
Informatics in Education, 2003, Vol. 2, No. 2, 211–222 211
 2003Institute of Mathematics and Informatics, Vilnius

Seeking or Skipping Regularities?
Novice Tendencies and the Role of Invariants

David GINAT
Computer Science Group, Science Education Department
Sharet Building, Tel-Aviv University
Tel-Aviv 69978, Israel
e-mail: ginat@post.tau.ac.il

Received: July 2003

Abstract. Every repetitive process encapsulates a regularity pattern, which may be expressed as an
invariant assertion. Invariants embody implicit, insightful properties that characterize the execution
of programming statements. Due to their implicit nature, invariants may be less apparent to algo-
rithmic problem solvers. Yet, invariants are essential for designing correct and efficient algorithms.
This paper illustrates the essential role of invariants, and examines whether novices tend to look for
invariant properties during their algorithmic problem solving. The paper presents a study in which
two novel algorithmic challenges were displayed to a group of motivated, novice students. Student
solutions to these challenges demonstrate an operational reasoning approach, which does not cap-
ture the essence of the problems at hand, and yields non-satisfying results. Some solutions were
incorrect, others were inefficient, and some had noconvincing justification. These results, and the
correct and efficient solutions to both challenges illuminate the importance of assertional reasoning
and the fundamental role of invariants.
Key words: invariants, algorithmic problem solving, operational reasoning, assertional reasoning.

1. Introduction

Invariants are assertions that capture the essence of serial-program loops and concurrent-
program commands (e.g., Hoare, 1969; Dijkstra, 1976; Gries, 1981; Pnueli, 1981;
Chandy and Misra, 1989). They express regularities that are preserved during execu-
tion. These regularities encapsulate an implicit, “behind the scenes” perspective of pro-
grams, which is different from the explicitfacet embodied by program statements. While
program statements are operational, “how to do” instructions, invariants are assertional,
“what it means” descriptions, inferred from characteristics of the instruction composites.

As invariants encapsulate an assertional,“behind the scenes” viewpoint, one may get
the impression that they are not a necessity. Although Dijkstra, Gries, and others argue
that program design should go hand-in-hand with its correctness, encapsulating invariant
properties, it is not clear how many CS tutors indeed present invariants to their students.
Many Introduction-to-Programmingand Introduction-to-Algorithmstextbooks do not ex-
plicitly mention invariants (e.g., Cormenet al., 1990). Some computer science (CS) tutors
that are well aware of invariants might skip their presentation, as they may see invariants

212 D. Ginat

as relevant only for formal program verification, with Hoare’s logic (1969). What about
students? Are they seeking regularities during problem solving? Are they aware of the
notion of invariance? Can it help them in their solutions? Or, perhaps the notion of invari-
ance may be skipped? In this paper we address these questions.

The objective of this paper is to two-fold: to reveal novice tendencies with regularities
and invariance in solving algorithmic challenges, and to illuminate the role of invariants in
algorithmic problem solving. We focus on algorithmic challenges with repeated operator
invocations. In a broad sense, any algorithmic problem may be viewed as a problem with
a finite set of operators to utilize. In a more specific sense, a particular operator may be
specified for repeated use. This is the case for example in the Game task of IOI’96 (The
International Olympiad in Informatics – a Game, 1996), where the operator is “line-end
removal”, and in the Median Task of IOI’2000 (Horvath and Verhoeff, 2002), where the
operator returned the median of three distinct values.

We display here results from a study that we conducted with 27 rather talented high-
school students, who were attending the advanced stage of the practice-competition ac-
tivity of our national computer science Olympiad. The students completed (in their high-
school classes) an Introduction-to-Programming course and a primary Data-Structures
course. In order to be better prepared for our activity, they were asked to also learn search-
ing, sorting, and graph algorithms from a textbook (in a suggested list of books).

