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Abstract. The definition of effective pedagogical strgiees for coaching and tutoring students ac-
cording to their needs is one of the most important issues in Adaptive and Intelligent Educational
Systems (AIES). The use of a Reinforcement Learning (RL) model allows the system to learn au-
tomatically how to teach to each student individually, only based on the acquired experience with
other learners with similar characteristics, like a human tutor does. The application of this artifi-
cial intelligence technique, RL, avoids to define the teaching strategies by learning action policies
that define what, when and how to teach. In this paper we study the performance of the RL model
in a DataBase Design (DBD) AIES, where this performance is measured on number of students
required to acquire efficient teaching strategies.
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1. Introduction

Web-based education (WBE) is currentlyhat research and development area. They
have two useful benefits: classroom independence and platform independence. Tradi-
tional web-based courses usually are sthyipertext pages without student adaptability.
However, since last ninetieths, severale@sh teams are implementing different kinds
of adaptive and intelligent systems for WBE (Brusilovsky, 1999).

Web-based Adaptive and Intelligent Educational Systems provide intelligence and
student adaptability, inheriting properties fromtelligent Tutoring SystemgITS)
and Adaptive Hypermedia Systenf8HS). “Intelligent Tutoring Systems (ITSs) are
computer-aided instructional systems with models of instructional content that specify
whatto teach, and teaching strategies that spduifyrto teach” (Wenger, 1987). Adap-
tive Hypermedia Systems adapt the content of a hypermedia page to the user’s goals,
knowledge, preferences and other user’stimfation for each individual user interacting
with the system (Brusilovsky, 1999).

Both, ITSs and AHS, share one of the oldest problems at educational systems: the
ITS Curriculum Sequencingvhich goal is to provide the student with most suitable
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individually planned sequeraf knowledge units to learn and sequence learning tasks
(examples, questions, problems, etc.) to work with the AdSptive Navigation Support
(ANS) technology, which goal is to support the student in hyperspace orientation and
navigation by changing the appearance of the pages and their visible links.

In CurriculumSequencinggedagogical strategienust specify how the content is se-
guenced, what kind of feedback is provided, when and how to coach, explain, summarise,
give an exercise, problem, question or analogy, etc. The choice of the best strategy has
been widely studied, but there exist somawdbacks in their definition (Beck, 1998). On
the one hand, it is expensive to encode alhefpedagogical rules that the system requires
to teach effectively. On the other hand, it iffidult to incorporate all the knowledge of
the human tutor and to decide how much strategies are necessary, the differences among
them, the moment to apply them, why they fail, how to solve them, etc. To overcome the
difficulty derived from the definition and elgon of pedagogical strategies, other artifi-
cial intelligence techniques have been incorporated, like semantic nets, neural nets, and
others (Murray, 1999).

In this paper, we eliminate the pedagogistthtegy concept using a knowledge rep-
resentation based on a Reinforcemegarning (RL) model (Kaelblingt al, 1996) that
allows AIESs to adapt tutoring to student’s needs, sequencing the content in an optimal
way based on the student’s performance, lesson objectives and the relationships between
course modules, avoiding to define all static and predefined pedagogical strategies for
each student (Iglesiast al, 2002). The RL is an artificial intelligent technique that is
able to find the optimal behaviour policy for a system, based only in previous experi-
ence. In this work, an example of an DataBase Design (DBD) AIES is presented and
some experiments on how the tutor learntei@ch by trial and error at the same time that
simulated students learn AIES’s contents are explained, where the main goal is to deter-
mine how many students are necessary for the AIES convergence to the optimal policy
on teaching the system’s contents. This wilba to conclude if it is viable to apply this
method in real tutoring systems applied on real students.

The paper is organised as follow: first, the architecture of the DBD AIES used in this
work and the reinforcement learning model described in Sections 2 and 3 respectively.

In Section 4, the definition of the DBD AIES system as a reinforcement learning problem
is defined. Then, different experiments using different learning parameters of the system
are presented in Section 5, and finally, the main conclusions and further research of this
work are given.

