_path” event=“finished”>
02 <stop behaviour=“flight_path” />
03 <set object=“copter_angle” param=“angle” value=“0” />
04 <announce event=“flight.landed” />
05 </event>

Fig. 5. <event> element in copter-track.xml.

Fig. 6. SceneBeans interface for copter-track.xml.



A Learning Object Model for Collaborative Virtual Learning Environment 201

01 <?xml version=“1.0”?>
02
03 <animation width=“256” height=“256”>
04 <draw>
05 <include src=“copter.xml”>
06 <param name=“rotor_state” value=“started”/>
07 </include>
08 </draw>
09 </animation>

Fig. 7. A complete yet simple SceneBean document (started-copter.xml).

Unchecking it will position the origin at the top-left corner of the window (the default
position). The Stretch checkbox can be checked to stretch or shrink the animation as the
window is resized. It can be unchecked to fix the size of the animation as the window is
resized. The Aspect checkbox can be checked to maintain the aspect ratio of the anima-
tion when it is resized with the window.

The size of the animations can be set by the author of the XML document by including
“height” and “width” attributes in the <animation> tag at the root of the document. That
is the only control the author and/or user has over the interface (other than the anima-
tion itself). The components mentioned earlier: the Commands, Events and Announced
windows; and the Pause, Center, Stretch andAspect checkboxes, are all positioned in the
interface by the application and cannot be altered.

A SceneBean document can be as simple as containing just one <animation> element
and one <draw> element. In the example inFig. 6, the SceneBean metadata started-

Table 1

Available SceneBean components

Primitive SceneBeans Circle Ellipse
Polygon Rectangle
Sprite Text
Null

Compose SceneBeans Layered Difference
Intersect Subtract
Switch Union

Transform SceneBeans Rotate Scale
Shear Translate

Style SceneBeans Font RGBAColor

Input SceneBeans MouseClick MouseMotion

Behaviours Bounce ColorFade
CopyPoint Loop
Move MovePoint
MultiTrack RandomTimer
Track RelativeMove
Timer ToMove
ConstantSpeed Move



202 J. Fiaidhi

copter.xml contains just that, and includes another scenebean, copter.xml, into it. The
reason for this is to demonstrate how the state of behaviour can be changed on inclusion.
The state of the “rotor-spin” behaviour is set to “started” (line 6 of Fig. 7) when the
SceneBean interface opens started-copter.xml.

In order to run SceneBeans, users only need a version of Java to be installed on their
computer. They need not know how to program Java. Authors of SceneBean documents
must know a minimal amount of XML (e.g., the structure of XML documents) and the
different components and their properties available for use in SceneBeans. The available
SceneBean Components are listed in Table 1. To create a new animation or edit an existing
one, only a text-editor is needed to input the XML code. Then all a user has to do is open
the XML document in the SceneBeans environment.

5. Extending the 2D SceneBean Model into a 3D Virtual SceneBean

The importance of scene graphs as a powerful tool for modeling any scene including
virtual reality or 3D scenes, let most of the notable software venders to adopt it for
their graphics APIs (e.g., Java3D, VRML, and OpenGL/Direct3D). Particularly Java3D
is getting more popularity as itcombines the vast knowledge of the collaborated com-
panies which includes venders Intel, Silicon Graphics, Apple, and Sun. Java3D has
been designed to be a platform-independentAPI concerning the host’s operating sys-
tem (PC/Solaris/Irix/HPUX/Linux) and graphics (OpenGL/Direct3D) platform, as well
as the input and output (display) devices. The implementation of Java3D is built on top
of OpenGL, or Direct3D. The high level Java3D API allows rapid application develop-
ment which is very critical, especially nowadays.

A Java 3D scene graph consists of a collection of Java 3D node objects connected in
a tree structure. These node objects reference other scene graph objects callednode com-
ponent objects. All scene graph node and component objects are subclasses of a common
SceneGraphObject class. The SceneGraphObject class is an abstract class that defines
methods that are common among nodes and component objects. Scene graph objects are
constructed by creating a new instance of the desired class and are accessed and manipu-
lated using the object’s set and get methods.

Once a scene graph object is created and connected to other scene graph objects to
form a subgraph, the entire subgraph can be attached to a virtual universe—via a high-
resolution Locale object-making the objectlive Prior to attaching a subgraph to a virtual
universe, the entire subgraph can becompiled into an optimized, internal format. The Java
3D renderer incorporates all graphics state changes made in a direct path from a scene
graph root to a leaf object in the drawing of that leaf object. The View object is the central
Java 3D rendering object for coordinating all aspects of viewing. All viewing parameters
in Java 3D are either directly contained within the View object or within objects pointed
to by a View object. Java 3D supports multiple simultaneously active View objects, each
of which can render to one or more canvases (see Fig. 8).

