
Informatics in Education, 2003, Vol. 2, No. 2, 161–180 161
 2003Institute of Mathematics and Informatics, Vilnius

Intelligent Agents for Distance Learning

Analía AMANDI, Marcelo CAMPO∗, Marcelo ARMENTANO,
Luis BERDUN∗

ISISTAN Research Institute, Facultad de Ciencias Exactas, UNICEN
Campus Universitario, (B7001BBO) Tandil, Buenos Aires, Argentina
e-mail: {amandi,mcampo,marmenta,lberdun}@exa.unicen.edu.ar

Received: March 2003

Abstract. Distance learning involves a lot of work of human assistants. These assistants need to be
connected for answering studentdoubts and questions. Intelligent agents can do part of this repe-
titive work because they can observe students interacting with educational courses, detect learning
troubles of these students, and then suggest them some way for overcoming those troubles. How-
ever, a design problem appears with this promisedpossibility: how toconnect educational applica-
tions with these agents. This paper presents a solution to this problem, in which both the capture
of student’s intentions and agent intervention for helping students are specified. These two archi-
tectural design points are defined as connection points. The first connection point is named student
intentions. Student intentions define situations in which agents might help. This connection point
depends on the user interface of the educational application that students are using; the agent needs
to know the gestures that students could do for interpreting their intentions. The second connection
point is named agent interventions. Agent interventions define the context in which agent might as-
sist and the type of help that might give, like a suggestion or a warning. This solution is introduced
in the context of one specific application for distance learning named SAVER, which is used for
exemplifying each architectural design point.

Key words: intelligent agents, distance learning.

1. Introduction

Web-based distance learning technologies are producing a new revolution in the way
knowledge can be spread out among very different and distant communities. It brings new
teaching-learning odds and knowledge diffusion into the open in a wide range of topics,
becoming strategic for promoting a meaningful development, particularly, in underdeve-
loped countries. In order to mediate in the distance-teaching process, a variety of software
platforms have been developed providing from courses visualizations to teachers-students
communication support.

The facilities given by those distance-teaching platforms provide, however, minimal
advantages that we can get from a software system. The not so new intelligent tutorial
proposals give the basis to the definition of components that facilitate the coalescence of
teaching strategies and students’ models toconduct the teaching thematic of the tutorial.

* Also CONICET

162 A. Amandi, M. Campo, M. Armentano, L. Berdun

Despite this advantages, innovations in the intelligent agents field (Wooldridge, 1999),
particularly a subtype of these named interface agents (Maes, 1994; Lieberman, 1997),
can give us an additional advantage that would have a favorable effect on the teaching-
system quality giving a personalized assistance to students.

Extending the distance-learning platforms with agent technologies opens new possi-
bilities in the educational prospect, complementing the required processes of training and
personalization. Agents transform distance-learning systems from communication and
information media to systems with active elements that take part in the learning-teaching
process.

We say that these agents are active elements because of their autonomy. Agents can
intervene in the learning-teaching process when they detect an opportunity to collabo-
rate. Collaboration is made in a personalized fashion as they become acquainted to the
students, building a profile and acting according to it. The student profile holds both per-
sonal interests and the way is the student learning. In this way, a student assisted by an
agent uses a tutorial course through Web interfaces, performing different learning activ-
ities that the agent will evaluate to give advice and help the student. For example, if the
agent detects that the student have difficulties in a specific topic, it can suggest her what
to read or what exercises or activities she should accomplish before going forward into
the course contents.

Researchers in the agents field have experimented with different kind of agents dur-
ing the last decade, for example (Lieberman, 1995; Pannu and Sycara, 1996; Chen and
Sycara, 1998) and (Godoy and Amandi, 2000). However, few of these researches were
made on the educational domain (Johnson and Shaw, 1997; Shawet al., 1999; Johnsonet
al., 2000) and always restricted to a specific course. Providing this kind of components
in a distance-learning platform should improve its quality because it supplies personal-
ized assistance (Guey-Fa, 1993). Nevertheless, to achieve this goal we have to solve the
problem related to the connection of a basic educational system to assistant agents.

Our work tries to formalize the process of connecting students’ assistant agents to edu-
cational systems. These agents will behave towards the difficulties in the student learning
in a customized way. To work on this intelligent platform, our University count with a
distance-learning system called SAVER, developed at the ISISTAN Research Institute
(Campoet al., 2002a). We enhanced this system with agents that assist students in the
learning process.

The paper is organized as follow. Section 2 presents the educational context of the
proposal. Section 3 introduces the assistant agents. Section 4 exposes the educational
web application used as base application for connecting the proposed agents. Section 5
analyzes the troubles that developers have to face for adding these agents to educational
applications. Section 6 presents our proposal about the connection of educational appli-
cation with assistant agents. Finally, Section 7 details our conclusions.

2. Educational Agents

Information and communication technologies have supplied us with new didactic alter-
natives in the learning-teaching process, dueto the facilities, advantages and opportuni-

Intelligent Agents for Distance Learning 163

ties that they offer for information spreading, access, processing and production, under
a communicational paradigm. The educational use of these technologies requires two
pedagogical-communicative models: one related to the information spreading and the
other one related to the tutorial dialog communication, with an optimum interaction be-
tween them (Mayer, 2000).

