Informatics in Education, 2004, Vol. 3, No. 1, 105-126 105
0 2004Institute of Mathematics and Informatics, Vilnius

Settling Multiple Debts Efficiently:
An Invitation to Computing Science

Tom VERHOEFF

Faculty of Mathematics and Computing Science, Eindhoven University of Technology
Den Dolech 2, NL-5612 AZ, Eindhoven, The Netherlands
e-mail: t.verhoeff@tue.nl

Received: June 2003

Abstract. | present and solve several problems related to the settling of multiple debts. The so-
lutions are documented in much detail, with (bright) high-school students in mind. One of the
variants has a simple solution, though it is not so easy to code concisely. Another variant is an
elegant NP-hard problem.

The problem leads into important areas of neatfatics and computing science, making it suit-
able as an invitation to these subjects.

Key words: computing science education, combinatorial optimization, balanced transportation
problem, uncapacitated fixed-charge network flow, NP-completeness.

1. Introduction

Many informatics curricula for secondargcation suffer from the ‘encyclopedia syn-
drome’. They try to cover every topic, but in view of the limited time can offer almost
nothing about each topi@he author believes that it is much better to select a few topics
and treat them enthousiastically in more depth. This article presents such a topic.

The problem | am about to present looks pretty innocent. It can be explained to anyone
with some common (money) sense. Do not be misled, however. | found it embarrassingly
instructive to fill in all details. | suggest that you work on the problem (Section 2) yourself
before reading my analysis (Section 3) and solutions (Section 4 to Section 6).

2. The Problem

A group of friends lend each other money throughout the year. They carefully record
each transaction and at the end of the yeatwid settle their debts. How should they
transfer money so as to settle all debts? How difficult is it to find an appropriate settling
scheme? How efficient is that scheme? Try to minimize the number of transfers and the
total amount transferred.

To be a bit more precise, let us number fhidriends from0 to V—1. At the end of
the year, the record shows for each pajrwith 0 < i, j < N andi # j how much, in
total, friend: owes to friendj, say amount; ; > 0.

106 T. Verhoeff

For example, consider three frien@sl, and2 with the following debts:

1)

Only non-zero debts are listed. How gettle these debefficiently?

The context where | encountered this problem is a joint practice for physical therapy.
Each therapist treats her patients in a number of sessions. Afterwards she sends them
an invoice and collects the fee. Occasionally, therapistlls on therapisj to take over
a session for a patient. The patient pays to therapilse entire bill, for all sessions,
including those sessions handled by therapigthus, a debt is created frointo j. These
debts are settled at the end of the year. In this context, there are amgurits0 that
therapisti collected for therapist, with possibly: = j. The amounts,; ;, however, are
irrelevant for settling of the debts.

Read no further if you want to have a go at this problem yourself.

3. Analysis

For N < 2, the problem is trivial. In fact, folV = 0 and N = 1 there is no problem,
because there are no debts to settle; thus, zero transfers is the optimal solutfén=Fxr
the optimal solution is well known:

Friend0 paysaop,1 — a1,0 to friend1, if ap,1 > a1,0-
No transfers are needed, df 1 = aip. (2)
Friendl paysa; o — ao,1 to friend0, if ag1 < a1,0.

That is, the key igip,1 — a1,0.
How aboutN = 3? Maybe you see how to do that right away. | didn’t. The debts can
be conveniently presented in a matrix, which | will call tthebt matrix:

col. col. col.
0 1 2
row 0 . aop,1 @o,2 (3)
row 1 ai,o 1,2

row 2 az,0 @21

Amounta; ; appears in row and columry. Irrelevant entries, ; contain a dot-". These
debts can obviously be settled by at most six transfers and, in generadl?by N =
N(N-1) transfersi paysa;, ; to j for all relevant pairs, j. | call this thetrivial solution.
But one can do better, as already shownfor= 2. Fori # j, the debtsy; ; anda;;

Settling Multiple Debts Efficiently 107

are mirror images along the main (dottedggtonal in the debt matrix. These two mutual
debts can be settled by a singtarisfer involving the amount; ; — a;;|. This way, all
debts can be settled by at most three transfers and, in generalyby/ —1) transfers.
This | call thepaired solution.

Is the paired solution optimal? No! Consider the matrix

- 11
0 -1 (4)

which corresponds to example (1) above, disregarding a factor ten. The paired solution
involves three 1-unit transfers in a cycle: friedigpays to friendl, who pays to frien@,
who pays again to friend. Observe that each friend also receives 1 unit. Consequently,
there is no need to transfer any money at all.

Apparently, the total amoungs to be paid byi are of importance:

Pi = Xk Gik,)
and the total amounts to be received by:
r; = Ek ak ;- (6)

In terms of the debt matrix; is the sum of the amounts in roiyandr; is the sum of
the amounts in columjp

ao,1 @o0,2| Po
a1,0 o a12(p1 (7)
a20 a21 - |DP2
To T T2

All that matters for friend is herbalance b; at the end of the year:

If b, > 0, then she borrowed more than she lent out, and she needs to pay some others.
The question remains whom to pay how muchy; If= 0, then she borrowed as much as
she lent out, and she is evenblf < 0, then she lent out more than she borrowed, and

LProvided these friends are just interested in the total amount of money and not, for instance, in the finger
prints of their debtors.

