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Abstract. As the number of software vulnerabilities discovered increases, the industry is facing 
difficulties to find specialists to cover the vacancies for security software developers. Considering 
relevant teaching and learning theories, along with existing approaches in software security educa-
tion, we present the pedagogic rationale and the concrete implementation of a course on security 
protocol development that integrates formal methods for security research into the teaching prac-
tice. A novelty of the framework is the adoption of a conceptual model aligned with the level of 
abstraction used for the symbolic (high-level) representation of cryptographic and communication 
primitives. This is aimed not only at improving skills in secure software development, but also at 
bridging the gap between the formal representation and the actual implementation, making formal 
methods and tools more accessible to students and practitioners.
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1. Introduction 

Designing robust and secure systems is of paramount importance to protect digital as-
sets and limit the attack surface available to the adversary. Vulnerabilities can be ex-
ploited by attackers, for example, to gain access to confidential data or compromise 
the integrity of online systems. This can cause direct (e.g. data loss, interruption of 
operations) or indirect harm (e.g. damage of reputation, liabilities) that may impact 
negatively on organisations and individuals. Many experts agree that the root cause 
of vulnerabilities is incorrect software (Dark, Belcher et al., 2015; Walden and Frank 
2006) and they recommend to invest more resources on enhancing the design of secure 
systems rather than on fixing vulnerabilities in operational systems. Unsurprisingly, 
prevention is better than cure.

As the number of vulnerabilities discovered and reported increases, the lack of ex-
perts in secure software development becomes more evident. Under the CVE (Common 
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Vulnerabilities and Exposures) programme operated by MITRE, a unique identifier is 
assigned to publicly known vulnerabilities when they are reported. This repository is 
contributed by CVE Numbering Authorities (CNA), which along with MITRE includes 
major IT companies (e.g. Microsoft, Oracle, RedHat) and CERT Coordination Centres. 
The database does not include custom-built software. Fig. 1 displays the number of as-
signed CVE identifiers and a growing trend1.

The (ISC)2 Cybersecurity Workforce Study 2019 estimates that the current world-
wide cybersecurity workforce gap is around 4.07 million ((ISC)2 2019). According to 
the Frost & Sullivan (2017) report for the Center for Cyber Safety and Education, the 
most high-value skills in short supply are: intrusion detection, secure software develop-
ment and attack mitigation. A study of the Center for Strategic and International Studies 
(2016) in partnership with Intel Security also indicated secure software development as 
the second most scarce skill in cybersecurity.

The current situation represents, at the same time, a challenge and an opportunity 
for higher education institutions. Universities have to address a real need for businesses 
and society, and this allows us to propose academic programs offering a concrete career 
prospect in cybersecurity. In this regard, it is interesting to note that formal security 
education can allow new specialists to compete with more experienced professionals, in 
solving well-formalized but relatively new security tasks (Allodi et al., 2018).

Focusing on software security, the following educational questions are relevant:
How can higher education contribute to software security education? ●
Which pedagogic approaches are available and on which teaching and learning  ●
theories can these approaches leverage?
How to effectively teach the concepts and techniques employed for the design and  ●
implementation of secure systems?
How can theoretical and applied research inform and lead the curriculum develop- ●
ment?

1 The sudden sharp increase in 2017 can be partially explained by the fact that more organisations have 
become CNAs and are now reporting vulnerabilities to the CVE repository. There were 48 CNAs at the 
end of 2016 and 110 in December 2019 (Mitre 2020).
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Figure 1. Number of CVE IDs registered per year: 1999–2019 (Mitre 2020)
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Motivation and Contribution 
In this paper, we try to answer these questions in a pragmatic way, taking into account 
relevant teaching and learning theories along with existing approaches to software se-
curity education. Notably, Mc-Gettrick (2013) advocated the need for the researchers 
working on secure systems development to inform the cybersecurity education commu-
nity. Here, we propose a constructivist computer science education approach (Ben-Ari, 
2001) in the context of software security, combined with research-led teaching (Grif-
fiths, 2004), focusing on formal methods for security. In particular, we consider the 
symbolic modelling of cryptography (Dolev and Yao, 1983) and show how tools, built 
as research tools, can be applied in the teaching practice.

While previous works have considered challenges and solutions for secure software 
education from different perspectives (Section 2), we share ideas with authors that have 
considered a constructivist approach to teach, for example, networking protocols by pro-
gramming in C++ (Pullen 2001) and modelling, evaluating and programming of secure 
systems with Java (Laschi and Riccioni 2008). Both papers propose support tools for the 
learning experience, however, our approach differs on two key aspects: the explicit use 
of the symbolic modelling of cryptography and the integration of tools and methodolo-
gies from formal methods for security research into the teaching practice. In particular, 
we propose a programming style that is aligned with the symbolic representation of 
high-level models, and we aim at bridging the gap between the formal representation 
and the actual implementation. In fact, while modelling and verification is a well estab-
lished approach, how to derive a secure implementation from a model is not a trivial task 
(Bhargavan et al., 2008).

