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Abstract. The science of data visualization requires both a theory of perception and of computer
graphics. This article explores the convergence scicnces of perception and techniques of visualiza-
tion. Bertin's Image Theory of visualization research offers a promising technology for transform-
ing an indigestible mass of numbers into a medium which human beings can understand, interpret,
and explore.

Visualization teehniques arc of increasing importance in exploring and analyzing large amounts
of multidimensional information. In the article we lry 10 set some classes of visualization tech-
niques. We describe some of the most popular multidimensional data rescarch methods, and present
some examples.

Visualization is applied in education of old. I must make connections between knowledge the
learner has and the knowledge being taught. Therefore in order to design effective visualizations
1L is necessiry 1o know (or at least have » theory about) what the learner knows. This is especially
important in the context of cducation.

Key words: data visualization. proximity visuaiization, clustering methods, projection methods,
multidimensional scaling, self-organizing map.

1. Introduction

Visualization, o term used in the industry since the publication of the National Science
Foundation report Visualization in Scientific Computing (McCormick er al., 1987),is a
form of communication that transcends application and technological boundaries. With
the advent of computer graphics. researchers can convert entire ficlds of variables (repre-
senting density, pressure, velocity, entropy and so on) to color images. The information
conveyed to the researcher undergoes a qualitative change because it bri ngs the eye-brain
system, with its great pattern-recognition capabilities, into play ina way that is impossible
with numerical data alone. Data visualization is an established technique for exploration,
analysis, and presentation of data.
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For example, an observer instantly sees the vortices, shock systems, and flow patterns
in the visualization of hydrodynamic calculation, while these same patterns are invisible
in mere listings of several hundred thousand numbers, each representing field quantities
atone moment of a time. When computing the space-time solution of the laws of physics,
particular numerical quantities at each event in time-space are not important; rather, what
is important is understanding of the global structure of the field variables that constitute
the solution and the causal interconnections of the various components of it.

Al present, visualization is used in various scientific and engineering research areas
(DeFanti et al., 1989), for example:

e the use of interactive computer graphics in chemistry, which began in 1964;

e scientific computation applied to medical imaging has created opportunities in di-
agnostic medicine;

e visualization helps mathematicians to understand various equations that are too
complex to conceptualize otherwise;

e meteorologists obtain information on natural behavior that cannot be safely ob-
served: differing vertical wind, temperature, pressure and moisture structures, etc.;

o the planetary study involves the accumulation of huge volumes of data on the plan-
ets in the solar system.

2. Theory of Perception in Data Visualization

The science of data visualization requires both a theory of perception and of computer
graphics. However, visualization designers have paid relatively little attention to percep-
tual issues. Bertin's (1983) Image Theory can serve as a guide to visualization design. Vi-
sualization research offers a promising technology for transforming an indigestible mass
of numbers into a medium which humans can understand, interpret, and explore.

As shown in Fig. 1, the first stage maps numbers (data/process) to images by means
of some algorithmic technique. The second stage maps images to insight by means of

perception.

|_ Data/Process —I

Computer | Algorithms
Graphicsy

! Image ]
Psychology | Perception

h 4
|_ Insight _I

Fig. 1. The transformation from numbers to insi aht requires two stages.

Data Visualization: Ideas, Methods, and Problems 131

2.1 Bertin'’s Image Theory Concepts

Bertin's key coneept is image, from which the theory derives its name. An image is the
fundamental perceptual unit of visualization. In terms of Bertin, three stages of informa-
tion are extracted (see Fig. 2):
1) external identification is that the graph is showing something, for example, height
and weight;

2) internal identification is perception that the height component is mapped onto the
vertical axis of the plane and weight onto the horizontal axis; and

3) perception of correspondence is noting that the data point is located at a particular
intersection of visual variables \ and .

According to Bertin, there are two functionally different classes of visual variables;
planar and retinal. Components may be represented by six retinal variables: size, color,
shape, orientation, texture, and brightness. Each retinal variable can be used with three
types of implantation. Bertin believes that an efficient visualization is limited to three-
component visualizations. It is not possible to create an efficient four-component visual-
ization by adding a second retinal variable: you could not, for example, add a component
for country of birth by coding each mark with the shape reflecting nationality.

