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Abstract. Dynamic geometry software has been accused of contributing to an empirical approach
to school geometry. However, used appropriately it can provide students with a visually rich envi-
ronment for conjecturing and proving. Year 8 students who were novices with regard to geometric
proof were able to exploit the features of Cabri Geometry II to assist them in formulating and
proving in the context of Cabri simulations of mechanical linkages.
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1. Introduction

Most mathematicians would agree that it is proof which sets mathematics apart from the
empirical sciences, and forms the foundation of our mathematical knowledge. Yet re-
search indicates that students often fail to understand the purpose of mathematical proof,
and readily base their conviction on empirical evidence or the authority of a textbook
or teacher. A large-scale survey of above average Year 10 students in the UK (Healy
and Hoyles, 1999), for example, has shown that many students, even those who have
been taught proof, have little idea of the significance of mathematical proof, are unable to
recognise a valid proof, and are unable to construct a proof in either familiar or unfamiliar
contexts. Mathematics curricula in many countries are now emphasising the need for stu-
dents to justify and explain their reasoning. A further important issue is the introduction
into schools of a class of software known as dynamic geometry, such as Cabri Geometry
II TM and The Geometer’s SketchpadR©. Screen drawings in this software can be purely
visual or they can be constructed using in-built tools based on Euclidean geometry, such
as parallel or perpendicular lines, angle bisectors or perpendicular bisectors; segments or
angles can be constructed precisely; accurate measurements can be made; and the loci
of points traced. The ‘drag’ facility distinguishes dynamic geometry software from other
computer drawing software, since only those features based on the use of appropriate ge-
ometric tools, such as parallel or perpendicular lines, will remain invariant when a screen
drawing is dragged. These dynamic geometry environments have created widespread in-
terest as constructivist learning tools, and have the potential to transform the teaching and
learning of geometry.
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Despite this potential, though, concern has been expressed that dynamic geometry
software is contributing to an empirical approach to geometry. Noss and Hoyles (1996)
note that in the UK, for example, geometry is being reduced to pattern-spotting in data
generated by dragging and measurement of screen drawings, with little or no emphasis
on theoretical geometry: “school mathematics is poised to incorporate powerful dynamic
geometry tools in order merely to spot patterns and generate cases” (p. 235). Hölzl (2001)
asserts, however, that the problem lies with the way dynamic geometry software is used,
rather than with the software itself:

The often mentioned fear that the computer hinders the development of an already prob-

lematic need for proof is too sweeping. It is the context in which the computer is a part

of the teaching and learning arrangement that strongly influences the ways in which the

need for proof does – or does not – arise (pp. 68–69).

De Villiers (1998) has criticised the emphasis on theverification aspect of proof in
school mathematics, asserting that in a dynamic geometry environment the focus should
move to proof asexplanation rather thanverification. While some students may have a
cognitive need for proof as conviction, many see little point in proving something which
they already ‘know’ to be true. Hofstadter (1997, p. 10) argues that the certainty given by
dragging a dynamic geometry construction is more convincing for him than a proof: “it’s
not a proof, of course, but in some sense, I would argue, this kind of direct contact with the
phenomenon is even more convincing than a proof, because you really see it all happening
right before your eyes”. The question, then, is how to exploit the rich visual environment
of dynamic geometry software to engage students in deductive reasoning and proof. Scher
(1999, p. 24) suggests that through an interplay between experimentation and deductive
reasoning, “dynamic geometry can provide not onlydata to feed a conjecture, but tools
to jump-startideas and feed a proof”.