The basic idea of adopting Java3D within flexible component based architecture can
be easily done within the framework of Java Beans. The viewing of the 3D scene will



A Learning Object Model for Collaborative Virtual Learning Environment 203

Fig. 8. Viewing a Scene using Java3D.

Fig. 9. Rendering a Java3D frame within the framework of Java Beans.

be the responsibility of these beans. A bean interface will then represent an animate loop
that runs continuously which alternately calls two other methods (e.g step then render).
Step and render are both called on sceneBean, which is the root of the scene graph, and
are then called on the subnodes so that they are called on all nodes in the scene graph.
The reason that they are separate methods and not all done in the same method is that if
there are many views we may have to render the scene many times before stepping on to
the next frame. Fig. 9 illustrates the primitive idea of rendering Java3D scene within the
framework of Java beans.

Such primitive implementation of the rendering process based on Java beans was in-
troduced recently by Martin Baker at his web page (www.martinb.com). However, his
rendering APIs supports only VRML type events which is not the standard used by the



204 J. Fiaidhi

WC3 for modeling the description of learning objects, if those scenes required to rep-
resent a learning material. The events at his model are defined by a route node which
specifies the ‘to’ and ‘from’ nodes and properties. When the render loop is started as de-
scribed above, the scenegraph is called to allow the route nodes to setup the corresponding
events. However, one can use the standard WC3 X3D or WJ3D (a 3D version of XML)
instead of VRML in describing Java3D scene. Fig. 10 illustrates how a sphere scene is
described in X3D, VRML and Java3D. This will require changing the way Martin Baker
describe and parse the beans events.

The final step required indeed to transfer the X3D or XJ3D description into a standard
visual learning object metadata is to embed the 3D scene description within an acceptable

A simple Sphere with appearance in VRML

Group \{
children [

Shape {
geometry Sphere {}
appearance Appearance {

material Material {
diffuseColor 1 0 0

}
}

}
}

}

A simple Sphere with appearance in X3D

<Group>
<Shape>

<Sphere/>
<Appearance>

<Material diffuseColor=‘1 0 0’/>
<Appearance>

<Shape>
<Group>

A simple Sphere with appearance in Java3D

BranchGroup group = new BranchGroup group();

Sphere sphere = new Sphere();

Appearance appear = new Appearance();
Material material = new Material ();
material. setDiffuseColor (new Color3f(1.0 f, 0.0 f, 0.0 f));

sphere.setAppearance(appear);

group.addChild(sphere);

Fig. 10. Describing a sphere scene in VRML, X3D, and Java3D.



A Learning Object Model for Collaborative Virtual Learning Environment 205

standard such as the CanCore (widely used by the academia environment in Canada) (see
(Richardset al., 2002)). Fig. 11 illustrates how the sphere scene is expressed within the
CanCore format.

CanCore Guidelines Version 2.0 was released in late 2003 to reflect the version of
LOM that had been approved as a standard by the IEEE. It is also important to note
that the IMS specification will soon be revised and made identical to the IEEE standard.
The LOM data model defines 76 elements covering a wide variety of characteristics.
CanCore reduces the number of elements to 61 where 46 of them are defined as active
elements. Active elements are those thatcan have values assigned by record creators
and systems. Those elements that are not active are at a higher level in the hierarchy.
The hierarchy begins with nine main categories that contain sub-elements. These main
categories (General, LifeCycle, Meta-Metadata, Technical, Educational, Rights, Relation,
Annotation and Classification) contain all other elements in the LOM. The place of an
element in the hierarchy is indicated by decimals in the element number and name (e.g.,
2.3.2: LifeCycle.Contribute.Entity).

Many of the elements can be repeated to accommodate multiple values (e.g., multiple

<lom>
<general>
<identifier>

<catalog>CAREO</catalog>
<entry>632844</entry>

</identifier>
<identifier>

<catalog>URI</catalog>
<entry>http://www.lakeheadu/∼jfiaidhi/3dsphere.html</entry>

</identifier>
<title>
<string language=“en”>Describing a 3D Sphere </string>

</title>
<language>en</language>

<description>
<Shape>

<Sphere>
<Appearance>

<Material diffuseColor=“1 0 0”>
</Appearance>

</Sphere>
</Shape>

</description>
...
<structure>
<source>LOMv1.0</source>
<value>Hierarchical</value>

</structure>
</general>
...

