Informatics in Education, 2003, Vol. 2, No. 1, 21-38 21
[J 2003Institute of Mathematics and Informatics, Vilnius

Numerical Difficulties in Pre-University
Informatics Education and Competitions

Gyula HORVATH
University of Szeged, Hungary
e-mail: horvath@inf.u-szeged.hu

Tom VERHOEFF

Eindhoven Univ. of Techn., The Netherlands
e-mail: t.verhoeff@tue.nl

Received: March 2003

Abstract. It is easy to underestimate the difficulties of using floating-point numbers in program-
ming. This is especially the case in pre-university informatics education and competitions, where
one is often led to believe that floating-point arithmetic is a good approximation of the real number
system. However, most of the mathematical laws valid for real numbers break down when applied
to floating-point numbers. We explain this break-down and illustrate it with four simple examples.

In informatics education and competitions, the students need to be trained, programming as-
signments need to be formulated, submitted programs need to be evaluated, and variations among
computing platforms need to be handled. We show that the use of floating-point numbers gives rise
to various kinds of non-trivial difficulties in all these areas. Coping with such difficulties would
require that teachers, students, and organizers gain experience in numerical mathematics.

We strongly recommend to avoid the use of floating-point numbers in pre-university education
and competitions whenever possible. If you do want to use floating-point numbers, then study the
literature of numerical mathematics and be prepared to do a convincing error analysis.

Key words: informatics education, informatics competitions, floating-point arithmetic, numerical
mathematics.

1. Introduction

Non-integer numbers are introduced in mathematics education soon after pupils are fa-
miliar with the integers. In primary education, pupils learn to deal with fractions and
percentages, and with fixed-point currency values. In secondary education, they also en-
counter the real number system as closure of the rational numbers. The square root of
two is a real number, but not a fraction (of integer numbers). These real numbers play an
important role in all sciences, especially physics, where continuous mathematical models
are used.

In many science classes, pocket calculators are used to help solve numerical problems.
For that purpose, these calculators must support the so-caitetific notation, where a
number is expressed as the product of a number between 1 and 10 (the decimal portion),

22 G. Horvéth, T. Verhoeff

and a power of 10 (the exponential portion). The motivation usually given for this notation
is that it simplifies the handling of very small (near zero) and very large numbers. Often
less well explained is the notion of approximation and significance.

Every serious programming language provides floating-point numbers to tackle nu-
merical problems involving non-integer calculations. These floating-point numbers are
the computer’s scientific notation. For instance, Pascalhasthesgipand C,G-+,and
Java have the tygloat. In fact,there are often several floating-point types to choose from.

For some people, the obvious conclusion from these observations seems to be that
programming education at the pre-university level must include the use of floating-point
numbers. Often, they presume that floating-point numbers can be treated like integers
when designing programming exercises and competition problems.

In this paper, we point out various kinds of difficulties that arise when using floating-
point numbers. Some of these difficulties are fairly straightforward, but others are quite
subtle. It is important to understand these difficulties if one wishes to maintain a high
guality standard in science education. As an omen, we quote D. E. Knuth (Knuth, 1997):

“Floating point computation is by nature inexact, and programmers can easily mis-
use it so that the computed answers consist almost entirely of “noise.” One of the
principal problems of numerical analysis is to determine how accurate the results of
certain numerical methods will be. There is a “credibility-gap”: We don’t know how
much of the computer’s answers to believe. Novice computer users solve this problem
by implicitly trusting in the computer as an infallible authority; they tend to believe
that all digits of a printed answer are significant. Disillusioned computer users have
just the opposite approach; they are constantly afraid that their answers are almost
meaningless.”

1.1. Overview

In the remainder of this article, the terms ‘floating-point’ and ‘real’ can often be replaced
by the more general term ‘non-integer’. Special cases of non-integer numbers include
fixed-point and rational numbers. Many of the concerns about floating-point numbers
apply to those as well.

We start with four programming examples involving floating-point numbers. The next
section presents some of the basic concepts and terminology of numerical mathematics.
Then we analyze the examples and point out various difficulties, introducing further con-
cepts where needed. In Section 5, we investigate the difficulties encountered when us-
ing floating-point numbers in education and competitions, especially in the International
Olympiad in Informatics. Because the literature on numerical mathematics is so vast, we
have included some guidance in Section 6. We conclude the paper with some recommen-
dations.

2. Four Examples

The following examples show simple computing situations in which floating-point num-
bers may cause trouble. The actual difficulties will be explained in Section 4.

Numerical Difficultiesin Pre-University | nformatics Education and Competitions 23

Count down. The first example involves the following program, here shown in Pascal
(left) and C (right):

const D = 0.1; #i ncl ude <stdi o. h>
var x: Real; #define D 0.1
begi n int min (void)
x :=1.0; { double x = 1.0;
while x > 0.0 do while (x > 0.0)
X =X - D X =x - D
witeln (x:1:2) printf ("9.2f\n", x);
end. }

Can you tell what value this program prints, without running it? The result may depend on
your computing platform. You can experiment with the type of variab{single versus
double), and the value of constant(0.1 versug).01).

