
Informatics in Education, 2004, Vol. 3, No. 1, 105–126 105
 2004Institute of Mathematics and Informatics, Vilnius

Settling Multiple Debts Efficiently:
An Invitation to Computing Science

Tom VERHOEFF
Faculty of Mathematics and Computing Science, Eindhoven University of Technology
Den Dolech 2, NL-5612 AZ, Eindhoven, The Netherlands
e-mail: t.verhoeff@tue.nl

Received: June 2003

Abstract. I present and solve several problems related to the settling of multiple debts. The so-
lutions are documented in much detail, with (bright) high-school students in mind. One of the
variants has a simple solution, though it is not so easy to code concisely. Another variant is an
elegant NP-hard problem.

The problem leads into important areas of mathematics and computing science, making it suit-
able as an invitation to these subjects.

Key words: computing science education, combinatorial optimization, balanced transportation
problem, uncapacitated fixed-charge network flow, NP-completeness.

1. Introduction

Many informatics curricula for secondary education suffer from the ‘encyclopedia syn-
drome’. They try to cover every topic, but in view of the limited time can offer almost
nothing about each topic.The author believes that it is much better to select a few topics
and treat them enthousiastically in more depth. This article presents such a topic.

The problem I am about to present looks pretty innocent. It can be explained to anyone
with some common (money) sense. Do not be misled, however. I found it embarrassingly
instructive to fill in all details. I suggest that you work on the problem (Section 2) yourself
before reading my analysis (Section 3) and solutions (Section 4 to Section 6).

2. The Problem

A group of friends lend each other money throughout the year. They carefully record
each transaction and at the end of the year wish to settle their debts. How should they
transfer money so as to settle all debts? How difficult is it to find an appropriate settling
scheme? How efficient is that scheme? Try to minimize the number of transfers and the
total amount transferred.

To be a bit more precise, let us number theN friends from0 to N−1. At the end of
the year, the record shows for each pairi, j with 0 � i, j < N andi �= j how much, in
total, friendi owes to friendj, say amountai,j � 0.

106 T. Verhoeff

For example, consider three friends0, 1, and2 with the following debts:

i, j ai,j

0, 1 10
0, 2 10
1, 2 10
2, 0 20

(1)

Only non-zero debts are listed. How to settle these debts efficiently?
The context where I encountered this problem is a joint practice for physical therapy.

Each therapist treats her patients in a number of sessions. Afterwards she sends them
an invoice and collects the fee. Occasionally, therapisti calls on therapistj to take over
a session for a patient. The patient pays to therapisti the entire bill, for all sessions,
including those sessions handled by therapistj. Thus, a debt is created fromi to j. These
debts are settled at the end of the year. In this context, there are amountsai,j � 0 that
therapisti collected for therapistj, with possiblyi = j. The amountsai,i, however, are
irrelevant for settling of the debts.

Read no further if you want to have a go at this problem yourself.

3. Analysis

For N � 2, the problem is trivial. In fact, forN = 0 andN = 1 there is no problem,
because there are no debts to settle; thus, zero transfers is the optimal solution. ForN = 2,
the optimal solution is well known:

Friend0 paysa0,1 − a1,0 to friend1, if a0,1 > a1,0.
No transfers are needed, ifa0,1 = a1,0.
Friend1 paysa1,0 − a0,1 to friend0, if a0,1 < a1,0.

(2)

That is, the key isa0,1 − a1,0.
How aboutN = 3? Maybe you see how to do that right away. I didn’t. The debts can

be conveniently presented in a matrix, which I will call thedebt matrix:

col. col. col.
0 1 2

row 0 · a0,1 a0,2

row 1 a1,0 · a1,2

row 2 a2,0 a2,1 ·

(3)

Amountai,j appears in rowi and columnj. Irrelevant entriesai,i contain a dot ‘·’. These
debts can obviously be settled by at most six transfers and, in general, byN2 − N =
N(N−1) transfers:i paysai,j to j for all relevant pairsi, j. I call this thetrivial solution.
But one can do better, as already shown forN = 2. For i �= j, the debtsai,j andaj,i

Settling Multiple Debts Efficiently 107

are mirror images along the main (dotted) diagonal in the debt matrix. These two mutual
debts can be settled by a single transfer involving the amount|ai,j − aj,i|. This way, all
debts can be settled by at most three transfers and, in general, by1

2N(N−1) transfers.
This I call thepaired solution.

Is the paired solution optimal? No! Consider the matrix

· 1 1
0 · 1
2 0 ·

(4)

which corresponds to example (1) above, disregarding a factor ten. The paired solution
involves three 1-unit transfers in a cycle: friend0 pays to friend1, who pays to friend2,
who pays again to friend0. Observe that each friend also receives 1 unit. Consequently,
there is no need to transfer any money at all.1

Apparently, the total amountspi to be paid byi are of importance:

pi = Σk ai,k, (5)

and the total amountsrj to be received byj:

rj = Σk ak,j . (6)

In terms of the debt matrix,pi is the sum of the amounts in rowi, andrj is the sum of
the amounts in columnj:

· a0,1 a0,2 p0

a1,0 · a1,2 p1

a2,0 a2,1 · p2

r0 r1 r2

(7)

All that matters for friendi is herbalance bi at the end of the year:

bi = pi − ri. (8)

If bi > 0, then she borrowed more than she lent out, and she needs to pay some others.
The question remains whom to pay how much. Ifbi = 0, then she borrowed as much as
she lent out, and she is even. Ifbi < 0, then she lent out more than she borrowed, and

1Provided these friends are just interested in the total amount of money and not, for instance, in the finger
prints of their debtors.

