
Informatics in Education, 2004, Vol. 3, No. 1, 31–42 31
 2004Institute of Mathematics and Informatics, Vilnius

What Computing Curricula is Needed: A Case at
the University of Latvia

Juris BORZOVS
University of Latvia and Riga Information Technology Institute
RITI, Kuldigas 45b, LV-1083 Riga, Latvia
e-mail: juris.borzovs@riti.lv

Received: December 2003

Abstract. Computer science undergraduate (bachelor) curriculum of the University of Latvia was
developed in late 80th based on curricula of several US universities while keeping strong practical
setting. The very core of the curriculum comprises Software Engineering lectures and related in-
formation system development course project in the second year. Thus every undergraduate (even
theoretical computer science major) is prepared to start professional career of computer program-
mer by the second study year. It is amazing to realize how well this rather old curriculum conforms
to the new ACM/IEEE Computing Curricula 2001.

Key words: computing curricula, ACM, IEEE, University Latvia.

1. Why American Computing Curricula?

By no means ACM/IEEE Computing Curricula 2001 to date is the only model to design
specific curriculas at particular universities.European countries have their long-lasting
traditional education systems that sometimes differ significantly. However, The Bologna
Declaration on the European space for higher education signed by European ministers of
education (19 June 1999) implicitly confess that European education system lags behind
that of the United States and needs to be improved. The Lisbon European Council of
23 and 24 March, 2000 set the European Union a major strategic goal “to become the
most competitive and dynamic knowledge-based economy in the world”. As one of con-
sequences, the Career Space consortium was established to develop guidelines for new
ICT curricula (Career Space). The Guidelines appeared tobe very much in line with the
ACM/IEEE Computing Curricula 2001. However, it is not very surprising provided that
American computing education is the strongest in the world and The Bologna Declaration
calls for American-style grade system.

2. New Benchmark

The Computing Curricula 2001 (CC2001) project is a joint undertaking of the Computer
Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) and the Associ-



32 J. Borzovs

ation for Computing Machinery (ACM) to develop curricular guidelines for undergradu-
ate programs in computing. The report continues a long tradition of recommendations for
academic programs in computing related fields dating back to 1965 (ACM Curriculum
Committee on Computer Science, 1965).

The complete CC2001 report will eventually consist of several volumes containing
separate recommendations for other computing disciplines, including computer engineer-
ing, software engineering, and information systems.

Highlights of the report we are considering (Computing Curricula, 2001) include the
following:

• The Computer Science (CS) body of knowledge. The authors of the CC2001 report
have identified a body of knowledge appropriate to undergraduate computer sci-
ence programs. Drawing on the structure of earlier curriculum reports, they have
arranged that body of knowledge hierarchically, subdividing the field into areas,
which are then broken down further into units and individual topics.

• The CS undergraduate core. From the 132 units in the body of knowledge, they
have selected 64 that represent core material, accounting for approximately 280
hours of instruction. They defined the core as the set of units for which there is a
broad consensus that the material is essential to an undergraduate degree in com-
puter science.

• Learning objectives. For each of the units in the body of knowledge, the authors
of CC2001 report have developed a set of learning objectives designed to promote
assessment of student achievement. These learning objectives appear as part of the
detailed description of the body of knowledge. In addition to the individual learning
objectives, the report outlines a more general set of objectives that all computer
science graduates should be able to meet.

• Course descriptions contains detailed course descriptions for 47 courses that are
part of the various curriculum models. In addition, over 80 additional advanced
courses have been identified that would be appropriate for undergraduate programs.

Computer science undergraduate (bachelor) curriculum of the University of Latvia
(UL) was developed in the late 80-ties (Computer Science Bachelor Study Programme,
1998), before well-knownComputing Curricula 1991 (Tuckeret al., 1991) was released,
and was strongly based on existing CS curricula of few North American universities.
Acknowledging a leading position of the USA and her universities in information and
communication technologies (ICT) industry and education it was and still is a rational
decision. Now, after almost 15 years of successful execution of the UL Curriculum it is
time to review the Curriculum against the new benchmark.

3. Changes in the Computer Science Discipline

Technical advances over the past decade has increased the importance of many curricular
topics, such as the following:

• the World Wide Web and its applications,



What Computing Curricula is Needed: A Case at the University of Latvia 33

• networking technologies, particularly those based on TCP/IP,

• graphics and multimedia,

• embedded systems,

• relational databases,

• interoperability,

• object-oriented programming,

• the use of sophisticated application programmer interfaces (APIs),

• human-computer interaction,

• software safety,

• security and cryptography,

• application domains.