Euclidean paths.For the second example, consider these four points in 3D space:

A | B L
5 1)

| ¢ D
(2,5,31)[(1,2,9) (0,7

27)/(1,8,10)
All these points have innocent coordinates: small integers. Consider the two V-shaped

paths via the origiD: AOB andCOD. Are the lengths of these two paths equal? If not,
which is bigger? Now also tackle the case with

A | B
6

| ¢ D
(4,12,28)|(2,6, 1) (1,1

|
123)[(1,13,19) @)

Parallel resistors. The third example concerns the computation of the effective re-
sistance of two parallel resistors (see Fig. 1). Write a program to compute the effective
resistance, given the non-negative valligsand R, as input.

Fig. 1. Two parallel resistors: what is the effective resistance?

Quadratic equation. As our fourth example we consider the equation
ar® +bxr+c =0, 3)

where parameters, b, andc are given real constants andis a real variable whose
value(s) satisfying (3) must be determined. Write down your choice of conditions to im-
pose on the parameters to make this into a practical programming assignment. You may
decide whether to include the case analysis caused by zero parameters. Then solve your
own assignment. Finally, explain how you would evaluate programs that are handed in to
solve your assignment.

24 G. Horvéth, T. Verhoeff

3. Numerical Mathematics

We will not present a complete introduction into the field of numerical mathematics. That
would take up too much space, and others have already done so (see Section 6). However,
it is important to know some of the concepts and terminology.

We denote the set oéal numbershby R, and byF its subset ofloating-point num-
bersrepresentable on our hypothetical computing platform. NoteRhsf finite subset
of the rational numbers and that it depends on the specifics of the computer hardware,
operating system, and programming language (compiler). On PQsypally includes
numberse of the form

x = fx2° 4)

where thdraction f andexponente are numbers from a limited set:x 2 is an integer
with f = 0orl < |f| < 2, ande is an integer withe,in, < e < emax, fOr appropriate
integerst, enin, anden.,. Note that terminology in the literature varies: some authors
prefer to work with the ‘mantissaf x 2¢ or the fractionf /2 instead off, applying an
appropriate shift to the exponent. The vajue: ¢ + 1 is the number of bits in the binary
representation of; it is called theprecision of FF.

The numberl is represented byf,e) = (1,0). The smallest floating-point number
larger thanl is 1 + ¢ with e = 2~ called themachine epsilonof IF. The smallest positive
floating-point number igV,,;, = 2°mi» and the largest one & ,,x = (2 — €)26max,
Typical values of, enin, emax, @nde are shown in Table 1. The interval,i, 10 Npax
is called therange of IF. Note thatV,,;; < e.

Most operations oifR are not closed iff. When such operations are simulated on
a computer, the result is forced infy yielding anapproximation of the exact result.
This may introduce a (smaklfpunding error into floating-point calculations. Subsequent
operations on inexact results can magnify, or reduce, the error in non-intuitive ways. The
aim of error analysis is to understand the propagation of errors in numerical algorithms,
in particular to prove bounds on the error in the final result. Doing an error analysis is a
constant struggle between being too optimistic and being too pessimistic.

Students generally assume that the floating-point nunibérem an adequate model
of the real numberR. Especially, they assume that every identity valid for real numbers,
like the associative la: + y) + z = 2 + (y + 2), also holds for floating-point numbers.
To express this assumption formally, fetR — [be an approximation function from
the real numbers to the floating-point numbers. Thafi{s) is the floating-point num-
ber nearest to real number For any computatiom: R” — R with n real inputs and

Table 1
Parameters for normalized binary IEEE floating-point numbers

Type Size t €min €max € Range

Single | 32bits | 23 | —126 127 | 272 x1.2x1077 | ~10%38
Double | 64 bits | 52 | —1022 | 1023 | 2752 ~ 2.2 x 10716 | = 10%308

Numerical Difficultiesin Pre-University | nformatics Education and Competitions 25

one real output we denote the corresponding machine computati.an By — F. The
assumption is that the following diagram commutes.

re 1 g
1A a 1A (5)

This is equivalent to the requirement that the basic arithmetic operations
{+,—, x,/ } satisfy the equation

fi(xoy) = fl(x) Sfl(y), (6)

for all real numbers: andy, whered denotes the machine implementation of the oper-
ationo. In other wordsfl is assumed to be a homomorphism from the algebra over the
real number® to the algebra over the floating-point numb&trdUnfortunately, this is

not true. As a counterexample, imagine that our hypothetical machine works with two
decimal digits only. We then have

fl(1.06 + 3.06) = fl(4.12) = 4.1 # 4.0 = 1.0+ 3.0 = fl(1.06) F f(3.06).
The IEEE standard for floating-point arithmetic does require that
xSy = fllxoy), @)

for all floating-point numbers andy. Sincefl(x) = « for 2 € T, this means that (6) at
least holds irF.

Even floating-point computations that yieldbaolean value rather than a real value
are to be suspected. This can be understood by considering the evaluation of the following
comparison:

53x02+51x06<11x194+51x0.4. (8)
The exact evaluation of the multiplications yields the (obviously true) inequality:

1.06 + 3.06 < 2.09 + 2.04. (9)
On our hypothetical machine working with two-digit decimal numbers only, the four
multiplication results are rounded before the additions are done. By approximation we
would then obtain the (obviously false) inequality:

1.143.1 < 2.1+ 20. (10)

Indeed, the left-hand side is ndarger than the right-hand side. Note that the additions
are done exactly on our hypothetical machine.

26 G. Horvéth, T. Verhoeff
4. Analyzing the Four Examples

Let us look at the four examples in turn.