The goal of the activity was to observe and discuss novice and expert solution ap-
proaches to various algorithmic challenges. In this paper we display the activity part that
focused on the notion of invariance. This part involved two novel challenging tasks, which
were meant to relate invariance to the fundamental topics of correctness and efficiency of
algorithms. One task involved an emphasis on correctness, and the other – an emphasis
on efficiency.

In the next section we display the first task – Triple-Switch, and in the section that
follows the second task – Permutation-Reordering. In each section we first present the
task and then gradually describe the student solutions, some of which were at an expert
level. Following the two task-solution sections we discuss the findings of this study in a
concluding section, and tie them to didactical aspects of the presentation and utilization
of invariants.

2. Triple Switch

The first task involves a line of bits. It focused on the question whether a given arbitrary
line can be transformed to a homogeneous line, by repeated invocations of an operator
that changes line values.

The Triple-Switch Task
The operatorTriple-Switch operates on any three adjacent bits in a cyclic line

of N bits. A single operation of the operator switches the value of each of the
three bits. For example, the operator’s operation on the first three bits of the line
101001 will result in 010001. The operation of the operator on the last bit and the
first two bits of the line101001 will result in 011000.

Novice Tendencies and the Role of Invariants 213

Develop an algorithm for which the input is a given line onN arbitrary bits,
and its output is a message notifying whether the input line can be transformed,
by repeated invocations ofTriple-Switch, to ahomogeneous line, where all the bits
are of the same value (i.e., all the bits are1’s, or all the bits are0’s).

Four students felt at loss, and offered no solution. They had a difficulty with the many
possibilities of repeated operator applications. A couple of them tried repeated applica-
tion of the operator on short lines, but had no constructive idea for a general solution. The
rest of the students devised algorithmic solutions. We divide their solutions into three
categories: “One-Pass Conversion”, “Two-Pass Conversion”, and ”Invariant-Based De-
duction”. We describe each of the categories.

One-Pass Conversion

Five students had the idea of aFlattening scheme, where the input line is converted,
from left to right, to the value of the 1st input bit. That is, if the 2nd bit equals the 1st,
then it will not be touched. Otherwise the operator will be applied on the 2nd, 3rd, and
4th bits. This will guarantee that the 2nd bit will become equal to the 1st. The 3rd bit will
be handled next, similarly to the 2nd bit (possibly yielding the operator’s application on
the 3rd, 4th, and 5th bits). This process will continue up to the bitN −2. It will guarantee
that the bits1, 2, 3, . . . , N − 2 will all have the same value. If the remaining two bits (the
bitsN − 1 andN) will also have that value in the end of the process, then the output will
be the message “Yes” (transformation is possible). If one of the two remaining bits will
differ from the firstN − 2 bits then the output will be “No”.

The students demonstrated the above algorithmic idea on two inputs. The first input
was that displayed in the example of the problem definition. The algorithm advances as
follows:

101001 → 110101 → 111011 → 111100.

Since the two rightmost bits are not equal to the first (left) four, the output will be
“No”. For a similar input line, of 7 bits, they demonstrated a case where the output is
“Yes”:

1010010 → 1101010 → 1110110 → 1111000 → 1111111.

The students were satisfied with their solution, and checked it on very few examples.
When asked to explain why the solution is correct they reiterated the Flattening scheme
and demonstrated it on their particular examples. No careful verification or further insight
was displayed.

When the above solution scheme outputs “Yes” it indeed is due to the ability to trans-
form. However, is the output “No” always correct? A simple example, very similar to
the latter one, shows that the output “No” may be incorrect. For the input1010011 the
above scheme will yield1111110 and the output “No”, while the output should be “Yes”

214 D. Ginat

(since two additional operator invocations may yield0000000). Thus, the above one-pass
solution is incorrect.

Two-Pass Conversion

Twelve students noticed the latter difficulty, and observed that an additional “reverse”
pass may yield the desired transformation in some cases. They divided the possible inputs
into three disjoint casesaccording to the line lengthN : 1. N mod 3 = 1, 2. N mod 3 = 2,
and 3.N mod 3 = 0.

