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Abstract. We explain the ingredients of the International Olympiad in Informatics (100), which is
a challenging competition for high-school students focusing on algorithmic problem solving. We
treat in detail the MEDIAN task, which the authors created for 101 2000: Given an odd number of
objects, all of distinct strength, develop an efficient algorithm to determine the object of median
strength, using as only operation a function that returns the median of three objects. This problem
is easy to formulate and understand. It is related to well-siudied standard computing problems,
but further analysis of this problem leads (o interesting algorithms and variations of the heap data
structure. We finish by pointing out some open problems related to this task and we invite you to
contribute nice competition tasks for future 10Is.
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1. Introduction

The International Olympiad in Informatics (IOI) is an annual competition in compu-
ting science (informatics) for talented high-school students from all over the world (101,
2002). Fourteen successful I0Is have been organized since the first 101 hosted by Bul-
garia in 1989.

In this article, we hope to accomplish three things:

e draw attention to the IO and, especially, to one of its nice competition tasks;

o make clear that it is quite a rewarding challenge to develop good 101 competition
tasks, and invite researchers to contribute in this area;

e pose some unsolved problems for further research.

We begin by explaining the ingredients of the IO in Section 2. In Section 3, we present
the MEDIAN task that we created for 101 2000 and we discuss some of the difficulties
surrounding the development of IOI competition tasks. The main part of the article con-
cerns various approaches to solving it. Section 6 concludes the paper with some open
problems and an invitation to contribute nice computing tasks to the IOL.
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2. International Olympiad in Informatics

The IOI is modeled after the International Mathematical Olympiad (IMO), which started
in 1959 and is the oldest of several international science olympiads (International Science
Olympiads, 2002). The three main goals of the IOI are:

e to discover, encourage, bring together, challenge, and give recognition to young
people who are exceptionally talented in the field of informatics;

o to foster friendly international relationships among computer scientists and
informatics educators;

e to bring the discipline of informatics to the attention of young people.

The IOI has two competition days and a social-cultural program. It usually takes place
during a week in the summer and is hosted by one of the participating countries. Nearly
80 countries were represented at IOI 2002. Each participating country sends a delegation
of four students accompanied by two leaders. These students are typically selected in
national olympiads in informatics.

The IOI competition offers six computing tasks in two sessions of five hours each.
Although the problems are algorithmic in nature, it is also required that contestants im-
plement their algorithms in one of the allowed programming languages'. For that purpose
each contestant is provided with a computer and program development tools.

Algorithm Input Data

Fig. 1. Batch type of task: Input data directly available.

In traditional I0I competition tasks, all input data is directly available to the algorithm,
in one batch (see Fig. 1). Task PALIN from IOI 2000 (China) created by Sergey Melnik
from Latvia is a nice example:

Design an efficient algorithm that reads a sequence of characters and
outputs the minimum number of characters to be inserted into the input

sequence to make it a palindrome.

For example, for input 'Ab3bc’ the output should be 2, because by inserting two
characters a palindrome can be made (e.g., *Acb3bcA’), but no palindrome can be
made by inserting fewer than two characters. Note, however, that it is not required to
produce a witness.

At IOl 1995, the second author introduced another kind of task (Verhoeff, 1995),
which involves a dialogue between the algorithm and its environment (see Fig. 2). For
that reason, it is also called a reactive task. Games, such as Master Mind, fall in this
category. The input data, such as the secret code in Master Mind, is indirectly available
through the environment, which offers a limited set of operations.

'Nowadays: Pascal. C. and C++.
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Algorithm Environment| Input Data

Fig. 2. Reactive type of task: Input data indirectly available through the environment.

3. Task MEDIAN from IOI 2000

The authors created the following reactive task for IOI 2000 (China):

Given is an odd number of objects, all of distinct strength. The only way to
compare strengths is through the function Med3(a, b, c) that returns the object
of median (middle) strength among three distinct objects:

min{a,b,c} < Med3(a,b, c) < max{a,b,c}.

Design an efficient algorithm to determine the object of median strength among
all given objects, using only function Med3.

This is only a summary of the actual task description, which covers almost two pages.
Additional details are needed because

e contestants must deliver an implementation of their algorithms in one of the
allowed programming languages,

e the contestants’ scores are determined through execution of the submitted
programs, and

e contestants must be able to base their design decisions on scientific reasoning,
rather than guessing and bluffing.