Bertin believes that the major problem of most data visualizations is the choice of
visual variables with an inappropriate length or level of organization. Length refers to the
number of categories or steps (distinguishing different colors. brightness levels, etc.) A
visual variable must have g length equal to or greater than the component it represents. A
major problem for the visualization designer is to match the data to a visual variable with
the correct length,

The level of perceptual organization specifies the type of data scale: nominal, order,
or ratio, which each visual variable can portray (Table 1). That is, suppose the goal is to
allow the viewer o extract ratios from the visualization, e, 2., to immediately see that one
value is twice as much as another. Brightness could not be used. for example, because

doubled intensity produces only about a 1.4 factor increase in the perceived brightness,
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Fig. 2, Height/weight graph, with additional components represented by marks of different shape (gender) and
brightness (nationality).
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Table 1

Bertin levels of pereeptual organization

Associative  Seleetive  Ordered  Quantitative

Planar Yes Yes Yes Yes
Size Yes Yos Yes
Brightacss Yes Yes

Texture Yes Yes Yoy

Color Yes Yes

Oricntation Yes Yes

Shape Yes

Associative Organization. Bertin subdivides the nominal scale level into two subcate-
gories: associative and selective. Associative perception is the lowest organization level,
allowing grouping of all the elements of a variable in spite of different values. Accord-
ing to Bertin, planar dimensions, texture, color, orientation (point and line implantations
only), and shape are associative, while size and brightness are not.

Selective Organization. The concepts of associative and selective organization have
implications for a wide range of issues in data visualization, such as the presentation of
multiple data views.

Fig. 3 shows a typical example. One window shows data in graph form, while the
other shows a table. Itis obvious if the two views are linked by color. If the informational
view in the right window had a different color than it’s corresponding object in the left
view, the viewer would incorrectly form a nominal scale grouping.

Ordered Organization. The associative and selective perception provides only a nom-
inal scale classification. Bertin suggests that some variables allow the data to be ranked.
Observers can see that one value of a variable represents a larger or u smaller quantity
than another. For example, the increased age could be represented by data points with
increased brightness. In this case, it would be possible to make decisions about relative
hetght/weight of elder or younger people. Bertin considers the planar variables: bright-
ness. size, and texture variables as ordered while excluding shape, color. and orientation.

Quantitative Organization. The highest level of organization is quantitative which
permits a direct extraction of ratios. That is, the ratio of variable values maps directly to
the rutio of the data values. If age were represented by data points of different size, which

2 20
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110 .4}
124 100
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Fig. 3. One window shows data in graph form, while the other shows a table.
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is a quantitative variable, the viewer could immediately see which individuals were twice
as old as others. While ordered data permit only a relative magnitude of the represented
qluuntities. quantitative variables support the perception of ratios. Only size and the planar
dimensions are quantitative.

22. M. Green's Extension Bevond the Bertin Image Theory

In his work M. Green (1998) tries to show that Bertin bases his theory solely on his intro-
spe;hon and makes no attempt to provide any empirical data support. He outlines some
b%lSiIC researches on the human vision and suggests the ways of using them to guide data
visualization.

M. Green states that:
1) advent of computer graphics permits the use of several new visual variables that
Bertin does not discuss;

2 BEE TE A a yr on ¥ H 1
2) there are several secondary perceptual effects which complicate a direct application
of Image theory; and

(58]

perhaps the most important, Bertin's belief that images are always limited to three
components is false.

IF1 Table 2, M. Green uses research data to propose corrections and extensions to
Bertin’s original level of organization assignments (Table 1).

_ Sf’mpc can be selective. The results of research (Green, 1991) show that the list of
Ipnmniw:s largely reflects those coded by the brain in the primary visual cortex. Accord-
fngly. the list agrees well, but not perfectly, with Bertin's list of retinal variables. The
image is typically processed by a series of cascaded linear und nonlinear filters, which

Table 2

M. Green's updated Bertin levels of perceptual organization

Associative  Seleetive Ordered Quuntitative

Planar Yes Yes Yes Yes
Size Yes Yes Yes
Brighuness Yes Yes Yes-if scaled
Texture Yes Yes Yes

Color {Hue) Yes Yes Yus-limited

Orientation Yes Yes

Shape Yes Yes

Maotion: Velocity Yes Yes Yes-if sculed
Maotion: Dircetion Yes

Flicker: Freguency Yes Yes Yes-if scaled
Flicker: Phase Yes

Disparity Yes Yes
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presumably correspond to neuronal levels in the brain. The decision as to whether two
shapes/textures are associative or selective is determined by the similarity of their out-
puts in the model. In theory, such a model should make it possible to predict whether
shapes/textures would be associative or selective. The applicability of such models to
predicting immediate visualization of diagrams is unknown.

Color can be ordered. Color consists of three properties: hue, saturation, and bright-
ness (or hue, chroma, and lightness). It is true that hue is in general a nominal variable:
red. green, blue do not form an ordered scale. But, over small ranges, hue can be ordered.
For c:;wh hue, there is a specific example, called a “unique hue”, which is perfect in that
it is not tinged by any other hue. For example, unique yellow contains no trace of either
red or green. An ordered scale of yellow could therefore be constructed starting around
tunique yellow and extending to either (but not both) unique red or unique green. Secon-
dly, saturation, the amount of white mixed with a speetral, Le., the purest, hue, is also an
ordered variable.

Brightmess can be "quantitative”. Brightness is ordered but not quantitative because
it produces a psychometric function with an exponent less than one. It should be easy,
using existing psychophysical data, 10 promote brightness 1o a quantitative level ofor;a—
nization by rescaling the intensity axis. The visual system’s brightness exponent varies
with conditions and can be as low as 0.33.