Count down. The valueD = 0.1 cannot be represented exactly as a binary floating-
point number, becausg' 10 has an infinite repeating binary representation:

oo

0.0001100110011001100110011001100.. .. = Z 3/24k+1, (11)
k=1

Therefore, in the program we ha¥e= fl(0.1) # 0.1. SubtractingD from 1.0 ten times
in IEEE double precision yields approximatelg—16, which still exceed$). The next
subtraction yields-0.10 when printed with two decimals. Paradoxically, the program
prints0.00 when run with the less precise single format.

Such a loop should have been controlled by an integer,ie=g10 - z. In that casey
could even be eliminated by usindl0. A common beginner’s mistake is to take# 0.0
as looping condition, in which case the loop might never terminate.

Similar mistakes are the abuse of floating-point numbers for currency calculations, or
for comparing fractions by writing /b = ¢/d, or for testing divisibility byround(a/b) =
a/b. Fractions are better compareddy d = b * ¢ (however, overflow is a concern), and
divisibility is better (and faster) tested aymod b = 0.

Euclidean paths.By applying Pythagoras’ Theorem, we find for the lengths of the
first pair of V-paths:

AOB =990 + V86 ~ 40.73788394060. ..
COD = V778 4+ V165 ~ 40.73788394062. ..

The two lengths coincide on the 12 most significant decimal digits, with a difference on
the order ofl0—!!. They are indistinguishable with single-precision computer calculation
and on many pocket calculators. For the second pair we find

X

AOB = v944 + V236 ~ 46.086874487211645. . .,
COD = V531 4+ v531 ~ 46.086874487211652.. .,

where the difference is less thad—'%. Are the lengths really different?
For the first pair the answer is 'Yes’, for the second 'No’. The verification can be
carried out in the integer domain, with some care. For the second pair observe

V944 + /236 = V16 - 59 + V4 - 59 = 6v/59,
V531 +v531 = V9-59+v9-59 = 6v/59.

For the first pair, the assumption of equality leads to a contradiction by three squarings
and subsequent simplifications:

V990 + V86 = V778 + V165,

Numerical Difficultiesin Pre-University | nformatics Education and Competitions 27

990 + 21/990 - 86 + 86 = 778 + 2v/778 - 165 + 165,
133 = 2. (\/778- 165 — /990 - 86) ,

1332 = 4. (778 - 165 — 2V/778 - 165 - 990 - 86 + 990 - 86) ,

8778165990 - 86 = 4 - (778 - 165 + 990 - 86) — 1332,
64778165 - 990 - 86 = 8363512,
699482995200 = 699482995201.

Note that 32-bit integer arithmetic does not suffice.

The original problem involves small integer coordinates. The results of floating-point
calculations on these numbers must be interpreted carefully. Replacing them by integer
calculations presents other complications. For larger coordinates or more than two seg-
ments in a path, even double-precision calculations do not suffice, and a reduction to
integer calculations is a nightmare. This jusha an easy problem. It is difficult to de-
termine safe bounds on the size of the coordinates and the number of segments such that
floating-point computations can be used naively to pick the longer path.

The competition task BS TERMINALS at 101 2002 (Day 2) involves a set of points in
the plane with positive integer coordinates at most 5000 (1012002, 2002). The goal is to
select two pointsl and B (called *hubs’) from the set and to assign each of the remaining
points to eitherd or B while minimizing a certain cost function (see Fig. 2). The cost
¢(P, Q) associated with two point8 and(is defined by

(P, Q) = d(P,H(P)) + d(H(P), H(Q)) + d(H(Q), Q), (12)

whered measures the distance between points in the planéZdii) € { A, B } is the
hub assigned to point” (for conveniencef{ (4) = A andH(B) = B). The cost to be
minimized is the maximum value ef P, Q) over all pairs of distinct points in the given
set.

This task uses the Manhattan distance ddo avoid numerical complications. An
earlier formulation was based on the Euclidean distance, which would then require the
comparison of sums of two or three square roots of integers having up to eight deci-
mal digits. It is far from obvious that double-precision floating-point calculations would
suffice, and it might simply be incorrect. Even if the organizers would have proved that
double-precision suffices, then it is still questionable whether the contestants could have
discovered this. For reasons of speed, a contestant might be tempted to use single pre-
cision, and get away with it because the test cases used for evaluation happen to miss

Fig. 2. Example assignment of points for tasdSBTERMINALS.

28 G. Horvéth, T. Verhoeff

the bad cases where single precision fails. Stating in the task description that double-
precision floating-point suffices to calculate and compare costs (if this would indeed be
true), might still get contestants into trouble if they apply some simple transformations
to the cost function (see Quadratic equation below). Because the actual distance function
does not matter much for the algorithmic aspects of the task, it was decided to use an
integer-based distance function, thereby avoiding floating-point numbers completely.

Parallel resistors. Recall that the replacement resistari@dor two parallel resis-
tors R, and R is given by

R——1 (13)

1 1 -
TR
However, this formula cannot be used directly when = 0 or R, = 0, even though

R is well defined in those cases. The program needs to do a case analysis. Rewriting the
formula as

Ry - Ry

R— 1 2
R+ Ry

(14)

helps somewhat, but still is problematic when = 0 = R,. Furthermore, such rewriting
quickly becomes a mess when more than two resistors are involved. On the other hand,
if your computing platform supports the IEEE floating-point standard, then the first for-
mula can indeed be used, but not the second. The IEEE floating-point standard includes
well-behavednfinities with 1/0 = oo, oo + z = 00, 1/00 = 0 (actually, zeroes and in-
finities are signed). Howevei/0 is not defined, yielding &laN (not-a-number) in IEEE
terminology. To use this standard properly requires some studying. Unfortunately, many
programming languages do not (fully) support the IEEE standard.