Many courses in the Internet are based mainly on the visual design. Two maincommon
sense ideas underlay this designs: a) the mere use of the computer promote learning and
b) the showy appearance of the information contribute inevitably to a better learning.

Frequently, courses spread out on the web are created converting the content of ex-
isting distance or in attendance courses to electronic format, without any considera-
tions about the context differences regarding to modality and/or the used media. Other
courses include student-teacher communicative elements. In general, these developments
are short or even lack of a didactic web-based design that considerate the specific prob-
lematic of distance learning using these media. Moreover, very few of them take into
account any kind of virtual tutor materialized as a software agent.

The organization of the course, learning activities and materials, communication, eval-
uation and the teacher role are the main factors that intervene in the distance-learning
process, particularly through the web. The acquisition of relevant data related to these
factors during on line classes will facilitate the obtaining of objective information that
would allow us to trace strategies for the web courses design. From this information we
would be able to measure the efficiency of a virtual teacher, personalized by a software
agent.

In this context, it is important to know the properties that should have the learning
activities (Jonassen, 2002) and communication strategies (Peal and Wilson, 2001). It is
for favoring the meaning learning (Ausubelet al., 1983) of the knowledge in the Internet
distance learning way, provided with a virtual teacher materialized in a software agent.

3. Interface Agents

Interface agents (Maes, 1994; Lieberman, 1997) are computational components that act
like human assistants. Thus, a user working on a given application (that we named base
application) is helped by an agent. For achieving this goal, the agent needs to know the
preferences and habits of its user. Therefore, the agent observes its user acting on the base
application and then generates a user profile. Form this profile, the agent personalizes her
assistance.

A classical example of this type of agents is the secretary agent. In this context, you
could consider a user is using a system for organizing her calendar. An agent can ob-
serve, like a human secretary, the followingsituations: when the user cancels a meeting
because she has something else more important, when she doesn’t accept to participate in
a meeting, when she arranges short meetings. Thus, with those and other data the agent
knows the human that assists, and collaborates with her like a human secretary. Here the
base system is the calendar system and the secretary agent has the functionality of, for

164 A. Amandi, M. Campo, M. Armentano, L. Berdun

example, to suggest a change of appointments when an invitation arrives to a meeting the
user considers important.

The secretary agent, for example, should learn about what sort of meeting is more im-
portant for its user and how this relevance will change in different contexts. Furthermore,
the agent has to consider when she has an intervention chance to serve the human she is
assisting to. For example, she can present a suggestion autonomously.

In the educational context of a tutorial system, we have detected a kind of agent that
will help the students. The base application that we use is called SAVER, and was devel-
oped in our institute. The next section gives architectural details of this system and one of
the problems that will be tackled in this work to connect the agent to the base application.

The agents proposed here for student assistance would have to learn how to contribute
to the learning process. Thus, each instance of these agents will be in charge of one stu-
dent, and will learn from her observation. Each agent will record when the student she is
assisting reads a subject, do exercises, do evaluations, read a subject again. Additionally,
she will record sequences of these tasks, dates and time spent in each one. Using this
information, she will search for patterns that will allow she to assist the student in the
learning process. The agent for building the student profile, which will continue consol-
idating, or altering with time, will use the mentioned patterns. In the profile, the agent
also record a level of confidence of each detected pattern, which strongly depends on the
number of items that support that information, and on the number of against evidences
that may occur. From the previous explanation we can deduce that profiles will evolve
with time, as occur with a human assistant that is becoming familiar with her boss. In the
same way that a human assistant is more efficient when she knows more about her boss,
the more a computational agent knows her user, the more efficient it will be.

We have presented a general overview of our proposal of adding agents to make dis-
tance learning as similar as possible to attendance education. In the following section, we
will expose the base application we will use, and then we will detail the proposed kind of
agent.

4. Teaching Platform Used as Base Application

The distance learning with virtual access system, named SAVER, is a platform developed
at the ISISTAN Research Institute to support common distance learning activities. It is
implemented in JAVA, and provides traditional web-based services to remote access to
courses, automatic evaluations, chat, forums, collaborative working support, Microsoft
WordR©interface for courses edition, different kind of user management, among others.
The distinctive feature of SAVER is that it is built up using an event driven architec-
ture that enables behavior using composite autonomous units, supported by the so-called
Bubble framework1 (Campoet al., 2002b; Diaz Pace and Campo, 2001a; Diaz Paceet
al., 2001b), also developed at the ISISTAN. This software architecture provides SAVER
with flexibility and adaptability facilities hard to find in other existing platforms.

1A framework is made of a set of abstract classes and other components that encapsulates behaviour patterns
that combine objects in collaboration groups.

Intelligent Agents for Distance Learning 165

The main goal ofBubble is allow us to define and organize a set of computational
units (CU for short) modeling processes in which many individuals intervene and simu-
lating its global behavior from their interaction. These units are basically active objects
implemented as lightweight processes (threads).

The central goal ofBubble is to provide a reusable support that intends to:
• provide extensibility and flexibility to easily add new components and substitute or

improve existent ones;

• have reusable components that can be used on other similar models;

• model a specific problem in different levels of abstraction;

• integrate to the model visualization tools, data gathering inspection, etc.