M. Green (1998) proposes, that data can be displayed by means of several new visual
variables, including motion, flicker, and disparity (sterco depth).

Mortion. One new retinal variable is motion, which can be splitinto two subvariables:
velocity and direction. It is unlikely that motion is associative. Objects with different mo-
tions are generally perceived us lying on different surfaces. Segmentation of an image
mto constituent surfaces is perhaps the earliest and the most primitive perceptual func-
tion. Motion velocity is likety to be ordered, since it is a continuum of magnitude, and ob-
servers can readily discriminate steps of increasing value. Direction of motion is likely to
be unordered. since it is not a variable of magnitude. Velocity is not quantitative because
it produces a compressive psychometric function, through it might be made quantitative
by appropriate rescaling

Flicker. Like motion, flicker also has two subvariables — frequency and phase. Flicker
frequency, the speed of the on-off cycles, is selective by common sense, can be readily
ordered, and could be promoted to quantitative by rescaling. There are some problems
with flicker frequency. First, it has a very short length. Secondly, apparent brightness
varies with frequency, making these somewhat “integral dimensions”, Flicker frequency
1S NOL associative,

Binocular Disparity. A third new variable is binocular disparity, which can be created
by giving the left and right eyes slightly different views of the same visualization, Instead,
disparity provides good relative depth information. reveali ng whether one object is closer
or further than another, and is a very powertul cue for image segmentation. Its main role is
to help break scenes into meaningful surfaces, so itis likely to be poor for association but
ideal for selection. Since it provides only relative depth information, it is a poor choice to
represent quantitative data but good for representin g ordered data.
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Bertin asserts that images can contain no more than three components; however, M,
Green's studies have found that four Or more component images are possible. A subset
of visual variables permits the conjunction search. Observers can effortlessly search for
conjunctions of shape or color with disparity (Nakayama and Silverman, 1986) or motion.
These searches have four components: 2 planar, 1 Bertin retinal variable, plus disparity
or motion, variables which Bertin does not include in his analysis,

3. Proximity Visualization

Proximity Visualization is the visualization of abstract data collections. Database tables
with many attributes, graphs, and multimedia collections are types of data collections for -
which it is difficult to design useful visual representations. However, similarity between
elements of such collections cun be measured, and a good overview picture should respect
this proximity information by positioning similar elements close to each other, while far
from dissimilar ones. Such a visualization is, in effect, a topology, preserving map of the
underlying data collection.

3.1. Data Types

The proximity of a pair of objects from a data collection can be expressed either as their
similarity, mutual agreement, or dissimilarity. A measure of dissimilarity between a pair
of objects from a collection is a dissimilarity coefficient. A number of coefficients could
be used with a particular data collection. Each data type could be serviced by different
dissimilarity coefficients,

A quantitative variable can either be measured on an interval or a ratio measurement
scale, for example temperature,

An ordinal scale is weaker than quantitative in that it also induces an ordering of
objects, but does not make dny statement about the magnitude of the differences. An
example of an ordinal scale is a well defined ordering A>B>C> . .. =>F. Itis impossible
to know how the differences between the pairs of grades relate, for instance, whether
the difference between A and B is greater than that between B and C. However, the
difference between A and C must be greater than the difference between A and B, due to
the inequalities, and an effective dissimilarity coefficient for a pair of objects measured
on an ordinal scale can be based on differences in their rank.

A nominal scale allows for the weakest form of measurement, as it does not enforce
any ordering of objects. A number of non-overlapping categories are defined and an ob-
Ject can belong to any single one of these. The similarity of a pair of objects is defined
in terms of their category membership: if they belong to the same category, they are con-
sidered as equivalent, otherwise, they are completely different. Ap example of such an
exclusive categorization is a person’s zodiac sign.

Binary. A binary scale of measurement Is a special case of a nominal scale with only
WO categories, for example, male~female.
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Heterogeneous. A collection of entity descriptions may be conveniently represented
by a set of objects with appropriate attributes. The utility of relational and object
databases is based on this premise. The canonical representation of such data is a table
with one row for each object, and a column for each attribute. In general, the attributes
cannot be expected to be homogeneous, and thus a dissimilarity coefficient for data tables
has to combine attributes measured on arbitrary scales, to give an overall dissimilarity be-
tween pairs of objects (rows).

Relationships. Binary relationships xRy within a set V of entities can be expressed
as a graph G(V. E = {(a,b): a,b € V.aRb}), with an edge (a, b) whenever entities «
and 0 enter into a relationship, and an entity being synonymous to a vertex. In general, a
pair of entities might enter into an indirect relationship through one or more intermediate
entities. Such a chain of vertices defines a path through the graph G that has a length
equal to the number of chained vertices minus one, i.e., the number of edges that have 1o
be traversed.