108 T. Verhoeff

she needs to receive from some others. In example (4), we have the following row and
column sums:

- 112

N O
—_

)

212

and, hence, all; = 0, that is, there effectively are no debts to settle.
Before giving an optimal pay-back scheme fér= 3, | make the following observa-
tions. The grand total amount to be paid equals the grand total amount to be received:

Eipi = Ei Ek ai,k = Ej Ek akyj = Ej T’j. (10)
Consequently, the grand total balance equals zero:
Bibi=%i(pi— 1) =%ipi —Xiri =0. (11)

Hence, there exists a friend with a positive balance, if and only if there exists a friend
with a negative balance:

(3ib; > 0) = (J; b; < 0). (12)

For N = 3, there are only four possible combinations of the thresigns ¢, 0, or —),
if we abstract from friend identity, that is, from permutations of friends:

0o + + - (13)

The first combination (ald, the leftmost column in (13)) is equivalent 8 = 0 and
N = 1, requiring zero transfers. The second combination (Dngequivalent taV = 2,
requiring one transfer. The third combination (tw9 is settled by two transfers: from
each of the two positivé; to the negativé;. The fourth combination (twe-) is also
settled by two transfers: from the positibgto each of the two negativig. Note that
the latter two cases are related by sign revetsaleneral, reversing the directions of all
transfers in a solution for some case, yieddsolution to the case with all balance signs
reversed. Thus, we can also abstract from sign reversal.

The optimal transfers for each of the fougsicombinations are depicted in Fig. 1.
Each dot represents a friend, each arrow a transfetVFer 3, the worst case apparently
involves two transfers.

Settling Multiple Debts Efficiently 109

|

Fig. 1. The four optimal transfer patterns fsr = 3.

Next, consider cas® = 4. These seven combinations of balance signs can occur:

0
+

+ o+
+ —

+ o o
+ + o
+ 4+ +

(14)

o O O O

The four leftmost combinations reduce to cases wWith< 4. Of the remaining three
combinations, the two with a unique positive or negative balance are optimally solved by
three transfers, as depicted in Fig. 2. (Why?) They are related by sign reversal.

Finally, the case with two positive and two negative balances requires further analysis.
Without loss of generality, assume

bo = b1 > 0> by > bs. (15)

Distinguish three cases depending on the sighof b3 (also see Fig. 3):

e by = —bs: henceb; = —bsy, on account of (11); the optimal solution involves just
two transfers, fron) to 3, and froml to 2;

e by > —bs: henceb; < —bo; the optimal solution involves three transfers, from
to 2 and3, and froml to 2;

e by < —bs: henceb; > —bo; the optimal solution involves three transfers, from
to 3, and from1 to 2 and3.

For N = 4, the worst case apparently involves three transfers.
How aboutN > 4? Can the debts always be settled in at nidstl1 transfers?

+ + + +

Fig. 2. Two of the optimal transfer patterns far = 4.
01 0 0
3 2

3 3

G S
N

Fig. 3. Three other optimal transfer patterns for= 4.

110 T. Verhoeff

4. Practical Solutions

There is a practical solution that requires at miystransfers. It is used in the partner-
ship of therapists mentioned at the end of Section 2: All fees are collectedeint izl
account, and at the end of the year, therapisbollectsr; from the central account (this
includesa; ;).

The N friends can do this as follows. First, all friendwith b; > 0 putb; on the table
(the central account). Next, all friendsvith b; < 0 take—b; from the table. There is no
surplus or deficit on the table, on account of (11):

(Ei:bi>0:bi):(2i:bi<01—bi). (16)

A slight modification of this scheme usedraend as central account, say friendj.
All others withb; > 0 transferb; to j, and then those with; < 0 collect —b; from j.
Friend; has to provideé; herself ifb; > 0, or gains—b; if b; < 0. This scheme requires
no more thanV—1 transfers.

Is the scheme with a friend as central account optimal? No, not in general! It might
involve unnecessary transfers, or unnecessarily large amounts transferred. For example,
if someone withh; = 0 plays the role of central account, both inefficiencies will be the
case. ConsideN = 3 with by = 0 < b; = —bs. Using friend0 as central account
involves two transfers instead of one, and, in total, twice as much money changes hands
as necessary. Even if the central account is with someone vhesd), it need not be
optimal. Consider agaiv = 3, now withbg, b; > 0 andb, < 0. If the central account is
with friend 0, then the number of transfers is indeed optimal (two), but the total amount
transferred would be unnecessarily largg-€ 2b, instead o, + b1, see left in Fig. 4).

In this case, using frien?2las center works optimally.

For N = 4 with 0 < bg = —bsz and0 < b; = —by, any center is suboptimal. The
optimal solution (see left in Fig. 3) involves two ‘independent’ transfers. Introduction of
a center makes all transfers ‘dependent’. Thus, one of the independent transfers of the
optimal solution is then handled indirectly: the amount is transferred twice by way of the
center. This gives rise to an unnecessary transfer and an unnecessarily large total amount
transferred. How can one construct better solutions?

b

0+—1

0 1
bo+b1 = —bx b& ﬁl
2

2
suboptimal optimal

Fig. 4. Two related transfer patterns for = 3.

Settling Multiple Debts Efficiently 111

5. Transformed Solutions

There is another way to see that no more tihan1 transfers are required; a way that
eventually leads to optimal solutions. | have already been drawing pictures with friends
and transfers. Let us formalize such a picture as a mathematical graph, more precisely a
labeled directed graph. A directed graph is a paiP, A), whereP is a set ofpointsand

A'is a set ofarrows. Each arrow starts in a point and ends in a point. The points and the
arrows can be labeled, for instance, with numbers. The statement ‘there is an arrow from
pointi to point;j labeled with amount’ is denoted by

a

i % . (17)

Our problem can be rephrased as the following graph problem. We arel§jipeints
(friends), namely the numbebgo N —1. Each point is labeled by a numbér (balance),
such that (also see (11)):

¥ b = 0. (18)

We are to find a set of arrows (transfers) labeled by positive numbers (amounts), such that
all balances are evened out:

For every point, the sum of the labels on its outgoing arrows

. .) 19
minus the sum of the labels on its incoming arrows equals (19)

This property, which | call théalancing relation, can be formalized as follows. Lat;
be the sum of the labels on the incoming arrows of np@ad, similarly,out; the sum of
the labels on the outgoing arrows, that is,

i = (Sj,t:j —>i:t), (20)

out; = (Sj,t:i—j:t). (21)
The balancing relation (19) is then captured by

b; = out; — ini for all 1. (22)

A graph with this property is calledtaansfer graph for the numbers;. The sum of the
numbers on all arrows (total amount transferred) is calledatéight of the graph. We
are looking for a transfer graph with minimum number of arrows and minimum weight.
(Why is this problem not solvable when (18) does not hold?)