</lom>

Fig. 11. Describing a 3D Scene using the CanCore Standard – an example.



206 J. Fiaidhi

authors, versions). Actually, CanCore was developed in Phase I of the POOL project by
the collaboration of Canadian researchers searching for a level of sufficient specificity
to enable the efficient search of learning objects. CanCore has sufficient flexibility in its
protocol that not all fields need be completed, thus developers can ignore many fields
that may be inappropriate for their purposes. The POOL protocol expands the JXTA P2P
communication protocol by building in more control for distributed searches and provides
for flexibility in metadata schemas used for queries and responses (Hatala and Richards,
2002).

6. Essential Steps for Creating Simple Virtual/Java3D SceneBeans

In this section we will introduce the basic strides/steps required for creating simple Vir-
tual/3D SceneBeans in Java programming environment:

Stride 1: Download and Install Java3D SDK
The Java3D software development kit (SDK) must be installed on your system before

you can create 3D programs in Java. The most recent JDK implementation can be ob-
tained from the Java Developer Connection (JDC) website. The Java3D implementation
that we use is built on top of Direct3D.

Stride 2: Create the Source .java File
A Java3D program file has the same attributes as any other Java application. No new

syntax or file naming scheme must be learned.

Stride 3: Import Java and Java3D Classes
This is an essential step in any Java program. Besides a few standard Java classes, a

Java3D program must import class files that enable the creation of 3D universes. Table 2
lists and describes the classes required for the Java file.

Stride 4: Create the 3D Canvas and Container Layout
Java3D renders virtual scenes on a special component called

javax.media.j3d.Canvas3D. This component is an extension of the Abstract Window
Toolkit (AWT) java.awt.Canvasclass. WhileCanvas3Dis also extensible, it is sufficient
for most 3D applications. Only a few lines of code are required to create aCanvas3D
component and add it to a container. The following code shows how to create a 3D canvas.

public void layoutComponents() {
setLayout(new BorderLayout());
canvas3D = new Canvas3D(null);
add(“Center”, canvas3D);

}
The first line in the method simply sets the layout so that components are added

to specific regions of the container (e.g., “East”, “West”, or “Center”). The second
line creates theCanvas3Dobject. There is only one constructor method inCanvas3D,
and that method requires ajava.awt.GraphicsConfiguration object as a parameter.



A Learning Object Model for Collaborative Virtual Learning Environment 207

Table 2

Classes required to be imported into Java Source Program

Class Package Description

MainFrame com.sun.j3d.utils.applet Convenience class that enables a Java3D applet to be
run as an application.

ColorCube com.sun.j3d.utils.geometry Convenience class used to create a multi-color cube.

SimpleUniverse com.sun.j3d.utils.universe Convenience class used to create a simple Java3D uni-
verse that is ready for viewing.

TextureLoader com.sun.j3d.utils.image Convenience class used to load textures.

Applet java.applet Used to create Java applet programs.

Frame java.awt Used to create a framed (windowed) Java application.

BorderLayout java.awt Used to layout components in an AWTContainer
(such as aFrame or Applet).

BranchGroup javax.media.j3d The root of a scene graph branch.

Background javax.media.j3d The background color or image that fills the window
of each new rendering frame.

Canvas3D javax.media.j3d An extension of java.awt.Canvas that enables basic
3D rendering capabilities.

TransformGroup javax.media.j3d A group node that contains a transform.

Point3d javax.media.j3d Double precision floating point x, y, z coordinates.

Transform3D javax.media.j3d An abstraction that encapsulates a row-major, 4x4
double precision floating point matrix. Used for ro-
tations, translations, andother transformations.

GraphicsConfiguration is an abstract class that encapsulates information about a par-
ticular graphics device. The last line simply adds the 3D canvas to the current con-
tainer. For further information, complete tutorials on creating Java3D scenes, look at
http://www.acm.org/crossroads/xrds5-3/ovp53.html.

Stride 5: Create the Scene Graph
Java3D uses ascene graph for rendering purposes. To do that we need to perform the

followings:
Stride 5-1: Create a Branch Group Object

A BranchGroup object represents the root of a particular scene graph. You
need to create it in a separate method using

sceneGraph = BranchGroup().
Once the root of a scene graph has been defined, a scene graph can be con-

structed and readied for rendering.