Quadratic equation. In high school, the, b, c-formulais taught for solving quadratic
equations:

—b+ Vb? — 4ac
T12 = — (15)

In programming classes it is often used to practice the translation of a mathematical
formula into a program expression. Numerically speaking, howeve, the-formula is
not appropriate in many cases. If you apply it to the equation

10 8x2?+2—-1=0, (16)
and evaluate it in IEEE single precision, you obtain the two roots
r12 = 0.000000000, —1.000000000 x 10%. (17)

The true positive root is actually0 with an accuracy better thaim—". Thus, the positive
root computed from the, b, c-formula is off by 100%. The reason for this large error

Numerical Difficultiesin Pre-University | nformatics Education and Competitions 29

is that in thea, b, c-formula for our positive root, the valuesb and++/b? — 4ac have
opposite signs and are almost equal in size, bechuus¢ < b%. When adding them,
the (roundoff) error present in the computed valuetfor- 4ac is suddenly magnified
enormously in relative size. This phenomena is knowgaellation Here, it can be
avoided by multiplying the numerator and denominator in dhk c-formula by —b
Vb? — 4ac and simplifying the result, yielding

2¢c
Ty = ————.
Y27y VB2 — dac

This less-known formula is numerically more suitable in some cases, though there are
even better approaches (e.g., viewing equation (16) as linear).

(18)

Sidenotes

Equation (16) may seem quite special, with= 0. But this is not so. It could
easily arise in practice. Besides, the point is to show that a program for solv-
ing quadratic equations should not apply thé, c-formula carelessly. The
formulais correct, but it has numerical shortcomings.

Furthermore, cancellation occurs whenejeic| < b2, also whena is not

close to zero. It then always gives rise to excessive loss of accuracy. Our ex-
ample was chosen because of the extreme loss of accuracy: seven orders of
magnitude. This is also the case when using double precision, except that you
need to look more carefully!

When experimenting with this equation, one must ensure that single precision
is used for all calculations, especially for the subtractiba 4ac. When done

in higher precision, another approximation for the positive root is found, but is
still seven orders less accurate than possible at that precision.

Theaccuracyof an approximation can be expressed in terms of the error with respect to
the exact value. Suppose the exact value R is approximated by € F through some
calculation. Theabsolute error (in z for z) is defined as

|z — 7. (19)
Another measure is thelative error, defined as

|z — 7|

(20)
|z|
Scientific and engineering applications often involve scaling, e.g., when converting values
to other units. The relative error is preferred becauseiiariant under scaling. It is,
however, not defined when= 0. That makes it inappropriate when the outcome can be
exactly zero.

An accuracy requirement s typically expressed as a bound on the (absolute or relative)
error. Every real number can be approximated by an IEEE single-precision floating-point

30 G. Horvéth, T. Verhoeff

number with a relative error less thad~7, provided it lies within range. Therefore, an
error of 100% in the positive root seems extremely bad. The alternative formula (18)
shows that one can indeed do much better. Even though (15) and (18) are mathematically
identical (inRR), they behave very differently in a numeric sensejnThis illustrates

how dramatic the mismatch between the algebra of real numbers and that of floating-point
numbers can be.

A numerical algorithm is calledtable, when it produces answers whose accuracy is
on the order of what can ‘reasonably’ be expected for the problem at hand. For the posi-
tive root of (16), thes, b, c-formula (15) is unstable, whereas the alternative formula (18)
is stable. One of the challenges in numerical mathematics is to determine what can ‘rea-
sonably’ be expected and to find appropriate stable algorithms.

Unfortunately, the cancellation mentioned above is not the whole story. Cancellation
is also possible in the subtractidh — 4ac whenb? ~ 4ac. In this case it is harder to
circumvent, because it is inherent in the problem itself and not a consequence of a badly
chosen algorithm. The parabola is then almost tangent to thg kné. Determining the
roots when they are nearly equal is said to bdleconditioned problem.

Furthermore, the squarirtg, the multiplicatiordac, and the final division bRa can
produce (intermediate) results that fall outside the representable range. This is referred
to asunderflow or overflow. Forb? and4ac this can happen even if the final results are
representable within the range of floating-point numbers.

When setting the solution of the quadratic equation as a programming assignment,
one needs to worry about

1) the restrictions on the input coefficients, c,

2) what to do in case of roots that are not representable within the range of floating-
point numbers,

3) what to do in case of complex roots,
4) the desired accuracy of the output roots,
5) how to evaluate a quadratic-solving program.

In a high-school setting, one might try to restrict the coefficients such that

e theroots are always real and representable;

e a‘reasonable’ approach does not suffer from overflow or underflow in intermediate
results;

e the problem is notill-conditioned.

It takes a careful analysis to determine such safe restrictions, and they are either awkward
to formulate, or yield a crippled problem.

The quadratic-solving program becomes much more complicated if it explicitly needs
to deal with the possibility of intermediate overflows and underflows, and unrepresentable
roots. It is extremely difficult to determine the reliability of such programs merely by
testing with specific cases. The burden of proof should be on the designer, who must
provide a convincing argument that the program satisfies the specification.