2. Architecture of an Adaptive Intelligent Educational System

A typical structure of an ITS, and hence, of an AIES, is composed of four well diffe-
rentiated modules (Burns and Capps, 1988). Stuelent moduleontains all important
information about the student in the learnimgpcess: student knowledge, personal cha-
racteristics, historical behaviour, etc. Tinéerface moduléacilitates the communication
between the AIES and the student. Td@main modulecontains all characteristics of
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the knowledge to teach. Finally, tipedagogical moduldecidesvhat howandwhento
teach the domain module contents, takingltle&ter pedagogical decisions according to
the user needs.

2.1. Student Model

It is necessary, for the effectiveness of this proposal, to construct agjoddnt model

and to classify learners according to their critical characteristics in learning the AIES
knowledge. A great variety of student models and techniques have been studied (Sison
and Shimura, 1998), and any classification technique, like C5.0 (Quinlan, 1993) or Rein-
forcement Learning techniques (Beck, 20a®uld be used to assort students according

to their learning characterisicThat is to say, the learning process of all the students of

a certain class will be similar.

For instance, three classes of students can be defined, depending only on two charac-
teristics (in order to simplify the example): what kind of tasks must be used in order they
learn (definition, introduction and problem) and what format the material must be shown
(video, text, etc.). Table 1 shows the three classes of students, where the 100% of the
classistudents require théefinitiontask and thevideoformat to learnClass2students
require, likeclasslstudents, only theefinitiontask, but a 95% of them learn only with
thevideoformat and at the other 5% learn only wittxtformat. Finally,class3students
requiredefinitionsandintroductions both with a percentage of 50%, and trideoand
textformat with a percentage of 75% and 25% respectively.

2.2. Domain Model

AIES knowledge is stored in théomain moduleThe traditional knowledge structure
based on topics, sub-topics, tasks, etc. could be an advantage in the pedagogical strategy
in AIES. That is why we propose to use this hierarchy to define the tutor system'’s objec-
tives. Fig. 1 shows a proposal of a hieramaiknowledge structure, where each topic has
been divided into sub-topics, and these in others sub-topics, and so on. At the same time,
each node of the tree contains sets of definiti@xamples, problems, exercises, etc. in
several formats (image, text, video, etc.).

Table 1
Student classes and their characteristics

Student Classes Tasks Formats
Class 1 Definitions Video
Class 2 Definitions Video (95%) & Text (5%)

Class 3 Definitions (50%) & Introductions (50%)  Video (75%) & Text (25%)
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Fig. 1. Hierarchical structure of knowledge.

Database Design (DBD) domain have been proposed as example of an AIES domain.
This domain has been included too in PANDORA projg@astroet al., 2002), whose
main goal is to define methods and techniguesdatabase development implemented
in a CASE tool, useful for students andaptitioners, where one of the modules of this
project is concerned with tutoring student learning via web.

The knowledge model used for this system is based on the methodology proposed by
Teorey (Teoregt al,, 1986) in which three main phases in the database design are defined:
conceptual, logical and physical phases. In order to simplify the example, we focus at the
Entity Relationship (E/R) model (Chen, 1976), and, exactly, onGbrceptual Design
topic. In Fig. 2, the AIES DataBase Design knowledge of the example is presented.

In order to experiment with the convergence of @dearningalgorithm in this sys-
tem, we have worked with two reduced knowledge model. Ahraodelof knowledge
(see Fig. 3) presents only three topics, but each one of them has tendafkgifns,
introductions and problemghat can be shown to the student in order to teach him/her
this knowledge material. In the other hand, Benodelof knowledgepresented in the
Fig. 4 has eleven topics, baach topic only has two tasks for their execution, to be exact
only onedefinition but in two different formatstextandvidea

2.3. Interface Model

In the interface modelthe AIES adapts the content of a hypermedia page to the user’s
goals, knowledge, preferences and othargssinformation for each individual user in-
teracting with the system, changing the appearance of the pages and their visible links.

In the experiments presented at this paper, we have not used the interface model,
because the system have interacted with fated students. Now, we are building an
interface model in order the real students can learn the system’s contents.

1CASE Platform for Database development and learning via Internet. Spanish CICYT project (TIC99-
0215).
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Fig. 4. B-model of knowledge.