The trivial solution, presented in Section 3, consists of all arrows

i (23)

with a; ; > 0. In general, it is not optimal.

112 T. Verhoeff

I now investigate some graph transformations to reduce the number of arrows and/or
the weight, while preserving the balancing relation (19). In the remainder of this section,
(P, A) is atransfer graph fdr; (0 < ¢ < N).

5.1. Directed-Cycle Transformation

Consider a directed cycle in the graff A) involving k points andk arrows:

t t tr—
Po —= P1 — P2+ Pr—1 — Po. (24)
Let m be the minimum amount on the arrows in the cycle, that is,
m=(li:0<i<k:t). (25)

Decrease eadh in the cycle bym, yielding

tkfl—m

to— t1—
Pbo wm ﬂm“'m—l — Po- (26)

Arrows whose amount has becohare omitted. There is at least one such arrow, hence
the cycle is ‘broken’. This transformatiomgserves the balancing relation (19), because
for each of the affected pointsboth the outgoing surout; and incoming sunin,; are
decreased byn, leaving their difference invariant. Consequently, the resulting graph is
a transfer graph for the same problem, and it has fewer arrows and its weight has been
decreased b¥ x m.

As an example, consider the problem given by (1). Its trivial solution is depicted by
the transfer graph on the left in Fig. 5. | have omittedifabels, to avoid cluttering the
picture.

First consider the directed cycﬂ)e# 2 -2 0, whose reduction by yields2 Lo,
as depicted in the middle of Fig. 5. This corresponds to the paired solution. In general,
reducing all cycles of length two in the trivial solution yields the paired solution. Next,
observe that what remains is a directed cydliength three, which disappears altogether
under the directed-cycle transformatioachuse all amounts equaétminimum amount.

We already knew the resulting solution shown on the right.

Repeated application of this transformation yields a transfer graph without directed

cycles, a so-calledirected acyclic graph, ordag.

1, 1
0‘2—2 0+——2
i\ /A i\ /A
1 1

Fig. 5. A transfer graph and two transformations for= 3.

1

Settling Multiple Debts Efficiently 113

The resulting dag depends on the order in which cycles are broken, as illustrated by
the following example withV = 4 and debt matrix

Z\j 01 2 3 Di) pPi — T = bl
0]-30¢6]9 0[9-3 =46
111 - 5 0|6 116-7 = -1

27
212 4 0|6 2/6—-8 = -2 &7)
3100 3 313-6 -3
|3 7 8 6

The transfer graph for the paired solution is shown on the left in Fig. 6. Again we have
omitted theb;. It has five arrows and weightt. There are two directed cycles of length

three. The one allowing the biggest reduction is at the bottbms 3 —2» 2 2 0.
Reduction by2 yields a dag, shown second from the left in the figure. It has four arrows
and weight.

The cycle at the top i8 2,1 -2 -2, 0. Reduction byl yields the transfer graph
in the middle of Fig. 6. There is still a cycle at the bottdm 3 52 -10. Reduction
by 1 yields a dag, shown second from the right. It has three arrows and wieight

We already know the optimal transfer graph fér= 4 and type+——— from Sec-
tion 3. It is shown on the right, having three arrows and weigjhNote that alower
bound on the weight of a transfer graph is

(Xi:b>0:b), (28)

because all these balances need to be evened out. On account of (16), it equals
Ly, bl (29)
2 K3 (2N

Concerning the number of arrows, the following can be remarked. Each positive balance
must have at least one outgoing arrow and ez&dative balance must have at least one
incoming arrow. Therefore, lawer bound on the number of arrowsis

(#i::b; >0) 7 (#i = b; <0), (30)

where(#i :: B.i) is the number of’s for which B.i holds, andz 7 b is the maximum
of a andb. The optimal graph in Fig. 6 attains these lower bounds.

1 1 1

AT AT A A/

0—2

VAR VAR VAR VAR

3 3 3

Fig. 6. A transfer graph and four transformations for= 4.

114 T. Verhoeff
5.2. Directed-Path Transformation

The directed-cycle transformation is not enough to reduce the transfer graph to at most
N—1 arrows. Here is another transformation.
Consider two ‘parallel’ directed paths with the same start pajrend end poinpy:

t t tr_
PO —= D1~ P D1 —— Dy (31)

involving & arrows and

t — t tr
P05 Drgi—1Dht2 — Pyl — Dr, (32)
involving ¢ arrows. Letn be the minimum amount on the arrows in the first path, that is,
m=(li:0<i<k:t). (33)

Decrease each in the first path bym, and increase eadh in the second path by:.
Arrows whose amount has becofare omitted (there is at least one such arrow). This
transformation preserves the balancing relation (why?) and the resulting graph is a trans-
fer graph for the same problem. It has fewer arrows and its weight has been ‘decreased’
by (k — £) x m.

Note that the directed-cycle transformattidiscussed earlier is a special case of this
transformation by takingy = p,, and? = 0.

In the example above fa¥ = 4, the second graph from the left in Fig. 6 contains no
directed cycles, but it does caim two directed paths fror to 2. It is shown again on
the leftin Fig. 7. Decreasing the upper pathlbgnd increasing the lower path byields
the second graph from the left (also shown in Fig. 6). This graph can be reduced to the
optimal graph on the right by first applying the transformation in ‘reverse’. The second
graph from the right can be transformed to its left neighbor by decreasing the upper path
from 0 to 2 by 1 and increasing the lower path ly Thus, these two graphs solve the
same problem. That same graph can also be transformed to its right neighbor, the optimal
solution, by decreasing the lower path bgnd increasing the upper path by

5.3. Arbitrary Cycle Transformation

The ‘reverse’ application of transformations hints at a further generalization. First of all,
there is no reason to decrease a directed-cycle by exactly the minimum amount that occurs

1 1 1

NS, L

02

VA VAR VAR

Fig. 7. Four relatedransfer graphs folN = 4.