108 T. Verhoeff

she needs to receive from some others. In example (4), we have the following row and
column sums:

· 1 1 2
0 · 1 1
2 0 · 2
2 1 2

(9)

and, hence, allbi = 0, that is, there effectively are no debts to settle.
Before giving an optimal pay-back scheme forN = 3, I make the following observa-

tions. The grand total amount to be paid equals the grand total amount to be received:

Σi pi = Σi Σk ai,k = Σj Σk ak,j = Σj rj . (10)

Consequently, the grand total balance equals zero:

Σi bi = Σi (pi − ri) = Σi pi − Σi ri = 0. (11)

Hence, there exists a friend with a positive balance, if and only if there exists a friend
with a negative balance:

(∃i bi > 0) ≡ (∃i bi < 0). (12)

For N = 3, there are only four possible combinations of the threebi-signs (+, 0, or−),
if we abstract from friend identity, that is, from permutations of friends:

0 0 + +
0 + + −
0 − − −

(13)

The first combination (all0, the leftmost column in (13)) is equivalent toN = 0 and
N = 1, requiring zero transfers. The second combination (one0) is equivalent toN = 2,
requiring one transfer. The third combination (two+) is settled by two transfers: from
each of the two positivebi to the negativebi. The fourth combination (two−) is also
settled by two transfers: from the positivebi to each of the two negativebi. Note that
the latter two cases are related by sign reversal. In general, reversing the directions of all
transfers in a solution for some case, yieldsa solution to the case with all balance signs
reversed. Thus, we can also abstract from sign reversal.

The optimal transfers for each of the four sign combinations are depicted in Fig. 1.
Each dot represents a friend, each arrow a transfer. ForN = 3, the worst case apparently
involves two transfers.

Settling Multiple Debts Efficiently 109

Fig. 1. The four optimal transfer patterns forN = 3.

Next, consider caseN = 4. These seven combinations of balance signs can occur:

0 0 0 0 + + +
0 0 + + + + −
0 + + − + − −
0 − − − − − −

(14)

The four leftmost combinations reduce to cases withN < 4. Of the remaining three
combinations, the two with a unique positive or negative balance are optimally solved by
three transfers, as depicted in Fig. 2. (Why?) They are related by sign reversal.

Finally, the case with two positive and two negative balances requires further analysis.
Without loss of generality, assume

b0 � b1 > 0 > b2 � b3. (15)

Distinguish three cases depending on the sign ofb0 + b3 (also see Fig. 3):

• b0 = −b3: henceb1 = −b2, on account of (11); the optimal solution involves just
two transfers, from0 to 3, and from1 to 2;

• b0 > −b3: henceb1 < −b2; the optimal solution involves three transfers, from0
to 2 and3, and from1 to 2;

• b0 < −b3: henceb1 > −b2; the optimal solution involves three transfers, from0
to 3, and from1 to 2 and3.

ForN = 4, the worst case apparently involves three transfers.
How aboutN > 4? Can the debts always be settled in at mostN−1 transfers?

Fig. 2. Two of the optimal transfer patterns forN = 4.

Fig. 3. Three other optimal transfer patterns forN = 4.

110 T. Verhoeff

4. Practical Solutions

There is a practical solution that requires at mostN transfers. It is used in the partner-
ship of therapists mentioned at the end of Section 2: All fees are collected in acentral
account, and at the end of the year, therapisti collectsri from the central account (this
includesai,i).

TheN friends can do this as follows. First, all friendsi with bi > 0 putbi on the table
(the central account). Next, all friendsi with bi < 0 take−bi from the table. There is no
surplus or deficit on the table, on account of (11):

(Σ i : bi > 0 : bi) = (Σ i : bi < 0 : −bi). (16)

A slight modification of this scheme uses afriend as central account, say friendj.
All others with bi > 0 transferbi to j, and then those withbi < 0 collect−bi from j.
Friendj has to providebj herself ifbj > 0, or gains−bj if bj < 0. This scheme requires
no more thanN−1 transfers.

Is the scheme with a friend as central account optimal? No, not in general! It might
involve unnecessary transfers, or unnecessarily large amounts transferred. For example,
if someone withbi = 0 plays the role of central account, both inefficiencies will be the
case. ConsiderN = 3 with b0 = 0 < b1 = −b2. Using friend0 as central account
involves two transfers instead of one, and, in total, twice as much money changes hands
as necessary. Even if the central account is with someone whosebi �= 0, it need not be
optimal. Consider againN = 3, now withb0, b1 > 0 andb2 < 0. If the central account is
with friend0, then the number of transfers is indeed optimal (two), but the total amount
transferred would be unnecessarily large (b0 + 2b1 instead ofb0 + b1, see left in Fig. 4).
In this case, using friend2 as center works optimally.

For N = 4 with 0 < b0 = −b3 and0 < b1 = −b2, any center is suboptimal. The
optimal solution (see left in Fig. 3) involves two ‘independent’ transfers. Introduction of
a center makes all transfers ‘dependent’. Thus, one of the independent transfers of the
optimal solution is then handled indirectly: the amount is transferred twice by way of the
center. This gives rise to an unnecessary transfer and an unnecessarily large total amount
transferred. How can one construct better solutions?

Fig. 4. Two related transfer patterns forN = 3.

Settling Multiple Debts Efficiently 111

5. Transformed Solutions

There is another way to see that no more thanN−1 transfers are required; a way that
eventually leads to optimal solutions. I have already been drawing pictures with friends
and transfers. Let us formalize such a picture as a mathematical graph, more precisely a
labeled directed graph. A directed graph is a pair(P, A), whereP is a set ofpoints and
A is a set ofarrows. Each arrow starts in a point and ends in a point. The points and the
arrows can be labeled, for instance, with numbers. The statement ‘there is an arrow from
point i to pointj labeled with amounta’ is denoted by

i
a−→ j. (17)

Our problem can be rephrased as the following graph problem. We are givenN points
(friends), namely the numbers0 toN−1. Each pointi is labeled by a numberbi (balance),
such that (also see (11)):

Σi bi = 0. (18)

We are to find a set of arrows (transfers) labeled by positive numbers (amounts), such that
all balances are evened out:

For every pointi, the sum of the labels on its outgoing arrows
minus the sum of the labels on its incoming arrows equalsbi.