/mages. Humans are adept at determining similarity between a given pair of images,
by establishing semantic relationships between these objects. This process is difficult to
emulate on a computer system. However, it is practical to automatically extract low-level
features from the images, such as color and texture, and compare their similarity.

Text Corpus. 1t is common practice to index a corpus of documents on themes oceur-
ring withinit, e.g., nouns or phrases, to fuctlitate querying for relevant themes. In a classic
model of Information Retrieval - the vector model - each document is represented by a
weight vector

" PIOPINE & i
= {1, Wy,

1

where clement w, specifies the relative importance of a theme ¢, in the document. and q
is the total number of themes and the dimensionality of the weight vector space (Baeza-
Yites and Ribeiro-Neto, 1999), If the theme ty does not oceur in the document, the el-
ement w, is simply set 1o 0, otherwise w, is made proportional to the frequency of ¢/ s
occurrence in the document, and inversely proportional to the commonness of te, within
the corpus. Thus, a theme frequently oceurring in a given document will be assumed 1o
have a high relevance, e.g., “computer” in a corpus of computer science articles.

Proximity. There are data collections that consist solely of proximity measurements,
for example, results of an experiment where a subject has been asked to rate how similar
puirs of stimuli are. The only meaningful visual representation for such data is the one
based on proximity. The judgements of dissimilarity are unlikely to obey Euclidean or
even metric propertics, — most importantly, triangle inequality. However, by adding a
sufficiently large positive constant to every dissimilarity, they can be made meiric and
Euclidean (Gower and Legendre, 1986; Borg and Groenen, 1997).

4. Classification of Multidimensional Visualization Techniques

Many novel visualization techniques have been developed and existing techniques have
been extended to work with larger data sets and make the displays interactive. For most
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of the data stored in databases, however. there is no standard mapping into the Cartesian
coordinate system since the data have no inherent two- or three-dimensional semantics. In
general, relational databases can be seen as multidimensional data sets with the attributes
of a database corresponding to the dimensions.

The visualization techniques can be divided into geometric projection techniques (In-
selberg, 1985; Inselberg and Dimsdale, 1990), icon-based techniques (Pickett and Grin-
stein, 1988; Beddow, 1990, pixel-based techniques (Keim, 1995: Keim and Kriegel,
1994; Keim et al., 1995), hierarchical techniques (LeBlanc et al., 1990; Robertson et
al., 1991; Shneiderman, 1992), graph-based techniques (Eick and Wills, 1993; Becker et
al., 1995). and combinations thereof (Asimov, 1985; Ahlberg and Shneiderman, 1994).

Geometric projection techniques display includes techniques from exploratory statis-
tics. such as scatterplot matrices (Andrews. 1972; Cleveland, 1993). Other geometric pro-
Jection techniques include prajection views (Furnas and Buja, 1994; Spence ¢t al., 1995),
hyperslice (Wijk and Liere, 1993), landscapes (Wright, 1995), and parallel coordinates
visualization technique (Inselberg, 1985; Inselberg and Dimsdale, 1990). The parallel
coordinate technique maps the k-dimensional space onto the two-display dimensions by
using k equidistant axes which are parallel to one of the display axes. The axes correspond
to the dimensions. Each data item is presented as a polygonal line, intersecting each of
the axes at that point which corresponds to the value of the considered dimension.

Another class of visual data exploration techniques is the icon-hased techniques. The
idea is to map the attribute values of 4 multidimensional data item to the features of an
icon. Classes of icon-based techniques are stick figures (Pickett and Grinstein, 1988),
shupe—cnding {star icons. Chernoff faces) (Beddow, 19903, and color icons (Levkowitz,
1991 Keim and Kriegel, 19943, In the case of the stick figure techmque, for example.
two dimensions are mapped to the display dimensions and the remaining dimensions are
mapped to the angles and/or limb tength of the stick figure icon. If the data items are
relatively dense with respect o the two-display dimensions. the resulting visualization
presents lexture patterns that vary according to the characteristics of the data.

The basic idew of pivel-based techniques (Keim, 1996) is to map each dimension
value to a colored pixel and group the pixels belonging to cach dimension into adjacent
areas. Since, in general. pixel displays use one pixel per data value. the techniques allow
the visualization of the largest amount of data possible (up to about 1,000,000 data val-
ues). Pixel techniques use different arrangements for different purposes. By arranging the
pixels in an appropriate way, the resulting visualization provides detailed information on
local correlations. dependencies, and hot Spots.