Settling Multiple Debts Efficiently 115

on any of its arrows. Decreasing by less also works fine: it reduces the weight but not the
number of arrows. However, decreasing by more than the minimum can also be made to
work. This still preserves the balancingatbn (19). The only trouble is the introduction

of arrows labeled with negative amounts. Such arrows can be ‘eliminated’ by reversing

their direction and sign:

p — ¢ is equivalent top <= q. (34)

Furthermore, any pair of poings ¢ not connected by an arrow may be connected by an
arrow labeled with amourtt

P q is equivalent top 2, q. (35)

In this new light, the directed-path trdnsmation is actually a special case of the
directed-cycle transformation: In the second path, reverse the arrows and the signs on
their amounts. Together with the first path this yield$iracted cycle. Next, decrease all
amounts bym, and, finally, reverse arrows and amounts in the second path again. You
do not explicitly have to create a directed cycle by reversing arrows, as long as you keep
in mind that when amounts on anbitrary cycle aredecreased, the amounts on arrows
pointing in the reverse direction need toibereased.

As an example consider the transfer graph¥o£ 4 depicted on the leftin Fig. 8. The
balances (not shown) are3, +7, —4, —6. Neither the directed-cycle nor the directed-
path transformation applies, but the graph consists of one (undirected) cycle. Walking
around in the direction of the arrow with amountdecreasing all forward arrows dy
and increasing all reverse arrows byyields the graph in the middle. It has one fewer
arrow and the same weight. Walking around in the direction of the arrow with aripunt
decreasing all forward arrows Byand increasing all reverse arrowshyields the graph
shown on the right. Both these resulting graphs are optimal, as we know from Section 3.
By the way, this example also illustrates that the optimal solution need not be unique.

This transformation applies to any cycle in the transfer graph, possibly including zero-
labeled arrows and arrows in reverse. Consequently, any cycle of arrows with non-zero
amounts can be ‘broken’: just decrease along the cycle by an amount that occurs on some
forward arrow. Remember timcrease reverse arrows, to drop out zero-labeled arrows,
and to reverse arrows that got negative amounts. This way any transfer graph can be put
into a form without cycles. An acyclic graph @i points has no more thai—1 arrows,
because if you walk along arrows (ignoring their direction) without encountering the
same point twice, you have sek#1 distinct points. Thus, | have shown, once more, how
to settle the debts by no more thah-1 transfers. Note that the solution with a friend as
central account has an acyclic transfer graph.

[520 2<P L]

Fig. 8. Three related transfer graphs fér= 4.

116 T. Verhoeff
6. Optimized Solutions

A transfer graph with no more thaN—1 arrows is not a bad solution, certainly when
compared to the trivial solution that may have as maniy& —1) arrows. But it is not
necessarily optimal.

I mentioned two items to minimize: the number of arrows (transfers) and the weight
(total amount transferred). Is it the cabat minimality of one item implies minimality
of the other? No! You can see in Fig. 6 that transfer graphs with the minimum number
of arrows are not necessarily of minimum weight, and in Fig. 8 that transfer graphs with
minimum weight do not necessarily have the minimum number of arrows.

6.1. Minimum Weight

In a transfer graph, any directed path of length two or more can be shortened. Consider a
directed path of length two, as shown on the left in Fig. 9, fgowa ¢ to » with amountg
andu. Letm be the minimum of andu, that is,m = ¢|u. Imagine a zero-labeled arrow
from p to r, and decrease the cycleq,r by m, as shown in the second graph from
the left (the zero-labeled arrow wakreased because it is reversed). At least one of the
resulting arrows gets a zero label. Which one(s), depends ont lamau. compare (see
the three graphs on the right). In all cases the weight has decreased Ihythe case
of t = w, the number of arrows has decreased by one, whereas in the other cases it has
remained the same.

By applying this transforméon repeatedly, a transferaph is obtained in which each
point has either no outgoing arrows or no incoming arrows. Such a graph is known as a
(directed)bipartite graph, in which the points are p#tioned into two groups, and all
arrows go from one group to the other and not back or within groups. Points with positive
balance §; > 0) have outgoing arrows only, points with negative balarb¢e<{ 0) have
incoming arrows only. Hats with zero balance){ = 0) have no arrows at all. All graphs
in Figs. 1, 2, 3, and 8 are bipartite. Observe that a transfer graph with minimum weight
must be bipartite, because the weight of a graph that is not bipartite (as defined above)
contains a path of length two and can thus be reduced in weight.

The weight of a bipartite transfer graph is

(Ei:bi >0:b) (36)

because each arrow starts in a point with pesithalance and all balances are evened
out. On account of lower bound (28), this is the least possible weight. BHusipartite

i 4 U

P r p—,r p—Lur p—wr p—sr
'N/;L t—m\/t—m /:l,—t t—U\
q q q q q
m=tlu t<u t=u t>u

Fig. 9. Shortening a path and decreasing the weight.

Settling Multiple Debts Efficiently 117

transfer graphs have minimum weight. Together with the observation above, it has been
shown that the solutions of minimum weight are exactly the bipartite solutions.
Here is aralgorithm to construct a bipartitetransfer graph:

1. Start with the empty graph: jusf points and no arrows.

2. Ifall balance$; are zero, no transfers are needed and the graph is ready.
3. Otherwise, on account &f; b; = 0, there exist two pointsand; with b; > 0 > b;.
4

. Letm be the minimum ob; and —b;, and add the arrow — j to the graph.
Decreas#; by m and increasé; by m.