As these topics increase in prominence, it is tempting to include them as undergradu-
ate requirements. Unfortunately, the restrictions of most degree programs make it difficult
to add new topics without taking others away. It is often impossible to cover new areas
without reducing the amount of time devoted tomore traditional topics whose importance
has arguably faded with time. The CC2001 Task Force has therefore sought to reduce the
required level of coverage in most areas so as to make room for new areas.

Computing education is also affected by changes in the cultural and sociological con-
text in which it occurs. The following changes, for example, have all had an influence on
the nature of the educational process:

• changes in pedagogy enabled by new technologies;

• the dramatic growth of computing throughout the world;

• the growing economic influence of computing technology;

• greater acceptance of computer science as an academic discipline;

• broadening of the discipline.

4. Principles

The CC2001 Task Force has articulated the following principles to guide their work:
1. Computing is a broad field that extends well beyond the boundaries of computer

science.

2. Computer science draws its foundations from a wide variety of disciplines.
Undergraduate study of computer science requires students to utilize concepts from
many different fields. All computer science students must learn to integrate theory
and practice, to recognize the importance of abstraction, and to appreciate the value
of good engineering design.

3. The rapid evolution of computer science requires an ongoing review of the corre-
sponding curriculum.



34 J. Borzovs

4. Development of a computer science curriculum must be sensitive to changes in
technology, new developments in pedagogy, and the importance of lifelong learn-
ing.

5. CC2001 must go beyond knowledge units to offer significant guidance in terms of
individual course design.

6. CC2001 should seek to identify the fundamental skills and knowledge that all com-
puting students must possess. Despite the enormous breadth of computer science,
there are nonetheless concepts and skills that are common to computing as a whole.
CC2001 must attempt to define the common themes of the discipline and make sure
that all undergraduate programs include this material.

7. The required body of knowledge must be made as small as possible.

8. CC2001 must strive to be international in scope.

9. The development of CC2001 must be broadly based.

10. CC2001 must include professional practice as an integral component of the under-
graduate curriculum. These practices encompass awide range of activites includ-
ing management, ethics and values, written and oral communication, working as
part of a team, and remaining current in a rapidly changing discipline.

11. CC2001 must include discussions of strategies and tactics for implementation
along with high-level recommendations.

5. Structure of the Body of Knowledge

The CS body of knowledge is organized hierarchically into three levels. The highest level
of the hierarchy is thearea, which represents a particular disciplinary subfield. Each area
is identified by a two-letter abbreviation, such as OS foroperating systems or PL for
programming languages. The areas are broken down into smaller divisions calledunits,
which represent individual thematic modules within an area. Each unit is identified by
adding a numeric suffix to the area name; as an example, OS3 is a unit onconcurrency.
Each unit is further subdivided into a set oftopics, which are the lowest level of the
hierarchy.

5.1. Core and Elective Units

One of goals in proposing curricular recommendations was to keep the required com-
ponent of the body of knowledge as small as possible. To implement this principle, the
CC2001 Task Force has defined a minimalcore consisting of those units for which there
is a broad consensus that the corresponding material is essential to anyone obtaining an
undergraduate degree in this field. Units that are taught as part of an undergraduate pro-
gram but which fall outside the core are considered to beelective.

In discussing the CC2001 recommendations during their development, the authors
have found that it helps to emphasize the following points:



What Computing Curricula is Needed: A Case at the University of Latvia 35

• The core refers to those units required of all students in all computer science degree
programs. Several topics that are important in the education of many students are
not included in the core. This lack of inclusion in the core does not imply a negative
judgment about the value, importance, or relevance of those topics. Rather, it sim-
ply means that there was not a broad consensus that the topic should be required of
every student inevery computer science degree program.

• The core is not a complete curriculum. Because the core is defined as minimal, it
does not, by itself, constitute a complete undergraduate curriculum.

• The core must be supplemented by additional material. Every undergraduate pro-
gram must include additional elective topics from the body of knowledge. The
CC2001 report does not define what those topics must be, as this additional work
can and should vary based on institutional mission, the areas of concentration of-
fered by a given institution, and individual student choice.