Mechanical Linkages as a Pathway to Deductive Reasoning

My quest for a motivating, visually rich context in which to introduce Year 8 students to
geometric proof led me to mechanical linkages, or systems of hinged rods (see Cundy
and Rollett, 1981; Bolt, 1991). Found in many common household items, as well as in
‘mathematical machines’ from the past, mechanical linkages are often based on simple
geometry such as similar figures, isosceles triangles, parallelograms or kites. With the
emphasis on the underlying geometry, dynamic geometry software models of linkages
provide an interface between the concrete and the theoretical, and a visually rich environ-
ment for students to explore, conjecture and construct geometric proofs. In this context
of mechanical linkages, proof has the functions ofverification of the truth of conjectures,
promotingunderstanding of geometric relationships, andexplanation, that is, giving in-
sight intowhy a particular linkage works the way it does.
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Fig. 1. Pencil-and-paper: Tracing the paths of points on Tchebycheff’s linkage.

Fig. 2. Cabri model of Tchebycheff’s linkage.

Developing a Cognitive Need for Proof

In a research experiment with Year 8 students, Tchebycheff’s linkage (Cundy and Rollett,
1981) for approximate linear motion (see Fig. 1) was introduced as a means of developing
a cognitive need for geometric proof. The linkage consists of three rigid bars,AC, BD

andCD, with lengths five, five, and two units respectively. PointsA andB are fixed,
with the distanceAB equal to four units. WhenCD rotates, the midpoint ofCD moves
along an almost linear path. The students first constructed the linkage from plastic strips,
and conjectured that the midpoint ofCD moved in a straight line.

Fig. 2 shows a Cabri Geometry II (referred to from now on as Cabri) model of Tcheby-
cheff’s linkage, with the tabulated measurement data and the trace of pointP (the mid-
point of CD) demonstrating the closeness of the path ofP to linear motion. When the
students dragged the Cabri linkage, their realisation that the path was not in fact linear,
and their astonishment at seeing how little the path actually deviated from a straight line,
was sufficient to convince them that visual and empirical evidence could not be trusted.

Computer Simulations of Other Mechanical Linkages

Linkages which Produce True Linear Motion

During the nineteenth century several mathematicians became involved in designing lin-
kages for converting circular motion to linear motion. Sylvester’s linkage (Fig. 3), for
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Fig. 3. Cabri model of Sylvester’s straight-line linkage.

example, is based on two similar kites,AEDC andDCBF , with O andF fixed so
that OABF is a parallelogram. As pointB is dragged, the locus ofE appears to be a
straight line throughF , while measurement of angles suggests that∠OFE is a right-
angle. Using the geometry of the similar kites and the parallelogram,OABF , it can be
proved that∠OFE is indeed a right-angle.

Pantographs

Pantographs – mechanical devices used for copying or enlarging drawings – are readily
modelled using dynamic geometry software. Sylvester’s pantograph (Fig. 4) consists of
a parallelogramOABC and two links,AP andCP ′, whereAP = AB = OC, CP ′ =
CB = OA and∠BAP = ∠BCP ′ = α, a fixed angle. Tracing the paths ofP andP ′ as
P is dragged, demonstrates to students thatP ′ traces out a rotated image of the path of
P . Feedback from dragging the dynamic geometry model and measurement ofOP , OP ′

and∠POP ′ should lead students to the conjectures thatOP = OP ′ and∠POP ′ = α.
Proof of these conjectures, based on congruent trianglesOAP andOBP ′, then confirms
why the movement ofP ′ is an image of the movement ofP , rotated through an angle
equal toα.

The pantograph shown in Fig. 5, in whichABDC is a parallelogram, pointsO, C

andE are collinear, andO is fixed, can be used for enlarging or reducing. By tracing the
locus of pointsC andE students can compare the sizes of the loci and construct a proof
based on the conjecture that∆OAC, ∆OBE, and∆CDE are similar.