5. Solve the remaining problem rasively by repeating from Step 2.

Upon termination, the resulting transfer graph is bipartite (only arrows from positive to
negative balances) and it evens out all balances. Whenever a transfer; is added,

the balance at or j is decreased to zero (or both are decreased to zero). Hence, no
transfer cycles are createBecause an acyclic graph @ points has at mosiv —1
arrows (see end of Section 5), the graph contains no morethahtransfers. This also
shows that the algorithm indeed terminatesSkction 8, | present a Pascal program for
this algorithm.

6.2. Minimum Number of Arrows

By now it is clear that points with balance zero can be omitted, because they need not
be involved in any transfers. For if they would be then they would have incoardg
outgoing arrows, which can be removed by path shortening. In the remainder, | assume

The algorithm presented above produces an acyclic bipartite graph, which minimizes
the weight. We have already seen in Fig. 8 that minimum-weight graphs need not have a
minimum number of arrows. However, in that example, there is still a cycle that can be
broken. But even an acyclic bipartite graph need not be optimal, as illustrated by Fig. 10
for N = 4 and balances-5,+3, —5, —3.

The algorithm presented abovegseedy, because thgreatest possible amount is
transferred between every selected pajrwith b; > 0 > b;. There are various ways to
modify it, in an attempt to minimize the number of transfers. One approach is to make it
less greedy. But then how should one choose an appropriate amount to transfer? Another
approach — which | analyzed — is to select the paifdn a careful order.

My first attempt considers paiés; with b; > 0 > b; in decreasing order of absolute
value, that is, tanatch the greatest balance differencesfirst. That would indeed avoid
the suboptimal graph in Fig. 10, because balaricaad —5 (difference10) would be

(>

Fig. 10. Related tmasfer graphs folN = 4.

118 T. Verhoeff

matched first. This works well foN < 4, but not in general: Consider the case with
N = 5 and balances-9, +8, —3, —6, —8. My proposal would first match-9 and —8
(differencel7), yielding a graph with four transfers instead of the optimal three (verify!).

Fig. 11 shows the four classes of acyclic bipartite grapiNor 5, without isolated
points, modulo sign reversal. For the type+ — — —, the three-transfer solution is
preferred. It can only occur if there are two opposite balances that can cancel each other
in one transfer.

My second attempt considers pairg with b; > 0 > b; in order of increasing sum
b;+b;, thatis, tomatch closest opposite balancesfirst. That would indeed avoid subop-
timal graphs for the cases wifti = 5. In the example above, balance8 and—8 (sum0)
would be matched first. This works well foF < 5, but not in general. A counterexample
for N = 6 is provided by the balances9, +8, +2, —4, —5, —10. Matching+9 and—10
results in a solution with five transfers instead of the optimal four.

Is it always best tanatch opposite balances? Consider a solution where two poirits
andj, having opposite balancés = —b; = B > 0, arenot connected by an arrow.
There must be some arrows going fransayp > 0 of them in total, and some other
arrows going tgj, sayq > 0 in total. Note that the sum of the amounts on tharrows
from i equals the sum of the amounts on gherrows toj, both sums being equal 18. If
thep+ ¢ arrows are removed and an arrow’ j is added, then we still have to settle the
remaining imbalance at thesources andg sinks. Since these imbalances are opposite,
they can be evened out by at mpstqg—1 arrows. Thus, the total number of arrows in the

new solution involving — j is at most the number of arrows in the original solution.

Exercises Give an example showing that opposite matching is not necessary for
optimality.

Matching opposites, however, never prohibits optimality, and an algorithm to con-
struct an optimal transfer graph could start by eliminating all opposites. As remarked
before and evident from Fig. 11, this approach takes care of all case®wtts. But it
leaves the harder part of the problem unsolved: What to do when there are no opposites?

Exercises Give an example showing that it is not always best to ‘match triples’.

Fig. 12 shows the eleven classes of acyclic bipartite graph&’fer 6, without iso-
lated points, modulo sign reversal. It seems evident from these graphs that acyclic graphs
with fewer arrows consist of more ‘disconnected clusters’, and vice versa. There is an
easy explanation for this, but it calls for more graph terminology.
A graph is callecconnected if there is a path between every pair of points. The di-
rection of arrows in a path is considered irrelevant. Every graph consists of a number of
L L

s <

e
V& N ~.
_ +\ Jr<: +\

+

Fig. 11. Acyclic bipartite graphs fav = 5.

Settling Multiple Debts Efficiently 119

S L LD

A +§_ L 0N

-) ~_ N O

b A — A= A A e

+¥— +§— PG S
™~ ™~

TR I I S S

Fig. 12. Acyclic bipartite graphs fav = 6.

connected subgraphs (possibly one) tmatreot connected to each other. These connected
subgraphs are called titemponents of the graph. For example, in Fig. 12 there are six
graphs with one component, four with two components, and one with three.

All components of an acyclic graph are acyclic. A connected acyclic graph is called a
tree. It has one more point than arrows; that is, if it ggoints, then it hag—1 arrows.
Adding an arrow would introduce a cycle, and upon removal of an arrow the graph would
no longer be connected. Therefore, an acyclic graph is a collection of trees, also known
as aforest. The number of arrows in a forest equals the number of points minus the
number of components (trees). Consequently, minimizing the number of arrows in an
acyclic graph, is equivalent tmaximizing the number of components.

The sum of the balances in a component of a transfer graph equals zero, because each
arrowi —— j addst to the balance sum vieut; and subtracts from the balance sum
viain;. Therefore, to minimize the number of arrows one needs to find a partition of the
points such that each part has balance ger and the number of parts is maximized.

Consider the special case of this problem, wh¥re2 distinct balances are positive
and two are negative, sdy, b; < 0. On account of lower bound (30) on the number
of arrows in a transfer graph, this special case requires at éast transfers (each
of the positive balances needs an outgoing arrow). Since no moreNhantransfers
are needed, the question is whethér-2 is feasible. In terms of partitioning, this boils
down to the existence of a partition of the balances into two parts, both with balance
sum zero. Obviously, each part must contain a negative balance. Therefore, the prob-
lem is to find a subset of the positive balanég¢those with2 < i < N) whose sum
equals—bg, the complement then automatically sums-iy . This problem is equivalent
to the subset-sum problem, sometimes also called the (simplifidd)apsack problem
Garey and Johnson, 1979, SP13:

For a given positive integeK” and setS of itemsx with positive integer size(x),
does there exists a subgeof S whose total siz | _ . s(x) equalsk?