The computational units are the basic units of the application and are characterized by
an internal state and a set of tasks to perform. There are also composed CUs, that are CUs
that contains within them groups of units. These composed units lead us to different levels
of abstraction modeling using hierarchical structures. The interaction mechanism used is
event driven: each CU has a set of associated sensors registered to different events that
they are interested in receiving. There is an implicit invocation mechanism that allows
the CUs being notified of the events perceived by its sensors.

Behavior is defined using a set of tasks, each organized using a precondition-action
scheme. A task defines a set of actions to be performed by a CU when certain precon-
ditions are satisfied. These preconditions are related to the internal state of the CU, and
to the perceived events. Furthermore, we can define composed tasks that encapsulate a
network of existing tasks. This allows us to compound and relate different behaviors.

Each participant, student, teacher, tutor, etc. in SAVER is represented by an CU that
defines the functions that she can perform inthe system, check up access security aspects
and monitors all her activities. Using this architecture, SAVER can be extended with new
functionalities and kind of participants.

Specifically, the CU mechanism can be extended to model intelligent behaviors such
us those proposed in this project. New kind of artificial participant, we mean educational

Fig. 1. SAVER architecture.

166 A. Amandi, M. Campo, M. Armentano, L. Berdun

agents, can be added to provide new kind of interactions. However, adding that kind
of participant requires adapting the base application especially in the points related to
coordination and communication mechanismsbetween human and artificial actors. These
mechanisms need to be researched.

5. Problems of Agents as Distance Learning Assistants

Current distance-learning tools have not personalized assistance. The proposed kind of
agent’s goal is to face this problem. However, once the goals of these agents have been
set up, we have to face new problems that arise from their materialization.

The agent assisting a student has to learn at least:
• what knowledge has her;

• how she master the subjects of the course is taking (i.e., she knows them in theory
or she knows their application);

• whether the student can relate concepts, how she prefers facing a new subject (in
theory, in practice, with graphics, top-down in levels of abstraction or a combina-
tion of the above).

As we can observe, the learning of the student capabilities is one problem to be solved.
Then another problem arises: mapping the student characteristics to a student profile. To
solve this problems, we have to face up three specific points: the kind of machine learning
techniques we will use to learn those capabilities, how to represent the student profile of
each user, and how to map the results of the learning algorithms to the user profile.

The user profiles specifications in our students have to be carefully built up taking into
account that the decision algorithms will use them to select the way of action. Hence, we
have to ensure that from the profile specification we can deduce a set of necessary goals
for the decision of the actions to be carried out by the agent or at least the actions that
will suggest performing to the user.

Finally, we have to clearly specify the results’ mapping of the learning algorithms to
the user profile to check that we obtain the expected results. The solution to this problem
strongly depends on the research work about the profile specification.

6. Connecting the SAVER Educational Platform with Assistant Agents

Our approach (Amandi and Armentano, 2003) to attack this connection problem follows
the ideas on collaborative interface agents (Richet al., 2001), as we illustrate in Fig. 2.
This approach intends to imitate the relationships held between humans that are working
together in some specific task involving a shared artifact, as two painters painting a wall
together, or two architects working on a plan together. In our case, a student and an
assistant working together in the learning task.

In this approach, an interfaceagent replaces the human assistant. Both the student and
the assistant agent can interact with the application (the shared artifact), communicate
each other, and observe each other’s actions.

Intelligent Agents for Distance Learning 167

Fig. 2. A student and a computational assistant working on an education application.

These collaborative interface agents are indeed a direct way for solving the several
troubles that students have to face when using web courses. These agents take the role of
a personal assistant helping each student.

Therefore, our primary goal is to join existing educative web applications with the
benefits of agency without much programming effort, and doing the minimum changes
to the application code.

Here we present a proposal to cope with these issues. Our architecture specifies the
components for connecting the educational application with an assistant agent. Fig. 3
presents an overview of our software architecture, showing the main components of the
assistant agent and their relationships. As can be noted there is the clear separation be-
tween the assistant agent and the education web application while the relationships shown
in Fig. 1 still hold.

The main architectural components for the connection are the following: Task Man-
ager Component and Interaction Manager Component. The Task Manager Component
specifies the alternative gestures of the student on the user interface of the application.
The Interaction Manager Component specifies the triggers of the application for inter-
vention of the assistant agent.

Therefore, two main steps are specified formaterializing the connection between the
educational web application and the assistant agent. These two steps are the following:

1. Detection of student intentions.
2. Detection of intervention situations for assisting students.
Firstly, the agentobserves the student using the educational application to detect her

learning intentions. It makes use of the application’stask model to detect how each stu-
dent gesture contributes to the current learning task. Furthermore, the student interaction
with the educational application may serve to enrich the student profile, detecting pat-

168 A. Amandi, M. Campo, M. Armentano, L. Berdun

Fig. 3. The connection architecture overview.

terns in the tasks performed. The task model is an important source of knowledge of the
assistant agent, because it contains information about all possible tasks that the student
can perform.

On the other way, communications with the student are given in two ways. Not only
the student can request help of its assistant agent, or ask it a question, but also the assistant
agent can determine that it can initiate the communication. To do so, it makes use of
different kinds ofinteraction schemes representing intervention situations, along with
schemes of the messages presented to the student.