Thus, engineering constraints must be precisely specified. These constraints concern:

e bounds on input values;
e bounds on computational resources, such as time and memory;
e interface to the reactive environment.

These details, in turn, depend on the intended level of difficulty, the characteristics of the
competition computers, the program development tools, and the software system used in
determining the scores. In this article, we ignore some of these details.

At the 101, it is customary to allow for a range of scores, rather than binary scoring
(pass/fail) as is done in the ACM International Scholastic Programming Contest (ACM
ICPC, 2002). In case of task MEDIAN, this was accomplished as follows. As a precondi-
tion, the number /N of objects is bounded by

5 <N € 1499, (1)
and, for each run, the number C of calls to Med3 is bounded by

C <7777, (2)
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as a postcondition independent of N. For scoring, the program is executed on ten cases,
including both small and large values of N. Each correctly solved case yields 10 points.
The fixed bound on the number of calls to Med3 implies that small values of N are
relatively easy, whereas large values are relatively hard. We present the scoring cases in
Appendix A.

The (abstract) interface to the environment is given by three operations:

o GetN, which returns the number N of objects and must be called once at the
beginning;

o Med3{a,b,c), which returns the object of median strength among the three distinct
objects a, b, c;

o Answer(z), which reports the answer x and must be called once at the end.

At IOI 2000, these operations were made available through a library, which contestants
had to link with their program.

The straightforward part of the library functionality is that GerN reads N and the
object strengths from an input file, that Med3 responds to queries, and that Answer writes
the answer and the number of calls on Med3 to an output file. However, there is more to
it than just that.

Such a library must be robust, that is, protected against accidental misuse, by check-
ing ali preconditions on its use. It must also be secure, that is, protected against inten-
tional abuse, by making it extremely difficult to cheat. Furthermore, the contestants must
have a way to experiment with the library during the competition, that is, they should
be able to do test runs, by supplying their own choice of input data and inspecting the
results. Our library distinguished an experimental and a scoring mode through a digital
signature in the input data. If the input data has a valid signature, then the library knows
that the data is scrambled and it will not even store a descrambled version of the data
to maintain security. If there is no signature, then the input data is interpreted plainly.
Finally, during experimentation and in case of disputes about scoring, it is convenient if
the library leaves a record of the complete dialogue. That is, it not only counts how many
times Med3 is called, but also reports the actual parameters of each call.

4. Analysis

Median finding has been studied extensively in the literature (Blum er al., 1972, Knuth,
1998: Mehlhorn, 1984). However, we are not aware of publications dealing with the vari-
ant presented here.

Let us first analyze task MEDIAN. Because the number of objects is odd and all their
strengths are distinct, the object of median (middle) strength is uniquely determined.

Let s be the strength mapping from object labels L (1 through ') to object strengths
(integers). That is, s(4) is the strength of object . We define the weaker-than relation <y
on L by

i <s j e s{i) < s(y). 3)
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For set V, with V' C L, and an odd number of objects, let med, V' be the objectin V' with
median strength, that is, the object m € V with

#lieV]i<sm} =4{ieV im< i} )

We are asked to determine med, L, without inspecting s directly, but only by using the
operations meds V forsets V C L of size three (#V = 3):

Med3(a,b,c) = meds{a,b,c}. (5)
With the given operation Med3 it is impossible to determine which is the stronger or
weaker of two objects. It is, however, unnecessary to identify the extremal objects. Ob-
serve that object Med3(a, b, ¢) is known not to be extremal (weakest or strongest).

We introduce some further notation. For V' a nonempty set, let ming V' be the weakest
object in V, and max; V the strongest object in V. Consider set V' = { a, b, ¢ } of three
distinct objects. We then have

ming V <, medg V <, max, V,
and also

V = {min, V, med, V, max, V' }.

More generally, for any set V' with an odd number of objects > 3, and any subset W
of V' with 3 objects, we have the following relations:

min, V <, meds W < max, V,
and also
meds V' = med {V — { min, V, max, V }). 6)

That is, the median is invariant under elimination of the extremes. Note that med,{ a } =
a.