Here,K is the size of the knapsacK,contains the items to pack, andjives their sizes.
The question is whether the knapsack can be filled exactly with a suitable selRation
the items.

It is easy to verify that a given subsBthas indeed total siz& . However, deciding
whether a suitable subsgtexists is believed to be a hard problem. As far as we know,

120 T. Verhoeff

one can, in general, not do much better than trying out all possibilities. The number of
possibilities is arexponential function of the number of items in the input sgtthere
are2™ subsets of an-element set. If you discover a shortcut, such as a solution requiring
no more work than @olynomial function ofn, then you’ll be famous instantly.

Finding a transfer graph with minimum number of arrows is at least as difficult as
solving the subset-sum problem.

7. Variations

| have covered a number of issues when settling multiple debts:
1. generality (arbitrary number of lenders),
2. simplicity and practical feasibility,
3. minimized total amount transferred,
4. minimized total number of transfers, and
5. mathematical complexity of obtaining a solution.
There are, however, many other issues that might be considered, such as
1. charging interest on loans,
2. handling exchange rates for multiple currencies, and
3. dealing with distrust among the lenders.
| leave these matters as challenges to the reader.

8. Programs

There are many ways to present the problem of efficiently settling multiple debts as a
programming problem. In the preceding sentiit turned out that the problem of finding
a minimum weight transfer graph is relatly easy, whereas that of finding a transfer
graph with minimum number of arrows is hard.

The input to the program can be given in various ways:

1. Alist of loansa; ; from+ to j. This is the format used in (1). More precisely:

The input to your program consists of a text file. On the first line is an intAGeY i, <
N < Nmax, the number of friends. On the second line is an intdget< i, < K <
Kmax, the number of loans. On each of thefollowing lines are three integeris j, a
with 0 < 4,5 < N,i # j,and0 < a = a;,; < Amax. The pairsi, j that appear are
distinct and ordered lexicographically.

Either of the two conditions on the pairgj (distinctness, lexicographic order) can

be dropped. When dropping the distinctnesredition, the input can be interpreted

to give the raw data of all the loaning transactions that took place over the year and
that need to be settled at the end of the year. Zero could be allowed as loan.

2. A debt matrixa; ;. This is the format used in (4). More precisely:

The input to your program consists of a text file. On the first line is an intdQeY i, <
N < Nmax, the number of friends. On each of théfollowing lines areN —1 integers.

Settling Multiple Debts Efficiently 121

Line i4-2 contains, in order of increasing the debtsz; ; with i £ j, and0 < a; ; <
Amax-

‘Debts’ a; ; might be included as well.
3. Alist of balance$;. More precisely:

The input to your program consists of a text file. On the first line is an intdgez <
N < Nmax, the number of friends. On each of tié following lines is an integeb
with 0 < b = b; < Bmax-.

Zero balances could be excluded.

N.B. Lower boundsV,,;, and K,,;,,, and upper boundd ..., Kmnax, Amax, and Bax
need to be chosen carefully. Input formaa&es away half of the problem, because for
formats 1 and 2 the relevance of the balances still needs to be discovered.
The output of the program must list all tisfiers needed to settle the input debts. More
precisely:
The output of your program is a text file. Each line contains three numbgrs, encoding a

transfer of amount from 4 to j, with 0 < 4,j < N, 4 # j, and0 < t, such that all pairs, j
are distinct and all debts in the input file are settled. The order of the lines is irrelevant.

There are various ways to impose extra constraints:

1. Minimize the total amount transferred (weight), that is, the sum afadllues in
the output.

2. Minimize the number of transfers, that is, the number of lines in the output.

3. Minimize the number of transfers and the total amount transferred. This is the
original problem of Section 2.

Furthermore, the score of the program can depend on how close the output approximates
the minimum. For the second and third form (minimizing the number of transfers), it is
even possible to give several non-secret input files and only ask for corresponding output
files.

8.1. Input Processing

It is straightforward how input formatsdnd 2 can be transformed into each other and
into input format 3. Here is a piece of Pascal program for reading input format 1 and
storing it as an array of balances (format 3):

program GettingEven;

const
Nmin=2; {lower bound on number of friends }
Nmax = 30000; { upper bound on number of friends }

type
NFriendsRange = Nmin .. Nmax; { range for number of friends }

122 T. Verhoeff

Friend=0 .. Nmax—1; {actually0.. N—1, whereN is number of friends }
Balances=array [Friend] of Integer; { b[k] = balance of friendt,0 < k < N}

procedure Readlnput (var N: NFriendsRange; var b: Balances);
{ globals: input }
{ pre: input contains a recording of loans in format 1 }
{ post: N andb are defined according to the input }

var
1,j: Friend; {friend i owes toj }
a: Integer; { amount of loan }
K: Integer; {number of loans (input) }
h: Integer; {to traverse theK loans }

begin
readln (V)
; readin(K)
;fori:=0toN—-1dob[i] :=0
{ invariant: Zo<r<n b[k] =0}
; for h:=1to K dobegin
readin (¢,j,a)

;0[i] :=b[i] +a
L blj] == blj] —a
end { for h}

end; { Readlnput }
8.2. Minimum Total Amount Transferred

In Section 6.1, | have presented a greedy algorithm to construct a bipartite transfer graph
that minimizes the total amount transferred. The following procedure expresses it con-
cisely in Pascal, like a poem.

procedure WriteOutput (V: NFriendsRange; b: Balances);
{ globals: output; spec.var: B }
{preb=DB, Yok~ Blk] =0}
{ post: output contains a list of transfers to settle all input deBts}
{ minimizing the total amount transferred }

var
1,7:0..Nmax; {to traverse friend9..N—1, N acts as sentinel }
m: Integer; { auxiliary to compute minimum }