(19)

This property, which I call thebalancing relation, can be formalized as follows. Letini

be the sum of the labels on the incoming arrows of nodei, and, similarly,outi the sum of
the labels on the outgoing arrows, that is,

ini = (Σ j, t : j
t−→ i : t), (20)

outi = (Σ j, t : i
t−→ j : t). (21)

The balancing relation (19) is then captured by

bi = outi − ini for all i. (22)

A graph with this property is called atransfer graph for the numbersbi. The sum of the
numbers on all arrows (total amount transferred) is called theweight of the graph. We
are looking for a transfer graph with minimum number of arrows and minimum weight.
(Why is this problem not solvable when (18) does not hold?)

The trivial solution, presented in Section 3, consists of all arrows

i
ai,j−→ j (23)

with ai,j > 0. In general, it is not optimal.

112 T. Verhoeff

I now investigate some graph transformations to reduce the number of arrows and/or
the weight, while preserving the balancing relation (19). In the remainder of this section,
(P, A) is a transfer graph forbi (0 � i < N).

5.1. Directed-Cycle Transformation

Consider a directed cycle in the graph(P, A) involving k points andk arrows:

p0
t0−→ p1

t1−→ p2 · · · pk−1
tk−1−→ p0. (24)

Let m be the minimum amount on the arrows in the cycle, that is,

m = (↓ i : 0 � i < k : ti). (25)

Decrease eachti in the cycle bym, yielding

p0
t0−m−→ p1

t1−m−→ p2 · · · pk−1
tk−1−m−→ p0. (26)

Arrows whose amount has become0 are omitted. There is at least one such arrow, hence
the cycle is ‘broken’. This transformation preserves the balancing relation (19), because
for each of the affected pointsi both the outgoing sumouti and incoming sumini are
decreased bym, leaving their difference invariant. Consequently, the resulting graph is
a transfer graph for the same problem, and it has fewer arrows and its weight has been
decreased byk ∗ m.

As an example, consider the problem given by (1). Its trivial solution is depicted by
the transfer graph on the left in Fig. 5. I have omitted thebi-labels, to avoid cluttering the
picture.

First consider the directed cycle0 1−→ 2 2−→ 0, whose reduction by1 yields2 1−→ 0,
as depicted in the middle of Fig. 5. This corresponds to the paired solution. In general,
reducing all cycles of length two in the trivial solution yields the paired solution. Next,
observe that what remains is a directed cycle of length three, which disappears altogether
under the directed-cycle transformation, because all amounts equal the minimum amount.
We already knew the resulting solution shown on the right.

Repeated application of this transformation yields a transfer graph without directed
cycles, a so-calleddirected acyclic graph, or dag.

Fig. 5. A transfer graph and two transformations forN = 3.

Settling Multiple Debts Efficiently 113

The resulting dag depends on the order in which cycles are broken, as illustrated by
the following example withN = 4 and debt matrix

i\j 0 1 2 3 pi

0 · 3 0 6 9
1 1 · 5 0 6
2 2 4 · 0 6
3 0 0 3 · 3
rj 3 7 8 6

i pi − ri = bi

0 9 − 3 = +6
1 6 − 7 = −1
2 6 − 8 = −2
3 3 − 6 = −3

(27)

The transfer graph for the paired solution is shown on the left in Fig. 6. Again we have
omitted thebi. It has five arrows and weight14. There are two directed cycles of length

three. The one allowing the biggest reduction is at the bottom:0 6−→ 3 3−→ 2 2−→ 0.
Reduction by2 yields a dag, shown second from the left in the figure. It has four arrows
and weight8.

The cycle at the top is0 2−→ 1 1−→ 2 2−→ 0. Reduction by1 yields the transfer graph

in the middle of Fig. 6. There is still a cycle at the bottom:0 6−→3 3−→2 1−→0. Reduction
by 1 yields a dag, shown second from the right. It has three arrows and weight8.

We already know the optimal transfer graph forN = 4 and type+−−− from Sec-
tion 3. It is shown on the right, having three arrows and weight6. Note that alower
bound on the weight of a transfer graph is

(Σ i : bi > 0 : bi), (28)

because all these balances need to be evened out. On account of (16), it equals

1
2
Σi |bi|. (29)

Concerning the number of arrows, the following can be remarked. Each positive balance
must have at least one outgoing arrow and eachnegative balance must have at least one
incoming arrow. Therefore, alower bound on the number of arrows is

(#i :: bi > 0) ↑ (#i :: bi < 0), (30)

where(#i :: B.i) is the number ofi’s for which B.i holds, anda ↑ b is the maximum
of a andb. The optimal graph in Fig. 6 attains these lower bounds.

Fig. 6. A transfer graph and four transformations forN = 4.

114 T. Verhoeff

5.2. Directed-Path Transformation

The directed-cycle transformation is not enough to reduce the transfer graph to at most
N−1 arrows. Here is another transformation.

Consider two ‘parallel’ directed paths with the same start pointp0 and end pointpk:

p0
t0−→ p1

t1−→ p2 · · · pk−1
tk−1−→ pk, (31)

involving k arrows and

p0
tk+�−1−→ pk+�−1 · · · pk+2

tk+1−→ pk+1
tk−→ pk, (32)

involving � arrows. Letm be the minimum amount on the arrows in the first path, that is,

m = (↓ i : 0 � i < k : ti). (33)

Decrease eachti in the first path bym, and increase eachti in the second path bym.
Arrows whose amount has become0 are omitted (there is at least one such arrow). This
transformation preserves the balancing relation (why?) and the resulting graph is a trans-
fer graph for the same problem. It has fewer arrows and its weight has been ‘decreased’
by (k − �) ∗ m.

Note that the directed-cycle transformation discussed earlier is a special case of this
transformation by takingp0 = pk and� = 0.

In the example above forN = 4, the second graph from the left in Fig. 6 contains no
directed cycles, but it does contain two directed paths from0 to 2. It is shown again on
the left in Fig. 7. Decreasing the upper path by1 and increasing the lower path by1 yields
the second graph from the left (also shown in Fig. 6). This graph can be reduced to the
optimal graph on the right by first applying the transformation in ‘reverse’. The second
graph from the right can be transformed to its left neighbor by decreasing the upper path
from 0 to 2 by 1 and increasing the lower path by1. Thus, these two graphs solve the
same problem. That same graph can also be transformed to its right neighbor, the optimal
solution, by decreasing the lower path by1 and increasing the upper path by1.