2.4. Pedagogical Model

In the pedagogical modelthe AIES finds the best way to teach tkeowledge items
corresponding with the internal nodes of the tree (topics), to the current student. The def-
inition of this problem as a Reinforcement Learning problem is fulfilled in the Section 4,
where a guide to apply Reinforcement Learning model in Intelligent Tutoring Systems is
given, defining the RL components introduced in next section.

3. Reinforcement Learning
Reinforcement Learning (RL) defined as follows (Kaelblingt al., 1996): “an agent is

connected to its environment via percepti@nd action. On each step of interaction the
agent receives as input,some indication of the current state of the environment; the
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Table 2
Q-learning algorithm

Q-learning Algorithm

e Foreach pair{ € S, a € A), initialise the table entr@(s, a)

>  Observe the current state,

> Do forever
—  Select an actiory, and execute it
— Receive the immediate rewarnd,
—  Observe the new state,
—  Update the table entry f@(s, a) as follows:

Q(s,0) = (1 - @)Q(s,a) + a {r + ymaxy Q(s',a')}

— Setstos’

agent then chooses an actianto generate as output. The action changes the state of the
environment, and the value of this state 8ition is communicated to the agent through a
scalamreinforcement signal-. The agent’s behaviouR3, should choose actions that tend

to increase the long-run sum of values of thinforcement signal. It can learn to do this
over time by systematic trial and error, guided by a wide variety of algorithms.”

3.1. Q-learning Algorithm

Updating the action policy can be performed by different algorithms, for instance, the
Q-learning algorithm (Watkins, 1989). This algorithm allows to learn directly from the
experience (systematic trial and error) with others students with similar learning charac-
teristics. It is based on thealue-actiorfunction,Q(s, a), to define its action policy. One

of the main characteristics of this algorithm is that it does not require that system executes
optimal sequences to converge (Mitchell, 1997), being able to learf) fls@ction and,
therefore, the optimal policy. This is very important for ITS, given that learning is based
on the interaction with users, and this implies a high cost.

The Q-learning algorithm is described in Table 2. It requires the definition of the
possible statesy, the actions that the agent can perform in the environmé&rand the
rewards that it receives at any moment for thates it arrives to after applying each ac-
tion, r. It dynamically generates the action-value tali}s, o), that allows to follow a
potentially optimal policy. The parameter controls the relative importance of future ac-
tions rewards with respect to new ones, arghrameter is the learning rate, that indicates
how quickly the system learns.

4. Application of Reinforcement Learning in Adaptive and Intelligent Educational
Systems

In this section, we define how the Reinforcement Learning model is applied in Adaptive
Intelligent Educational Systems and how thdearning algorithm is adapted to the tutor
domain.
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4.1. Reinforcement Learning Components

In this section, the components of a reinforcement learning problem in the database de-
sign adaptive intelligent educational system environment are defined.

1. Set of statesS). The state is defined as the description of the student knowledge. It
is represented by a vector which stores as ymapresentative values of learner knowl-
edge items (internal node of the knowledge tree) as is wished the student learns. In order
to simplify the example, it is supposed that these values are defined in the set {0,1}. The
items of the knowledge tree are enumerated ipr@rorderway. The zero value indicates
that the student does not know the item, and the one value indicates that the item has been
correctly learned.

2. Set of actions4). The actions that the tutor can execute are those that teach the ITS
subject, i.e., to show the knowledge items defined in the leaves of the knowledge tree. It
is allowed to shownacro-actionsthat define a set of leaves of the tree that will be shown
at the same time. It is necessary to know if a leaf of the tree has been shown to a student,
because it affects on the state of the systBor instance, a student could learn a topic
just after teaching him/her a leaf, but he/stwaild understand it thanks to the fact that
previously, the system has shown him/her another topic. Thus, let us suppose a system
with the macro-actions allowed to teach theit 1 (E/R model) of the reduced A-model
of knowledge model (see Fig. 3) defined in Table 3. There are actions composed by only
one leaf and actions composed by several leaves. Let us suppose, that the student is in a
states and the system executes the actil i.e., the system shows to the student the
definition one (defl). If the student would not learnt the item, the system have to execute
another action that will content the previous one, for instance, aéfion