208 J. Fiaidhi

Stride 5-2: Create the Background
The default background of the 3D scene is null and void (black). However, to

make the scene a little more interesting, you can add an image to the background.
As an example, the followingcreateBackground() method contains the code re-
quired to add a background image to the scene.

public void createBackground() {
BoundingSphere boundingSphere =

new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);
TextureLoader backgroundTexture =

new TextureLoader(backgroundImage, this);
Background background =

new Background(backgroundTexture.getImage());
background.setApplicationBounds(boundingSphere);
sceneGraph.addChild(background);

}
The first object created is thejavax.media.j3d.BoundingSphere. TheBound-

ingSphere object specifies the spherical region in which the background will
be active. There are two parameters: The sphere center location and the sphere
radius. In this example, theBoundingSphere is located at x, y, z coordi-
nates 0.0, 0.0, 0.0, respectively, and has a radius of 100.0 meters. Java3D
uses the right hand coordinate system, meaning that the x-axis points toward
the right, the y axis points up, and the z-axis points out of the screen. The
com.sun.j3d.utils.image.TextureLoaderobject is used to load the background
image specified by the user at start-up. The specification for theTextureLoader
constructor is as follows:

TextureLoader(java.lang.String fname, java.awt.Component observer)
wherefname is the name of the file that contains the texture andobserver is the
image observer. An image observer receives asynchronous image update notifica-
tions during image construction.

The background is constructed with ajavax.media.j3d.Backgroundobject.
The Background constructor expects ajavax.media.j3d.ImageComponent2D
object. TheImageComponent2Dclass represents a 2D image and can be applied
to 3D objects in addition to backgrounds. TheImageComponent2Dobject is
obtained by calling theTextureLoader.getImage()method. Once the background
image has been obtained, the application bounds of the background is set with the
Background.setApplicationBounds()method. This is necessary to specify the
region in which the texture is to be applied. Finally, the background is added to
the scene graph with theBranchGroup.addChild() method, which is inherited
from javax.media.j3d.Group.

Stride 5-3: Create a 3D Transformation
A 3D transformation is the movement of a 3D point from one loca-

tion to another. Rotations, scales, translations, and reflections are all exam-
ples of transformations. In Java3D, a 3D transformation is represented by the



A Learning Object Model for Collaborative Virtual Learning Environment 209

javax.media.j3d.Transform3D class. The scene graph group node that contains
aTransform3D object is an instance ofjavax.media.j3d.TransformGroup.

The transformation performed in the following code segment simply rotates
the cube a specified number of degrees about the x axis:

public void createTransformation() {
// Create a 3D transformation that will
// rotate the cube a specified number of degrees on the x axis
Transform3D transform3D = new Transform3D();
transform3D.rotX(xRotationAngle);
// Create the transform group node and add the transformation
// to the node. Add the transformation group to the scene graph.

TransformGroup transformGroup=new TransformGroup(transform3D);
sceneGraph.addChild(transformGroup);
// Add a colored cube to the transform group node.
transformGroup.addChild(new ColorCube(cubeScale));

}
The first two lines of code create a Java3D transformation that will be used

to rotate a 3D object about the x-axis. The method used to perform the rotation,
javax.media.j3d.Transform3D.rotX(), accepts a single double precision floating
point number that specifies the angle in radians. The next two lines create a trans-
form group node with the specified 3D transformation. Once this group node has
been properly initialized, it is added to the scene graph.

The last line of code simply adds the colored cube to the transform group node.
The transform group node now has two children: the 3D transformation object and
a colored cube.

Stride 5-4: Compile the Scene Graph
After the scene graph has been constructed, it can be compiled. This is done

by simply calling theBranchGroup.compile()method.

Stride 6: Create the UniverseRF
After creating the scene graph, you are now ready to create a Java3D universe. In this

direction you need to create a method likecreateSimpleUniverse()method to construct
the universe and add it to the scene graph.

public void createSimpleUniverse() {
SimpleUniverse simpleUniverse =new SimpleUniverse(canvas3D);
simpleUniverse.getViewingPlatform().setNominalViewingTransform();
simpleUniverse.addBranchGraph(sceneGraph);

}
This segment of source code readies the scene graph for rendering. First, ajavax.java-

media.j3d.SimpleUniverseobject is created. This constructor method accepts aCan-
vas3Dobject that will be used for rendering. Next, the viewing distance is set by call-
ing thecom.sun.j3d.utils.universe.ViewingPlatform.setNominalViewingTransform()
method. Finally, the scene graph is added to the universe by calling the method.

Stride 7: Compile and Run the Java Program.