5.3. Arbitrary Cycle Transformation

The ‘reverse’ application of transformations hints at a further generalization. First of all,
there is no reason to decrease a directed-cycle by exactly the minimum amount that occurs

Fig. 7. Four related transfer graphs forN = 4.

Settling Multiple Debts Efficiently 115

on any of its arrows. Decreasing by less also works fine: it reduces the weight but not the
number of arrows. However, decreasing by more than the minimum can also be made to
work. This still preserves the balancing relation (19). The only trouble is the introduction
of arrows labeled with negative amounts. Such arrows can be ‘eliminated’ by reversing
their direction and sign:

p
t−→ q is equivalent top

−t←− q. (34)

Furthermore, any pair of pointsp, q not connected by an arrow may be connected by an
arrow labeled with amount0:

p q is equivalent top
0−→ q. (35)

In this new light, the directed-path transformation is actually a special case of the
directed-cycle transformation: In the second path, reverse the arrows and the signs on
their amounts. Together with the first path this yields adirected cycle. Next, decrease all
amounts bym, and, finally, reverse arrows and amounts in the second path again. You
do not explicitly have to create a directed cycle by reversing arrows, as long as you keep
in mind that when amounts on anarbitrary cycle aredecreased, the amounts on arrows
pointing in the reverse direction need to beincreased.

As an example consider the transfer graph forN = 4 depicted on the left in Fig. 8. The
balances (not shown) are+3, +7,−4,−6. Neither the directed-cycle nor the directed-
path transformation applies, but the graph consists of one (undirected) cycle. Walking
around in the direction of the arrow with amount1, decreasing all forward arrows by1
and increasing all reverse arrows by1, yields the graph in the middle. It has one fewer
arrow and the same weight. Walking around in the direction of the arrow with amount2,
decreasing all forward arrows by2 and increasing all reverse arrows by2, yields the graph
shown on the right. Both these resulting graphs are optimal, as we know from Section 3.
By the way, this example also illustrates that the optimal solution need not be unique.

This transformation applies to any cycle in the transfer graph, possibly including zero-
labeled arrows and arrows in reverse. Consequently, any cycle of arrows with non-zero
amounts can be ‘broken’: just decrease along the cycle by an amount that occurs on some
forward arrow. Remember toincrease reverse arrows, to drop out zero-labeled arrows,
and to reverse arrows that got negative amounts. This way any transfer graph can be put
into a form without cycles. An acyclic graph onN points has no more thanN−1 arrows,
because if you walk alongk arrows (ignoring their direction) without encountering the
same point twice, you have seenk+1 distinct points. Thus, I have shown, once more, how
to settle the debts by no more thanN−1 transfers. Note that the solution with a friend as
central account has an acyclic transfer graph.

Fig. 8. Three related transfer graphs forN = 4.

116 T. Verhoeff

6. Optimized Solutions

A transfer graph with no more thanN−1 arrows is not a bad solution, certainly when
compared to the trivial solution that may have as many asN(N−1) arrows. But it is not
necessarily optimal.

I mentioned two items to minimize: the number of arrows (transfers) and the weight
(total amount transferred). Is it the case that minimality of one item implies minimality
of the other? No! You can see in Fig. 6 that transfer graphs with the minimum number
of arrows are not necessarily of minimum weight, and in Fig. 8 that transfer graphs with
minimum weight do not necessarily have the minimum number of arrows.

6.1. Minimum Weight

In a transfer graph, any directed path of length two or more can be shortened. Consider a
directed path of length two, as shown on the left in Fig. 9, fromp via q to r with amountst
andu. Let m be the minimum oft andu, that is,m = t↓u. Imagine a zero-labeled arrow
from p to r, and decrease the cyclep, q, r by m, as shown in the second graph from
the left (the zero-labeled arrow wasincreased because it is reversed). At least one of the
resulting arrows gets a zero label. Which one(s), depends on howt andu compare (see
the three graphs on the right). In all cases the weight has decreased bym. In the case
of t = u, the number of arrows has decreased by one, whereas in the other cases it has
remained the same.

By applying this transformation repeatedly, a transfer graph is obtained in which each
point has either no outgoing arrows or no incoming arrows. Such a graph is known as a
(directed)bipartite graph, in which the points are partitioned into two groups, and all
arrows go from one group to the other and not back or within groups. Points with positive
balance (bi > 0) have outgoing arrows only, points with negative balance (bi < 0) have
incoming arrows only. Points with zero balance (bi = 0) have no arrows at all. All graphs
in Figs. 1, 2, 3, and 8 are bipartite. Observe that a transfer graph with minimum weight
must be bipartite, because the weight of a graph that is not bipartite (as defined above)
contains a path of length two and can thus be reduced in weight.

The weight of a bipartite transfer graph is

(Σ i : bi > 0 : bi) (36)

because each arrow starts in a point with positive balance and all balances are evened
out. On account of lower bound (28), this is the least possible weight. Thus,all bipartite

Fig. 9. Shortening a path and decreasing the weight.

Settling Multiple Debts Efficiently 117

transfer graphs have minimum weight. Together with the observation above, it has been
shown that the solutions of minimum weight are exactly the bipartite solutions.

Here is analgorithm to construct a bipartite transfer graph:

1. Start with the empty graph: justN points and no arrows.

2. If all balancesbi are zero, no transfers are needed and the graph is ready.

3. Otherwise, on account ofΣi bi = 0, there exist two pointsi andj with bi > 0 > bj .

4. Let m be the minimum ofbi and−bj, and add the arrowi
m−→ j to the graph.

Decreasebi by m and increasebj by m.