They examined a refined Flattening scheme, in which the inequality between the two
rightmost bits and the leftN −2 bits may not inhibit proper transformation. In particular,
for the first two cases above, whereN is not a multiple of 3, the students noticed that
proper transformation can always be obtained.

In the case whereN mod 3 = 1, if the Flattening ends with the rightmost bit, or its
adjacent bit (but not both bits) different from the otherN − 2 bits, then the line can
become homogeneous by transforming all its bits, with an additional Flattening pass, to
the value of the sole different bit (recall that the line is cyclic). If both of the rightmost
bits are different from the otherN − 2 bits, then a single operator application may trans-
form the line to the latter pattern, where only one bit is different from all the others, and
therefore transformation can be achieved. The case where the line length characteristic is
N mod 3 = 2 is similarly analyzed.

Thus, for anN that is not a multiple of 3, the output “Yes” should be immediately
displayed. For the case whereN mod 3 = 0, the students kept the one-pass Flattening
scheme, and set the decision of “Yes”/“No” according the equality/inequality of the two
rightmost bits to the other (identical) bits.

Some of these students felt confident with this solution, after trying it with various
examples; but others felt uncertain. All these students could not provide a convincing
argument that explains why the Flattening scheme indeed yields the correct output for
the case whereN is a multiple of 3. Their typical argument was that “if the one-pass
flattening scheme does not yield a homogeneous line, then you will never be able to get rid
of one or two bits that are different from all the others”. This “operational” argumentation,
which does not capture core task characteristics, is insufficient. Quite a few students felt
it themselves, and were therefore unsure about the correctness of their solution.

Invariant-Based Deduction

Only six students were able to see beyond the “operational”, Flattening scheme. These
students carefully analyzed a single application of the operator, and noticed that the
essence lies in the operator’s property of affecting threeadjacent bits. Upon analyzing
the case whereN is a multiple of 3, they “colored”, or numbered, the bit locations in the
line as follows: 1 2 3 1 2 3 1 2 3. . . . This coloring guarantees that every application of
the operator modifies one bit in a “1”- location, one bit in a “2”-location, and one bit in a
“3”-location.

The operator switches the value of a bit on which it operates. Thus, an operator invoca-
tion implies a change of the parity of the number of 0’s in the “1”-locations, and similarly

Novice Tendencies and the Role of Invariants 215

with the parities of the number of 0’s in the “2”-locations and in the “3”-locations. This
implies the following invariant:

Parity-Equality Invariant. The equality/inequality between the parities of the
number of 0’s in the “colored” (“1”, “2”, and “3”) locations is preserved by the
operatorTriple-Switch.

In examining the short example010001 in the problem definition, we notice that the
parity of the number of0’s in the “1”-locations (the 1st and the 4th bits) is even, whereas
the parity of the number of0’s in the “2”-locations is odd. According to the above in-
variant, these two parities will never be equal. The parities of the number of0’s in the
“2”-locations equals, initially, that of the “3”-locations, and will always remain equal.

The above invariant provides the clue that we need. The three parities are equal in
the homogeneous, all-bits-are-equal line, for a line with lengthN that is a multiple of
3 (in such a line the number of “1”-location bits, the number of “2”-location bits, and
the number of “3”-location bits are allN/3). If these three parities are unequal in the
initial line, they will always remain unequal, and no homogeneous line will be reached.
Conversely, if these three parities are initially equal, then the Flattening process will yield
a homogeneous line.

Concluding from the above, the initial line010001 cannot be transformed to a ho-
mogeneous line, whereas the initial lines110001 and001001 can be transformed to a
homogeneous line.

All in all, a very concise solution was obtained. We display it in the concluding
scheme below. For computation convenience, the scheme involves comparisons of the
parities of the number of1 bits rather than the parities of the number of0 bits.