Numerical Difficultiesin Pre-University | nformatics Education and Competitions 31

5. Using Floating-Point Numbers at the Pre-University Level

In this section, we investigate the difficulties of using floating-point numbers in pre-
university informatics education and competitions. We will consider the following com-
mon aspects:

1. Statement of programming tasks.

2. Evaluation of submitted programs.

3. Preparation of students.

4. Choice of platform (CPU, OS, compiler).

We will focus on the International Olympiad in Informatics, rather than a general educa-
tional setting, because it provides a well-defined context.

The International Olympiad in Informatics (IOl) is an annual competition in comput-
ing science (informatics) for talented high-school students from all over the world (I1Ol,
2003). Further information can also be found in (Horvath and Verhoeff, 2002). The 10l
competition tasks are typically algorithmic in nature. The contestants have to design al-
gorithms that satisfy precise specifications in terms of input, output, and performance
constraints. However, it is not a paper-and-pen exam. These algorithms must also be im-
plemented in one of the allowed programming languges

101 competition tasks have traditionally been formulated in terms of integers and
(character) strings, avoiding the use of floating-point numbers. The task descriptions con-
tain a precise specification of bounds on the inputs. These bounds are chosen in such a
way that the resulting problem can be solved within the stated time and memory limits,
and without worrying too much about input/output formats and integer overflow. Com-
petitors can treat their computer as a good approximation of an ideal machine as far as
integer arithmetic is concerned.

5.1. Sating the Tasks

Various kinds of floating-point tasks can be distinguished. First there is the distinction
based on visibility:

implicit Tasks where neither inputs nor outputs involve floating-point numbers, but for
which the organizer’s preferred solution does involve them (e.g., because it is much
faster or easier than a program based on integer arithmetic only).

explicit Tasks where inputs or outputs do involve floating-point numbers. It is relevant
to distinguish the three subcases where
e both inputs and outputs include floating-point numbers;
e inputs include floating-point numbers, but outputs not;

e outputs include floating-point numbers, but inputs not.

ICurrently, Pascal, C, and C++ are supported.

32 G. Horvéth, T. Verhoeff

When using the Euclidean distance, the taslsB ERMINALS of 1012002 (also see Eu-
clidean paths above) classifies as implicit, provided that the bounds are chosen such that
floating-point arithmetic suffices. The task of solving a quadratic equation classifies as
explicit, if the coefficients and roots are not specifically restricted to integers.

A second distinction might be based on the degree of numerical insight needed to
obtain a perfect score:

tame Tasks where no numerical difficulties actually arise, that is, competitors can treat
their computer (almost) as if it were an ideal machine.

mild Tasks where some ‘obvious’ ‘standard’ numerical techniques play a role.

wild Tasks requiring a more innovative approach to overcome the numerical difficulties.

Task TRIANGLES at BOI 2002 (BOI2002, 2002) is a nice example of a (nearly) tame
task with integer inputs and explicit fixed-point output. It involves unions of triangles,
whose total area is always of the form(2, wheren is an integer. These areas can be
represented exactly as binary floating-point numheasovided the range and precision

are large enough. However, in order to decide what type to use for accumulating the
total area, one needs to know about the details of the floating-point types available in the
programming language of choice. The IEEE single format does not suffice, because the
shape could consist @000 disjoint triangles of ared99 000.5 each. The total area then

is 998001 000.0 ~ 109 ~ 239, which has 27 significant bits, thereby exceeding the 24
bits precision provided by the single format.

Therefore, the task RIANGLES is not truly tame. The best approachid to view it
as a task involving floating-point numbers, and to calculate twice the total area in (32-bit)
integers. The output can be written in two steps uslivgfor the integer part, anthod
for deciding between a trailing. 0’ and’ . 5’ .

We conjecture that floating-point numbers can easily be eliminated from tame tasks
without affecting the algorithmic challenge. In the taskiANGLES above, the required
output could have been twice the total area.

Even in a seemingly tame task, one cannot be completely oblivious of numerical
issues, as is shown by tasiRIRNGLES where the addition of many exact numbers fails
if the wrong floating-point type is used. Furthermore, simple transformations vaid in
may fail badly inF. It would be pedagogically wrong to blame students for applying
such transformations. Thus, tame tasks are actually at least mild, the ‘standard’ technique
being that you must know whemot to use floating-point arithmetic and whewt to
transform certain expressions.

Mild tasks — if they exist — would not make good IOl tasks because they assume
specific knowledge, namely about ‘standard’ numerical techniques. This is counter to the
spirit of the olympiad.

The actual task description also poses various dilemmas:

2This would no longer be the case for a generalization to three dimensions, where a coeffitiéhapf
pears.

Numerical Difficultiesin Pre-University | nformatics Education and Competitions 33

e Does it explicitly state in which class (tame, mild, or wild) the task falls? Does it
help in the selection of appropriate floating-point type (single versus double)?

e How does it express what is known about the inputs: format details, value restric-
tions (such as bounds), and (when applicable) accuracy?

e How does it express what is required of the outputs: format details and accuracy?

For example, when taskugs TERMINALS is posed with Euclidean distance, how should a
competitor know whether to use integers, single precision, or double precision? Concern-
ing accuracy, we feel that inputs should always be given as exact values, that is, without
error. It is clearly problematic that input values are typically presented in decimal nota-
tion, because after reading them into a floating-point variable, there usually is already a
conversion error. Think of reading in the step valukin the Count-down program dis-
cussed earlier. To specify the accuracy of output values, there is a dilemma of bounding
the absolute or the relative error.