• Core units are not necessarily those taken in a set of introductory courses early
in the undergraduate curriculum. Although many of the units defined as core are
indeed introductory, there are also some core units that clearly must be covered
only after students have developed significant background in the field. For exam-
ple, the task force believes that all students must develop a significant application
as some point during their undergraduate program. The material that is essential
to successful management of projects at this scale is therefore part of the core,
since it is required of all students. At the same time, the project course experience
is very likely to come toward the end of a student’s undergraduate program. Sim-
ilarly, introductory courses may include elective units alongside the coverage of
core material. The designationcore simply meansrequired and says nothing about
the level of the course in which it appears.

5.2. Assessing the Time Required to Cover a Unit

To give readers a sense of the time required to cover a particular unit, the CC2001 report
was to define a metric that establishes a standard of measurement. Choosing such a metric
has proven difficult, because no standardmeasure is recognized throughout the world.

For consistency with the earlier curriculum reports, the task force has chosen to ex-
press time inhours, corresponding to the in-class time required to present the material
in a traditional lecture-oriented format. To dispel any potential confusion, however, it is
important to underscore the following observations about the use of lecture hours as a
measure:

• The task force does not seek to endorse the lecture format. Even though they have
used a metric with its roots in a classical, lecture-oriented form, the task force
believes that there are other styles – particularly given recent improvements in ed-
ucational technology – that can be at least as effective. For some of these styles, the
notion ofhours may be difficult to apply. Even so, the time specifications should at
least serve as a comparative measure, in the sense that a 5-hour unit will presum-
ably take roughly five times as much time to cover as a 1-hour unit, independent of
the teaching style.



36 J. Borzovs

• The hours specified do not include time spent outside of class. The time assigned
to a unit does not include the instructor’s preparation time or the time students
spend outside of class. As a general guideline, the amount of out-of-class work is
approximately three times the in-class time. Thus, a unit that is listed as requiring
3 hours will typically entail a total of 12 hours (3 in class and 9 outside).

• The hours listed for a unit represent a minumum level of coverage. The time mea-
surements that have assigned for eachunit should be interpreted as theminimum
amount of time necessary to enable a studentto achieve the learning objectives for
that unit. It is always appropriate to spend more time on a unit than the mandated
minimum.

5.3. Packaging Units into Courses

The structure and format of courses vary significantly from institution to institution and
from country to country. Even within the United States, some colleges and universities
use a semester system while others follow a shorter quarter system. Under either system,
there can be differences in the number of weeks in a semester, the number of lectures in
a week, and the number of minutes in a lecture.

The authors assumes that acourse meets three times a week over the course of a 15-
week semester and that the individual class meetings run somewhere between 50 minutes
and an hour. This schedule is typical for a 3-credit semester course in the United States.
Given that some of the available time will be taken up with examinations and other activi-
ties, we have assumed that 40 hours of lecture are available over the semester. In addition,
students are expected to devote three hours of time outside of class for each in-class hour,
which means that the total time that each student is expected to invest 160 hours in each
course. Other countries use different metrics for expressing the expected level of work.

6. Summary of the CS Body of Knowledge

A summary of the body of knowledge – showing the areas, units, which units are core, and
the minimum time required for each – appears as Table 1. Asterisks denote compulsory
units in the UL Curriculum, plus sign – electives.

Table1

Computer science body of knowledge with core topics underlined

DS. Discrete Structures
(43 core hours)

HC. Human-Computer Interaction
(8 core hours)

∗DS1.Functions, relations, and sets (6) ∗HC1. Foundations of human-computer
interaction (6)

∗DS2.Basic logic (10) ∗HC2. Building a simple graphical user
interface (2)



What Computing Curricula is Needed: A Case at the University of Latvia 37

∗DS3.Proof techniques (12) +HC3. Human-centered software evaluation
∗DS4.Basics of counting (5) +HC4. Human-centered software development
∗DS5.Graphs and trees (4) +HC5. Graphical user-interface design
∗DS6.Discrete probability (6) +HC6. Graphical user-interface programming

+HC7. HCI aspects of multimedia systems
+HC8. HCI aspects of collaboration and communi-

cation

PF. Programming Fundamentals
(38 core hours)

GV. Graphics and Visual Computing
(3 core hours)