Pascal’s Angle Trisector

In Pascal’s angle trisector (see Fig. 6),OA = AP = PB so that trianglesOAP and
APB are isosceles triangles. RodsOC andOD are hinged atO and rodAP is hinged
at A. As the rodOD is rotated to change the size of∠BPC, B slides alongOD and
P slides alongOC. The proof that∠BOP is one third of∠BPC is based on exterior
angles of triangles.
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Year 8 Students’ Conjecturing and Proving

This section focuses on the role of feedback from Cabri linkage models during argumen-
tation, conjecturing, and proving by two pairs of Year 8 students – Anna and Kate, and
Lucy and Rose – who were novices with regard to geometric proof. The students were
able to exploit the features of Cabri to assist them in formulating and proving in the con-
text of Cabri simulations of mechanical linkages. In the transcriptions included in this
section, TR refers to the teacher-researcher.

Anna and Kate: Pascal’s Angle Trisector

Pascal’s angle trisector was Anna and Kate’s first linkage task, and their first attempt
at conjecturing and proving. They commenced their investigation of the linkage with a
metal strip model (see Fig. 7a) which was introduced to them as ‘Pascal’s mathematical
machine’ so they did not know the purpose of the device. Their knowledge of isosceles
triangles and exterior angles of triangles soon led them to the angle relationships shown
in Fig. 7b.

Fig. 4. Sylvester’s pantograph.

Fig. 5. Cabri model of an enlarging or reducing pantograph.
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Fig. 6. Cabri model of Pascal’s angle trisector.

However, Anna and Kate were unable to make any further progress in their reasoning
until they were given the Cabri model (see Figs. 8 and 9). They measured angles in the
Cabri figure (Fig. 9a) then tried to find relationships between the angles (Fig. 9b). Kate
observed that 55.8 plus 27.9 was equal to 83.7, and therefore that∠BDC + ∠BAC =
∠DCX . Initially they had observed only the two triangles,ABC andBCD. Dragging
of the Cabri figure allowed Anna and Kate to notice∆CAD, and they then recognised
that∠DCX was in fact an exterior angle of∆CAD, and that∠DCX was equal to three
times∠BAC.

074 Kate: This angle, 83.7, equals 55.8 plus 27.9.
075 TR: So what is your conjecture?
076 Kate: So this angle [∠DCX] is equal to that [∠BAC] plus that [∠ADC], a

plusb.
077 Anna: So it equals 3a.

Anna and Kate’s written proof is shown in Fig. 10.

Lucy and Rose: Sylvester’s Pantograph

Sylvester’s pantograph was the fourth conjecturing-proving task completed by Lucy and
Rose. The students commenced with a plastic model of a rhombus version of Sylvester’s

(a) (b)

Fig. 7. Anna and Kate: Investigating Pascal’s angle trisector.
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Fig. 8. Anna and Kate investigating the Cabri model of Pascal’s angle trisector.

(a) (b)

Fig. 9. Using empirical Cabri data to formulate a conjecture.

Fig. 10. Anna and Kate’s written proof for Pascal’s angle trisector.

pantograph, conjecturing that the image was congruent to the shape they had drawn on
the paper. Rose also tentatively suggested that the image was rotated by the fixed angle of
the pantograph: “Maybe that angle. . . I’m not sure. . . maybe not. . .”. They were then
given a Cabri model of the pantograph where the distancesOA, AB, BC, OC, AP , and
CP ′ were all equal, and∠PAB = ∠P ′CB = 30◦. Lucy used the CabriTriangle tool to
draw a triangle with one of its vertices coinciding with pointP , then selectedTrace for
pointP ′. She draggedP around her triangle so that a trace of the path ofP ′ was drawn
(see Fig. 11a).

Lucy then placed points at the vertices of the trace formed byP ′, and removed the



146 J. Vincent

trace to expose the three points, which she then joined with segments (Fig. 11b). Lucy
and Rose observed that the two triangles were “about the same”, but rotated.