Stacked display techniques are tailored to present duta partitioned in a hierarchical
fashion. In the case of multidimensional data, the data dimensions to be used for parti-
tioning the data and building the hierarchy have to be selected appropriately. An example
of a stacked display technique is dimensional stacking (LeBlanc ef al., 1990). The ba-
sic idea is to embed one coordinate system inside another coordinate system, i.e., two
attributes form the outer coordinate system, two other attributes are embedded into the
outer coordinate system, and so on. The display is generated by dividing the outmost level
coordinate systems into rectangular cells and. within the cells, the next two attributes are
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Table 3

An atlempt to compare multidimensional visualization technigues
(++: very good, +: good, 0: neutral, - bad, - -: very had)

Multi- No.of  Cate-

e : Visual  Learnin
ClubE'L veiiate alil\:?bllf:gs daa goricat overlap (.'urvc'g
"E ot spot objects  dala
Scatterplot ++ 4 | + + - 0 S
Matrices
Landscapes + + - 0 V] - +
Geometric Proseetion ++ ++ + & = 0 e
Techniques | Views |
Hypersiice + + + + - 4]
Parallel 0 Ly ++ - 0 ..
Coordinates
Stick 0 0 + - - - ]
Figures
lcon-based | Shape 0 - +4+ + < + i
Techniques | Coding
| Color 0 - 4 + . + -
| Icon
| Query- + + ++ 4 . ++ +
l Pixel- Independent
arientegd ; ) . ) . )
Technigues | Query- + * + -
| Dependent |
f [ Dimeasion ] + + 0 0 + 0 0
| | Stacking | i
Hicrarchical | o 0 0
l Technigues | Treemap | * 0 | ++ |
| Cone | + - | 0 " 0 ’ =+ '3
L Troes | {

used (o span the second level coordinate system. This process may be repeated one more
time. The usefulness of the resulting visualization largely depends on the data distribution
of the outer coordinates and, therefore, the dimensions which are used for defining the
outer coordinate system have to be selected carefully. A rule of thumb is to choose the
most important dimensions first. Other examples of hierarchical techniques are a treemap
(Shneiderman, 1992; Johnson, 1993), and cone-trees (Robertson er af., 1991),

This brief classification is aimed at providing a4 more structured understanding of a
large number of available multidimensional visualization techniques. It can also be used
s a starting point to compare the available techniques, to improve the existing ones,
and to develop new techniques. Table 3 is trying to compare a number of visualization
techniques. The comparison of the visualization techniques is based on their suitability
for certain:

o task characteristics, such as clustering and multivariate hot spots,

e data characteristics, such as number of dimensions (attributes), number of data
objects, and suitability for categorical data,

e visualization characteristics, such as visual overlap and learning curve.
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Ripley (1996) divides statistical data-analysis methods into clustering methods, pro-
Jection methods, and multidimensional scaling (MDS) methods.

5. Clustering Methods

The goal of clustering is to reduce the amount of data by categorizing or grouping similar
duta items together. Such grouping is pervasive in the way humans process information
and one of the motivations for using clustering algorithms is to provide automated tools
to help in constructing categories or taxonomies (Jardine and Sibson, 1971; Sneath and
Sokal, 1973). The methods may also be used to minimize the effects of human factors in
the process.

Clustering methods can be divided into two basic types: hierarchical and partitional
clustering.

Hierarchical clustering proceeds successfully by either merging smaller clusters into
larger ones, or by splitting larger clusters. The clustering methods differ in the rule by
which it is decided which two small clusters are merged or which large cluster is split.
The end result of the algorithm is a tree of clusters called a dendrogram, which shows
how the clusters are related.

Partitional clustering attempts to directly decompose the data set into a set of disjoint
clusters. The criterion function that the clustering algorithm tries to minimize may em-
phasize the local structure of the data, by assigning clusters to peaks in the probability
density function, or the global structure, Typically, the global criteria involve minimizing
some measure of dissimilarity in the sumples within each cluster, while maximizing the
dissimilarity of different clusters.

A commonly used partitional clustering method, K-means clustering (MacQueen.
1967). uses the criterion function — the average squared distance of the data items T4
from their nearest cluster centroids:

Eg\‘ - z ke — J'u!_.{_‘.i(-;;ul‘!, “)

s

where e(a ) is the index of the centroid that is closest to 2. . One possible algorithm for
minimizing the cost function begins by initializing a set of K" cluster centroids denoted
bym, i=1...., K. The positions of my; are then adjusted iteratively by first assigning
the data samples to the nearest clusters and then recomputing the centroids. The iteration
is stopped when F does not change markedly any more. In an alternative algorithm, each
randomly chosen sample is considered in succession, and the nearest centroid is updated.

Eq. 1 s also used to describe the objective of a related method, vector quantization
(Gersho, 1979; Gray, 1984; Makhoul ¢ al., 1985). In the vector quantization, the goal is
to minimize the average (squared) quantization error, the distance between a sample =
and its representation ey The algorithm for minimizing (1) that was described above
is actually a straightforward generalization of the algorithm proposed by Lloyd (1957) in
4 one-dimensional setting.
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The interpretation of clusters may be difficult. Most clustering algorithms prefer cer-
tain cluster shapes, and the algorithms will always assign the data to clusters of such
shapes even if there were no clusters in the data. Usually the goal is not just to compress
the data set, but also to make inferences about its cluster structure. The results of the
cluster analysis need to be validated (Jain and Dubes, 1988).