5. Solve the remaining problem recursively by repeating from Step 2.

Upon termination, the resulting transfer graph is bipartite (only arrows from positive to

negative balances) and it evens out all balances. Whenever a transferi
t−→ j is added,

the balance ati or j is decreased to zero (or both are decreased to zero). Hence, no
transfer cycles are created. Because an acyclic graph onN points has at mostN−1
arrows (see end of Section 5), the graph contains no more thanN−1 transfers. This also
shows that the algorithm indeed terminates. In Section 8, I present a Pascal program for
this algorithm.

6.2. Minimum Number of Arrows

By now it is clear that points with balance zero can be omitted, because they need not
be involved in any transfers. For if they would be then they would have incomingand
outgoing arrows, which can be removed by path shortening. In the remainder, I assume
bi �= 0.

The algorithm presented above produces an acyclic bipartite graph, which minimizes
the weight. We have already seen in Fig. 8 that minimum-weight graphs need not have a
minimum number of arrows. However, in that example, there is still a cycle that can be
broken. But even an acyclic bipartite graph need not be optimal, as illustrated by Fig. 10
for N = 4 and balances+5, +3,−5,−3.

The algorithm presented above isgreedy, because thegreatest possible amount is
transferred between every selected pairi, j with bi > 0 > bj. There are various ways to
modify it, in an attempt to minimize the number of transfers. One approach is to make it
less greedy. But then how should one choose an appropriate amount to transfer? Another
approach – which I analyzed – is to select the pairsi, j in a careful order.

My first attempt considers pairsi, j with bi > 0 > bj in decreasing order of absolute
value, that is, tomatch the greatest balance differences first. That would indeed avoid
the suboptimal graph in Fig. 10, because balances5 and−5 (difference10) would be

Fig. 10. Related transfer graphs forN = 4.

118 T. Verhoeff

matched first. This works well forN � 4, but not in general: Consider the case with
N = 5 and balances+9, +8,−3,−6,−8. My proposal would first match+9 and−8
(difference17), yielding a graph with four transfers instead of the optimal three (verify!).

Fig. 11 shows the four classes of acyclic bipartite graph forN = 5, without isolated
points, modulo sign reversal. For the type+ + − − −, the three-transfer solution is
preferred. It can only occur if there are two opposite balances that can cancel each other
in one transfer.

My second attempt considers pairsi, j with bi > 0 > bj in order of increasing sum
bi +bj , that is, tomatch closest opposite balances first. That would indeed avoid subop-
timal graphs for the cases withN = 5. In the example above, balances+8 and−8 (sum0)
would be matched first. This works well forN � 5, but not in general. A counterexample
for N = 6 is provided by the balances+9, +8, +2,−4,−5,−10. Matching+9 and−10
results in a solution with five transfers instead of the optimal four.

Is it always best tomatch opposite balances? Consider a solution where two pointsi

andj, having opposite balancesbi = −bj = B > 0, arenot connected by an arrow.
There must be some arrows going fromi, sayp > 0 of them in total, and some other
arrows going toj, sayq > 0 in total. Note that the sum of the amounts on thep arrows
from i equals the sum of the amounts on theq arrows toj, both sums being equal toB. If

thep+q arrows are removed and an arrowi
B−→ j is added, then we still have to settle the

remaining imbalance at thep sources andq sinks. Since these imbalances are opposite,
they can be evened out by at mostp+q−1 arrows. Thus, the total number of arrows in the

new solution involvingi
B−→ j is at most the number of arrows in the original solution.

Exercise: Give an example showing that opposite matching is not necessary for
optimality.

Matching opposites, however, never prohibits optimality, and an algorithm to con-
struct an optimal transfer graph could start by eliminating all opposites. As remarked
before and evident from Fig. 11, this approach takes care of all cases withN � 5. But it
leaves the harder part of the problem unsolved: What to do when there are no opposites?

Exercise: Give an example showing that it is not always best to ‘match triples’.

Fig. 12 shows the eleven classes of acyclic bipartite graphs forN = 6, without iso-
lated points, modulo sign reversal. It seems evident from these graphs that acyclic graphs
with fewer arrows consist of more ‘disconnected clusters’, and vice versa. There is an
easy explanation for this, but it calls for more graph terminology.

A graph is calledconnected if there is a path between every pair of points. The di-
rection of arrows in a path is considered irrelevant. Every graph consists of a number of

Fig. 11. Acyclic bipartite graphs forN = 5.

Settling Multiple Debts Efficiently 119

Fig. 12. Acyclic bipartite graphs forN = 6.

connected subgraphs (possibly one) that are not connected to each other. These connected
subgraphs are called thecomponents of the graph. For example, in Fig. 12 there are six
graphs with one component, four with two components, and one with three.

All components of an acyclic graph are acyclic. A connected acyclic graph is called a
tree. It has one more point than arrows; that is, if it hask points, then it hask−1 arrows.
Adding an arrow would introduce a cycle, and upon removal of an arrow the graph would
no longer be connected. Therefore, an acyclic graph is a collection of trees, also known
as aforest. The number of arrows in a forest equals the number of points minus the
number of components (trees). Consequently, minimizing the number of arrows in an
acyclic graph, is equivalent tomaximizing the number of components.

The sum of the balances in a component of a transfer graph equals zero, because each

arrow i
t−→ j addst to the balance sum viaouti and subtractst from the balance sum

via inj . Therefore, to minimize the number of arrows one needs to find a partition of the
points such that each part has balance sumzero and the number of parts is maximized.

Consider the special case of this problem, whereN−2 distinct balances are positive
and two are negative, sayb0, b1 < 0. On account of lower bound (30) on the number
of arrows in a transfer graph, this special case requires at leastN−2 transfers (each
of the positive balances needs an outgoing arrow). Since no more thanN−1 transfers
are needed, the question is whetherN−2 is feasible. In terms of partitioning, this boils
down to the existence of a partition of the balances into two parts, both with balance
sum zero. Obviously, each part must contain a negative balance. Therefore, the prob-
lem is to find a subset of the positive balancesbi (those with2 � i < N) whose sum
equals−b0, the complement then automatically sums to−b1. This problem is equivalent
to thesubset-sum problem, sometimes also called the (simplified)knapsack problem
Garey and Johnson, 1979, SP13:

For a given positive integerK and setS of itemsx with positive integer sizes(x),
does there exists a subsetR of S whose total size

∑
x∈R

s(x) equalsK?