Notice that there is no need of modifying the application itself to integrate it to the
agent. The “glue” between the application and the agent is given by the task model,
whereas interaction schemes and it presentation in a user-agent communication window
separate of the application prevent us of modifying it to carry out the interaction.

The following sections detail each one of these steps.

6.1. Detecting Student Intentions

The ability to reason about user activities is a key point in the developing of any intelligent
user interface (Franklinet al., 2002). If our assistant agent is able to recognize what
the student is doing, she can act to cooperate. Looking at the tasks that the student is
performing, and reasoning about sequences of actions, the assistant agent can help to the

Intelligent Agents for Distance Learning 169

student. In addition, the understanding of student’s activities provides a context to make
out suitable interventions of the agent and try to be aware of what the student is most
likely to do next.

An assistant agent implemented under our architecture is able to recognize the stu-
dent’s intentions (i.e., the subject she is trying to learn), and analyze the situation to
collaborate with the student.

The task manager is the component of the architecture whose main function is to
recognize the student intention while interacting with the application. To do so, this com-
ponent keeps information about all the possible application tasks, recording them in the
task model, and may be able to identify which of these tasks the student is performing in
any given moment.

In Fig. 4 we extend the part of Fig. 3 related to the Task Manager.
Based on the use of the educational application through its user interface, assistant

agents must recognize which activity the student wants to perform for finding a way to
collaborate. Often, a single action on the user interface is not enough to detect the task
the user is carrying out.

For specifying the possible gestures of a student on a user interface of an educational
application, we use a task model. Each gesture is defined as a task, for instance, a reading
of a given course page. The next section details this design tool.

Then, we define anactive task as a task from the task model that is consistent with
student actions, in the sense that students follow a way in which their intention can be
discovered.

Fig. 4. The Task Manager component.

170 A. Amandi, M. Campo, M. Armentano, L. Berdun

At first, all the tasks are active, because any given event was triggered (since the
student did not execute any action). The task model may consider the way that a student
action can be seen as a contribution to one candidate user activity that represents a student
intention.

We can interpret any student action on theapplication by five different ways:
(1) It is a final action of an active task: current goal is achieved.

(2) It is the transition to a following task of an active task: the active task goes a step
forward. If there is any active task that is not waiting for the last student action, it
deactivates.

(3) Identifies the task the student is carrying out: there is only one active task remain-
ing, therefore the assistant agent is certain of the student’s goal.

(4) Identifies who may perform the current goal or a step in the current task.

(5) Identifies a parameter of current task.

If no one of last situations is given, the assistant agent concludes that the current
action initiates an interruption (Rich and Sidner, 1998), that is, a non-expected action.
The occurrence of interruptions may be dueto actual changes on the task the student
were carrying out or due to an incomplete recipe that does not include the current act
even though it ought to. We assume that, in general, the agent’s knowledge about the task
model will be complete and therefore, the agent should handle a non-expected action as
a change in the student goal.

The assistant agent may also consider that the interruption isdefinitive or transitory.
In the first case, the agent will discard all current active tasks (since the current goal
will not be resumed) and will use the task model to get a new set of active tasks based
on the last student action. On the other hand, if the agent believes that the interruption
is transitory, all active tasks will be kept active with a flag indicating that it could be
resumed or reminded by the agent later on (when the new task is completed, or when the
agent considers appropriate).

6.1.1. Specifying Each Gesture of the Student
A task defines how the student can reach a goal in a specific user interface of an ap-
plication. The goal is either a desired modification of the state of a system or a query
to it.

Given that Graphical User Interfaces (GUI) typically have the goal of supporting a
particular set of human tasks, the first job of a designer that use them is to formalize
this intentions in an explicit task model. An explicit task model can be used to control
the behavior of our assistant agent that helps a student perform typical educational tasks
using a GUI (Eisenstein and Rich, 2002).

There are many different task model representations. In this work, we use a variation
of (Paternoet al., 1997) that expose bellow.

A task is defined by the following attributes:
– name: used to represent the task;

– type: defines if the task is concrete or abstract;

Intelligent Agents for Distance Learning 171

– subtask of: name of the subtask that contains this one;

– steps: a vector of tasks that performed together, under given restrictions, achieve
the task;

– restrictions: a vector of restrictions in the execution order between the subtasks;

– iterative: a Boolean representing the iterative nature of the task;

– first action: a set of possible initial event of the task;

– last action: a set of possible final event of the task.

To build a task model, we have to follow the next three steps:
1. Make a hierarchical logical decomposition of the tasks represented by a tree-like

structure.

2. Identify the temporal relations between tasks at the same level.

3. Recognize the student events that allow advancing from a task to the following.

The operators that we use to describe the temporal relationships are:
– T 1|||T 2, interleaving: the actions of the two tasks can be performed in any order;

– T 1|[]|T 2, synchronization: the two tasks have to synchronize on some actions in
order to exchange information;

– T 1 >> T 2, enabling: when the first task is terminated then the second task is
activated;

– T 1[] >> T 2, enabling with information passing, in this case we want to highlight
that when T1 task terminates it provides some value for task T2 besides activating
it;

– T 1[> T 2, deactivation, when one action from the second task occurs the first task
is deactivated;

– T 1∗, iteration, the task is iterative;

– T 1(n) finite iteration, how many times the task will be performed is specified;

– [T 1], optional task, its performance is not mandatory.