4.1. Onion Peeling

A‘very simple algorithm to determine the object of median strength is based on repeated
elimination of two extremal objects as in (6) We call it onion peeling elimination (OPE).
The two extremes can be found be repeated elimination of non-extremal objects, based
on the earlier observation that the median Med3(a, b, c) for distinct a, b, ¢ € V' is not an
extremal object of V:
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const L = {1,...,GetN}
var V, W: set of int

V=1L
invariant: odd(#V), and med, V = med; L
variant function: #V
while #V # 1 do begin assert #V > 3
W=V
invariant : { min, V, max; vVicwcv
variant function : #W
while #W # 2 do begin assert #W > 3
choose a, b,c € W, all distinct
W =W — {Med3(a,b,c)}
end
assert: W = { min, V, max, V'}
V=V-W
end
assert: V = {med L }

Answer (the object in V)

The inner loop iterates #V —2 times, since each iteration eliminates one object from W,
which starts out equal to V' and terminates with #W = 2. The outer loop iterates
(N—=1)/2 times, since each iteration eliminates two objects from V', which starts out
with N objects and terminates with #V = 1. Therefore, the total number of calls to
Med3 equals a sum with (N —1)/2 terms:

r 2
N-1
(:‘\7—72;'4.—(;\"”4)-%-...—?"3-%’1:< ) ) .

For N < 177, this results in no more than 7744 calls, and for N > 179 it requires at least
7921 calls. Apparently, we need to improve on this for values of NV larger than 177.

It is also clear that this elimination approach “‘throws away useful information”, be-
cause the inner loop starts “from scratch” on each iteration. It is not so obvious how to
reuse results of a previous iteration and how to choose a, b, ¢ carefully to improve reuse.

One could analyze the situation for some small values of IV, such as 5, 7, and 9.
But this easily gets you into all kinds of irrelevant nitty-gritty arguments that are hard to
generalize.
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For N = 5, the elimination approach above requires 4 calls to Med3 for determining
the object of median strength. It can, however, always be found in no more than 3 calls,
but this is a little tricky:

For the first call we may assume without loss of generality

Med3(a,b,c) =,

which implies the order abe (the strength of b lies between @ and ¢). The second call is
critical. Calling Med3(b, ¢, d) is no good, because when Med3(b, ¢, d) = b it possibly
requires four calls to find the median of five (exercise for the reader). The second call
needs to be Med3{a, c,d). The results a and ¢ are equivalent, since they yield a total
order on the four objects, namely dabc and abed respectively. The result d leads to a
true partial order, with unordered pair b, d wedged between a and c.

In the casc of the total order, the third call compares the two center objects to the fifth:
Med3{a, b, e) for dabe, and Med3(b, ¢, ¢} for abed. The result of this call is the median of
all five objects.

In the case of the true partial order, the third call also compares the two center objects to the
fifth: Med3(b, d, ). The result of this call is the median of all five objects, though you may
have to give it a second thought to convince yourself.

This concludes the special case N = 5.
4.2. Lower Bound

By the way, a lower bound on the number of calls for obtaining the median of N objects
is (N —1)/2. Each object needs to be involved in at least one call to Med3. Furthermore,
the triples for which Med3 is called need to be “connected”, when considering the graph
over all triples with an edge between two triples if they have a common object. This lower
bound can be achieved (with luck) by “guessing” the median 2 and making (N—1)/2
calls of the form Med3{aa,. i, o, 41) where all «; (0 < i < N—1) are distinct and such
that each call has 1 as result.

4.3. Total Ordering

Another approach is based on a “bold” idea: sort the objects on strength, either increasing
or decreasing. The median can then be found in the middle. Sorting is overkill to obtain
just the median, but let us see how far it gets us.

When there are three objects, a single call to Med3 will enable us to sort them modulo
up/down, that is, put them in order without knowing whether it is increasing or decreas-
ing. From now on, we will use the term “ordering” to mean “‘sorting on strength modulo
up/down”.

How to order more than three objects? What about the traditional sorting methods
based on pairwise comparisons?

e Sclection sort does not look promising, because it requires determining an
isolated extreme object.