Another question to be addressed is: How to convince reviewers and leaders that all
allowed inputs are ‘reasonably’ solvable. This requires a careful numerical error analysis
and possibly a lot of experimentation. Even understanding such an analysis requires a
thorough familiarity with numerical mathematics. There is especially a concern when
the input and/or internal calculations involve floating-point arithmetic, but the output is
discrete. As an example, we have seen task BERMINALS of |012002.

5.2. Evaluating the Programs

Let us assume that a floating-point task can be formulated in a satisfactory way. How
will submitted programs for that task be evaluated? Since 1994, programs at the IOl are
automatically evaluated based on the program’s behavior for a small set of test cases.

Especially for mild and wild tasks, there is the problem that it may be very hard to
find good test cases that separate sloppy programs from scientifically well-designed pro-
grams. For example, a program using single-precision floating-point numbers for task
TRIANGLES above, would successfully solve many cases, in spite of being fundamen-
tally flawed. The organizers would have to construct specific cases to detect floating-point
flaws in such a program. In numerical mathematics, one requires convincing documen-
tation for such programs. It is almost impossible to determine the quality of a numerical
program by doing black-box tests.

If the task requirements are such that the input values uniquely determine the output
values, then the outputs of a submitted program can be checkedsyytactic com-
parison to the know correct outputs. Tasks involving floating-point outputs might not
have this property. In that case, the output check must be basedesmamtic compar-
ison. One must now take into account the conversion errors. Assume that the submitted
program computes a floating-point value in variabénd writes it to a file in decimal no-
tation, which the checker subsequently reads from that file into a floating-point vasiable
Because of the unavoidable inaccuracies in the binary-to-decimal and decimal-to-binary,
it is very well possible that # s. Try this simple experiment: writsgrt(2) to a file, read
the written value back, and compare it to the original value.

34 G. Horvéth, T. Verhoeff

When exact outputs cannot be determined (e.g., analytically), there is also a technical
problem: how to check the outputs of submitted programs? Assume that the accuracy
requirement in the task description specifies an absolute error atdmed. Let z be
the exact value of the solution, Igtbe the approximation produced by the organizer’s
program to be used for evaluation, andddte the value output by the submitted program.

It is tempting to accept or rejeetdepending on whether or not it satisfies:

ly — 2 < 0. (21)

For the sake of the argument suppose that y. Now consider two outputs, = z — ¢
andz, = y + ¢ of two submitted programs. Then (21) will rejegtand accepts, even
though|z — 21| < § and|z — 22| > 4. This is clearly not satisfactory. One might try to
solve this by checking for

ly—z| <0+, (22)

whered’ is a bound on the absolute error in valyeomputed by the organizers. The
disadvantage of this alternative is that it may now accept outputsditteat do not satisfy
the accuracy requirement of the task description. This is also not a desirable situation.
The least one can do as an organizer is determisech thaty’ < §. This means that
the program to produce sugls must be designed for a much tighter error bound than
specified in the task description.

Another questions is: How to convince reviewers and leaders that the test cases and
their evaluation are reasonable.

5.3. Preparing the Sudents

Even in the current situation, where the 101 does not involve floating-point tasks, com-
petitors must be educated to some extent. For instance, they must be strongly advised to
avoid floating-point numbers.

When floating-point tasks would be used, it is necessary to educate competitors bet-
ter. For instance, they should at least understand that most mathematical theorems about
rational and real numbers fail when converted to floating-point arithmetic. It may be diffi-
cult, however, to decide what standard numerical techniques to teach them in preparation
for mild or wild tasks. This prerequisite knowledge is not so easy to codify as it may
seem.

Furthermore, if you teach them ‘too much’, they may worry too much when dealing
with tame or mild tasks. Assume a tame task is posed without explicitly stating that it is
tame. Then a competitor who knows about mild and wild tasks may spend some time on
analyzing the task description to determine that it is tame. Tameness need not be obvious
at all. On the other hand, a naive competitor (not knowing about numerical difficulties),
simply goes ahead. This is not fair. The naive competitor is in fact bluffing, and this
should not be encouraged.

Numerical Difficultiesin Pre-University | nformatics Education and Competitions 35

Alternatively, the numerically-educated competitor might avoid the analysis and de-
cide to assume the worst, i.e., that it is a mild or even wild task. Consequently, he applies
numerical techniques to guarantee that the outputs satisfy the requirements (no matter
what). This involves extra work (costs time) and may not be without penalty (slower
program using more memory) or risk (more error-prone). As an example, consider the
complications when avoiding floating-point numbers in taslsSH ERMINALS using the
Euclidean distance.

Either the tameness must be explicitly stated in the task description, or it must other-
wise be obvious from the task description (if the task is indeed intended as tame). The
reviewers and leaders must also be convinced that it is indeed obviously a tame task.

5.4. Handling the Platform Limitations

The 10l involves various platfornis®). The same algorithm implemented on different
platforms may give rise to significantly different outputs for the same inputs. This is
especially a concern when competitors develop their programs on a platform that differs
from the platform used for evaluation. The evaluation of programs needs to take this into
account.

The IEEE Standard for binary floating-point arithmetic is not equally supported in all
languages used at the |OI. There are also the floating-point specifics of the processors and
compilers used in the competition. Often, these offer additional features outside the IEEE
Standard. We will not delve into details here. This may create quite different challenges
depending on the platform. These differences must be well understood when deciding
about the suitability of a competition task.