Another potential problem is that the choice of the number of clusters may be criticu]:_
quite different kinds of clusters may emerge when K is changed. Good initialization qi
the cluster centroids may also be crucial; some clusters may even be left empty if their
centroids lie initially far from the distribution of data,

6. Projection Methods

The goul of the projection methods is to represent the input data items in a lower-
dimensional space in such a way that certain properties of the structure of the data set
are preserved as faithfully as possible.

6.1. Linear Projection Methods

Principal Component Analysis (PCA) is a multivariate statistical method for linearly
transforming a sample of N p-variate vectors

X =zyri=1,....N: kE=1.....p

into a new sample of g—variate vectors

Y = i-.f,r,;: = Lovowanys

such that the columns of ¥ are uncorrelated. and ¢ < p (Flury. 1997). Each of the ¢
derived variables is expressed as a linear combination of p correlated. measured variables
(Hotelling, 1933).

The ¢ derived variables are referred to as Principal Components (PCs), und form a
system of orthogonal axes. If we consider X' to be a configuration of A7 points

Jp = (.I,‘},‘....I,p)

in a p-dimensional Euclidean space. then the first PC defines a line through this space
that minimises the sum of squared distances of the points from it, and thus maximises
the variance of coordinates {#] = y,1} of an orthogonal projection of {7} on this line
(Pearson, 1901). The second PC is a line that maximises the variance of the projection
coordinates {rf::i = w2} of the points, subject to being perpendicular to the first P_(}
Taken together, the first two PCs give a plane of the closest fit to the configuration .Y,
i.e.. one that minimises the sum of squared distances of the points to that plane. The
remaining PCs are defined recursively in this manner, and individually account for a
smaller amount of the total variance. The first ¢’ < ¢ principal components give the best
linear approximation.
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6.2. Nonlinear Projection Methods

PCA cannot take into account nonlinear structures, consisting of arbitrarily shaped clus-
ters or curved manifolds. Projection pursuit tries to express some nonlinearities, but if the
data set is high-dimensional and highly nonlinear, it may be difficult to visualize it with
linear projections onto a low-dimensional display even if the projection angle is chosen
carefully.

Several approaches have been proposed for reproducing nonlinear hi gher-dimensional
structures on a lower-dimensional display. The most common methods allocate a repre-
sentation for each data point in the lower-dimensional space and try to optimize these
representations so that the distances between them would be as similar to the original
distances as possible, The methods differ in how the different distances are weighed and
how the representations are optimized.

6.2.1. Multidimensional Scalin g

MDS refers to a group of methods that is widely used especially in behavioral, economet-
ric, and social sciences to analyze subjective evaluations of paired similarities of entities.
The starting point of MDS is a matrix consisting of paired dissimilarities of the entities.

The goal of MDS methods is not merely to create a space that would represent the
relations of the data faithfully, but also to reduce the dimensionality of the data set to a
sufficiently small value 1o allow visual inspection of the set There exists a multitude of
variants of MDS with slightly different cost functions and optimization algorithms.

The algorithms of MDS can be roughly divided into two basic types: metric and non-
metric MDS.

In the original merric MDS (Torgerson, 1952; Young and Householder, 1938), the dis-
tances between the data items have been given, and the configuration of points that would
give rise to the distances is sought. Often a linear projection onto a subspace obtained by
PCA is used. The key idea of the method to approximate the original set of distances to
distances corresponding to the configuration of points ina Euclidean space can, however,
aiso be used for constructing a nonlinear projection method, 1f each item ;. is repre-
sented by a lower-dimensional, say, two-dimensional data vector xj, then the goal of
projection is to optimize the representations so that the distances between the items in
the two-dimensional space would be as close 16 the original distances as possible. If the
distunce between w, and 1y is denoted by d(k, !} and the distance between x and a7 in
the two-dimensional space by (e, 1}, the metric MDS tries to approximate d(k, 1) by
d'(k, 1), It a square-error cost is used. the objective function. called a stresy function, to
be minimized cuan be written as

I 12
Eyp= Y [d(k, 1) —d'(k. 1)}, .
el
Function (3), called a sstress function, is more suitable for optimization:
[ yv2 (272
Ey=3" |k, D) = (d' (k. 1)) |
e

(3)
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Many authors minimize different versions of the stress function by means of ei-
ther local techniques or their modifications. Some of these modifications are derived
to achieve non-local behavior of the method. The most widely known method of this
kind is SMACOF, based on the majorization of an objective function (DeLeeuw, 1977,
DeLeeuw, 1988). The tunneling method is known as one of global optimization methods
(Torn and Zilinskas, 1989). It was adapted to the problems of multidimensional scaling
and investigated by P. Groenen (1993).