80 G. Horvdth, T. Verhoeff

o Insertion sort might work, provided that we can insert an object into an already
ordered list. Standard insertion sort has quadratic worst-case and average-case
behavior, but insertion can also be done by binary search in the case of
conventional sorting. This approach is worked out below.

e Merge sort has the extra complication that when merging two ordered lists, it is
not known what their relative direction of order is: one list may have been sorted
up, the other down. From what ends to start merging? ‘

e Quicksort requires partitioning of the objects, ordering the resulting parts, and
catenating the ordered parts. As with merge sort, extra care is needed when
combining two independently ordered parts. Standard quicksort has quadratic
worst-case behavior and N log N average-case behavior.

« Heap sort usually involves twice the number of comparisons of merge sort, and
heaps are based on a particular direction, making the process of combining heaps
more complicated (as occurs in the first phase of standard heap sort).

Here are some further observations on ordering. If @ and b are known to lie on the same
side of ¢, that is Med3(a, b, c) # c, then the call Med3(a, b, c) effectively orders a and b
{(with respect to ¢). Thus, after finding an extreme object (e.g., via elimination as ex-
plained above), one can use Med3 as a binary comparison.

Note that in such use, each call yields no more than one bit of information (two equally
likely outcomes). In general, a call Med3(a, b, ¢) can yield three results, providing up to
log, 3 = 1.58 ... bits of information. For N > 2, there are N'!/2 ways to order N objects
(the reverse order cannot be distinguished). Consequently, a lower bound on the number
of calls for ordering IV objects (N > 3) is

logo(N1/2) . NI
3 = 1083 @

10g0 ¢

tor Vo= 5, this yields a lower bound of 3.7 . . . and, hence, at least four calls are needed
o order five objects. We do not know whether this lower bound can be achieved. Note
that the method explained earlier to determine the median of five objects does not always

vieid a total order.
44, Iusertion Ordering

Let us investigate insertion sort further. Given is an ordered list of, say, k objects, and
an object ' not yet in the list. Question is to determine the location where x needs to be
inserted into the list to make it an ordered list of k41 objects.

The only interesting calls are of the form Med3{a, x,b) where a and b occur in the
tist. Depending on the result of the call, one knows in which of three parts = belongs:

e to the left of a,
e between @ and b, or
o to the right of b.

There are several ways to choose a and b:
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o If a and b are chosen at the right end of the list, and moved one step to the left
whenever x appears left of «, then we obtain a linear search.

o If a and b are chosen next to each other near the middle of the list, then we obtain
a binary search.

e If @ and b are chosen at about one third and two third of the list length, then we
have, what can be called, a ternary search.

The ternary version has the best worst-case performance (measured in terms of the num-
ber of calls to Med3): O(N log N') (details below), which is also its average-case be-
havior. The linear and binary versions have better best-case performance: linear (if every
time Med3(a,x,b) = x, then 2 is pinpointed between the neighbors « and b in a single
call). The worst-case performance of the linear method is quadratic, and that of the bi-
nary method O(N log V'), but with a larger constant than for the ternary version. Some
statistics are presented in Table 1.

Table 1

Number of calls for insertion ordering on N = 1499 objects

Insertion Method  List Variant ~ Worst case  Average case

Fuli 561749 282532

Lincar Half 421499 169655
Zoom 281023 141676

Full 12953 11680

Binary Hall 12477 11492
Zoom 11481 10471

Full 9399 8977

Ternary Half 9399 8522
Zoom 8319 8041

4.5, Improved Insertion Approaches: Half List and Zoom List

There are two noteworthy improvements on the insertion approach®. First of all, consider
the situation where the list built up by insertions includes {N+1}/2 of the N objects.
After inserting another object. it is clear that the resulting rightmost element cannot be
the median, because there are now (N +1)/2 objects to its left. Recall that the median
will have exactly (N'—1}/2 objects on either side. Thus, the rightmost element can be
eliminated, yielding again a list with (N 41)/2 objects. When all remaining objects have
been handled similarly, the rightmost object in the final list is the median: it has (N-1}/2
objects to the left, and a same number would have ended up to its right would they have
been retained in the list. By restricting the maximum list length, the total number of calls

LTI :
=In fact. these apply more generally to other ordering approaches as well.
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to Med3 is possibly reduced. We call this the half-list insertion approach, as opposed to
the full-list approach presented earlier.