∗PF1.Fundamental programming constructs (9) ∗GV1. Fundamental techniques in graphics (2)
∗PF2.Algorithms and problem-solving (6) +GV2. Graphic systems (1)
∗PF3.Fundamental data structures (14) +GV3. Graphic communication
∗PF4.Recursion (5) +GV4. Geometric modeling
+PF5.Event-driven programming (4) +GV5. Basic rendering

GV6. Advanced rendering
GV7. Advanced techniques

+GV8. Computer animation
+GV9. Visualization

+GV10. Virtual reality
GV11. Computer vision

AL. Algorithms and Complexity
(31 core hours)

IS. Intelligent Systems
(10 core hours)

∗AL1.Basic algorithmic analysis (4) +IS1. Fundamental issues in intelligent
systems (1)∗AL2.Algorithmic strategies (6)

+IS2. Search and constraint satisfaction (5)∗AL3.Fundamental computing algorithms (12)

+IS3. Knowledge representation and
reasoning (4)

+AL4.Distributed algorithms (3)

+AL6.The complexity classes P and NP +IS4. Advanced search

+AL5.Basic computability (6)

∗AL7.Automata theory +IS5. Advanced knowledge representation
and reasoning

∗AL8.Advanced algorithmic analysis +IS6. Agents
+AL9.Cryptographic algorithms +IS7. Natural language processing
∗AL10.Geometric algorithms +IS8. Machine learning and neural

networks
∗AL11.Parallel algorithms +IS9. AI planning systems

IS10. Robotics

AR. Architecture and Organization
(36 core hours)

IM. Information Management
(10 core hours)

∗AR1.Digital logic and digital systems (6) ∗IM1. Information models and systems (3)
∗AR2.Machine level representation of data (3) ∗IM2. Database systems (3)
∗AR3.Assembly level machine organization (9) ∗IM3. Data modeling (4)
∗AR4.Memory system organization

and architecture (5)
∗IM4. Relational databases

∗AR5. Interfacing and communication (3) ∗IM6. Relational database design
∗IM5. Databasequery languages

AR6.Functional organization (7) +IM7. Transaction processing
AR7.Multiprocessing and alternative

architectures (3)
IM8. Distributed databases

AR8.Performance enhancements
+AR9.Architecture for networks and

distributed systems

∗IM9. Physical database design
+IM10. Data mining
+IM11. Information storage and retrieval
+IM12. Hypertext and hypermedia

IM13. Multimedia information and systems



38 J. Borzovs

IM14. Digital libraries

OS. Operating Systems
(18 core hours)

SP. Social and Professional Issues
(16 core hours)

∗OS1.Overview of operating systems (2) ∗SP1. History of computing (1)
∗OS2.Operating system principles (2) +SP2. Social context of computing (3)
∗OS3.Concurrency (6) ∗SP3. Methods and tools of analysis (2)
∗OS4.Scheduling and dispatch (3) +SP4. Professional and ethical responsibilities (3)
∗OS5.Memory management (5) +SP5. Risks and liabilities of computer-based

systems (2)
OS6.Device management ∗SP6. Intellectual property (3)

∗OS7.Security and protection ∗SP7. Privacy and civil liberties (2)
∗OS8.File systems +SP8. Computer crime
+OS9.Real-time and embedded systems ∗SP9. Economic issues in computing
OS10.Fault tolerance ∗SP10. Philosophical frameworks

∗OS11.System performance evaluation
OS12.Scripting

NC. Net-Centric Computing
(15 core hours)

SE. Software Engineering
(31 core hours)

∗NC1. Introduction to net-centric computing (2) ∗SE1. Software design (8)
∗NC2. Communication and networking (7) SE2. Using APIs (5)
∗NC3. Network security (3) ∗SE3. Software tools and environments (3)
∗NC4.The web as an example of client-server

computing (3)
∗SE4. Software processes (2)

∗NC5.Building web applications
∗SE5. Software requirements and specifications (4)
∗SE6. Software validation (3)

∗NC6.Network management ∗SE7. Software evolution (3)
NC7.Compression and decompression ∗SE8. Software project management (3)
NC8.Multimedia data technologies +SE9. Component-based computing
NC9.Wireless and mobile computing ∗SE10. Formal methods

SE11. Software reliability
SE12. Specialized systems development

PL. Programming Languages
(21 core hours)

CN. Computational Science
(no core hours)

∗PL1.Overview of programming languages (2) +CN1. Numerical analysis
∗PL2.Virtual machines (1) CN2. Operations research
∗PL3. Introduction to language translation (2) +CN3. Modeling and simulation
∗PL4.Declarations and types (3) CN4. High-performance computing
∗PL5.Abstraction mechanisms (3)
∗PL6.Object-oriented programming (10)
+PL7.Functional programming
+PL8.Language translation systems

PL9.Type systems
∗PL10.Programming language semantics
PL11.Programming language design

Note:The numbers in parentheses represent the minimum number of hours required to cover this material
in a lecture format. It is always appropriate to include more.