Concluding Scheme:If N , the line length, is not a multiple of 3, or it is a mul-
tiple of 3 and: the parity of the sum of the bits in the locations{1, 4, 7, . . .} equals
the parities of the sums of the bits in the locations{2, 5, 8, . . .} and{3, 6, 9, . . .},
then output “Yes”; otherwise output “No”.

Notice that in the above scheme there is no invocation of theTriple-Switch operator.
The core characteristic was recognized and specified in the Parity-Equality Invariant,
using auxiliary coloring. The previously developed Flattening scheme, together with the
invariant yielded the concluding scheme. Thus, this scheme was derived from both an
operational component and an assertional component. Only the students who were able
to combine both the operational and the assertional elements reached the concise and
elegant Concluding Scheme and felt confident with their solution. We further elaborate
on this aspect in the Discussion section.

3. Permutation Reordering

The task presented in the previous section involved emphasis on correctness. The task in
this section involves emphasis on efficiency. The task focuses on the question of whether

216 D. Ginat

a given permutation can be transformed to another one, by repeated invocations of an
operator that reorders permutation elements.

The Permutation-Reordering Task
The operatorMove-a-Pair moves a pair of two adjacent elements in a permuta-

tion to another place in the permutation. Given two different permutationsP1 and
P2 of the integers1 . . . N, the goal is to transformP1 to P2 by repeatedly utilizing
Move-a-Pair.

Develop an efficient algorithm for which the input isN, P1 andP2, and its
output is a message notifying whether the desired goal can be achieved.

For example, forN = 4 and the permutationsP1: 1 3 2 4 andP2: 2 4 1 3 the
output will be “Yes” (since moving the pair2 4 of P1 to the first two positions will
yield the transformation.) HadP2 been:1 2 3 4 the output would be “No”.

Three students had no clue of how to approach the problem. The other students de-
veloped algorithmic solutions that differed in their insight and efficiency levels. Unsur-
prisingly, here too the students who gained limited insight offered a one-pass conversion
scheme. We divide their solutions into three categories: “One-Pass Conversion”, “General
Counting”, and “Concise Computation”. We describe each of the categories below.

One-Pass Conversion

Fourteen students devised aFlattening scheme, similar to the one devised for the
previous task. In this scheme, the elements ofP1 will be put in their destinations from
left to right, according to their order inP2. The element that has to be leftmost will be
moved together with its right neighbor to the two leftmost locations inP1, and the sub-
line over which this pair should be “skipped”will be shifted to the right by 2 positions.
Then, the element that needs to be second from left will be moved (with its right neighbor)
to its final destination, etc. (Notice that if an element is the rightmost one inP1, then two
moves are required to put it in its destination.)

Eventually, the firstN − 2 elements ofP1 will be properly ordered, but the two right-
most elements may not be necessarily ordered. For example, forP1: 1 3 2 4 andP2:
2 1 3 4, P1 will be ordered as follows:1 3 2 4 → 2 4 1 3 → 2 1 3 4. HadP2 been:
2 1 4 3, the rightmost pair would be improperly ordered. The output will be dictated from
the rightmost pair. If at the end of the Flattening process the rightmost pair will be ordered
as it is inP2, then the output will be “Yes”, otherwise the output will be “No”.

As in the previous task, here too, quite a few students were satisfied with their solution,
and were convinced by its correctness, based on their experience with various examples.
However, some felt that they have no convincing argument for proving that this scheme
always yields the right output. When requested to justify their solution they claimed that
“if in the end of the one-pass flattening process, the rightmost pair is improperly ordered,
then there is no way to get rid of one unordered pair”. This “operational” argumentation
does not capture core task characteristics, and is insufficient. The complexity of this so-
lution is O(N2), as each move of a pair implies a shift of a sub-line with length in the
order ofN .