The same reasoning can be carried even further. Consider again the situation where
the insertion list has reached length (N+1)/2. After inserting another object, is is even
clear that neither of the two extreme objects can be the median, because both have too
many objects to one side. It is also clear that these extremes “straddle” the actual median.
Thus, when dropping both extremes from the list, the median of the remaining objects
(in the list and those still to be handled) equals the median of the original set. For each
additional object inserted, two extremes can be eliminated, until all objects are handled
and the list finally consists of just one object, the median. The number of calls to Med3 is
possibly even further reduced. We call this the zoom-list approach, because it zooms out
and then zooms in on the median.

It is straightforward to determine for given N what the exact worst-case numbers
of calls to Med3 are for the various insertion approaches. These are shown in Table 1,
together with experimental average-case numbers for N = 1499. It is obvious that a
better method is still called for.

4.6. Expected-Time Linear Algorithn

The median can also be selected by recursively partitioning the set, as in QuickSort, and
discarding the subset that is known not to contain the median. This algorithm is also
named FIND. We only have considered algorithms that partition into three parts, based
on choosing nvo pivot objects rather than one. We call this Ternary Partitioning Find
(TPF). In general, these methods are quadratic in worst case, but linear in average and
best case.

There are various ways to choose the pivots:

Straddled: One at cach end of the list (TPES)

First: Both at the same end, say the first two objects (TPFF)

Proportional: At one third and two thirds in the list (TPFP)

Random: At randomly selected positions in the list (TPFR).

For TPFS and TPFF, the sorted input is bad. but for TPFP and TPFR it is (very) good.
TPFR has no specific worst-case inputs. Worst-case input for TPFP depends on details
of rounding when choosing the proportional pivots. Experimental data suggests that the
average-case number of queries is about 2N In particular, for N = 1499, it is about
3300 41600 measured on 100 random cases. None of these algorithms ever exceeded the

g

bound of 7777 calls to Med3 on the random cases.
4.7. Worst-Case Linear Algoritlun

For comparison-based median finding, there is also a famous worst-case linear algorithm
(Blum er al., 1972). The basic idea is the same as partitioning, explained in the preceding
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subsection. The key ingredient is a method for choosing the pivot in such a way that the
two parts are not too extreme in size. This can be accomplished by partitioning the set
into maximal subsets of size at most 5, determining their medians, and then the median
of these median-of-five objects is determined recursively and taken as pivot.

Refining this approach to task MEDIAN is rather complicated, especially if you want
to do ternary partitioning. The median-of-five can be found by just 3 calls to Med3 (cf.
Section 4.1), but the linear constant for the complete algorithm is prohibitively large (for
N = 1499, even the best case takes over 10000 calls to Med3). Competitors were not
required to discover a worst-case linear solution for a 100% score.

5. Heap-Based Algorithms

The half-list insertion approach of Section 4.5 can be generalized to a half-fieap algo-
rithm. A set of objects is called a “heap” if it supports these three operations:

o BuildHeap(V'): returns a “heap” for the set V of objects

o ReplaceMin{H, a): returns H if = <, ming H, and returns “H in which ming H
is replaced by 2 if & >, min, H; the size of the heap remains the same

o GetMin(H): returns ming A

Using these operations. the generic half-heap algorithm is:

var [{: heap of int
N,m,x: int

N = GeiN
me=(N+1)div2
Il := BuildHeap ( {1,. ... m})
assert #{ 1 <i<mming [T < i} =m—1
or 2 := m+1to N do
11 = ReplaceMin( H , )
invariant {1 <2< ming I <, i} = m— 1

end
assert: #{1 < i <N :min, H <, iy=m-1=#{1<i<N min H >, i}
Answer ( GetMin(I))

5.1, Ordered List

An obvious implementation of the heap is an ordered list. Using ternary search (cf. 4.4),

the ReplaceMin operation takes at most Nog., {m + 1)1 calls. The BuildHeap operation
requires in worst case

m
vy . USR] . 5
Clm) =3+ > logy i+ 1) (7N
i=d

calls of Med3. For N 2 1357 the worst-case number of calls to Med3 exceeds the bound

T
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We are looking for a data structure that supports the operation ReplaceMin as efficient
as the ordered list, but that provides a better implementation for BuildHeap. The basic
idea is that only a partial order is enough instead of a total ordering of the objects.