3. Perception of the environmefif: S — S). This function indicates how the AIES
perceives the state the student is into. In order to perceive the consequences of the ex-
ecution of to evaluate the student knowledge, a given action is required. The only way
an AIES could perceive the knowledge state of the student is through evaluating his/her

Table 3
Macro-actions fotopiclof the A knowledge model

Al = to show the Definition in a Text format

A2 = to show the Definition in a Video format
A3 = to show the Introduction in a Text format
A4 = to show the Introduction in a Video format
A5 = to show the Problem in a Text format

A6 = to show the Problem in a Video format

A7 = to show theA1+A3 at the same time

A8 = to show theA2+A4 at the same time

A9 = to show theAl+AS5 at the same time
A10= to show theA2+A6 at the same time
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knowledge by tests (presented by shadow shapes in the Fig. 1 and Fig. 2). Each knowl-
edge item in the ITS has associated a set of tests, that will allow to evaluate how much
the student knows about the item. These tests will be centred in the last action executed
by the AIES, assuming that other student capabilities evaluated before do not vary from
the last evaluation. However, this could be false, varying them. This problem implies that
an AIES could receive from the environmenttegwith different levels of information,

that could make the system not to differentiate some states from others, or perceiving two
different states as equal (POMDPs: Parti&llyservable Markov Decision Problems), as

it happens in teaching with human tutors. Toi this problem, there will be necessary

to accomplish continuous re-evaluations.

4. ReinforcementR: SxA — R). This function defines the reinforcement signals
(rewards) provided by the environment. This reinforcement function supplies a maximum
value upon arriving to the goals of the tutor; in conclusion, the aim of the AIES will be to
maximise its long term reward. For example, following knowledge tree defined in Fig. 3
a goal for the tutor would be that the user learns the “Entities” item, receiving only a
positive reinforcement signal when the component of the state vector in this item is one. It
is only in this moment when the teaching praeésconsidered finished. The application
of the reinforcement signal is a key issuethe learning techgue, because to decide
when and how to apply the reward is crucial for the learning system. The AIES learning
is a delayed positive reward problem, given that it is impossible to know the kindness of
the actual state perceived immediately after performance of an action. So, the system
does not immediately know whether it has achieved its goal after executing an action,
since it might be only achieved (or not) after the execution of several ones. Furthermore,
a higher reinforcement signal will be applied when the student may have learnt in less
time and better (positive impact on achieving the goal).

5. Value-action function@: SxAxII — R). This function estimates the usefulness
of showing leaves of the tree to a student when he is in certain knowledge state. This
function provides an evaluation method for the tutor action policies. Therefore, the goal
of the learning process is to find the policy such that it maximises this function, i.e., to
obtain the optimal value-action function.

Inits learning, the AIES uses the state descriptirag input of the function approxi-
mator ), using this function to select a teaching actiai @After executing actions, the
student changes its state to the new one perceived by the AIES (using tests). Depending
on the kindness of the state reached in ordeattain the goals, the system will receive a
positive or null reward.

In (Iglesiaset al,, 2002) appears an example of the learning to teach process of an
Database Design ITS with th@-learningalgorithm.

4.2. Adaptation of the Q-learning Algorithm
In this section, how th€)-learning algorithm is adapted to the tutor domain is explained.

In Table 4 a comparison of the theoreti¢allearning algorithm and the adapt€dlear-
ning algorithm to de AIES domain is presented.
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Table 4

Adaptation of theQ-learning algorithm to AIES domain

Q-learning Algorithm

Q-learning adapted to AIES domain

° For each pair{ € S, a € A), initialise —
the table entnQ(s, a)

>  Observe the current state,

> Do forever

— Select an actiong, following an  —
explotation strategy, and execute it
— Receive the immediate reward, —

!

!

— Observe the new state, —

— Update the table entry fa@p(s, a) —
as follows:
Q(s,a) = (1 - a)Q(s,a
+a{r +ymax, Q(s’,a')}

—Setsto s’ —

For each pair{ € S, a € A), initialise
the table entrnyQ(s, a)
Test the current student knowledgé,
Do forever
—Select a set of knowledge tree
leaves,a, to show to the student.
— Receive the immediate reward,
A positive reward is received when
the AIES goal is achieved. A null
reward is obtained in any other

case.
—Test the current student knowl-

edge,s’.