Novice Tendencies and the Role of Invariants 217

General Counting

Seven students went beyond theFlattening scheme. As the operatorMove-a-Pair
modifies relative ordering of elements in a permutation, they looked for “ordering char-
acteristics”. One such characteristic may be tied to the number of ordered/unorderedpairs
of (not necessarily adjacent)elements. We regard any two elements in a permutationor-
dered if the smaller element is to the left of the larger one. One may measure thenum-
ber of unordered pairs in a permutation. For examples, this number in the permutation
2 4 1 3 is 3 (since the pairs1 2, 1 4, 3 4, are not in order).

The students noticed thatthe two elements moved byMove-a-Pair change their order
with respect to each of the elements in the sub-line that is shifted due to the move. They
identified the following two interesting patterns:

Change in the Num-of-Unorders:Let XY be the two elements moved by
Move-a-Pair andZ an element in the sub-line shifted due to the move. The change
in the number of unordered pairs due to movingXY “to the other side” ofZ is
+2, 0, or−2.

Num-of-Unorders Invariant: The total change in the number of unordered
pairs resulting from an invocation ofMove-a-Pair is an even number. Therefore,
the parity of the number of unordered pairs is preserved by the operator.

The above invariant implies that a transformation is impossible if the parities of the
“Num-of-Unorders” inP1 andP2 are different. If they are equal, however, then the Flat-
tening scheme described earlier will result in a proper ordering of the rightmost pair, and
therefore transformation is possible. This can be summarized in the following conclusion:

Ordering Pattern: P1 can be transformed toP2 if-and-only-if the parities of
their number of unordered pairs are equal.

The invariant illuminated core characteristics that justified the “Yes”/”No” output of
the operational, Flattening scheme. However, the invariant implies that there is no need
to activate the Flattening scheme. Instead, one may compare the parities of the number of
unordered pairs inP1 andP2. This is particularly relevant if the parities can be computed
in less than O(N2) time.

Simple counting of the number of unordered pairs in each permutation may be per-
formed in O(N2) time, by comparing the relative ordering of each pair of elements. Can
one do better, time-wise? Some of the students turned to sorting algorithms. One partic-
ular algorithm that seemed relevant for them was Merge-Sort (Cormenet al., 1990).

In Merge-Sort, it is possible to tell the exact number of reorders that occurs in every
merging step. For example, in merging theleft sub-vector3 7 9 and theright sub-vector
4 8 10 to an ordered vector: first,3 is chosen; then4 is chosen and “skipped over” the7
and the9; then,7 is chosen; then8 is chosen and “skipped over” the9; and finally the9
and the10 are chosen. This merging phase resulted in 3 reorders. And indeed, the number
of unordered pairs in the pre-merged vector3 7 9 4 8 10 is exactly 3 (due to the pairs
4 7, 4 9, 8 9).

Since the time complexity of Merge-Sort is O(N log N), the computation of the num-
ber of unordered pairs in each permutation can be done in time O(N log N), and this

218 D. Ginat

will be the complexity of our task solution – a significant improvement over the previous
solutions.

The students who offered this solution were very proud of their improvement. Their
solution does not require the operator’s utilization, it is derived from an insightful in-
variant, and it is based on an efficient sorting scheme. However, their solution does not
take advantage of the task characteristic that the two permutations involve the particu-
lar elements1 . . . N. Their counting of reorders is general, and can be applied for any
N different elements. In addition, the Ordering Pattern specified above does not require
the numbers of unordered pairs. Only parities are required. Perhaps one can do better by
seeking only parities, and capitalizing on the characteristic that only the values1 . . . N

are involved? Very few students addressed these observations.

Concise Computation

Three students noticed that when theN permuted values specifically involve the val-
ues1 . . . N, the ordering of any permutation in increasing order can be performed by
directly putting each element in its destination in the permutation1 2 3 . . . N, as in this
permutation each valuei is in locationi.