210 J. Fiaidhi

7. Developing a Collaborative Learning Environment for 3D Virtual SceneBean

The two previous sections describe how a virtual scene can be described in Java3D/X3D
and the steps required to program the virtual scene within the J2SE Java environment.
However, exchanging such virtual scenes within collaborative and distributed environ-
ment requires yet another enabling environment. Such situation is served best by using
a peer to-peer computing environment. Each peer isacquainted with a small number of
other peers with whom it can exchange information and services. Because of the ubiqui-
tous nature of such collaborative architecture, student/instructor communication requires
two different channels for exchanging information on 3D Scene (or any multimedia): the
XML like channel (e.g., X3D or XJ3D) that can be used to display the definition of the
multimedia objects as well as to convey the instant messages between the student and the
instructor, and the 3D SceneBean channel that transfers the Java Bean files via the TCP/IP
Channel which is used by most of the ubiquitous devices connected on the internet (see
Fig. 12).

However, in our implementation the XML like channel is based on a simple Client-
Server messenger mode as developed by Deitelet al. (2001). Clients, or users of the
system, are people who need to communicate with other users in the system. Consider
a case where user 1 needs to communicate with user 2. For communication to be estab-
lished, both users need to be logged on to the server. The messenger displays all the users
who are currently log on to the server. User 1 can then choose to send message to user 2.
When user 1 types in a message for user 2, the message is tagged with XML like rep-
resentation and sent to the server. The XML like message also contains the destination
(user 2) of the message and its source (user 1). The server then reroutes the message to the
respective user based on the destination information provided in the message. The XML
like server (MessengerServer) uses a ServerSocket, object to wait for clients to connect.
When a client connects, the server creates a new UserThread object to manage the client’s

Fig. 12. The general architecture of the 3D SceneBean collaborative environment.



A Learning Object Model for Collaborative Virtual Learning Environment 211

socket and streams. The MessengerServer object uses a vector to store all UserThread in-
stances. The MessengerServer also uses a Document object users, consisting of the names
of on-line users stored in individual user elements.

The XML like client has two main functions. First, it registers the user with the server
by sending an XML like document that contains the user’s name and ID. It then updates
its current list of logged-on users with the newinformation it receives from the server.
During the session, that is, the period during which the user is logged on, it has to update
this list whenever a new user logs in. All such information is exchanged in the form of
XML like (e.g., X3D). The second function of the client is to convert the text typed in by
the user into XML-like messages, tagging them appropriately to identify the source and
destination of each message, and to send themto the server. The client also has to parse
the XML like messages received from the server and display them to the user. Fig. 13
illustrates the UML Diagrams for the XML like communication channel.

On the other hand, the 3D SceneBean channel is based on Java Socket programming.
However, there are two Java communication protocols that utilize socket programming:
datagram communication and stream communication. Our Image transfer channel is built
upon a stream socket programming. The stream socket is protocol that is based on TCP
(transfer control protocol). Unlike UDP, TCP is a connection-oriented protocol. In or-
der to do communication over the TCP protocol, a connection must first be established
between the pair of sockets. While one of the sockets listens for a connection request
(server), the other asks for a connection (client). Once two sockets have been connected,
they can be used to transmit data in both (or either one of the) directions. Creating a
socket like Socket MyClient can be done simply using

MyClient = new Socket (“Machine name”, PortNumber);

where Machine name is the machine you are trying to open a connection to, and PortNum-
ber is the port (a number) on which the server you are trying to connect to, is running.
When selecting a port number, you should note that port numbers between 0 and 1,023 are
reserved for privileged users (that is, super user or root). These port numbers are reserved
for standard services, such as email, FTP, and HTTP. When selecting a port number for
your server, select one that is greater than 1,023! The programming techniques for this
type of messenger are well-known and we refer the reader to (Mahmoud, 1996). In case
of user1 wants to send an Image File to user2, user1 must use the collaborative infras-
tructure GUI and press “Send SceneBean” to the user name of User2. Before sending the
actual image file, the user needs to use the XML messenger to notify the other user.

<TransferRequir to = “receiver” from = “sender”>
Waiting for file transfer: (filename) </TransferRequir>

If user2 accept the file transfer, an accept message will be created and sent back to
user1:

<Accept to = “receiver” from = “sender”> (IP address of user2) </Accept>

At the same time user2 create a SeverSocket and waiting for incoming connection.
User1 can get the IP address of user2 from the above message. Then user1 creates a
Socket and connect to user2 by the IP got from message. After all above success, file



212 J. Fiaidhi

Fig. 13. The UML diagrams of the XML like Messenger.