A perfect reproduction of the Euclidean distances may not always be the best pos-
sible goal, especially if the components of the data vectors are expressed on an ordinal
scale. The rank order of the distances between the vectors is meaningful only, not the
exact values. The projection should try to match the rank order of the distances in the
two-dimensional output space to the rank order in the original space. The best possi-
ble rank ordering for a given configuration of points can be guaranteed by introducing a
monotonically increasing function f that acts on the original distances. Nonmetric MDS
(Kruskal, 1964; Shepard, 1962) uses such a function (Kruskal and Wish, 1978), whereby
the normalized cost function becomes

Ey S [Falk ) —d' k0] (4)
kil

B 1
EDNACDE

k!

For any given configuration of the projected points o, f is always chosen to mini-
mize (4).

Another nonlinear projection method. Sammon's mapping (Sammon, 1969).is closely
related to the metric MDS version described above. It, also. tries to optimize the cost

function:

— Tk ) — k1)
o A e T )
Es 2.#' P (5)

The only difference between Summon's mapping and the nonlinear metric MDS (2]
is that the errors in distance preservation are normalized. Because of the normalization,
the preservation of small distances will be emphasized.

The principal curves (Hastic and Stuetzle, 1989) are smooth curves that are defined
by the property that each point of the curve is the average of all data points that project
to it. i.e., for which that point is the closest point on the curve. Otherwise, the curves
pass through the center of the data set Principal curves are generalizations of principal
components, extracted using PCA, in the sense that a linear principal curve is a principal
component.

7. The Sclf-Organizing Map Algorithm

Competitive learning is an adaptive process in which the neurons in a neural network
gradually become sensitive to different input categories, sets of sumples in a specific
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domain of the input space (Kohonen, 1982; Kohonen, 1984; Nass and Cooper, 1975). A
kind of division of labor emerges in the network when different neurons specialize to
represent different types of inputs.

The specialization is enforced by a competition among the neurons: when an input =
arrives, the neuron that is best able to represent it wins the competition and is allowed to
learn it even better.

If there exists an ordering between the neurons, i.e., the neurons are located on a dis-
crete lattice, a sell-organizing map, a competitive learning algorithm can be generalized:
if not only the winning neuron, but also its neighbors are allowed to learn, neighboring
neurons will gradually specialize to represent similar inputs, and the representations will
become ordered on the map lattice.

The neurons represent the inputs with reference vectors mn;, the components of which
correspond to synaptic weights. One reference vector is associated with each neuron
called a unit in a more abstract setting. The unit, indexed by ¢, whose reference vector is
nearest to the input z, is the winner of the competition:

¢ = ¢(x) = argmin {!|

*

:—m;) 2} (6)

The winning unit and its neighbors adapt to represent the input even better by modi-
fying their reference vectors towards the current input. If the locations of units i and 7 on
the map grid are denoted by the two-dimensional vectars r; and 7, respectively, then

ity = h(jri —vjilit),
where ¢ denotes time.

During the learning process at time ¢ the reference vectors are changed iteratively
according to the following adaptation rule:

mi(t =13 = mi(t) + he(t) [2(t) — ma(2)], (7)

where (2} is the input at time ¢ and ¢ = ¢{x(1)} is the index of the winning unit.

8. A Sample of Using Multidimensional Scaling

Although improved local search procedures are used for some applications of multidi-
mensional scaling, certain applications can be solved only with global optimization. An
example of such applications is described in (Mathar, 1996).

A frequently used test problem for multidimensional scaling algorithms (Mathar and
Zilinskas, 1994; Green ef al., 1989) is based on the experimental results, on testing several
soft drinks (Green ¢f «l., 1989). 38 students have tested ten different Cola brands. Each
pair was judged on its dissimilarity on a 9-point scale (1 — very similar, 9 — completely
different). The accumulated dissimilarities are the data of the problem. The scaled down
accumulated dissimilarities are given in Table 4.
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Table 4

Scaled accumulated dissimilaritics among 10 Cola brands

Classic  Diet  Diet  Diet Dr. Slice 7-Up ‘Tub

Pasl Coke Coke  Pepsi Slice 7-Up  Pepper

Pepsi i

Coke 1.27 —

Classie Coke 1.69 1.43 ’

Dict Pepsi 204 235 243 o

Diet Slice 3.09 318 326 2.85 .

Diet 7-Up 3.20 32 337 288 1.53 ¥in

Dr. Pepper 2.86 256 258 259 302 306 o

Slice 317 IR 318 312 131 1.64 3.00

7-Up 321 318 38 317 170 1.36 295 132 i
Tab 2.38 231 242 1.94 285 281 236 291 297

The goal of this multidimensional scaling problem is to find the configuration of 10
objects, representing each Cola brand in a two-dimensional space, which would help to
interpret the data. It is shown in (Mathar, 1996) that there are many local minima and,
interpreting the data on the basis of the achieved configuration from local minima, leads
to different results. So it is necessary 1o find the global minimum and the corresponding
configuration which explains the data best.