T recursion, the possibility to include in the task specification the task itself.
The first problem that may arise if we simply build task models using these operators,

is the possible ambiguity of some expressions. For example, in Fig. 5(a), we can interpret
the specification in two ways: either(T 1[]T 2)|||T 3 or T 1[](T 2|||T 3).

a) An example of ambiguity. b) Possible solution to the ambiguity problem.

Fig. 5. The ambiguity problem.

172 A. Amandi, M. Campo, M. Armentano, L. Berdun

Fig. 6. An example of a task model ofour educational application SAVER.

To solve this ambiguity we can introduce an abstract task, which disambiguates the
expression, as shown in Fig. 5(b).

For example, in Fig. 6, we expose an example using our educational application
SAVER, in which professor tasks are specified. Temporal relationship between the tasks
is enabling with information passing. Then, the agent can detect the intentions of the
professor for teaching students, which enable the future agent intervention.

6.2. Detecting Intervention Situations for Assisting Students

The interaction between the student and the personal assistant agent determines a mixed-
initiative way of human-computer interaction. In this way, not only the student has the
possibility of requesting help to the assistant, but also the assistant can take the initiative
starting the interaction with the student.

The agent intervention in the activities that the student is performing on the applica-
tion should be carefully designed to ensure that the student feels that she has the control
over the educational application in every moment. It is also important to students to know
when the assistant agent can intervene andhow the intervention is materialized.

An important problem that come up at this point is to specify when the assistant agent
believes it has the expediency of starting an interaction with the student and, moreover,
what kind of interaction take up. If these major aspects about agent interventions are
clear, it is more likely that the student feels to have the control of the system every time.

Both specifying the advice the agent can give and the moment it will interrupt the stu-
dent to show them are two open problems related to the interface with the student. These
two problems involve significant difficulties to be solved to go forward in the state of the
art of interface agents (Lieberman, 2001). Therefore, the second contact point between
our web educational application SAVER and the assistant agent is represented by the sit-
uations that appear in the application that trigger the agent intervention. With the goal of

Intelligent Agents for Distance Learning 173

defining steps to specify these triggers, we first classify the alternative types of interaction
between students and assistant agents and then we define the triggers that materialize this
second connection point. Finally we expose these triggers inside the architecture.

6.2.1. Specifying the Interaction between a Student and an Assistant Agent
Agents can take the initiative during their interaction with student in several ways. We
have detected two types of interactions:Advice andQuery. Each of these interaction types
will be presented in three different ways of abstraction:

Scheme: Interaction is defined in an abstract way by a fact using variables to symbol-
ize application elements that come into play. For example, analyze (Chapter, Subject),
whereChapter is a part of a course andSubject is the topic that this chapter treats.

Instance: is a scheme with all of its variables linked to a concrete value. For example,
analyze (3, “European History”).

Visualization: Is the way the assistant agent shows the interaction to the student. For
example, “I suggest you analyzing the Chapter3 on European History”.

We define both schemes and visualizationsat design time, but instances are created
during the agent runtime.

Advice
Advice type refers suggestions of actions and reports of problems or special situations.
Therefore we consider three subtypes of advice:Suggestion, Warning, andRemainder.

Suggestion
A suggestion is made up of four components:
1. A set of actions expressing that the agent is suggesting.
2. The trigger of the suggestion, that can be a problem, a special situation, or a

student request.
3. A set of facts expressing the context in with the suggestion is given.
4. A set of possible side effects of executing the suggested actions.

For example, a suggestion for the problem of lacking of knowledge could be a mak-
ing of a given exercise, is defined by “make (Exercises, Section, Chapter, Subject)”. A
possible visualization for this suggestion is “I suggest you making the exercises E1 E2,
in Section S2 at Chapter 2 about Stone Age”. The triggers of this suggestion may be
unknown (Subject) or bad-Known (Subject). A possible side effect isbelieve (unknown
(Subject)).

When the assistant agent detects a problem, it can suggest an action or just report
the problem. For instance, the agent may decide to advise the student of the “unknown a
subject” problem instead of suggesting anything to do. We can visualize it, for example,
by “You don’t know about Stone Age”.

Finally, sometimes the student may not take any action, facing up a problem, or may
request the agent some time to treat. In this case, the agent can made use ofremain-
ders, i.e., notifications of an already given problem or special situation. A remainder is

174 A. Amandi, M. Campo, M. Armentano, L. Berdun

conformed by three attributes: (i) the source of the remainder, which could be a special
situation or a problem; (ii) a set of facts expressing the context in which the remainder
has no more sense; (iii) a time interval in which the remainder will be given again.

Queries
The query type refers to interventions in which the assistant agent asks the student
about a situation where the agent is not sure of what to do or what to think about.

A query scheme is described by two components:

1. A sequence of actions expressing the agent doubt.

2. A set of possible instantiations of eachnon-instantiated variable inside the doubt
definition.

If it is the case of not containing any non-instantiated variable, the second component
of a query will be one of the following values:yes, no, sometimes, I don’t know.