What Computing Curricula is Needed: A Case at the University of Latvia 39

7. Characteristics of CS Graduates

7.1. Cognitive Capabilities and Skills Relating to Computer Science

• Knowledge and understanding. Demonstrate knowledge and understanding of es-
sential facts, concepts, principles, and theories relating to computer science and
software applications.

• Modeling. Use such knowledge and understanding in the modeling and design of
computer-based systems in a way that demonstrates comprehension of the tradeoff
involved in design choices.

• Requirements. Identify and analyze criteria and specifications appropriate to spe-
cific problems, and plan strategies for their solution.

• Critical evaluation and testing. Analyze the extent to which a computer-based sys-
tem meets the criteria defined for its current use and future development.

• Methods and tools. Deploy appropriate theory, practices, and tools for the specifi-
cation, design, implementation, and evaluation of computer-based systems.

• Professional responsibility. Recognize and be guided by the social, professional,
and ethical issues involved in the use of computer technology.

7.2. Practical Capabilities and Skills Relating to Computer Science

• Design and implementation. Specify, design, and implement computer-based sys-
tems.

• Evaluation. Evaluate systems in terms of general quality attributes and possible
tradeoffs presented within the given problem.

• Information management. Apply the principles of effective information manage-
ment, information organization, and information-retrieval skills to information of
various kinds, including text, images, sound, and video.

• Human-computer interaction. Apply the principles of human-computer interaction
to the evaluation and construction of a wide range of materials including user in-
terfaces, web pages, and multimedia systems.

• Risk assessment. Identify any risks or safety aspects that may be involved in the
operation of computing equipment within a given context.

• Tools. Deploy effectively the tools used for the construction and documentation of
software, with particular emphasis on understanding the whole process involved in
using computers to solve practical problems.

• Operation. Operate computing equipment and software systems effectively.

7.3. Additional Transferable Skills

• Communication. Make succinct presentations to a range of audiences about tech-
nical problems and their solutions.



40 J. Borzovs

• Teamwork. Be able to work effectively as a member of a development team.

• Numeracy. Understand and explain the quantitative dimensions of a problem.

• Self management. Manage one’s own learning and development, including time
management and organizational skills.

• Professional development. Keep abreast of current developments in the discipline
to continue one’s own professional development.

8. Standards for Achievement

8.1. Threshold Standard Representing the Minimum Level

• Demonstrate a requisite understanding of the main body of knowledge and theories
of computer science.

• Understand and apply essential concepts, principles, and practices in the context of
well-defined scenarios, showing judgment in the selection and application of tools
and techniques.

• Produce work involving problem identification, analysis, design, and development
of a software system, along with appropriate documentation. The work must show
some problem-solving and evaluation skills drawing on some supporting evidence
and demonstrate a requisite understanding of and appreciation for quality.

• Demonstrate the ability to work as an individual under guidance and as a team
member.

• Identify appropriate practices within a professional, legal, and ethical framework.

• Appreciate the need for continuing professional development.

• Discuss applications based upon the body of knowledge.

8.2. Modal Standard Representing the Average Level

• Demonstrate a sound understanding of the main areas of the body of knowledge
and the theories of computer science, with an ability to exercise critical judgment
across a range of issues.

• Critically analyze and apply a range of concepts, principles, and practices of the
subject in the context of loosely specified problems, showing effective judgment in
the selection and use of tools and techniques.

• Produce work involving problem identification, analysis, design, and development
of a software system, along with appropriate documentation. The work must show
a range of problem solving and evaluation skills, draw upon supporting evidence,
and demonstrate a good understanding of the need for quality.

• Demonstrate the ability to work as an individual with minimum guidance and as
either a leader or member of a team.

• Follow appropriate practices within a professional, legal, and ethical framework.



What Computing Curricula is Needed: A Case at the University of Latvia 41

• Identify mechanisms for continuing professional development and life-long learn-
ing.