— Update the table entry f@(s, a),
that estimates the usefulness of ex-
ecuting thea action when the stu-
dent is in a particular knowledge
state:Q(s,a) = (1—)Q(s,a)+
a{r+ymax, Q(s',a’)}

— Let uss the current student knowl-
edge states’.

5. Experiments

In this section we present the experiments carried out on the AIES learning process. First,
the learning variables are explained and finally, the experimental results are discussed set-
ting our attention specially in how these variables affect the system learning convergence.

5.1. Learning Variables

It is very important to define the learning variables of our experiments and how they can
vary. We have chosen four learning parameters to study:

e Domain size: In the experiments, we are going to useAhe@nd B-models of
knowledge described in Fig. 3 and Fig. 4, respectively, and explained at Section 2.2.
The A-domain model has only three topics, but thirty actions to execute (tasks) and
the B-domain model has eleven topics, but only twenty-two tasks.

e Determinism of students learning capability: When usingQHearningalgorithm
in a given domain, it is very important to define if the execution of an action when
the agent is in a given state, does or not always arrive to the same state. When it
does not achieve always the same statecalise of noise associated to perception
and actions. This implies that the reward of executing an action in a given state can
be different depending on whether the next observed state is a goal state or not. In
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Adaptive and Intelligent Educational System, like at Intelligent Tutoring Systems,
there exists indeterminism in actiongdause their execution could arrive to dif-
ferent final states due, for instance, to tliféedent students learning characteristics
(the student can learn or not the item, with different results on the tests). In the
experiments we have used the three stiidtasses defined in Section 2.1, each of
them with different determinism level.

e Exploration versus exploitation: Exploration implies to try new alternatives, while
exploitation implies to use pre-acquired knowledge. It is important to define the
exploration/exploitation system stratelgecause it influencesdhearning rate and
its quality. In our experiments, we are going to useeetreedyexploration policy,
where the: parameter indicates the probability of choosing the action with the best
value of Q(s, a) being at thes state at this moment. We are going to vary the
parameter from the value 1 (when the system choose the next action to execute
randomly) to the value 0.1 (when the system choose the next action trusting in the
Q values obtained by the previous experience).

e The learning rated): This parameter indicates how quickly the system learns.
We are going to vary the. parameter of th&) update function@(s,a) = (1 —
a)Q(s,a) + a{r +ymaxy, Q(s',a’)}) at Q-learningalgorithm from the value
0.9 (when the system quickly learns) to the value 0.1 (when the system learns to
slowly teach).

5.2. Experimental Results

In this section, the results of the experimentation varying the learning parameters of the
system described in previous section are commented. All of these experiments are going
to show how these parameters affect the convergence of the AIES learning, dealing with
the goal of the AIES: to minimise the time sgén teaching process, using less actions
as possible. Therefore, the goal of these experiments is to analyse the number of students
needed to use the system untétAIES learn to teach optimally.

We divide the experiments in two groups: the experiments wititheodel of know-
ledge and the experiments with the domain model:

5.2.1. A-model of Knowledge

In the first set of experiments (see Figs. 5, 6 and 7), we have usettihedel of knowl-

edge shown in Fig. 3 and we have fixed tigarameter of the-greedyexploration policy

to 1 (the system randomly choose the next action to execute). The goal is to obtain the
learning curve of the AIES in order to study how many students must work with the AIES
in order the AIES learns an optimal pedagogical strategy on teaching policy for each class
of students.

¢ Fig. 5 shows learning evolution of the system interactions elaksistudents (see

Table 2). We can see different learning evolution depending on learning.réite
can observe that when de valuecofs high, the curve decreases faster than when
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de value ofa is low, because the system learns slower. Furthermore, the figure
shows that the average number of actions needed to arrive to the AIES goal is 3,
and that the system learns to teach optiyrll topics when only six students have
interacted with de tutor itv > 0.5. Whena = 0.1, the system needs Idassl
students to effectively teach.

e In Fig. 6 the AIES learning evolution for interactions wittass2students (see
Table 2) is represented. From this figure, we can affirm that the best policy for this
kind of student needs to show an average of four tasks, and when the learning rate
(«) is equal to 0.1, the system learns slowly. When the system has interacted with
63 students, it has not learn the best policy.

e InFig. 7, itis represented the system learning evolution when the tutor is interacting
with students otlass3(see Table 2). It is shown that the actions for these students
have a high level of indeterminism, and this is why the curve has a lot of “pikes”,
that represent changes at the action policy of the system. Moreover, we can observe
how the system learns more constantly whes 0.1, obtaining the optimal policy
when the system needs six actions to arrive the goal with 36 students.