The number of objects for this global optimization problem is N = 101 The configu-
ration of objects in 7 = 2-dimensianal space should be found. The number of variables
1s 11 = 17. The feasible region is ([0,41%, '=4.4]"=2). The objective function of the
problem s (3).

The representing of the Cola problem is shown in Fig. 4.

1 - - - - -
| |
I o Cinssic Coke

] s Fepsi o Coke 1

1 # Dict Pepai eDr Pepper 4

. ©Tab

-2

2 «Dietlice +3licet7Up

o Dilet e

4 J

2 1 ] 1 2 3 4

Fig, 4. The solution of the Cola problem.
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9. Visualization in Education

Education can be viewed as the externally facilitated development of knowledge. This ex-
ternal influence can take many forms (a teacher, textbook, article, movie, TV show, com-
puter program...). The purpose of any visualization to be used in an educational context
is to facilitate the learning of some knowledge (idea, coneept, fact, algorithm, relation-
ship ...). In order to accomplish this, visualization should relate knowledge the learner has
and the knowledge being taught. Therefore, in order to design effective visualizations, it
15 necessary to know (or at least have o theory about) what the learner knows.

The purpose of graphical display is to provide the viewer with a visual means of
processing the information. It is important to note, that for a visualization to be effective
it must make use of the knowledge base of the viewer. If the viewer does not possess
the knowledge to understand the graphical entities and relations between them, then the
visualization will not achieve its goal. For the most part visualization technoques can be
classified into two categories:

e Data exploration,

o Communicating information.

Data Expioration is the practice of using visualization techniques to find unforeseen
relationships between data points or sets of paints in large databases. Once a relationship
has been found, the same visualization cun be used to communicate that relation to others.
Visualization techniques can also be applied to information that is already known.

In them work (1992), Hicbert and Carpenter present a framework for discussing the
representation of mathematical concepts in the context of teaching for understanding,
The concepts in the framework are not specific to mathematics and can be applied to the
representation of knowledge in general. Their framework also provides a useful means
for discussing the role that external representations play in learning. The main points of
their framework are:

e relationships exist between external and internal representations;

e the form of the external representation with which the student interacts influences

how knowledge is represented internally;

o the form in which a student externally represents knowledge if influenced by their

internal representation;

e internal representations of knowledge are connected to form networks of knowl-

edge;

e networks can be hierarchical — some representations subsume others:

e networks can be graph-like — the nodes represent pieces of information and the arcs
represent the relationships between them;

e most likely, a combination of the two of them;

e understanding occurs when an idea is well integrated into a richly connected net-
work.,
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10. Conclusions

In this paper, we have presented an overview of major visualization techniques. Each of
these techniques is based on distinct concepts and produces distinct images. No optimal
visualization method can be selected. The variety of visualization methods exists because
different data and different practical problems require a corresponding visualization tech-
nique. The overview is, of course, incomplete and does not include, for example, incre-
mental MDS. Gathering of visualization methods and techniques lets us to investigate a
new method or technique.
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Duomenu vizualizacija: idéjos, metodai, problemos
Vydinas SALTENIS, Jarae AUSRAITE

Straipsnis skirtas duomenu vizualizavimui, atkretpiant démesi | psichologinius vaizdy su-
vokimo aspektus. Apzvelgiama Berting suvokimo teon Ji fmage Theory, kunoje tyrinejama, kaip
atvaizduoti didelius duomeny kiekius, Jis isskyre dvi viizduojamuy kintamyju kluses: isdeéstomi
plokStumoje (planary bei besiskiriantys save isvaizda (refinal, Berlinas eige. kad efektyviausias
vra trijy komponenéiu vizualizavimas.

Bettine teorija praplete M. Greenas, Jis toige, kad yra daugiau nei du vaizduojamy kintamuiy
Lipay, apic kurivos Bertinas neuzsimena ir, kad triju komponentiy vizualizavimas yra nebiting
clekiyviausias (gali bl keturiy ir daugiau), Duomenys gali bilti vaizduojami tokiais kintamaisiais,
Kaip judesys (motion). mirgéjimas (flicker) bei binokuliannis regeiimas {disparity).

Kalbant apie duomeny atvaizdavima svarbu leisingai fvertinti duomenis, tam apivelgiami
duomeny tipai. Toliau klusifikuojami dazniausiai naudojami vizualizacijos bidai. Jie literatiroje
skirstomos 1 geometrings projekeijos (zeometric projection). piktograming (icon-based), tasking
(piaei-based). hierarchne (hierarchical), o taip pat bandoma juos jungli.

Aprasomi keturi populiariausi daugiamadéiy duomeny vizualizavimo metodai: Klasteriy (cluster-
ing). projekcijos (projection), daugiamaiy skaliy (multidimensional scaling) bei save organizuo-
Jancius Zemelapius (self-organizing map). Vizualizavimo metodai ganélingi skirtingi - tiek savo
sprendimo idejomis, tick gautu vaizdu,