As a proof-of-concept, we discuss the rationale for the design of a course on security 
protocols design and implementation (Section 4), based on a research-led and construc-
tivist approach, and we propose a concrete implementation of such course (Section 5), 
applying tools and notions of formal methods for security. We also present a framework 
and the related workflow scenarios illustrating our approach as a whole (Section 7).

We focus on security protocols because they are an important building block for the 
construction of safe and robust applications as they play a key role in protecting data 
exchanged over a network infrastructure that can be assumed to be under adversary con-
trol, as in the Dolev-Yao attacker model (Dolev and Yao, 1983). Programming security 
protocols is challenging and notoriously error-prone; experience has shown that low-
level implementation bugs are discovered even in protocols like TLS, SSH and WPA2 
which are widely used and thoroughly tested. A significant example is the Heartbleed 
bug (Durumeric et al., 2014) which is not a protocol failure, but rather a defect of the 
OpenSSL implementation of the TLS protocol.

To tame the complexity, the formal methods for security research community (Avalle, 
Pironti and Sisto, 2014; Bugliesi and Focardi, 2008) has advocated the specification of 
security protocols using high-level programming abstractions, suited for security analy-
sis and automated verification. This was one of the main reasons for developing tools for 
verification of security protocols in the symbolic model (Blanchet et al., 2019; Möder-
sheim and Viganò, 2009) and for the automatic generation of security protocols imple-
mentations (Almousa et al., 2015; Avalle, Pironti, Pozza et al., 2011; Modesti 2015). 
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Moreover, in order to widen the adoption of these tools among practitioners, simple 
languages based on the Alice and Bob notation (Mödersheim, 2009) have been adopted 
for the specification of security protocols (Basin et al., 2015; Bugliesi, Calzavara et al., 
2016; Bugliesi and Modesti 2010). This simplifies the coding, especially for beginning 
or intermediate computer science students, and the code itself is more succinct than its 
equivalent in other formal languages like the process calculi (e.g. applied-pi calculus 
(Abadi and Fournet 2001)).

The main pedagogic goal of the course we propose is to teach, in a simple and ef-
fective way, how to build secure distributed applications using common cryptographic 
primitives (symmetric and asymmetric encryption, digital signature, hashing, message 
authentication codes) abstracting from their low-level details. The activities aim at help-
ing students to quickly grasp the main security concepts and to effectively apply them 
to coding distributed programs. The constructivist approach allows students to put into 
practice what they are taught, building a viable mental model, and perceiving their prog-
ress working on increasingly more complex software artefacts.
Outline of the paper 
Section 2 discusses approaches and strategies for software security education and Sec-
tion 3 presents teaching and learning theories and considers their applicability to soft-
ware security education. In Section 4, we discuss the rationale for the design of a course 
on programming security protocols and we introduce its structure and content in Sec-
tion 5. The software tools used to support the learning activities and the framework are 
presented in Section 6 and 7 respectively. Finally, we discuss some lessons learned in 
Section 8 and conclude our presentation in Section 9.

2. Software Security Education 

According to Schneider (2013) there are two rather different visions on how to develop 
university cybersecurity courses. The first one, in order to allow designer to see their 
systems from the same perspective attackers do, is to teach adversarial thinking. The 
second one is to focus on the principles and abstractions required to build secure sys-
tems. The latter approach is supported by authors like Bishop and Frincke (2005), Dark, 
Belcher et al. (2015), Pothamsetty (2005) and Walden and Frank (2006) advocating that 
academia and industry should focus on training software engineers to consider security 
in every aspect of the development process: requirements, design, implementation, test-
ing and deployment. In particular, it is noted by Pothamsetty (2005) that, in many occa-
sions, much more effort is put into symptoms (e.g., attack and defence techniques), than 
on the cause (defective design).

Jøsang et al. (2015) remark that many IT experts still have insufficient understanding 
of security and “it is irresponsible to offer IT programs at university without compulsory 
modules in information security”.

Bishop and Frincke (2005) underline that adding security mechanisms to existing 
systems or fixing vulnerabilities is challenging as it requires a detailed understanding 
of many aspects of these systems. Moreover, they recommend that a key objective of 
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an undergraduate computer science curriculum should be to enable students to write 
secure code.