{ ¢: Balances, ghost variable, initiallyy, c[k] = 0}

begin
1:=0
7 7:=0

Settling Multiple Debts Efficiently 123

{invariant: X b[k] = 0, Vi<, blk] <0, Vi<, blk] >0, b+ ¢ = B, output settlesc
variant function: 2N — i — j + (#k = b[k] #£0) }
; while (i £ N) and (j # N) do begin
if b[i] < 0 then
1:=1+1
elseif b[j] > 0then
ji=7+1
elsebegin { b[i] > 0 > b[j] }
if b[i] < —b[j] then m := b[i] elsem := —b[j]
{m=0[i] | -b[j]}

ywriteln (4, 7,7, T ,m

pbli] = b[i] —m {; c[i] :==c[i] +m}
O[] =0l +m {5 clj] == clj] —m}
end { else }

end { while }

{ Vi blk] =0, hencec = B }
end; { WriteOutput }

The while-loop terminates in at maslV steps, because in each step eithiacreases, or
j increases, or the number of non-zero balances decreases. As was already pointed out,
this algorithm produces an acyclic graph, which involves no more Man transfers.

8.3. Minimum Number of Transfers

Since minimizing the number of transfers turned out to be a hard problem in Section 6.2,

one cannot do much better than try all posgibs. In this case, thatneans inspecting

all partitions whose parts have zero balance sums, and finding the one with maximum

number of parts. In view of the lower bounds (28) and (30), there is an opportunity for

branch-and-bound. There are clear relationships to multiple knapsacks and bin packing.
One could imagine that for small kees of the balances, an efficiesignamic pro-

gramming solution exists, as with the knapsack problem. However, in general, even that

is not possible, since the well-known probl&dfrartition (Garey and Johnson, 1979) is

NP-complete in the strong sense, and it can be transformed to minimizing the number

of transfers as follows. First, the definition of the 3-Partition problem:

Given are a positive integeK and a setS of 3m items z with positive integer
size s(z) such thatK/4 < s(x) < K/2 and erss(x) = mK. The ques-
tion is whetherS can be partitioned inten disjoint setsS; for 1 < ¢ < m with

> .cs, 5(z) = K. Note that on account of the restrictions €x), eachS; contains
exactly three items.

This situation can be translated into the following transfer minimization problem:

There arem negative balances of value K each, and3m positive balances of
value s(z). These balances take at leasttransfers to settle. If it can be done in
exactlym transfers, then #it solution corrgzonds to a partition of' into m setsS;

124 T. Verhoeff

with ers- s(xz) = K, which is also a solution to the instance of 3-Partition. If it
cannot be done in exactly. transfers (but requires more transfers), then there is no
such partition, and the instanoé3-Partition canot be solved.

Hence, minimizing the number of transfers is at least as difficult as 3-Partition.
8.4. Minimum Total Amount in Minimum Number of Transfers

The combined minimization problem (minimizing the number of transfers and the total
amount transferred) can be solved by first figdan appropriate partition (hard), then,
for each component, minimizing the amount transferred (easy).

9. Conclusion

When | wrote the initial version of thiarticle in 1998, | had not seen the problem of
efficiently settling multiple debts in the literature. | must admit that | did not do much
research to locate it. Nor have | discugsewith a lot of people, because | wanted to
keep it secret in order to use it in a competition. The problem seemed directly related to
theinput-output economic model of Leontief (Leontief, 1951; HET, 2003).

An anonymous reviewer referred me to a series of articles about clearing debts in

the Russian economy (Kalitkin, 1995; ikonov and Tsitsiashvili, 1997; Kalitkiet al.,
2001). Here the grand total balance is not zero (open economy; cf. (11), (18)). The ob-
jective is to clear as much of the debts as possible, given certain legal restrictions. The
number of transactions and total amount transferred are not so important. The algorithmic
complexity is not investigated.

Problem 96 in (Steinhaus(1964)) concerns minimization of the number of transfers.
A further literature search reveals relationships with ti@imum-cost network flow
problem and special cases like theansportation problem andtransshipment prob-
lem (Cooket al., 1998). Our problem of minimizing the number of transfers appears
to be known as a special case of fived-charge transportation problem (Spielberg,

1964) and théJncapacitated Fixed-char ge Networ k Flow (UFNF) problem (Duhamel,
2001), with per-unit costs; ; = 0 and fixed costg; ; = 1.

I have mostly presented the material in the order that | discovered it. Of course, this
is not the only approach. Some readers may have wondered at places why | did not give
the key argument immediately. Well, | simplyddhot see it immediately. Therefore, this
story reveals more how my problem-solvin@br works, than that it teaches how best to
solve problems. With hindsight, some of my excursions seem unnecessarily long-winded.
Possibly, | could have avoided these by concentrating more on the abstract problem, in-
stead of working with concrete — and sometimes misleading — examples. It is, however,
important to realize that most high-school students need details and they should be en-
couraged to follow their own path of investigation. In secondary education it is good to
include many concrete examples, as | have done.

The ancient Greeks, such as Pythagoras and Euclid, could, no doubt, have understood
this problem. One can only wonder whether they could have solved it. More likely they

Settling Multiple Debts Efficiently 125

would not have appreciated the problem. Their cultural framework prevented them from
asking such questions. Graph theory is a convenient ingredient for fully understanding
and tackling the problem. Euler is generally recognized as the father of graph theory with
his famous publication in 1736 (Euler, 1736). That may seem long ago but one must re-
alize that Pythagoras lived 500 B.C. and Euclid 300 B.C. Clay tablets with mathematical
inscriptions date back to well before 10,000 B.C. Mathematics has grown considerably,
especially since Euler, and is still under turbulent development. Only in the second half
of this century has graph theory become a péfrespectable’ mathematics (instead of
‘just’ dealing with recreational problems and games). There is ample literature on graph
theory. The terminology, however, is not uniform and may differ from what | have used.