5.2. Binary Tree Heap

Implementing the “heap” by a conventional binary tree is not promising. The BuildHeap
operation can be implemented in worst-case linear. But the number of comparisons for
one replacement into such a heap is about twice the height of the tree in the worst case.
We have not considered this approach further.

Tivo-Dimensional Ordered List

A two-dimensional list is a data structure as depicted in Fig. 3. Nodes are arranged in
rows and columns, each column forms a (vertical) list and the vertical lists are connected
by their head nodes to form a horizontal list. We say that a two-dimensional list is ordered
with respect to a given < linear ordering relation if for any two nodes @ and y with an
arrow from x to y then < holds between the content of - and y. Therefore, the head node
of the horizontal list (which is the head node of the first vertical list) contains the smallest
of all data items in the two-dimensional ordered list.

Fig. 3. Example of a 2d-list.

We can implement the required operations with two-dimensional ordered lists in a
straightforward way. First, choose an upper bound b on the length of the vertical lists.
BuildHeap(V'y =

var L : 2d-list of int
Subdivide V" into disjoint subsets ¥y, -+ -, Vi with #V, <
fori:=1 to k do begin

Create a vertical list L; from the set V]

S()I‘I(L;)
end
Create a horizontal list L trom the vertical lists L;, i = 1,--- &
Sort{ L) according to the head elements of the vertical sublists of L
BuildHeap := L
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ReplaceMin{L, a:) =

Detach the head vertical list Ly of I,

Insert x into L

Delete the head node of L,

Insert Ly into L according to its head element
ReplaceMin .= L

Denote by B{(m) the worst-case number of calls to Med3 for BuildHeap(V') for a set with
#V = m. We calculate an upper bound on B(m).

Assume that all vertical sublists are of length b, except one. Then the length of the
27, If sorting of the lists is done by ternary ingertion sort, we
obtain the following uppcx bound

horizontal list is [ =

B{m) < [C{b) + C"Z)

_ [m Z Moga(i +

i=d =4

Now we analyze the performance of ReplaceMin. Assume that the two-dimensional list
has been created by Buildheap for a set #V = m with vertical list length b. [nsertion into
both vertical and horizontal lists can be performed by ternary search. With this assump-
tion we obtain an upper bound on the worst-case number of calls to Med3. denoted by
R{m):

l’ m“?

R(m) < flogy(b+1)1- I’ og; I

One can see that b should be chosen to be 3* — [ for some k. For the possible input sizes
(5 < N < 1499, the best choice for b is 8. In this case, for the median algorithm an
upper bound on the worst-case number of calls to Med3 for N = 1499 is 6816.

Multiple-Dimensional Ordered List

We can further improve the BuildHeap phase by generalizing the notion of the two-
dimensional ordered list to arbitrary dimensions. A g-dimensional list (¢d-list shortly)
is defined recursively as follows.

o the empty list () is qd-list for any ¢.
o a Od-listis an object itself.
o qd-list Lisalist (Ly,---. Ly} of (g—1)d-lists.

The dimension of a ¢d-list L is denoted by dim(L). For a gd-list L = (L, . L5,
L, is catled the ith sublist (of dimension ¢—1) of L. We define operations on nonempty

gd-lists. Let L = (L, - gy and dinmi{L) = ¢

o Heuad(L) is the (¢—1)d-list L;.
o Tail{Ljis the qd-list {La, - -, Lg).
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o First(L) is the object L if dim(L) = 0 else First ( Head(L) )

The data elements contained in a ¢d-list L are those that can be obtained as First(R) for
some lower dimensional sublist of L.

We say that a gd-list {Ly, - -+, L) is ordered with respect to an underlying < linear
ordering relation if

o dim(L) =0,or

e dim(L) > 0and First(Ly) < First(La) < -+ < First(Ly,) and each sublist L; is

an ordered (g—1)d-list.
Because of the transitivity of the relation < the smallest element contained in an ordered
qd-list L is First(L).

We can also define gd-lists as a subset of the space N9. In order to do this we introduce
a binary relation — on IN%.