For example, know (Hamlet, X) expresses the assistant agent don’t know whether
the student knows about the subjectHamlet. In this case, X could be instantiated with a
number representing the degree of knowledge that the student believes to have about this
subject.

6.2.2. Interaction Triggers
Interaction triggers are facts that stimulate the agent to assist the student. There are basi-
cally two types of triggers: internal and external.

Internal triggers are facts in face of which the agent needs to intercede, initiating an
interaction with the student. This kind of trigger has three subtypes:problem, special
situation, anddoubt.

External interaction triggers are requests from the student to the assistant agent.

Problems
We define a problem as a set of facts representing a conflictive context in presence

of which the assistant agent will act.

An example of problem is, as we mention, the “lacking of knowledge” fact. Its scheme
could beunknown (Subject), visualized, for instance, as “You don’t know aboutSubject”.
Once variables had been instantiated, we will get something like “You don’t know about
Stone Age”.

Special situations
A special situation is defined as a set of facts representing a context in which the as-

sistant agent needs to intervene. Unlike problems, a special situation isnot conflictive.
Rather, it expresses a situation or student behavior unexpected by the assistant agent.

Intelligent Agents for Distance Learning 175

As an example, consider the student answer a question of an exercise in an acceptable
way but there is a better option for that answer. The scheme of this special situation will
be correct (Exercise, Item, Answer) and b-Option (E, I, X) andX �= Answer, visualized,
for example, as “There is a better answer for the ExerciseE Item I”. Once instantiated,
we may obtain “There is a better answer for the ExerciseE25 Itemd”.

Doubts
The doubt is the trigger associated to the Query interaction type, with agent initia-

tive.
Understanding student intentions is the main task of a collaborative agent. There are

only two options when the agent is uncertain about something: ask the student about
her intentions, and infer them from context.

When the information required by the assistant agent can not be obtained from
context, a doubt will be activated. This trigger will stimulate a query from the assistant
agent to the student.

Prompting the student is good in some situations, but the abusing of them may
produce the student tiredness. So, the assistant agent firstly may try to solve the doubt
with the available information.

Suggestion request
The student should have the possibility of asking a suggestion to the assistant agent.

The agent should consider the context in which the request is given to give an appro-
priate answer.

For example, the student may ask the assistant agent to suggest the best page to
learn a specific subject: “Suggest me a page to learn about . . .”. The context the agent
should take into account is the other element of alearn scheme that the user may
already have enter in the application, suchas the subject, or desired knowledge level.
With context information, and the student’s profile, the assistant agent will give a more
effective suggestion.

A suggestion request is made up of two components:
– a set of facts expressing the request, for example best-Page-To-Learn (“Stone

Age”);

– a set of facts expressing the context in which the student made the request.

6.2.3. Interaction Manager Component
Fig. 7 shows an expansion of Fig. 2 related to the Interaction Manager.

In this figure, we can observe the Interaction Manager component of the architec-
ture. In this component, elements that represent triggers for agent intervention are clearly
defined, being explicit their relationships with other components.

Following, we list the steps that we consider necessary for designing this connection
with the application:

– specify schemes of problems that represent triggers for agent intervention;

176 A. Amandi, M. Campo, M. Armentano, L. Berdun

Fig. 7. Interaction Manager Component.

– specify schemes of special situations that represent triggers for agent intervention;
– specify schemes of doubts that represent triggers for agent intervention;
– specify schemes of suggestion request that represent triggers for agent intervention.
The detection of these triggers produces that a communication from the agent to the

student will be processed. From here, theitems in the communication student’s menu
have two additional sources. The first, is the set of active tasks: each active task is as-
sociated to a set of expected events to go a step forward in its execution. Each of these
expected events will have an associated entry in the student’s menu, such as “Perform
X”, indicating that the student would like the agent execute the task named X, which is a
subtask (a step) in the current task.

The second source of generated utterances is the interaction library. When the agent
decides taking the communication initiative with the student, thealgorithm for selecting
interaction type chooses one from this library. This selected interaction wills has an as-
sociated visualization that is the item added to the student’s menu. Furthermore, we must
take into account that each interaction has associated a set of student possible answers.
Therefore, when the student selects an interaction from the menu, all the possible answers
associated to it are added to the utterance generator. Notice that now again, if the student
selects an answer to the assistant agent dialog, it may have a set of associated answer
interventions, and so on.

Intelligent Agents for Distance Learning 177

Assistant Agent: Remember that you must to log in before complete an exam.

Student: (options)

• Remember me it later.
• ¿How do I perform the log in task?
• OK, let’s go to the login page.

Fig. 8. Automatically generated answers example.

From the exposed facts, take place the need of having a tool that allow us to design the
talks between the student and the assistant agent, i.e., that allows specifying the responses
associated to each intervention. Finally, theutterance manager includes in the student’s
menu a set of special entries related to help the student in the execution of the task she is
pursuing, such as “Where am I?”, “ What should I do next”, etc. ().

Fig. 8 shows an example of automatically generated answers from an agent remainder.

7. Related Work

COLLAGEN (Richet al., 2001) is the most related work to that exposed here. It is a Java
system support to make it easier to implement collaborative interface agents. It provides a
generic implementation of discourse interpretation, plan recognition, and plan generation
algorithms.