Since in disciplines like computer science there is a significant applicative aspect, 
principles and practice are often blended. On the one hand, this meets the employers’ ex-
pectation that graduates master both principles and practice. On the other hand, there is a 
concern (Bishop and Frincke, 2005) that the need for software security drives educators 
to teach specific programming languages, techniques and environments at the expenses 
of teaching concepts and principles that can be applied to new situations.

There is a tension between the need of learning how to solve current and specific 
problems and the ability to tackle new ones in the future. Some scholars like Bishop 
(2000) believe that undergraduate education should aim at teaching broad principles 
and their application, deliberately avoiding the focus on particular technologies, as the 
main objective should be to enable the understanding of general principles that can be 
abstracted and applied across many situations on different systems.

Other authors like Johnstone (2013) believe that a good understanding of how sys-
tems work in practice is unavoidable. They think this is true also in teaching secure cod-
ing to beginners, because, although some vulnerabilities can be mitigated with simple 
programming techniques, the most significant exploits are performed by individuals that 
have invested a considerable amount of time in understanding how software behaves 
and how to exploit it. Thus, to see if such vulnerabilities exist, students must understand 
how these exploits work.

Williams et al., (2014) advocate that students should learn secure code principles 
along with different aspects of computer programming, but Johnstone (2013) reminds 
us of the concern of some instructors that teaching programming secure software sys-
tems can be another hindrance to learning coding. He agrees that students should learn 
how to follow secure coding practice to avoid writing insecure programs, but recognise 
that explaining how different exploits are performed may be difficult due to the lack of 
knowledge of how computer systems work.

Another question is how research can be applied to security education. Some au-
thors like Bishop (2002) and Dark, Bishop et al., (2015) observe that students are 
rarely exposed to research until they begin to work on their dissertation. They propose 
to offer a continuous exposure to scholarly work during the course of studies, in line 
with the research-led teaching approach (Griffiths, 2004). The objective is to apply 
research results and methodologies to real-world problems within a realistic applica-
tive context. This approach helps students to bridge theory to practice and facilitates 
the assimilation of the latest techniques into their future work. However, from the 
educational perspective, the technical complexity of security research makes this task 
really challenging.

Along with the research-led teaching approaches, there are also other approach-
es (Yurcik and Doss, 2001): tutorial-based approach (McDermott and P. S. Shaffer, 
1992), where the learner is guided through a series of activities, mostly a self-learning 
approach, that is often used to lead to the achievement of professional certifications, 
and the project-based approach (Bell 2010), which includes a project component in a 
course where students should demonstrate understanding of how to apply principles 
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in practice. Additionally, Wen and Katt (2019) recently proposed a context-based ap-
proach in which knowledge is structured and presented by using an application scenar-
io, stimulating learners’ mental models and moving from concrete to abstract security 
knowledge.

All these approaches are not alternative, and they can be employed in a blended form 
to build academic and training courses.

3. Teaching and Learning Theories 

In this section, we discuss teaching and learning theories that can be considered in soft-
ware security education. When possible, we prefer to interpret teaching and learning 
theories, developed in a very general context, through the lens of previous scholar work 
focusing on the application of such theories to computer science and cybersecurity edu-
cation.

Constructivism, and, to a lesser extent, cognitive load and behaviourism are learning 
theories that have attracted interest in computer science education (CSE) (Hadjerrouit, 
2005; Quevedo-Torrero, 2009). To the best of our knowledge, there are few studies that 
focus explicitly on the application of such theories in teaching of software security. For 
example, Laschi and Riccioni (2008) and Pullen (2001) applied a constructivist approach 
to design their virtual labs, while Conklin and Dietrich (2007) considered elements of 
behaviourism. However, since much more works are available on teaching and learning 
theories in computer programming, it seems reasonable to consider their findings and 
observations also in the software security context.

The  ● constructivist learning theory (Bruner 2009; Wadsworth 1996) claims that 
knowledge is acquired by combining sensory data (gathered from experience) 
with the existing knowledge to create new cognitive structures. This process is 
applied recursively to generate new knowledge.
Additionally, new knowledge is built reflecting on the existing one. To be effec-
tive, learning must be active, and the teacher must guide and facilitate students 
in their endeavour. The need to be active matches the everyday experience of 
computer science instructors: a passive learner is unlikely to develop the skills 
necessary to become a computer programmer (Hadjerrouit, 1998; Hadjerrouit, 
2005; McConnell, 1996; Walker, 2004).
The  ● cognitive load theory (D. Shaffer et al., 2003; Sweller, 2016) uses the 
knowledge of human cognitive processes to devise instructional procedures. 
It tries to define an information processing model to describe how the mind 
acquires and stores knowledge. It also creates a model that takes into account 
the limitations of the working memory. It has provided a theoretical framework 
for reasoning on the complexity of the learning process, useful, for example, to 
revise learning units and improve their effectiveness when teaching complex 
concepts. Applications in CSE include the evaluation of development environ-
ments used in programming courses (Mason et al., 2015; Moons and Backer, 
2013).
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The  ● behaviourist theory (Skinner, 1954) studies how learning is affected by 
changes in the environment. The teacher is the dominant figure and the learner 
has little room for evaluation and reflection. The attempt of this theory to prove 
that behaviour could be predicted and controlled has been widely disputed (e.g. 
Chomsky 1959). However, the notion of positive reinforcement has some ap-
plication in CSE, for example in the tutorial-based approach (McDermott and P. 
S. Shaffer 1992), where a guided series of tasks and exercises is proposed to the 
learner.