Letaz = (x1,- -, 2q), ¥y = (11.- -, ¥q) € N?. 2 — yholds if and only if there is an
index 1 < A <gsuchthata; =y, = 1foralli < kand yr. = xi + 1 and @; = y; for all
i > k. A subset of grid points L € NY is called a ¢d-list, if for any x,y € N?ify € L
and @ — y implies v € L.

Then the ith sublist of Lis { {@y, -+, xy=1) : (v1,- -, 2q=1,7) € L }.

In order to devise an efficient algorithm for BuildHeap using a gd-list, we set an
upper bound by on the length of 1d-sublists and an upper bound b on the length of higher

dimensional sublists.
BuildHeap(V') =

var L: Heap of int
if #V < b; then begin
Create a 1d-list L from the elements of V'
Sort(L)
Buildlleap = L
end else begin
Subdivide V into nearly equal-sized. disjoint subsets V5, -+, V
L= {BuildHeap{V), - -, BuildHeap(Vy,)}
Sort{ L) according to the First elements of the sublists of L
Buildteap = L
end

%

ReplaceMin(L, ) =

var [°: Heap of integer:
il dim{L} = 1 then begin
Insert{ L., 2}
ReplaceMin = Tuil{(L)
end else begin
F o= ReplaceMin { Head(L), '}
ReplaceMin := Insert { Tail{ L}, ')
end

The dimension of the list L created by BuildHeap(V') for a set with #V = nu is the

least integer q with b;b7~1 > . Therefore we have that ¢ = [Iogb ﬁ} + 1.
! |
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We assume that sorting an ordered list is done by ternary insertion sort and insertion
into a sorted list is done by ternary insertion. Denote by B(m) the worst-case number of
calls to Med3 for BuildHeap(V') for a set with #V = m. We calculate an upper bound :
on B(m).

Let ¢; and c is the number of calls of Med3 needed in worst case to sort by and b
elements, respectively.

Bm) = e[ ]+ ([ 5]+ [ )
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We conclude that the worst-case performance of BuildHeap (measured in terms of the
number of calls to Med3) is O(N).

Now we analyze the performance of ReplaceMin. Assume that the heap has been
created by Buildheap for a set #V = m with list length bounds b; and b. Denote the
worst-case number of calls to Med3 by R(m).

R(m) = [logy(b1 +1)] + (¢ - 1)[logy b].
It is natural to chose b = 3% and b; = b — 1 for some k. In this case

R(m} = logy(by + 1) + (¢ — 1) log, b
=k+{g-1)k
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FOI' /\5.: 1 we obtain that R{(m) = [log, m] + 1. This is the same as for totally ordered
list. If by = 2and b = 3thene¢; = ¢ = 2. In this case, the upper bound A(N) on the



88 G. Horvath, T. Verhoeff

worst-case number of calls to Med3 of the algorithm for NV objects is

) N _/N
A(N) < B(N) + 5 R(§>
N B
- h b—1 2

2 ol

<Z_l"f;c 1—1—>+("1+C((]—1)+£}7R(E>

5 N7 N
— 4 ., — +21log, — 2.
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For N = 1499, this upper bound is 6388. We note that the upper bound for the BuildHeap
phase is 1138.

Implementation of Ordered qd-Lists

We implemented ordered gd-list of list size b using a tree of degree b. The leaf nodes of the
trees contain the 1-dimensional sublists. Each internal node that represents a kd-sublist
L ={Ly,--,Ly) for k > 1 contains the sequence

(First(L1),p1, . First(Ly), py),

where p; is the pointer pointing to the subtree representing sublist L; (i = 1,---,D).
Storing the values First(L;) for the sublists is useful because these values are needed to

carry out an insertion into the list L.

6. Conclusion

We have presented the competition task MEDIAN of TIOI 2000 and several solutions.
The task concerns finding the median using as only operation the median-of-three Med3.
Some interesting datastructures and algorithms turn up, which can also be applied to
comparison-based median finding. There are still some open problems:

e What is the true minimum worst-case number of calls to Med3 tor finding the
median among N objects (AN odd)?

e What is a good worst-case linear-time algorithm (with small constant)?

e Can you design an efficient adversarial environment that answers Med3 queries
consistently but in a (close to) “worst”™ way?