Thus, one may order a permutation by aDirect-Placement scheme, swapping the
leftmost elementi not yet in locationi (its destination) with the element currently in
location i. Each swap directly places an element in its destination in the ordered per-
mutation1 2 3 . . . N. This scheme requires no more thanN swaps, in one scan of the
permutationP1. For example,2 4 1 3 will be ordered as follows:

2 4 1 3 → 4 2 1 3 → 3 2 1 4 → 1 2 3 4.
If the parity of the number of unordered pairs of a permutation can be derived from

such ordering, one may order each of the permutationsP1 and P2, and compare the
parities. Examining a single swap in the Direct-Placement scheme yields valuable insight.

Let a permutation be. . . X . . . Y . . . Z. . . and the two swapped elements –X andZ. The
change in the total number of unordered pairs due to reorderingX Y andY Z is: +2, 0, or
−2. This is true for anyY betweenX andZ. To this change we have to add the reordering
of the pairX Z. This reordering adds+1 or−1. Combining these observations implies a
core invariant:

Direct-Placement Invariant: Each swap in the Direct-Placement scheme
swaps theparity (0 to 1, and 1 to 0) of the number of unordered pairs in a permu-
tation.

The above invariant, together with the previously stated Ordering Pattern yields the
following Concluding Scheme:

Concluding Scheme:Theparity of the number of unordered pairs of a permu-
tation equals theparity of the number of reordering swaps in the Direct-Placement
scheme. Therefore, if after ordering each of the permutationsP1 and P2 with
the Direct-Placement scheme, the parities of the number of reordering swaps are
equal, then output “Yes”; otherwise output “No”.

Novice Tendencies and the Role of Invariants 219

For the permutationsP1: 1 3 2 4 andP2: 2 4 1 3 in the task description, the parities
of the number of swaps are equal (1 swap for orderingP1, 3 swaps for orderingP2).
Therefore, transformation usingMove-a-Pair is possible. HadP2 been1 2 3 4, the parities
would be different and the transformation impossible.

All in all, the Concluding Scheme requires O(N) time, an improvement over the pre-
vious schemes. It was derived from invoking both operational and assertional elements
– the Flattening scheme, the Num-of-Unorders Invariant, the Direct-Placement scheme,
and the Direct-Placement invariant.

4. Discussion

The student solutions to the two tasks display a tendency, by many, to solely follow an
operational approach. In both tasks, a significant number of students devised an algorith-
mic scheme that they could not clearly justify. In the Triple-Switch task, a total of 17 out
of the 27 students devised a Flattening scheme, for which they were unable to argue cor-
rectness. The five One-Pass Conversion students developed an erroneous solution. The
twelve Two-Pass Conversion students designed the right solution, but quite a few of them
were unsure about its correctness. In the Permutation-Reordering task, 14 out of the 27
students (all the One-Pass Conversion students) devised the rather inefficient Flattening
scheme, for which they could also not argue correctness.

All these students tended to go directly for an algorithmic scheme, and their justi-
fication of that scheme was based on examination of various examples. Some, who ex-
amined too few examples (the One-Pass Conversion students in the Triple-Switch task),
obtained an erroneous solution. Others, who examined further examples, were more care-
ful, yielded better results, but felt that their insight is insufficient. In both tasks, less than
half of the students looked for regularities, or invariant properties, which yield insight
and illuminate core characteristics.

In analyzing the student solutions in line with Schoenfeld’s problem solving frame-
work (1985, 1992) of resources, heuristics, control, and beliefs, it seems that the students
lacked resources and demonstrated limited monitoring and control ability. The notion of
invariance is an essential resource, encapsulating an assertional point of view, invoked
by experts during the design and analysis of algorithms. Experts’ monitoring and control
of their own problem solving processes involves assertional arguments that embody task
and solution patterns. The students in this study seemed to lack awareness of assertional
arguments in general and the notion of invariance in particular. They neither sought regu-
larities for identifying task characteristics, nor did they utilize invariants for arguing and
validating their solutions’ correctness.