033 Rose: It’s about the same.
034 Lucy: Yeah, it’s about the same.
035 Rose: It’s turned back. . . [indicating the clockwise rotation of the image]
036 Lucy: Yeah. . . will we have to find out what kind of angle it moves?
037 TR: Yes, see if you can find out.
038 Lucy: Umm. . .
039 Rose: Put that shape [the triangle drawn byP ] down there [pointing to image]

Lucy measured∠PAB and∠P ′CB, noting that they were always 30 degrees. Rose
then suggested that they should measure the angle between corresponding sides of the
original triangle and the one they had drawn over the trace (see Fig. 12). Lucy had an-
ticipated that the angle would be 30 degrees, but probably recognised the inaccuracy
associated with constructing the triangle over the trace and moving the original triangle
to coincide with this second triangle.

042 Lucy: So it’s 30 degrees the whole time [∠PAB and∠P ′CB].
043 Rose: So we want to measure. . .
044 Lucy: This angle? Twenty-nine point one. . . it’s point nine off.

Based on the accurate feedback from the Cabri model, Lucy and Rose were now able

(a) (b)

Fig. 11. Using the Cabri model to investigate Sylvester’s pantograph.

Fig. 12. Measuring the angle of rotation of the image atP ′.
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to formulate conjectures about the operation of the pantograph (see Fig. 13):

045 TR: So what is your conjecture then?
046 Lucy: That the angle which the copy of the shape rotates is that angle of the

pantograph.

The two students were still uncertain, however, why the image was rotated:

066 TR: What determines where the image is formed?
067 Rose: The smaller this angle [ABC] the further out these go [P andP ′] and

the further apart these [P andP ′] get . . .
068 Lucy: Oh. . . so theydo get further apart. . .
069 Rose: If you just rotate it. . .
070 Lucy: When you move it round a shape they stay the same distance apart.
071 Rose: Yeah. . .
072 TR: Look at where the linkage is attached to the paper and watch that in

relation to the object and the image.
073 Rose: Perhaps this angle is always the same. . .
074 TR: Which angle do you mean?
075 Rose: This one. . . from that point [P ] to that point [O] to there [P ′].

Rose drewOP andOP ′ on the Cabri figure and measured∠POP ′ (see Fig. 14),
which led the students to recognise that∠POP ′ was the angle of rotation and that it was
equal to the fixed angles of the pantograph (∠PAB and∠P ′CB):

076 Rose: Measure the angle.
077 Lucy: OK. . . measure angle. Yep, 30. . .

Lucy and Rose now understood the angle relationships of the pantograph (see Fig. 15)
and were able to see why the angle of rotation (labelledd on their diagram) was equal to
the fixed angles of the pantograph (labelleda) on the diagram).

When Lucy and Rose began to construct their written proof (see Fig. 16), they had
a clear understanding of the logical order of statements in their proof, as indicated by
Rose’s comment “We shouldn’t do that yet” (turn 087).

087 Rose: Let’s do the sides first.OA equalsAP equalsOC equalsCP ′ . . . then
angleOCP equals. . . OPB because they both have 30 degrees. . .
they share 30 degrees. . . we shouldn’t do that yet. AngleOA . . . angle
OAB equals. . .

088 Lucy: AngleOCB

Fig. 13. Lucy and Rose’s conjectures for Sylvester’s pantograph.
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Fig. 14. Measuring∠POP ′.

Fig. 15. Identifying angle relationships in Sylvester’s pantograph.

Fig. 16. Lucy and Rose: Written proof for Sylvester’s pantograph.
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089 Rose: And angleBCP ′ equalsBAP because given. . . OAB plusBCP ′ . . .
090 Lucy: Those two added together, that whole angle. . . that means. . .
091 Rose: Once we’ve proved that angle, then the whole thing’s easy ’cause side

angle side. . . see, if you have two sides and how big it’s going to be in
between. . . when you join them up the triangles will be the same. . .

092 Lucy: Oh, yep. So. . . angleP ′CO will be equal to ...
093 Rose: Therefore. . . P ′CO equalsPAO because. . . say side angle side so it

makes congruent triangles. SoOP equalsOP ′.
094 Lucy: Right, now prove thatPOP ′ equals angleP ′CB andPAB. In triangle

POA . . .