• Explain a wide range of applications based upon the body of knowledge.

9. Benchmarking of the UL Curriculum

Significant time and space is needed to precisely map the UL Curriculum to the CC2001.
That’s why we simply marked units in Table 1 and listed below major issues only. To
summarise shortly, the both curriculas have very much in common and are based on the
same principles.

9.1. Common Aspects

Both curriculas expect 4-year studies and eventual two-year college as first stage of study.
In 2001, the UL established a two-and-a half year college curriculum (according to the
government regulations it is called ‘first level higher professional education’) “Computer
Programming”. Four semesters are almost identical in bachelor and professional studies,
the fifth semester of college comprises 20 weeks of practical internship in industry and
final qualification work in programming. Computer programming graduates are eligible
to continue education in the third year of bachelor programme upon personal application
only.

Programming, Software Engineering, Project courses and Capstone project make the
core, and other elements of body of knowledge supports them.

Discrete mathematics is integrated into the introductory curriculum.
Mathematical rigor and scientific method are emphasised.
Familiarity with applications, communications skills, working in teams are encour-

aged.

9.2. Differing Aspects

However, there are also several significant differences.
Computing across curricula, i.e., introductory and special courses for non-majors are

not integrated into the UL Curriculum and are not taught by the staff of UL Computer
Science Department. For historical reason, the UL Curriculum still contains much more
mathematics (2–3 times more) than it is required by CC2001. Part of CC2001 core topics
are taught as electives. Working in teams is encouraged but not yet compulsory.

It would be reasonable to reconsider a content of the UL Curriculum in depth to learn
out whether it is or is not reasonable to make respective changes, e.g., to make some
electives compulsory.



42 J. Borzovs

References

www.career-space.com.
ACM Curriculum Committee on Computer Science (1965). An undergraduate program in computer science –

preliminary recommendations.Communications of the ACM, 8(9), 543–552.
Computing Curricula 2001: Computer Science, Final Report. The Joint Task Force on Computing Curricula of

IEEE Computer Society and Association for Computing Machinery, December 15, 2001, 240 pp.
Tucker, A.B., B.H. Barnes, R.M. Aiken, K. Barker, K.B. Bruce, J.T. Cain, S.E. Conry, G.L. Engel, R.G. Epstein,

D.K. Lidtke, M.C. Mulder, J.B. Rogers, E.H. Spafford and A.J. Turner (1991).Computing Curricula’91.
Association for Computing Machinery and the ComputerSociety of the Institute of Electrical and Electronics
Engineers.

Computer Science Bachelor Study Programme. University of Latvia, accredited in 1998.

J. Borzovs has dr. habilitus degree in computer science from University of Latvia (1999).
Currently he is a director(CEO) of Riga Information Technology Institute, deputy di-
rector general in Quality Affairs at a/s DATI, assoc. prof. at University of Latvia and
Riga Technical University, member of Latvian Council of Higher Education, chairman of
ICTE Professional Education Council, memberof Experts Commission for Professional
Education and Employment at Latvian Confederation of Employers. His interests lies
in quality management systems, information technology, software engineering, software
testing, standards, intellectual property rights, ICT terminology, audit and consulting.
Since 1999 he is active also in occupational standards and computing curricula develop-
ment at University of Latvia and other Latvian institutions of higher education. J. Borzovs
has published over 150 papers.

Informatikos mokymo programa: Latvijos universiteto patirtis

Juris BORZOVS

Latvijos universitete informatikos mokymo programa (kvalifikaciniam bakalauro laipsniui

↪igyti) praḋeta taikyti devintojo dešimtmečio pabaigoje. Remtasi keleto JAV universitet↪u infor-
matikos mokymo programomis, stipriai pabrėžiant praktini↪u ↪igūdži ↪u svarb↪a. Mokymo programos
branduol↪i sudaro paskaitos programinės ↪irangos projektavimo klausimais bei kursas apie informa-
cini ↪u sistem↪u plėtr ↪a. Tokiu b̄udu kiekvienas antro kurso studentas (net ir kompiuteri↪u mokslo teo-
retikas), jau gali praḋeti profesionalaus programuotojo karjer↪a. Galima pabṙežti, kad ši pakankamai
sena mokymo programa visiškai atitinkanaujas, 2001 met↪u ACM ir IEEE kompiuteri↪u mokymo
programos nuostatas.