In the computer science community, the widespread manner of checking program va-
lidity is based on testing a program on diverse test cases, carefully chosen for examining
a variety of “operational scenarios”. Yet, this may sometimes not be enough for gaining
satisfying assurance and sufficient confidence of correctness. The elegant and efficient
solutions to both tasks in this study illustrated the importance of seeking and utilizing in-
variants. Only upon identifying invariant properties could one properly argue correctness
and devise a concise algorithm.

220 D. Ginat

It may not be surprising that novices tend to solely go for operational reasoning, as
this is what they often see in textbooks. Many students seem to practice algorithmic
problem solving with inclination to a trial-and-error approach, not only in the beginning
of a design, but also upon verifying their final algorithm. They learn language constructs
and algorithm design techniques, and often “get by” without regularities and invariants.
However, one may not always “get by” without invariants, as could be seen in this study.
The lack of turning to regularities and invariants may yield undesirable outcomes.

The notions of regularities and invariants add an important perspective to algorithm
design, as could be seen in the two tasks presented here. Regularities and invariants may
be essential for considerations of both correctness and efficiency. Although they require
mathematical insight, which is not always straightforward, their illuminating role is fun-
damental.

The primary role of invariants was clearly apparent in this study. Yet, we do not argue
for exclusive assertional reasoning. Invariants captured the essence in each task, but one
still had to turn to operational reasoning and devise algorithmic solution schemes. The
operational, Flattening idea in both tasks, the creative utilization of Merge-Sort, and the
insightful Direct-Placement scheme in the Permutation-Reordering task were essential
design patterns (Astrachanet al., 1998) for the final solutions. The concluding schemes
in both tasks combined both assertional and operational elements.

Operational reasoning is inherently present in the teaching of any course that involves
programming and algorithms. Assertional reasoning is sometimes present only in a course
of formal verification methods. This may result in the wrong impression that invariants
are relevant only as unintuitive, formal means. We believe that CS tutors should combine
both ways of reasoning in a natural, rather informal way in their teaching, as was illus-
trated in this paper. The illustrations displayed in this paper naturally combined both ways
of reasoning and showed their mutual roles. Invariants were not displayed using formal
logic, yet they were precisely stated. They concisely captured the core characteristics of
each task, complementing the function of the operational, algorithmic schemes.

5. Conclusion

We displayed a study of student solutions to two algorithmic challenges, for which an
assertional reasoning approach, involving regularities and invariants, was essential for
reaching concise and efficient solutions. More than half of the students did not turn to
regularities and invariants, but rather solely followed an operational reasoning approach,
and yielded incorrect and inefficient results. It seemed that many were unaware of the
important role of regularities and invariants, possibly due to the very limited number of
demonstrations of invariants that they saw throughout their studies. The two challenges
and the student solutions illustrate the essential role of invariants on the one hand and
the unawareness of this role on the other hand. In concluding this study, we offer several
pedagogical considerations for CS educators.

Novice Tendencies and the Role of Invariants 221

• Increase throughout the CS curriculum the number of programming and algorith-
mic challenges for which the recognition of regularities and invariants is a primary
and convincing solution element.

• Let the students follow their own solution approaches and realize the limited out-
comes and the need to go beyond operational reasoning.

• Elaborate on the fundamental and illuminating role of assertional reasoning and
invariants, for capturing the essence, yielding a concise design, and arguing the
design correctness.

• Show the importance of combining operational, design patterns and assertional,
invariant patterns in successful algorithm design and analysis. Emphasize these
elements’ mutual roles.

• Underline problem solving heuristics that are utilized during the combined design.
This may include generalization from simple cases, analogy invocations of familiar
algorithmic schemes (e.g., Merge-Sort), and utilization of auxiliary elements (e.g.,
1-2-3 “coloring”).

Future work may offer further studies in line with the above pedagogical considera-
tions. We believe that a convincing display of the complementing, yet mutual functions
of both operational and assertional reasoning is a key element in broadening novices’ per-
spectives. The elaboration of multiple perspectives in algorithmics, which evolves from
this study, is a primary means in enhancing student competence in the novice-to-expert
ladder.