A Learning Object Model for Collaborative Virtual Learning Environment 213

Fig. 14. The main screen of our 3D SceneBeanCollaborative Learning Environment.

transfer will start. Each side will be acknowledged when file transfer finished. When
server redirects it to user2, the button “receive file” is enabled. User2 can choose to re-
ceive file or ignore it. Fig. 14 shows our 3D SceneBeans collaborative environment main
screen.

Using this environments, users can actively interact with the 3D SceneBean through
choosing the right SceneBean attributes and even to reprogram the SceneBean by chang-
ing the behavioural events as described by the accompanying XML like description.
Moreover, the environment provides also a mean for exchanging instant messages among
users, which will aid the process of a full comprehension of the 3D scene. However, our
developed collaborative environment does not support pure P2P collaboration and has no
protocol for accessing major otherlearning objects repositories.

In this direction we are currently introducing such P2P collaboration environment via
incorporating the Sun Microsystems JXTA APIs. also to link the developed repository
with the POOL of learning objects as used within the academia paradigm in Canada
by utilizing the Sun Microsystems JXTA API primitives. Basically JXTA protocol will
enable peers to communicate directly and exchange/interact-with Virtual SceneBeans via
pipes as well as having the following capabilities:

1. Discovery of

◦ Pipes. An application is able to search for a named pipes created by other
Peers.



214 J. Fiaidhi

◦ Groups. An application is able to discover a JXTA group and join it.
◦ Contents. Applications are able to discover application specific contents.

2. Create

◦ Pipes. An application is able to create pipes – both point-to-point and propa-
gate pipes.

◦ Groups. An application is able to create peer groups to limit the scope of
discovery.

◦ Contents. Application specific contents.

3. Join Groups. An application is able to join a given group as per JXTA spec.

Other main advantage of using JXTA is that it will enable us to connect directly to the
major pool of learning object repositories such as the POOL (Hatala and Richards, 2002)
which is also based on JXTA. Fig. 15 illustrates our vision of such protocol extension
based on JXTA.

8. Conclusions and Future Research

In this article we extended our research work on ScenBeans (Fiaidhiet al., 2004) to de-
velop a collaborative tool to exchange virtual/3D learning objects. The 3D SceneBean
metadata is based on X3D and comply with the Canadian Core Learning Resource Meta-
data Protocol (CanCore).

Fig. 15. Extending the SceneBean Messenger to include JXTA APIs.



A Learning Object Model for Collaborative Virtual Learning Environment 215

The actual scenes are described using Java3D APIs and encapsulated as Java beans.
A special interface is used for viewing and exchanging the 3D scenes which forms the
core of our collaborative learning environment.

The communication protocol developed for the purpose of exchanging 3D Scene
Beans as well as the instant messages between users is a simple Client-Server XML like
messenger which work on top of the TCP/IP protocol.

Our goal is develop variety of 3D learning objects that can be used for training our
NOMS medical school students on endoscope training operations as well as to form a
special 3D medical learning objects repository.

The Northern Ontario Medical School utilizesan infrastructure that is shared by two
campuses (Lakehead and Laurentian). This infrastructure platform utilizes the SGI Onyx
350 that supports advanced visualization, high-performance computing, and storage. Ac-
tually, SGI Onyx 350 provides a supercomputer architecture with truly scalable CPUs,
huge shared memory, and scalable I/O bandwidth to handle a NOMS’s big data sets. All
of the data can be visualized, enabling the creation of designs and analysis of problems
that would be impossible by solely using the desktop UNIXR©or WindowsR©systems.
Fig. 16 illustrates the available NOMS infrastructure.

The SGI Onyx 350 four-way composite Infinite Performance graphics channel allows
interactive visualization of enormous data sets, delivering up to 141 million triangles per
second and 3.8 billion pixels per second to a single display. Indeed as the main advan-
tage of Java technology for the development of collaborative/distributed environments
is been platform independence. This feature indeed will enable us to transfer our initial
work on virtual SceneBeans and its collaborative environment from the MS Windows
into the SGI Onyx platform. With Onyx visualization performance we expect the perfor-
mance of the Virtual SceneBean model and its collaborative environment to exceeds the

Fig. 16. The available NOMS virtual visualization infrastructure.