Here,K is the size of the knapsack,S contains the items to pack, ands gives their sizes.
The question is whether the knapsack can be filled exactly with a suitable selectionR of
the items.

It is easy to verify that a given subsetR has indeed total sizeK. However, deciding
whether a suitable subsetR exists is believed to be a hard problem. As far as we know,

120 T. Verhoeff

one can, in general, not do much better than trying out all possibilities. The number of
possibilities is anexponential function of the number of items in the input setS: there
are2n subsets of ann-element set. If you discover a shortcut, such as a solution requiring
no more work than apolynomial function ofn, then you’ll be famous instantly.

Finding a transfer graph with minimum number of arrows is at least as difficult as
solving the subset-sum problem.

7. Variations

I have covered a number of issues when settling multiple debts:
1. generality (arbitrary number of lenders),
2. simplicity and practical feasibility,
3. minimized total amount transferred,
4. minimized total number of transfers, and
5. mathematical complexity of obtaining a solution.

There are, however, many other issues that might be considered, such as
1. charging interest on loans,
2. handling exchange rates for multiple currencies, and
3. dealing with distrust among the lenders.

I leave these matters as challenges to the reader.

8. Programs

There are many ways to present the problem of efficiently settling multiple debts as a
programming problem. In the preceding section, it turned out that the problem of finding
a minimum weight transfer graph is relatively easy, whereas that of finding a transfer
graph with minimum number of arrows is hard.

The input to the program can be given in various ways:

1. A list of loansai,j from i to j. This is the format used in (1). More precisely:

The input to your program consists of a text file. On the first line is an integerN , Nmin �
N � Nmax, the number of friends. On the second line is an integerK, Kmin � K �
Kmax, the number of loans. On each of theK following lines are three integersi, j, a
with 0 � i, j < N , i �= j, and0 < a = ai,j � Amax. The pairsi, j that appear are
distinct and ordered lexicographically.

Either of the two conditions on the pairsi, j (distinctness, lexicographic order) can
be dropped. When dropping the distinctnesscondition, the input can be interpreted
to give the raw data of all the loaning transactions that took place over the year and
that need to be settled at the end of the year. Zero could be allowed as loan.

2. A debt matrixai,j . This is the format used in (4). More precisely:

The input to your program consists of a text file. On the first line is an integerN , Nmin �
N � Nmax, the number of friends. On each of theN following lines areN−1 integers.

Settling Multiple Debts Efficiently 121

Line i+2 contains, in order of increasingj, the debtsai,j with i �= j, and0 � ai,j �
Amax.

‘Debts’ ai,i might be included as well.

3. A list of balancesbi. More precisely:

The input to your program consists of a text file. On the first line is an integerN , 2 �
N � Nmax, the number of friends. On each of theN following lines is an integerb
with 0 � b = bi � Bmax.

Zero balances could be excluded.

N.B. Lower boundsNmin andKmin, and upper boundsNmax, Kmax, Amax, andBmax

need to be chosen carefully. Input format 3 takes away half of the problem, because for
formats 1 and 2 the relevance of the balances still needs to be discovered.

The output of the program must list all transfers needed to settle the input debts. More
precisely:

The output of your program is a text file. Each line contains three numbersi, j, t, encoding a
transfer of amountt from i to j, with 0 � i, j < N , i �= j, and0 < t, such that all pairsi, j
are distinct and all debts in the input file are settled. The order of the lines is irrelevant.

There are various ways to impose extra constraints:

1. Minimize the total amount transferred (weight), that is, the sum of allt-values in
the output.

2. Minimize the number of transfers, that is, the number of lines in the output.

3. Minimize the number of transfers and the total amount transferred. This is the
original problem of Section 2.

Furthermore, the score of the program can depend on how close the output approximates
the minimum. For the second and third form (minimizing the number of transfers), it is
even possible to give several non-secret input files and only ask for corresponding output
files.

8.1. Input Processing

It is straightforward how input formats 1and 2 can be transformed into each other and
into input format 3. Here is a piece of Pascal program for reading input format 1 and
storing it as an array of balances (format 3):

program GettingEven;

const
Nmin = 2; { lower bound on number of friends }
Nmax = 30000; { upper bound on number of friends }

type
NFriendsRange = Nmin .. Nmax; { range for number of friends }

122 T. Verhoeff

Friend = 0 .. Nmax−1; { actually 0 .. N−1, whereN is number of friends }
Balances = array [Friend] of Integer; { b[k] = balance of friendk, 0 � k < N }

procedure ReadInput (var N : NFriendsRange; var b: Balances);
{ globals: input }
{ pre: input contains a recording of loans in format 1 }
{ post: N andb are defined according to the input }

var
i, j: Friend; { friend i owes toj }
a: Integer; { amount of loan }
K: Integer; { number of loans (input) }
h: Integer; { to traverse theK loans }

begin
readln (N)

; readln(K)
; for i := 0 to N−1 do b[i] := 0
{ invariant: Σ0�k<N b[k] = 0 }

; for h := 1 to K do begin
readln (i, j, a)

; b[i] := b[i] + a

; b[j] := b[j] − a

end { for h }
end; { ReadInput }

8.2. Minimum Total Amount Transferred

In Section 6.1, I have presented a greedy algorithm to construct a bipartite transfer graph
that minimizes the total amount transferred. The following procedure expresses it con-
cisely in Pascal, like a poem.

procedure WriteOutput (N : NFriendsRange; b: Balances);
{ globals: output; spec.var: B }
{ pre: b = B, Σ0�k<N B[k] = 0 }
{ post: output contains a list of transfers to settle all input debtsB, }
{ minimizing the total amount transferred }

var
i, j: 0 .. Nmax; { to traverse friends0..N−1, N acts as sentinel }
m: Integer; { auxiliary to compute minimum }