References

Astrachan, O., G. Berry, L. Cox and G. Mitchener (1998). Design patterns: an essential component of CS
curricula. InProceedings of the 28-th SIGCSE Technical Symposium on CS Education, pp. 153–160.

Chandy, M.K., and J. Misra (1982).Parallel Program Design – A Foundation. Addison-Wesley.
Cormen, T.H., C.E. Leiserson and R.L. Rivest (1990).Introduction to Algorithms. MIT Press, Massachusetts.
Dijkstra, E.W. (1976).A Discipline of Programming. Prentice-Hall.
Game Task (1996).The International Olympiad in Informatics.

http://olympiads.win.tue.nl/ioi/ioi96/contest/ioi96g.html
Gries, D. (1981).The Science of Programming. Springer-Verlag.
Hoare, C.A.R. (1969). An axiomatic basis for computer programming.Communications of the ACM, 12, 576–

580.
Horvath, G., and T. Verhoeff (2002). Finding the median under IOI conditions.Informatics in Education, 1.
Pnueli, A. (1981). The temporal semantics of concurrent programs.Theoretical Computer Science, 13, 45–60.
Schoenfeld, A. (1985).Mathematical Problem Solving. Academic Press.
Schoenfeld, A. (1992). Learning to think mathematically: problem solving, metacognition, and sense making

in mathematics. In D.A. Grouws (Ed.),Handbook of Research on Mathematics Teaching and Learning.
Macmillan, pp. 334–370.

222 D. Ginat

D. Ginat is a faculty member in the Science Education Department at Tel-Aviv Uni-
versity. He obtained his PhD (Distributed Algorithms and Amortization Analysis, 1989)
from the University of Maryland, at College Park, U.S.A. His research and teaching dur-
ing the last 10 years focus on the development of algorithmic problem-solving skills, at
all levels, from the very basic to an olympiad level.

Siekti griežtumo ar nekreipti ↪i tai dėmesio?
Invariant ↪u vaidmuo mokant programuoti

David GINAT

Kiekvienas pasikartojantis procesas remiasi dėsningumu, kuris programavime paprastai apibū-
dinamas invarianto s↪avoka. Invariantai↪igyvendina implikatyvias (neišreikštines) savybes, kuriomis
nusakomas programavimo taisykli↪u vykdymas. Ḋel užsl̇eptos invariant↪u prigimties j↪u taikymas
sprendžiant algoritminius uždavinius nėra akivaizdus. Vis ḋelto invariantai turi ypating↪a reikšm↪e
teising↪u ir efektyvi ↪u algoritm↪u sudarymui, toḋel jiems tuṙet ↪u būti skiriamas ypatingas dėmesys,
ypǎc ugdant jaunuosius programuotojus.

Šiame straipsnyje išryškinamas esminis invariant↪u vaidmuo.Čia aptariama, ar pradedantieji
programuotojai yra link↪e ↪ižvelgti invariant↪u savybes spr↪esdami algoritminius uždavinius, ar apie
tai negalvojama. Darbe supažindinama su tyrimu, kurio metu žingeidži↪u pradedaňci ↪uj ↪u progra-
muoti student↪u gruṗe gavo dvi ne↪iprastas algoritmines užduotis. Analizuojant student↪u sprendimus
buvo nustatyta, kad studentai labiau remiasi operaciniu m↪astymu, kuris šiuo atveju, gilinantis↪i už-
davin↪i, nėra pakankamas; taigi pasiekti patenkinam↪u rezultat↪u jiems nepavyko. Vieni sprendimai
buvo neteisingi, kiti – neefektyv̄us, o dar kiti net nebuvo motyvuotai pagr↪isti. Šie rezultatai, kaip
ir teisingi bei efektyv̄us abiej↪u užduǒci ↪u sprendimai, atskleidžia argumentuoto, teiginiais pagr↪isto
m ↪astymo svarb↪a bei parodo, koks svarbus vaidmuo tenka invariantams.