216 J. Fiaidhi

performance of a collection of notable java tools used for multimedia collaboration, e.g.,
jSTREAMING

(http://jStreaming.com/∼jauvane/H263Decoder/JDK1.1),
JETS (Shirmohammadiet al., 1997),
JMF (http://java.sun.com/products/java-media/jmf/index.jsp) and
JASMINE (Shirmohammadiet al., 2003).
The Virtual SceneBean and its collaboration applications presented in this article show

the positive potential of the combination of Java and the internet for collaborative work.
The active multimedia representation in X3D, its packaging in a Java Bean, the Virtual
SceneBean interface, and the SceneBean messenger represent land marks for a simple and
useful technology for multimedia telecollaboration. However, it is worth mentioning that
there is a giant investment for developing a similar technology in Canada as expressed by
the LORNET project (www.lornet.org). We are intending to compare our approach to
the LORNET approach once both projects reached mature stages.

Acknowledgment

This research is part of the author CFI LUCARTT04 grant on establishing LU Virtual
Reality Learning and Training Centre. The author would like to thank Mr. S. Sisko and
Mr. Dan Gaudette, graduate students of the Department of Computer Science, for devel-
oping variety of learningobjects using SceneBeans.

References

Brogan, D.C., R.A. Metoyer and J.K. Hodgins (1998). Dynamically simulated characters in virtual environ-
ments.IEEE Computer Graphics and Applications, 15(5), 58–69.

Benford, S., J. Bowers, L.E. Fahlen, C. Greenhalgh and D. Snowdon (1995a). User embodiment in collaborative
virtual environments. InCHI’95 Proceedings. ACM Press, pp. 242–249.

Benford, S., C. Greenhalgh and S. Massive (1995b). Acollaborative virtual environment for teleconferencing.
ACM Transactions on Computer-Human Interaction, 2(3), 239–261.

Capin, T.K., I.S. Pandzic, D. Thalmann and N.M. Thalmann (1998). Realistic avatars and autonomous virtual
humans in VLNET networked virtual environments. In J. Vince and R. Earnshaw (Eds.),Virtual Worlds on
the Internet. IEEE Computer Society, Los Alamitos, pp. 157–173.

Deitel, H.M., P.J. Deitel, T.R. Nieto, T.M. Lin and P. Sadhu (2001).XML How to Program. Deitel & Associats
Inc.

El Saddik, A.,et al. (2000). A component-based construction kit for algorithmic visualization. InProceedings
IDPT. Springer-Verlag, N.Y.

Era, T., K. Kauppinen, A. Kivimäki and M. Robinson (1998). Producing identity in collaborative virtual en-
vironments. InProceeding of the ACM Symposium on Virtual Reality Software and Technology (VRST’98).
Taipei, Taiwan, pp. 35–42.

Fiaidhi, J., S. Mohammed and S. Sisko (2004). SceneBeans: a tool for constructing collaborative multimedia
learning objects. InThe 9th Western Canadian Conference on Computing Education WCCCE. BC, Canada.

Fiaidhi, J., and J. Mohammed (2004). Design issues involved in using learning objects for teaching a pro-
gramming language within a collaborative eLearning environment.International Journal of Instructional
Technology & Distance Learning, 1(3), 39–53.

Fiaidhi, J., K. Passi and S. Mohammed (2004). Developinga framework for learning objects search engine. In
4th International Conference on Internet Computing (IC04). Las Vegas, Nivada, USA.



A Learning Object Model for Collaborative Virtual Learning Environment 217

Fiaidhi, J., S. Mohammed, J. Jaam and A. Hasnah (2003a). Standard framework for search hosting via ontol-
ogy based query expansion. InThe 7th World Multiconference on Systemics, Cybernatics, and Informatics.
Orlando, Florida, USA.

Fiaidhi, J., S. Mohammed and K. Faisal (2003b). Developing standards for collaborative eLearning systems.
International Journal of Applied Science and Computations, 10(1), 1–10.

Hatala, M., and G. Richards (2002). POOL, POND and SPLASH: a Canadian infrastructure for learning object
repositories. In5th IASTED Int. Conference on Computers and Advanced Technology in Education (CATE
2002). Cancun, Mexico.

Jianhua, Z., L. Kedong and K. Akahori (2001). Modeling and system design for web-based collaborative learn-
ing. InProceedings of the 2nd International Conference on Information Technology based Higher Education
and Training. Kumamoto, Japan.

Magee, J., J. Kramer, B. Nuseibeh, D. Bush and J. Sonander (2000). Hybrid model visualization in require-
ments and design: a preliminary investigation. InProceedings of 10th International Workshop on Software
Specification and Design (IWSSD-10). San Diego, USA.