6. Notes on Literature

Much of the literature on numerical mathematics involves calculus and advanced lin-
ear algebra. It often discusses the numerical solution of problems that are outside the
scope of pre-university education, such as the approximation of special functions, matrix
inversion, and integration of partial differential equations. We give a brief overview of
accessible literature on numerical mathematics.

For almost any computer science problem it is good to consult the works of Donald
Knuth. Chapter 4 (Arithmetic) of (Knuth, 1997) is worth reading. In particular, 84.2.1 and
84.2.2 contain many details on floating-point arithmetic and its accuracy. Unfortunately,
treatment of the IEEE standard has been postponed until the fourth edition.

The official definition of the IEEE standard for binary floating-point arithmetic is
(IEEE, 1985). Good expositions of this standard are available in (Goldberg, 1991;
Higham, 1996; Overton, 2001). William Kahan is the academic father of this standard.
His paper (Kahan, 1981) motivates the need for the standard, and in (Kahan, 1996) he

3Currently, Linux and Windows are offered for development; Linux is used for evaluation.
4At 101 2002, FreePascal 1.0.6 and GCC 2.95.2 were available

36 G. Horvéth, T. Verhoeff

explains some of the deficiencies in the current support for the standard, especially the
lack of full support in many compilers.

A lightintroduction to numerical computing is (Overton, 2001). Well known and very
practical are books from the seridamerical Recipes, such as (Prest al., 1989), though
some people have warned for shortcomings. The C version is available on-line, and we
recommend §1.3 about error, accuracy, and stability. A more theoretical treatment can be
found in (Higham, 1996). The first two chapters contain many inspiring examples. It also
has good notes for references through its extensive bibliography.

Our examples for the sums of square roots (Euclidean paths) are based on (Goddijn,
2002). Comparing sums of square roots of integers is a known-difficult problem with
applications in computational geometry (O’Rourke, 1981). It is unknown how much pre-
cision is needed to decide which of two such sums is larger, expressed in terms of the
number of square roots and the size of the integers. Ron Graham constructed an example
of two such sums with nine terms each and integers of seven decimal digits that agree up
to 40 decimal digits (Graham, 2003).

The quadratic equation is covered in depth in §89.6 of (Sterbenz, 1974). Also see 81.8
and §1.21 in (Higham, 1996) for more references. Although (Sterbenz, 1974) may seem
dated, it is a good text. In §9.2 an algorithm for computing the average of two floating-
point numbers is presented, carefully weighing the merits of the three formulae

(x4+y)/2 = x/2+y/2 = 2+ (y—x)/2. (23)

7. Conclusion and Recommendations

We have shown that there are many intricacies surrounding the use of floating-point num-
bers. Our examples are not new, but we have selected and adapted them to be very acces-
sible. It is not true that numerical difficulties occur only in very special situations which
lie outside the domain of pre-university education.

For completeness’ sake, we mention that we have ignored two important areas of
numerical mathematics, related to two additional sources of error:

data uncertainty the error already present in the input values, e.g., when they were ob-
tained by physical measurement;

truncation error the error introduced by applying an inexact algorithm (that is, an al-
gorithm which is known to produce an incorrect answer when run on an ideal
machine), with the purpose of obtaining accurate answers in less time, e.g., by
chopping off an infinite series or approximating a function by a polynomial.
Our recommendations can be summarized as follows:
1. Avoid the use of floating-point numbersin computing whenever possible.

To teachers: When designing programming problems, there are plenty of possi-
bilities without floating-point numbers. In fact, it is a good attitudefdo
bid your students to use floating-point numbers in their programs, unless

Numerical Difficultiesin Pre-University | nformatics Education and Competitions 37

specifically required by the assignment, because it is so hard to reason about
floating-point programs.

To students: When solving programming problems whose description does not
involve floating-point numbers, resist the temptation to use them.

2. If you do want to use floating-point numbers, study the literature.

To teachers: When setting a programming problem involving floating-point num-
bers, make sure that the constraints are expressed carefully and that the prob-
lem is solvable for all inputs satisfying the constraints. In particular, you need
to provide evidence that your own solution is acceptable. Make sure that you
avoid ill-conditioned problems.

To students: Before resorting to floating-point numbers, convince yourself that
this is really necessary. Then, convince yourself that your program satisfies
all constraints. In particular, check that you have not fallen into one of the
‘standard’ traps giving rise to an unstable algorithm.

In both cases, some form of error analysis is needed.

These recommendations apply also to competitions: just read ‘organizers’ for ‘teach-
ers’ and ‘competitors’ for ‘students’. However, in view of the complications brought by
floating-point arithmetic, we believe that competitions can best steer clear of floating-
point.

The quote from (Knuth, 1997) that we gave in Section 1 continues as follows:

“Many serious mathematicians have attempted to analyze a sequence of floating point
operations rigorously, but have found the task so formidable that they have tried to be
content with plausibility arguments instead.”

Computations involving floating-point numbers require careful arguments to convince
oneself and — more importantly — others of the reliability of the results. The design and
analysis of numerical algorithms has become a specialism of its own. It is an interesting
but difficult field, well beyond the pre-university mathematics curriculum.

References

BOI2002 (2003). Triangles, competition task on Dayaltic Olympiad in Informatics, Lithuania.
http://aldona.mi.lt/pns/olinp/english/boi2002/

Goddijn, A. (2002). Nee is meestal Nee, maar Ja niet altijdPythagoras, (41) 6, 25-29 (in Dutch).