There are also interesting variants of this task:

o Find the median if the only available operation sorts three elements, that is,
identifies minimum, median, and maximum?

e Given a sequence of calls to Med3, including parameters and results, decide
whether it gives enough information to determine the median, and if it does,
indeed determine the median.
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A less obvious variant of task MEDIAN was developed by the first author for CEOI 200
under the name CHAIN OF ATOMS (Horvith, 2001): i
Design an algorithm to reconstruct the linear order of A objects, which can
only be inspected by a function that returns the absolute difference in ranks
Furthermore, cach object can be inspected at most three times. .

It is not only challenging to solve such competition problems, but also to design them.
We hope that CS researchers will consider to contribute nice computing tasks to the IOI.

A Tuning the Task Parameters for Scoring

An IOl task author can still tune various parameters, such as the upper bounds on the num-
ber N of objects and the number €' of calls to Med3 for task MEDIAN. These bounds are
best designed together with the test cases used for scoring. The choice for upper bounds
N = 1499 and €' = 7777 were driven by the ability to distinguish the performance of
various algorithms. At 101 2000, the programs submitted for task MEDIAN were scored
by running them on 10 test cases. These cases have been designed to detect performance
differences as exhibited by the 16 algorithms in Table 2. The 10 test cases belong to 4
categories:

M Manually designed

R Randomly generated (uniform)

N Nearly sorted (in the identity strength mapping, the left-most, middle-most,

and right-most 11 elements have been rotated left over 5 positions)

A Alternating outside-to-inside (1 35 ... 6 4 2)
The cases of type N and A were introduced specifically to penalize algorithms TPES
and TPFF. Table 3 shows how many calls each algorithm made for each test case solved

Table 2

Reterence algorithms for design of test cases

OPE Onion Pecling Elimination

LISF Linear Insertion Sort using Full list

LISH Lincar Inscrtion Sort using Half list

LISZ Lincar Inscrtion Sort using Zoom list

BISF Binary Insertion Sort using Full list

BISII Binary Insertion Sort using Half iist

BISZ Binary Insertion Sort using Zoom list

TISF Ternary Insertion Sort using Full list

TISH Ternary Inscrtion Sort using Half fist

TISZ Ternary Insertion Sort using Zoom list

TPEFS Ternary Partitioning Find using Straddled pivots
TPIF Ternary Partitioning Find using First pivots
TPFP Ternary Partiioning Find using Proportional pivots

TPEFR ‘Ternary Partitioning Find using Random pivots
2111 2d-List implementation of Half-Heap algorithm

QLHIT  gd-List implementation of Half-Heap algorithm
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Table 3

How each algorithm performs on the passed test cases

Case # 4 5 6 7 8 9 10
N S 177 577 975 1087 1267 1357 1415 1415 1499
Cat M R N R R R R R A R Score
Alg

e
| ]
w

OPE 4 7744 20
LISF 4 4062 619 30
LISH 3 2590 598 30
LISZ 3 2160 598 30
BISF 4 861 4175 7051 40
BISH 5 843 4108 6803 40
BISZ 4 730 3621 6269 7078 50
TISF 3 712 2918 5415 6143 7376 60
TISH 3 669 2707 5349 6011 7103 7642 70
TISZ 3 609 2537 4889 5540 6641 7191 7511 7572 90
TPES 3 517 1525 2842 3257 3531 2231 3218 80
TPFF 4 395 2205 2378 3635 3601 2663 2493 80
TPFP 5 331 848 3512 1705 2291 3093 2860 2863 2985 100
TPER 4 372 1778 2201 2507 2981 3377 3987 3279 3540 100
JLHH 4 491 1954 3242 3605 4258 4578 4824 4149 5147 100

QLHH 4 508 2218 3184 3902 4517 4862 5074 4389 5354 100

within the bound of 7777 calls. The rightmost column shows the score. For N = 1499,
algorithms 2DHH and QDHH are the only ones that stay within the bound ot 7777 calls
under worst-case conditions. The library used for scoring, however, was not able to create
such worst-case conditions dynamically. It only worked with fixed test cases.

Note that when designing a task, it is not enough to produce just a table like Table 3.
The performance of various algorithms on various values of N must be studied carefully
(worst-case, average-case, best-case, variance, ... ). We have not included all those results
in this article.
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