Next, we have modified the parameter of the-greedyexploration policy, and we
have used the reducettmodel of knowledge in Fig. 3.

¢ In Fig. 8 we present the learning evolution of the system, wikass3students
interact with the tutor. We have fixed the learning rate paramefeto(0.9 (the
system learns quickly). In this figure we can observe that when0.5, the tutor
keeps in a local minimum (of eight aotis), because it does not explore enough,
and that is why is does not reach the optimal policy (six actions) when 72 students
have interacted with the system.

e In Fig. 9, a comparison of the learning curve when the three classes of stu-
dents interact is presented. We havedixn this experiment the parameters-
1(randomly) andv = 0.9 (learns quickly). Seeing the graphic, we can conclude
that the tutor learns slower when indeterminism in actions exists.

5.2.2. B-model of Knowledge

In the second set of experiments, we have used the redgieaddel of knowledge shown

in Fig. 4 and we have fixed theparameter of the-greedyexploration policy to 1, as well

as the previous experiment. Due to students usually implies non-determinism in actions,
in the following experiments, we have used only class2 and class3 students.

¢ In Fig. 10, class2students have interacted with our system. We can compare the
learning evolution of Fig. 10 with thei§. 5, because they arsimilar: when the
value of« is high, the curve decreases faster than when de valuei®fow, be-
cause the system learns slower. Furthememtihe average number of actions needed
to arrive to the AIES goal is around 30, and the system learns to teach optimally
all topics when only 18 students have interacted with de tutar i 0.5. When
the system have interacted with 18 students and the learningaats Q.1, the
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Fig. 8. AIES learning curve foA-model of knowledgestudents and. = 0.9. Curve varying the: parameter
of the 1-greedyexploration policy.
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Fig. 9. AIES learning curve foA-model of knowledgestudentsae = 0.9 ande = 1. Comparison of the
indeterminism in actionfor different students.

systems needs to teach all the topics executing approximately 60 tasks, that is not
a very good teaching policy.

e In Fig. 11, class3students have interacted with the AIES, and, again, we have
modified thea parameter for the learning evolution study. In this figure we can
clearly see how the learning rate affects to the system learning: we observe that the
tutor learns more quickly whem is close to 1 and the tutor learns slower when the
parameter is close to zero. In this way, the learning curve when).9 converges
to more or less 30 actions when 12 students have interacted with the system; when
a = 0.5 the curve converges to the same value when 45 students have interacted;
and whena = 0.1 the evolution curve have not yet converge when 66 students
have interacted with the AIES.

Then, we have modified the parameter of the-greedyexploration policy, where

we have used thé&-model of knowledge in Fig. 4. In Fig. 12 we present the learning
evolution of the system, whemass3students interact with the tutor and we have fixed
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Fig. 11. AIES learning curve foB-model of knowledgestudents and-greedy exploration policy interacting
class3 students

the learning rate parameter)(to 0.9. We can see at this figure that the tutor keeps in
local minimums when the exploration is not complete (wheretharameter is different

that 1 (completely random)): when= 0.5, the tutor keeps on the average of 70 actions;
whene = 0.5, the tutor keeps on 100 actions, but at the 69 students, the system changes
its action policy and decrease to 78 actions; finally, when the tutor randomly chooses the
action, the system achieves the optimal policy of around 30 actions.

To conclude, we have done experiments paning the learning curve when class2
and class3 students interact with the system. For this experiment, we have fixed the pa-
rameters: = 1(randomly) andv = 0.9 (learns quickly). In Fig. 13 we can see how the
two curves converge at the same time.
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Fig. 12. AIES learning curve foB-model of knowledge class3tudents andv = 0.9. Curve varying the
parameter of th&-greedyexploration policy.
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Fig. 13. AIES learning curve foB-model of knowledgestudentsae = 0.9 ande = 1. Comparison of the
indeterminism in actionfor different students.