The code in the agent interface is, basically, a bridge between the primitive action
types of the task model and the specific elements that achievethem in the given GUI
implementation. This code can be quite onerous to write, particularly if the author of this
code is not the same as the author of the GUI implementation.

This work intends to define architectural components for connection educational ap-
plications with assistant agents. One of the first thing that our work provides is a clear
separation between the educational application and the assistant agent, that is similar to
that described in COLLAGEN, but in contrast, we allow the definition of agent-related
features that can be reused in different assistant agents. Furthermore, our work provides
a complete support to different interaction kinds and triggers defined. Instead, COLLA-
GEN provides only a generic framework to record decisions and communications that the
agent made, but no to build them. Although using COLLAGEN it is possible to obtain an
agent automatically, the developer still has to hand code the agent interface, which allows
the agent to observe the user’s interactions with the application and to interact with the
application itself. This characteristic is an important barrier for using COLLAGEN.

8. Conclusions

In this paper, a solution for designing the connection between an educational application
for distance learning and an assistant agent was introduced. Our contribution is the archi-
tectural specification of such a connection.Two design points were defined in which the

178 A. Amandi, M. Campo, M. Armentano, L. Berdun

capture of student’s intentions can be supported by agents and used for specifying their
intervention.

The impact of our work can be measured through our instantiation of this proposal,
which was made on a SAVER educational platform. The connection has been material-
ized without making valuable alteration on the source code.

References

Amandi, A., and M. Armentano (2003). Connecting web applications with interface agents.Special Issue on
Internet Agents for the International Journal of Web Engineering and Technology.

Ausubel, D., J. Novak and H. Hanesian (1983).Psicología Educativa: un Punto de Vista Cognoscitivo. Ed.
Trillas. México.

Campo, M., L. Berdun, M. Armentano, M. Ruiz, A. Scandroli and F. Moroso (2002a).Pataforma SAVER Para
Educación a Distancia. Technical Report TR001 – 2002, ISISTAN Research Institute, UNICEN.

Campo, M., A. Diaz Pace and M. Zito (2002b). Developingobject-oriented enterprise quality frameworks
using proto-frameworks.Software Practice and Experience Theme Issue on Enterprise Frameworks. Wiley
& Sons,32, 837–843.

Chen, L., and K. Sycara (1998). Webmate: a personal agent for browsing and searching. InProceedings of the
Second International Conference on Autonomous Agents. ACM Press, Minnepolis, USA, pp. 132–139.

Diaz Pace, A., and M. Campo (2001). Analyzing the role of aspects in software design.Communications of the
ACM, Special Issue on Aspect-Oriented Programming, 44 (11).

Diaz Pace, A., F. Trilnik and M. Campo (2001). Applying proto-frameworks in the development of multi-agent
systems.Inteligencia Artificial, 13.

Eisenstein, J., and Ch. Rich (2002). Agents and GUIs from task models. InProceedings of the 7th International
Conference on Intelligent User Interfaces.

Franklin, D., J. Budzik and K. Hammond (2002). Plan-based interfaces: keeping track of user tasks and acting
to cooperate. InProceedings of the 7th International Conference on Intelligent User Interfaces.

Godoy, D., and A. Amandi (2000). PersonalSearcher: an intelligent agent for searching web pages.Advances
in Artificial Intelligence, Lectures Notes in Artificial Intelligence, 1952, Springer, 43–52.

Guey-Fa, Ch. (1993). Some potential areas of research and development in the space of computer-based learn-
ing. Educational Technology, 33 (8).

Jonassen, D. (2002).Design of Constructivist Learning Environments (CLEs).
http://www.coe.missouri.edu/∼jonassen/courses/CLE/index.html

Johnson, W.L., and E. Shaw (1997). Using agents to overcome deficiencies in web-based courseware.AI-ED’97
Workshop on Intelligent Educational Systems on the World Wide Web.

Johnson, W.L., J.W. Rickel and J.C. Lester (2000). Animated pedagogical agents: face-to-face interaction in
interactive learning environments.International Journal of Artificial Intelligence in Education, 11, 47–78.

Lieberman, H. (1995). Letizia: An agent that assists web browsing. InProceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’95). Morgan Kaufmann, Canada.

Lieberman, H. (1997). Autonomous interface agents. InProceedings of the ACM Conference on Computers and
Human Interfaces.

Lieberman, H. (2001). Interfaces that give and take advice. In J. Carrolls (Ed.),Human-Computer Interaction
for the New Millenium. ACM Press/Addison-Wesley, pp. 475–485.

Maes, P. (1994). Agents that reduce work and information overload.Communications of the ACM, 37 (7).
Mayes, T. (2000).Pedagogy, Lifelong Learning and ICT. A discussion paper for the IBM Chair presentation.

http://www.ipm.ucl.ac.be/ChaireIBM/Mayes.pdf
Pannu, A., and K. Sycara (1996). A learning personal agent for text filtering and notification. InProceedings of

the International Conference of Knowledge Based Systems.
Paterno, F., C. Mancini and S. Menicori (1997). ConcurTaskTrees: a diagrammatic notation for specifying task

models. In S. Howard, J. Hammond and G. Lindgaard (Eds.),Human-Computer Interaction INTERACT.
Chapman and Hall, pp. 362–369.