{ c: Balances; ghost variable, initially∀k c[k] = 0 }

begin
i := 0

; j := 0

Settling Multiple Debts Efficiently 123

{ invariant: Σk b[k] = 0, ∀k<i b[k] � 0, ∀k<j b[k] � 0, b + c = B, output settlesc
variant function: 2N − i − j + (# k :: b[k] �= 0) }

; while (i �= N) and (j �= N) do begin
if b[i] � 0 then
i := i + 1

else if b[j] � 0 then
j := j + 1

else begin { b[i] > 0 > b[j] }
if b[i] < −b[j] then m := b[i] else m := −b[j]
{ m = b[i] ↓ −b[j] }

; writeln (i,’ ’, j,’ ’, m)
; b[i] := b[i] − m { ; c[i] := c[i] + m }
; b[j] := b[j] + m { ; c[j] := c[j] − m }
end { else }

end { while }
{ ∀k b[k] = 0, hencec = B }

end; { WriteOutput }

The while-loop terminates in at most3N steps, because in each step eitheri increases, or
j increases, or the number of non-zero balances decreases. As was already pointed out,
this algorithm produces an acyclic graph, which involves no more thanN−1 transfers.

8.3. Minimum Number of Transfers

Since minimizing the number of transfers turned out to be a hard problem in Section 6.2,
one cannot do much better than try all possibilities. In this case, thatmeans inspecting
all partitions whose parts have zero balance sums, and finding the one with maximum
number of parts. In view of the lower bounds (28) and (30), there is an opportunity for
branch-and-bound. There are clear relationships to multiple knapsacks and bin packing.

One could imagine that for small values of the balances, an efficientdynamic pro-
gramming solution exists, as with the knapsack problem. However, in general, even that
is not possible, since the well-known problem3-Partition (Garey and Johnson, 1979) is
NP-complete in the strong sense, and it can be transformed to minimizing the number
of transfers as follows. First, the definition of the 3-Partition problem:

Given are a positive integerK and a setS of 3m items x with positive integer
size s(x) such thatK/4 < s(x) < K/2 and

∑
x∈S

s(x) = mK. The ques-
tion is whetherS can be partitioned intom disjoint setsSi for 1 � i � m with∑

x∈Si
s(x) = K. Note that on account of the restrictions ons(x), eachSi contains

exactly three items.

This situation can be translated into the following transfer minimization problem:

There arem negative balances of value−K each, and3m positive balances of
value s(x). These balances take at leastm transfers to settle. If it can be done in
exactlym transfers, then that solution corresponds to a partition ofS into m setsSi

124 T. Verhoeff

with
∑

x∈Si
s(x) = K, which is also a solution to the instance of 3-Partition. If it

cannot be done in exactlym transfers (but requires more transfers), then there is no
such partition, and the instanceof 3-Partition cannot be solved.

Hence, minimizing the number of transfers is at least as difficult as 3-Partition.

8.4. Minimum Total Amount in Minimum Number of Transfers

The combined minimization problem (minimizing the number of transfers and the total
amount transferred) can be solved by first finding an appropriate partition (hard), then,
for each component, minimizing the amount transferred (easy).

9. Conclusion

When I wrote the initial version of thisarticle in 1998, I had not seen the problem of
efficiently settling multiple debts in the literature. I must admit that I did not do much
research to locate it. Nor have I discussed it with a lot of people, because I wanted to
keep it secret in order to use it in a competition. The problem seemed directly related to
the input-output economic model of Leontief (Leontief, 1951; HET, 2003).

An anonymous reviewer referred me to a series of articles about clearing debts in
the Russian economy (Kalitkin, 1995; Anikonov and Tsitsiashvili, 1997; Kalitkinet al.,
2001). Here the grand total balance is not zero (open economy; cf. (11), (18)). The ob-
jective is to clear as much of the debts as possible, given certain legal restrictions. The
number of transactions and total amount transferred are not so important. The algorithmic
complexity is not investigated.

Problem 96 in (Steinhaus(1964)) concerns minimization of the number of transfers.
A further literature search reveals relationships with theminimum-cost network flow
problem and special cases like thetransportation problem andtransshipment prob-
lem (Cook et al., 1998). Our problem of minimizing the number of transfers appears
to be known as a special case of thefixed-charge transportation problem (Spielberg,
1964) and theUncapacitated Fixed-charge Network Flow (UFNF) problem (Duhamel,
2001), with per-unit costsci,j = 0 and fixed costsfi,j = 1.

I have mostly presented the material in the order that I discovered it. Of course, this
is not the only approach. Some readers may have wondered at places why I did not give
the key argument immediately. Well, I simply did not see it immediately. Therefore, this
story reveals more how my problem-solving brain works, than that it teaches how best to
solve problems. With hindsight, some of my excursions seem unnecessarily long-winded.
Possibly, I could have avoided these by concentrating more on the abstract problem, in-
stead of working with concrete – and sometimes misleading – examples. It is, however,
important to realize that most high-school students need details and they should be en-
couraged to follow their own path of investigation. In secondary education it is good to
include many concrete examples, as I have done.

The ancient Greeks, such as Pythagoras and Euclid, could, no doubt, have understood
this problem. One can only wonder whether they could have solved it. More likely they

Settling Multiple Debts Efficiently 125

would not have appreciated the problem. Their cultural framework prevented them from
asking such questions. Graph theory is a convenient ingredient for fully understanding
and tackling the problem. Euler is generally recognized as the father of graph theory with
his famous publication in 1736 (Euler, 1736). That may seem long ago but one must re-
alize that Pythagoras lived 500 B.C. and Euclid 300 B.C. Clay tablets with mathematical
inscriptions date back to well before 10,000 B.C. Mathematics has grown considerably,
especially since Euler, and is still under turbulent development. Only in the second half
of this century has graph theory become a part of ‘respectable’ mathematics (instead of
‘just’ dealing with recreational problems and games). There is ample literature on graph
theory. The terminology, however, is not uniform and may differ from what I have used.

I hope that this problem can serve as an example of how a simple question leads to
many important concepts in mathematics and computing science. Teachers need not use
this material directly. I would rather encourage them to find their own questions that they
can develop in detail and teach with enthousiasm.