6. Conclusions and Further Research

In this paper we propose the use of a Reinforcement Learning model that avoids the
problems derived from construction of difést pedagogical strategies for each student

in adaptive intelligent educational systems. This model consists on defining the pedago-
gical module of any AIES (domain independent) as an action policy learned by trial and
error (as human tutors do), applying the reinforcement learning model to the pedagogical
module of the Adaptive Intelligent and Eduicaal System. The use of reinforcement
learning techniques provides many advagetaon the techniques of traditional dynamic
planning. First, it avoids the cost associated to rules construction and heuristic creation
for each teaching strategy adapting to tleeds of each student. Second, it allows the
system to individually adapt to the student in real time, based only on previous informa-
tion of interactions with other students with similar characteristics. Third, the system is
able to adapt to the user not only deciding what to show, or when to show a given knowl-
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edge, but also how to do it. Fourth, the system updates tutoring models that serves to
generalise teaching interaction over several sitglef a particular classification. Finally,

it is considered a general technique, that can be applied in any ITS independently of the
domain.

This paper exposes an example of an AIES (a database design adaptive and intelli-
gent educational system) and system executions with simulated students. We have done
experiments with some parameters of the learning algorithm in order to study their effects
at the convergence of the system and, at the same time, we have experimentally shown
that AIES can learn an optimal policy to teastudents interacting with reasonably few
students. This makes possible its implementation in AIES with human students.

Actually, we are involved in the evaluation of the system with real students instead of
simulated students and the study of hierarchical or compositional reinforcement learning
algorithms.

Acknowledgements We thanks Juan Carlos Martinez for his support on the imple-
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Sustiprinto mokymo modelio taikymas ziniatinkliu pagristose
adaptyvinese ir intelektinese mokymosi sistemose

Ana IGLESIAS, Paloma MARTINEZ, Fernando FERNANDEZ

Vienas svarbiausi uzdaviny taikant adaptyvines ir intelektines mokymo sistemas (AIES)
yra pasirinkti tinkana pedagogia studeny mokymo strategd. Taikant sustiprinto mokymo
model, sistema automatiSkai iSaiSkina, kaip mokyti kiekaestuderd individualiai, remiantis
jau igyta patirtimi mokant kitus panagisugeljimu studentus, — lygiai kaip elgsi ir mokyto-
jas. Sustiprinto mokymo modelio taikymas nereikalauja i$ladsijusi) su taisykly kurimu ar
kiekvienos mokymo strategijos euristine analize, kutiéutsiekiama iSsiaiskinti ko, kada ir kaip
reikety mokyti kiekviera studerd. Be to, sustiprinto mokymo modelis leidzZia sistemai taikytis prie
studento individualiai — ianalizuojamas pries taigylpanasaus gajum) mokiniy mokymas. Sia-
me straipsnyje aptarta adaptywinir intelektiniu mokymo sistem strukura bei iSnagriata, kaip
sustiprinto mokymo modelis yra taikomas bet kuriam adaptyvéisteny pedagoginiam moduliui
(Sios sistemos technika galith pritaikoma mokant daugelio discipliiy, pasitelkianQ-learningal-
goritma. Pateiktame pavyzdyje paaiSkintas sustiprinto mokymo modelio vaidmuo, kai sistema taiko
bausmes nepazangiems studentais. Su kai kuriais algoritokymosi parametrais buvo atlikti
eksperimentai, siekiant istirtyjdarona itaka sisteny konvergencijai, iSsiaiSkinti sistemos efek-
tyvumo kriterijai bei patikslinta, kiek sistemaykdé veiksmy mokydama studentus atitinkam
dalyky. Siame straipsnyje eksperimentidkai parodyta, kad sustiprinto mokymo modelio taikymas
adatyvirese mokymo sistemose leidZia Siai sistemai parinkti optanstiideni mokymo strate-
gija, yp& kai su Sia sistema dirba nuowskstudentai. Aprasgji modei galima taikyti internete.