Peal D., and B. Wilson (2001). Activity theory and web-based training. En Web-based training. In B. Khan
(Eds.),Englewood Cliffs NJ: Educational Technology Publications, pp. 147–153.

Intelligent Agents for Distance Learning 179

Rich, Ch., and C. Sidner (1998).COLLAGEN: A Collaboration Manager for Software Interface Agents. TR-
97-21a.

Rich, Ch., C. Sidner and N. Lesh (2001). COLLAGEN: applying collaborative discourse theory to human-
computer interaction.AI Magazine, 22 (4).

Shaw E., W.L. Johnson and R. Ganeshan (1999). Pedagogical agents on the web. InProceedings of the Third
International Conference on Autonomous Agents, pp. 283–290.

Wooldridge, M. (1999). Intelligent agents. In G. Weiss (Ed.),Multiagent Systems, MIT Press.

A. Amandi received a PhD degree in computer science in the Universidade Federal do
Rio Grande do Sul, Porto Alegre, Brazil in 1997 and the computer science degree at the
UNLP University, La Plata, Argentina in 1990. Currently she is a professor at Computer
Science Department and head of the agent group of the ISISTAN Research Institute of
the UNICEN University at Tandil, Argentina. She has over 30 papers published in main
conferences and journals about agents. Her research interests includes intelligent agents
and software architecture.

M. R. Campo received a PhD degree in computer science in the Universidade Federal do
Rio Grande do Sul, Porto Alegre, Brazil in 1997 and the systems engineer degree at the
UNICEN University, Tandil, Argentina in 1988. Currently he is an associate professor
at Computer Science Department and head of the ISISTAN Research Institute of the
UNICEN University at Tandil, Argentina. He is also a research fellow of the National
Council for Scientific and Technical Research of Argentina (CONICET). He has over 50
papers published in main conferences and journals about software engineering topics. His
research interests includes intelligent aided software engineering, software architecture
and frameworks, agent technology and software visualization.

M. Armentano is a PhD candidate at the Computer Science Department of UNICEN
University. He obtained the Systems Engineer degree at the UNICEN University, Tandil,
Argentina in 2003. Currently he is a Teaching Assistant at Computer Science Department
of the UNICEN University at Tandil, Argentina. His research interests includes intelligent
agents and software architecture.

L. Berdun is a PhD candidate at the Computer Science Department of UNICEN Uni-
versity. He obtained the systems engineer degree at the UNICEN University, Tandil, Ar-
gentina in 2002. Currently he is a teaching assistant at Computer Science Department of
the UNICEN University at Tandil, Argentina. He is also a student fellow of the National
Council for Scientific and Technical Research of Argentina (CONICET). His research
interests includes intelligent agents and software architecture.

180 A. Amandi, M. Campo, M. Armentano, L. Berdun

Nuotolinio mokymosi intelektualūs asistentai

Analía AMANDI, Marcelo CAMPO, Marcelo ARMENTANO, Luis BERDUN

Nuotolinis mokymasis reikalauja ir žmogaus asistavimo. Šie intelektualūs asistentai pirmiau-
sia reikalingi tam, kad galėt ↪u atsakyti ↪i studentams kylaňcius neaiškumus bei klausimus. Asis-
tentai gali atlikti ir dal↪i pasikartojaňcio darbo, – jie gali prižīurėti, kaip studentams sekasi dirbti
su mokom↪aja medžiaga, išaiškinti, kokie sunkumai kyla mokantis bei pasiūlyti tam tikrus meto-
dus, kaip juos↪iveikti. Straipsnyje aprašomos problemos, iškylančios projektuojant intelektuali↪u
asistent↪u darb↪a, pirmiausia, kaip paraiškos mokymuisi galėt ↪u pasiekti asistentus. Autoriai pateikia
siūlym ↪a, kaip išspr↪esti ši↪a problem↪a. Jame aptariama tiek student↪u ketinim ↪u supratimo, tiek asis-
tent ↪u dalyvavimo j↪u mokymesi svarba. Šie du struktūrinio projektavimo aspektai yra apibūdinami
susisiekimo taškais. Pirmasis susisiekimo taškas↪ivardintas studento ketinimais. Student↪u ketinimai
lemia situacijas, kuriose asistentai galėt ↪u paḋeti. Šis susisiekimo taškas priklauso nuo student↪u
naudojamos edukacinės aplinkos s↪asajos; asistentas turi žinoti galimus student↪u veiksmus tam,
kad gal̇et ↪u interpretuoti j↪u ketinimus. Antrasis susisiekimo taškas pavadintas asistent↪u dalyvavi-
mu. Asistent↪u dalyvavimas↪itakoja kontekst↪a, kuriame asistentas galėt ↪u paḋeti bei tai, kaip t↪a pa-
galb↪a jis tuṙet ↪u suteikti (pvz., pasīulydamas ar↪ispėdamas). Straipsnyje pateikiamos rekomendacijos
bei pristatoma specifiṅe taikomoji programa SAVER, skirta nuotoliniam mokymuisi atsižvelgiant↪i
kontekst↪a.