I hope that this problem can serve as an example of how a simple question leads to
many important concepts in mathematicsla@omputing science. Teachers need not use
this material directly. | would rather encourage them to find their own questions that they
can develop in detail and teach with enthousiasm.

Answersto the Exercises of Section 6.2

Consider the six distinct balance$, +3, +2, —1, —4, —5. Then there are two solutions
with a minimum number of transfers. One of them does not match the oppasites
and—5.

The twelve distinct balances

1900, 4203, +100, +99, +98, +1, —2, —202, —297, —299, —300, —301

contain no opposites (zero-sum pairs). There is one zero-sum tHPES, +98, —301.
However, the remainder cannot be split into two or more zero-sum parts, thus yielding a
10-transfer solution. The unique maximal partition into zero-sum parts is

+900, —299, —300, —301;
1203, 41, 202, —2;

)

+100, 499, +98, —297

giving a 9-transfer solution. Thus, combining zero-sum triples is not always a good idea.

References

Anikonov, D.S., and G.Sh. Tsitsiashvili (1997). Reductiof clearing of debts to the transportation problem.
Doklady Mathematics, 55 (1), 120. Translated frordoklady Akademii Nauk, 352 (6), 730.

Cook, W.J., W.H. Cunningham and W.R. Pulleyblank (19@&)mbinatorial Optimization. Wiley.

Duhamel, C. (2001). Solving the uncapacitateddicbarge network flow with metaheuristics. Pnoceedings
of MIC 2001: 4th Metaheuristics International Conference. Portugal, July 2001, pp. 685-690.

Euler, L. (1736). Solutio problematad geometriam situs pertinentiS8omment. Acad. ci. U. Petrop., 8, 128—
140. Reprinted ifDpera Omnia, Ser. I-7, pp. 1-10, 1766.
Also seehtt p:// mat hwor | d. wol f ram conf Koeni gsber gBri dgePr obl em ht ml (accessed
July 2003).

126 T. Verhoeff

Garey, M., and D. Johnson (197@Qomputers and Intractability: A Guide to the Theory of NP-completeness.
Freeman.

HET (2003). Wassily Leontief, 1906—-1999. In G.L. Fonseca and L.J. Ussher (Histgry of Economic
Thought Website. Department of Economics of the New School for Social Research.
http://cepa. newschool . edu/ het/profil es/| eontief.ht m@accessed July 2003).

Kalitkin, N.N. (1995). Optimal clearig of mutual debts of enterpriseslathematical Modelling, 7 (1), 11-21
(in Russian).

Kalitkin, N.N., L.V. Kuz’mina and M.V. Chernenko(2001). Clearing debts by the fractional methbadklady
Mathematics, 63 (3), 437—440. Translated froboklady Akademii Nauk, 378 (1), 29-32.

Leontief, W. (1951). Input-output economicientific American, Oct.

Spielberg, K. (1964). On the fixed charge transportation problefrdeeedings of the 1964 19th ACM national
conference, pp. 11.10.1-11.10.13.

Steinhaus, H. (1964¥ne Hundred Problems in Elementary Mathematics. Dover Publications.

T. Verhoeff is an assistant professor in computing science at Eindhoven University of
Technology (TUE), the Netherlands. He obtained his PhD (A Theory of Delay-Insensitive
Systems, 1994) from TUE. His current reseach area is software construction. He chaired
the Scientific Committee of IOl 1995 in The Niefrlands and contrilted tasks to various
competitions. In 1999, he was Finals Directors of the ACM ICPC World Finals held in
Eindhoven, The Netherlands. He clsdihe 101 Scientific Committee since 1999.

Daugybiniu skolu sureguliavimas: kvietimasi kompiuteriu moksla
Tom VERHOEFF

Ne viena mokyklie informatikos programa kéra nuo “enciklopedijos sindromo”. Daznai
bandoma apZzvelgti kuo daugiau tejatiau visos jos iSdstomos gan pavirSutiniSkai. Straipsnio
autorius mano, kad geriau pasirinkti nedaug yeteciau jas giliai iSanalizuoti.

Straipsnyje iSsamiai nagéfamas gana paprastas uzdavinys: yra @rdi@augl, vienas kitam
skolinar€iy pinigus iStisus metus. Ji@ipestingai uzrasija visus skolinimus ir metgale nori
sureguliuoti tarpusavio skolas.

Kaip jie turety pervesti (perduoti) pinigus, kad atsiskaitytarpusavyje? Ar sunku surasti
reikiama tarpusavio atsiskaitymo schafh Ar ta schema efektyvi? @oma minimizuoti pinig
perveding, t.y., pervedim ir pinigu skatiu.

Autorius iSsamiai iSanalizuoja uzdayinpateikiaivairius sprendimus. Remiamasi transforma-
cijomis, graf) teorija, kombinatorika. Straipsnyje medZiaga pateikiama daugiausia tadiy kaip
ja tyringjo autorius.

Tikimasi, kad straipsnis bus naudingas ne tik mokslininkams, bet ir gabiems studentams. Svarbu
suprasti, kad daugumai pradedajju tyreju reikia smulkiai iSaiSkinti ir skatinti juos @gaus tyrireti
problerma. Jiems naudingi ir konkre$ pavyzdziai, kuti nemazai autorius itrauke i, straipsfi.

Straipsnyje pagrindZiama, kaip nesunku minimizuoti pervedanimigu kieki. Pateikta ne-
sucktinga Paskalio programa, sprendziaptiZlavin, Kita vertus, pervedim skatiaus minimiza-
vimas yra NP sugtingumo uzdavinys.

Straipsnyje aptartas pavyzdys egluti pavyzdZiu, kaip paprasto uzdavinio analigupazin-
dina su daugeliu svanhimatematikos ir kompiutagsi mokslo svokomis ir Sitaip skatina giliau
dometis Siomis sritimis.