Mahmoud, Q.H. (1996). Sockets programming in Java: a tutorial.JavaWorld Online Journal, December.
http://www.javaworld.com/javaworld/jw-12-1996/jw-12-sockets_p.html.

Oliveira, J.C., M. Hosseini, S. Shirmohammadi, A. El Saddik, F. Malric, S. Nourian, N.D. Georganas (2003).
Java Multimedia Telecollaboration.IEEE Multimedia Magazine, 10(3), 18–29.

Pryce, N., and J. Magee (2001).SceneBeans: A Component-Based Animation Framework for Java. Technical
Report, 2001, Department of Computing, Imperial College.

Qu, T.E., and C. Meinel (2000). Implementation of a WebDAV-based collaborative distance learning environ-
ment. InACM SIGUCCS 2000 Proceedings. Richmond, Virginia.

Richards, G., R. McGreal R. and N. Friesen (2002). Learning objects repositories for teleLearning: the evolution
of POOL and CanCore. InIS2002 Proceedings of the Information Science & IT Education Conference. Cork,
Ireland.

Singhal, S., and M. Zyda (1999).Networked Virtual Environments: Design and Implementation. Addison Wes-
ley, New York.

Snowdon, D., and J. Tromp (1997). Virtual body language: providing appropriate user interfaces in collaborative
virtual environments. InProceedings of the ACM Symposium on Virtual Reality Software and Technology
(VRST’97), pp. 37–44.

Shirmohammadi, S., A. El Saddik, N.D. Georganas andR. Steinmetz (2003). JASMINE: A Java tool for multi-
media collaboration on the internet.Journal of Multimedia Tools and Applications, 19(1), 5–28.

Shirmohammadi, S., and N.D. Georganas and R. Steinmetz (1997). JETS: Java enabled teleCollaboration sys-
tem. InProceedings IEEE Multimedia Systems’97. Ottawa.

J.A.W. Fiaidhi is a professor of computer science at Lakehead University. She received
her graduate degrees in computer science from Essex University, UK (1983), and PhD
from Brunel University, UK (1986). She served also as faculty member at University
of Technology, Philadelphia University, Applied Science University and Sultan Qaboos
University. Dr. Fiaidhi’s research interests include learning objects, XML search engine,
multimedia learning objects, recommender systems, software forensics, Java watermark-
ing, and collaborative eLearning systems, software complexity. Dr. Fiaidhi is one of
Canada Information Systems Professional (I.S.P.), member of the British Computer So-
ciety (MBCS), member of the ACM SIG Computer Science Education, and member of
the International Forum of Educational Technology.



218 J. Fiaidhi

Virtualioji SceneBean: mokom ↪uj ↪u objekt ↪u modelis, skirtas virtualiai
mokytis bendradarbiaujant

Jinan FIAIDHI

Sutariama, jog tinkamai suderinus bendradarbiavim↪a, mokym↪a bei tam tikr↪u s↪alyg ↪u imitavim ↪a
besimokaňciojo imlumas smarkiai padiḋeja. Šiuolaikiṅe bendradarbiavimu pagr↪ista veikla ir moky-
mosi aplinkos apima ne tik daugel↪i interaktyvi ↪u objekt↪u, bet ir nemažai technologini↪u aspekt↪u, kurie
leidžia pasiekti reikiam↪a suderinamum↪a. Deja, reali mokom↪uj ↪u sistem↪u teikiama nauda neretai ri-
bojama nepakankamos interaktyvi↪u objekt↪u ir j ↪u tarpusavio s↪asaj↪u reprezentacijos. Dažnai tokie
objektai pateikiami izoliuotai: viena vertus, j↪u negalima deramai modifikuoti (keisti j↪u parametr↪u
ar didinti funkcionalumo), kita vertus, ir j↪u susietumas su kontekstu nėra deramas (pavyzdžiui, ob-
jektas ir parodomasis demonstravimas ar metaduomenys yra nepakankamai sinchronizuoti). Šiame
straipsnyje aptariama, kaip virtual↪u ar trimat↪i vaizd ↪a racionaliau panaudoti mokymui.Čia prista-
tomas modelis remiasi tokiomis priemonėmis kaip Scene Graphs, X3D, Java3D bei SceneBeans.
Šiam prototipui reikalingas paprasčiausias vartotojo stoties protokolas, leidžiantis atsisi↪usti ir
naudoti 3D SceneBeans. Tyrimu siekiama išplėsti protokolo galimybes panaudojant Sun JXTA
priemones susieti POOL ir kitas mokymosi objekt↪u saugyklas.