Goldberg, D. (1991). What every computer scientist should know about floating-point arithmetic. Appendix D
in Numerical Computation Guide. Sun Microsystems, Revision A, May 2000; originally published@M
Computing Surveys.
http://docs. sun. conl sour ce/ 806- 3568/ ncg_gol dberg. ht ni

Graham, R. Two sums of nine square roots of integers agreeing up to 40 digits.
http://ww. cs. nyu. edu/ exact/ real expr/ G aham ht M (accessed March 2003).

Higham, N.J. (1996)Accuracy and Sability of Numerical Algorithms. SIAM.

Horvath, G., and T. Verhoeff (2002). Finding the median under 101 conditiofisrmatics in Education, 1 (1),
73-92.

IEEE (1985) ANSI/IEEE Sandard 754-1985 for Binary Floating-Point Arithmetic. IEEE.

38 G. Horvéth, T. Verhoeff

101 (2003). International Olympiad in Informatics, Internet WWW-site, URL:
http://ww. | O nformatics. org/

1012002 (2002). Bus Terminals, competition task on DaynBernational Olympiad in Informatics, Korea.
http://ol ynpi ads. wi n.tue.nl/ioi/ioi 2002/ contest/day2/bus/

Kahan, W. (1981)Why do we need a floating-point arithmetic standard? Unpublished note, February 1981.
http://ww. cs. berkel ey. edu/ dbi ndel /cl ass/ cs279/ why-i eee. pdf

Kahan, W. (1996)Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic.
May 1996.ht t p: / / www. cs. ber kel ey. edu/ wkahan/i eee754st at us/ | EEE754. PDF

Knuth, D.E. (1997)The Art of Computer Programming: Seminumerical Algorithms, vol. 2. 3rd Ed. Addison-
Wesley.

O'Rourke, J. (1981). Advanced Problem 638&ner. Math. Monthly, 88 (10), 769. Also known as Problem 33
in the Open Problems Project. ht t p: // ¢s. smi t h. edu/ or our ke/ TOPP/ (Accessed March 2003).

Overton, M.L. (2001)Numerical Computing with |EEE Floating Point Arithmetic. SIAM.

Press, W.Het al. (1989).Numerical Recipesin Pascal: The Art of Scientific Computing. Cambridge University
Press, 198t t p: / / ww. nr . cond

Sterbenz, P.H. (1974kloating-Point Computation. Prentice-Hall.

G. Horvath is an associate professor in computing science at the University of Szeged,
Hungary. He obtained his PhD (Functor State Machines, 1981) from the University of

Szeged. His specialty is algorithms and data structures. He chaired the Scientific Com-
mittee of 101 1996 in Hungary and contributed tasks to various competitions. From 1999

to 2001 he was a member of the IOl Scientific Committee.

T. Verhoeff is an assistant professor in computing science at Eindhoven University of
Technology (TUE), the Netherlands. He obtained his PhD (A Theory of Delay-Insensitive
Systems, 1994) from TUE. His current reseach area is software construction. He chaired
the Scientific Committee of IOl 1995 in The Netherlands and contributed tasks to various
competitions. In 1999, he was Finals Directors of the ACM ICPC World Finals held in
Eindhoven, The Netherlands. He chairs the 101 Scientific Committee since 1999.

Skaitiniy uzdaviniy mokant informatikos ikiuniversitetin ese studijose
ir varzybose problemos

Gyula HORVATH, Tom VERHOEFF

Daznai nepakankamaiertinami sunkumai, kylantys vartojant slankiojo kablelio $kas prog-
ramavime. Tai atsitinka ikiuniversitet#se studijose bei varzybose, kur tikima, kad slankiojo kable-
lio aritmetika yra geras realju skatiu aproksimavimas. Deja, dauguma rapliskatiu operacij
taisykliy netinka slankiojo kablelio skéiams. Straipsnyje nag&jamas Sis neatitikimas, pateiki-
ami keturi j iliustruojantys pavyzdZiai. ApraSomos Sicsvekos: slankiojo kablelio skéiu siste-
mos strukiira naudojant tikslumir reZius; netikslumai atliekant slankiojo kablelio stigiopera-
cijas; klaidos skleidimas skaitiniuose algoritmuose ir to nustatymas analizuojant klaidas; slankaus
kablelio dvejetaigs formos standartiniSraiSka; prastinimas; absoliutinbei santykini paklaid)
ivertinimas; skaitini algoritmy stabilumas; nekorektisksalygu algoritmai; perpildymas. Mokant
informatikos, taip pat varZzybose, studentams tutti buteikiamos zinios, formuluojamos progra-
mavimo situacijosjvertinamos pateiktos programos bei apdorojamos variacijos, &garesant
skirtingoms platformoms. Straipsnyje parodoma, kad slankiojo kableliGigkartojimas sukelia
sucktingas problemas visose Siose srityse. Naveikti Siuos sunkumus reikia, kad mokytojai bei
studentaigytu patirties dirbant su ské&i teorija. Autoriai grieZtai rekomenduoja vengti, kiek tai
yra imanoma, slankiojo kablelio sk&u naudojina ikiuniversitetiniame mokyme bei varzybose.
Jei vis cklto norima naudoti slankiojo kablelio skais, reikia geraisigilinti i, skaiciu teorija ir buti
pasirengus atlikti klaid analiz.