Conclusion

The students involved in the sequence of conjecturing-proving tasks displayed high levels
of motivation, no doubt due in part to the tactile and novel experience of working with
physical models of the linkages. It was, however, the accuracy of the feedback from the
Cabri models which allowed the students to formulate their conjectures, and gave them
the confidence and motivation to seek explanations for these conjectures. The unique fea-
tures of dynamic geometry software – constructions based on Euclidean geometry, accu-
rate measurements, tabulation of data, and the tracing of loci and the drag facility – rather
than eliminating the need for proof, created a visually rich and motivating environment
for these Year 8 students to explore, conjecture and construct geometric proofs.
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Matematinis argumentavimas technologiṅeje aplinkoje

Jill VINCENT

Nors m̄us ↪u matematinis išmanymas ir remiasi↪irodymu, tǎciau tyrimai rodo, jog moksleiviai
dažnai nesugeba suvokti paties matematinio↪irodymo tikslo bei savo↪isitikinimus visiškai ne-
susim↪astydami grindžia empiriniu akivaizdumu arba vadovėlio ar mokytojo autoritetu. Vis ḋelto,
daugelio šali↪u matematikos mokymo programose šiuo metu yra pabrėžiama moksleivi↪u geḃejimo
pagr↪isti ir paaiškinti vienok↪i ar kitok↪i savo argumentavim↪a svarba. Pastaraisiais dešimtmečiais
mokyklose imta supažindinti su dinaminės geometrijos programine↪iranga. Nepaisant vis↪u šios

↪irangos galimybi↪u pertvarkyti geometrijos mokym↪asi, dažnai išreiškiamas nepasitenkinimas, kad ir
ji prisideda prie tokio, empirinio požīurio ↪i geometrij↪a, radimosi mokykloje. Ḋel to kyla klausimas,
kaip reikt ↪u naudoti dinamiṅes geometrijos programinės ↪irangos suteikiam↪a vizuali↪a aplink↪a, kad
mokiniai b̄ut ↪u skatinami dedukciškai m↪astyti.

Daugelyje nam↪u apyvokos reikmen↪u, o taip pat ir praeityje paplitusiose "matematinėse
mašinose", aptinkam↪u mechanini↪u junǧci ↪u veikimas dažnai pagr↪istas tradicine geometrija, t. y.
panašiosiomis fiḡuromis, lygiašoniais trikampiais, lygiagretainiais ar rombais. Neišleidžiant iš
aki ↪u tradiciṅes geometrijos svarbos, dinaminės geometrijos programinės ↪irangos junǧci ↪u mod-
eliai suteikia tinkam↪a pagrind↪a aštuntos klaṡes moksleiviams aiškintis, numanyti bei sudarinėti
geometrinius ↪irodymus. Kompiuteriniai junǧci ↪u modeliai nutiesia tam tikr↪a pažintin↪i tilt ↪a tarp
konkrěci ↪u fizini ↪u junǧci ↪u ir asociatyvi↪u teorini ↪u geometrini↪u figūr ↪u. Ši ↪u modeli↪u dinamiṅe prigimtis
lavina vaizduot↪e ir skatina argumentuoti. Aštuntos klasės moksleiviai, susipažindami su ge-
ometriniais ↪irodymais, ugdo savyje aukštesnio lygio matematinio↪irodymo ↪isis ↪amoninimo, de-
dukcinio argumentavimo bei↪irodymo organizavimo↪igūdžius. Šiame straipsnyje taip pat disku-
tuojama apiěCebyševo modeli↪u naudingum↪a siekiant parodyti geometrinio↪irodymo vert↪e bei pa-
teikiami pavyzdžiai iš moksleivi↪u diskusij↪u apie Paskalio ir Silvestro fiḡuras.