Answers to the Exercises of Section 6.2

Consider the six distinct balances+5, +3, +2,−1,−4,−5. Then there are two solutions
with a minimum number of transfers. One of them does not match the opposites+5
and−5.

The twelve distinct balances

+900, +203, +100, +99, +98,+1,−2,−202,−297,−299,−300,−301

contain no opposites (zero-sum pairs). There is one zero-sum triple:+203, +98,−301.
However, the remainder cannot be split into two or more zero-sum parts, thus yielding a
10-transfer solution. The unique maximal partition into zero-sum parts is

+900,−299,−300,−301;
+203, +1,−202,−2;
+100, +99, +98,−297

giving a 9-transfer solution. Thus, combining zero-sum triples is not always a good idea.

References

Anikonov, D.S., and G.Sh. Tsitsiashvili (1997). Reduction of clearing of debts to the transportation problem.
Doklady Mathematics, 55 (1), 120. Translated fromDoklady Akademii Nauk, 352 (6), 730.

Cook, W.J., W.H. Cunningham and W.R. Pulleyblank (1998).Combinatorial Optimization. Wiley.
Duhamel, C. (2001). Solving the uncapacitated fixed-charge network flow with metaheuristics. InProceedings

of MIC 2001: 4th Metaheuristics International Conference. Portugal, July 2001, pp. 685–690.
Euler, L. (1736). Solutio problematisad geometriam situs pertinentis.Comment. Acad. Sci. U. Petrop., 8, 128–

140. Reprinted inOpera Omnia, Ser. I-7, pp. 1–10, 1766.
Also seehttp://mathworld.wolfram.com/KoenigsbergBridgeProblem.html (accessed
July 2003).

126 T. Verhoeff

Garey, M., and D. Johnson (1979).Computers and Intractability: A Guide to the Theory of NP-completeness.
Freeman.

HET (2003). Wassily Leontief, 1906–1999. In G.L. Fonseca and L.J. Ussher (Eds.),History of Economic
Thought Website. Department of Economics of the New School for Social Research.
http://cepa.newschool.edu/het/profiles/leontief.htm (accessed July 2003).

Kalitkin, N.N. (1995). Optimal clearing of mutual debts of enterprises.Mathematical Modelling, 7 (1), 11–21
(in Russian).

Kalitkin, N.N., L.V. Kuz’mina and M.V. Chernenkov(2001). Clearing debts by the fractional method.Doklady
Mathematics, 63 (3), 437–440. Translated fromDoklady Akademii Nauk, 378 (1), 29–32.

Leontief, W. (1951). Input-output economics.Scientific American, Oct.
Spielberg, K. (1964). On the fixed charge transportation problem. InProceedings of the 1964 19th ACM national

conference, pp. 11.10.1–11.10.13.
Steinhaus, H. (1964).One Hundred Problems in Elementary Mathematics. Dover Publications.

T. Verhoeff is an assistant professor in computing science at Eindhoven University of
Technology (TUE), the Netherlands. He obtained his PhD (A Theory of Delay-Insensitive
Systems, 1994) from TUE. His current reseach area is software construction. He chaired
the Scientific Committee of IOI 1995 in The Netherlands and contributed tasks to various
competitions. In 1999, he was Finals Directors of the ACM ICPC World Finals held in
Eindhoven, The Netherlands. He chairs the IOI Scientific Committee since 1999.

Daugybini ↪u skol ↪u sureguliavimas: kvietimas ↪i kompiuteri ↪u moksl ↪a

Tom VERHOEFF

Ne viena mokykliṅe informatikos programa kenčia nuo “enciklopedijos sindromo”. Dažnai
bandoma apžvelgti kuo daugiau tem↪u, tǎciau visos jos išḋestomos gan paviršutiniškai. Straipsnio
autorius mano, kad geriau pasirinkti nedaug tem↪u, tǎciau jas giliai išanalizuoti.

Straipsnyje išsamiai nagrinėjamas gana paprastas uždavinys: yra grupė draug↪u, vienas kitam
skolinaňci ↪u pinigus ištisus metus. Jie rūpestingai užrašiṅeja visus skolinimus ir met↪u gale nori
sureguliuoti tarpusavio skolas.

Kaip jie tuṙet ↪u pervesti (perduoti) pinigus, kad atsiskaityt↪u tarpusavyje? Ar sunku surasti
reikiam↪a tarpusavio atsiskaitymo schem↪a? Ar ta schema efektyvi? Siūloma minimizuoti pinig↪u
pervedim↪a, t.y., pervedim↪u ir pinig ↪u skaǐci ↪u.

Autorius išsamiai išanalizuoja uždavin↪i ir pateikia ↪ivairius sprendimus. Remiamasi transforma-
cijomis, graf↪u teorija, kombinatorika. Straipsnyje medžiaga pateikiama daugiausia tokiu būdu, kaip
j ↪a tyrinėjo autorius.

Tikimasi, kad straipsnis bus naudingas ne tik mokslininkams, bet ir gabiems studentams. Svarbu
suprasti, kad daugumai pradedanči ↪uj ↪u tyrėj ↪u reikia smulkiai išaiškinti ir skatinti juos pačius tyriṅeti
problem↪a. Jiems naudingi ir konkretūs pavyzdžiai, kuri↪u nemažai autorius ir↪itraukė ↪i straipsn↪i.

Straipsnyje pagrindžiama, kaip nesunku minimizuoti pervedam↪u pinig ↪u kiek↪i. Pateikta ne-
suḋetinga Paskalio programa, sprendžianti š↪i uždavin↪i. Kita vertus, pervedim↪u skaǐciaus minimiza-
vimas yra NP suḋetingumo uždavinys.

Straipsnyje aptartas pavyzdys galės b̄uti pavyzdžiu, kaip paprasto uždavinio analizė supažin-
dina su daugeliu svarbi↪u matematikos ir kompiuteri↪u mokslo s↪avokomis ir šitaip skatina giliau
domėtis šiomis sritimis.