According to Ben-Ari (2001), constructivist practices in CSE should allow students 
to “discover knowledge by themselves when placed in the appropriate situation”. This 
implies the construction of viable mental models, “generating knowledge by combin-
ing the experiential world with existing cognitive structures”. However, the absence 
of mental models is a critical reason why students face difficulties in learning coding. 
Misconceptions occur when students adapt and increase their knowledge frameworks to 
assimilate new concepts (Eckerdal et al., 2006). Previous programming experience and 
the overloading of language, taking notions from one context and using it in another one, 
have been considered reasons for misconceptions (Clancy, 2004).

Authors promoting a constructivist perspective (Ben-Ari, 2001; Hadjerrouit, 1998) 
indicate the importance of understanding both abstract and concrete concepts. Ben-Ari 
(2001) underlines that application of constructivism must consider that “a (beginning) 
computer science student has no effective model of a computer”, and that “the computer 
forms an accessible ontological reality”. The latter concept manifests itself when stu-
dents interacting with a computer can immediately realise the effect of the application 
of their mental models. In other words, the results of misconceptions are discovered 
instantly. Rightly, Ben-Ari (2001) notes that “there is not much point negotiating models 
of the syntax or semantics of a programming language”. Tools used by students, like 
compilers used in programming activities, have implications for building mental mod-
els. In fact, “mental processes, tool use, and interaction with the world are regarded to 
be tightly bound together” (Knobelsdorf, 2015).

A consequence of this rigidity is that the model of the system (for example, how a 
computer works) must be taught explicitly (Ben-Ari and Yeshno, 2006). This raises the 
question of how detailed the model must be, and how and when to use abstractions. For 
example, Object-Oriented Programming (OOP) allows us to build complex software ab-
stracting many details of the underlying system. However, if learners have no knowledge 
of the underlying system, how can they understand the abstractions? From a constructiv-
ist perspective, if models are not viable, they will make further learning difficult.

There is not a general consensus on when abstractions need to be introduced. Adams 
(1996) opposes the idea of postponing teaching OOP until late in the course of studies 
because at that time it is difficult to have an impact on the learners’ low-level model, but 
he also believes that OOP should not be taught too early when students are not mature 
enough to assimilate properly the related concepts. Ben-Ari (2001) remarks that “advo-
cates of an objects-first approach seem to be rejecting Piaget’s view that abstraction (or 
accommodation) follows assimilation”. In fact, practitioners who use abstractions usu-
ally have a fairly good knowledge of the underlying model.



P. Modesti 432

Conklin and Dietrich (2007) propose a paradigm to secure software engineering, 
which includes also elements of behaviourist theories. They underline that the knowl-
edge of primitives and building blocks is essential and that these core concepts must be 
taught along with the system concepts. To facilitate the acquisition of core elements, 
they propose a series of experiential repetitive activities, of increasing level of difficulty, 
with system level issues introduced later when the student are already familiar with the 
primitive elements. As the level of difficulty rises, students need to adapt and improve 
their output (Bishop and Orvis, 2006).

Although Conklin and Dietrich (2007) do not mention it explicitly, in their frame-
work they apply the behaviourist notion of positive reinforcement (Skinner, 1954). The 
authors also refer to Bloom’s theory (Bloom and Krathwohl, 1956) which states that 
education should focus not on simply transferring notions, but rather on mastering the 
subject and encourage reasoning more conceptually. Conklin and Dietrich (2007) con-
sider the primitives-based material as a knowledge type learning task, “based on rote 
memorization or recall of information”, while systems level material is assimilated using 
“a combination of comprehension and application learning styles”.

4. Rationale for the Design of a Course on  
Security Protocols Design and Implementation 

Leveraging on the background work presented in the previous sections, we can now dis-
cuss the rationale for the design of a course on programming security protocols. They are 
relevant as they play a key role in protecting data exchanged over a network infrastruc-
ture that can be under adversary control, and, as we have seen, programming security 
protocols is challenging and error-prone.

The main pedagogic goal of the course is to teach, in a simple and effective way, how 
to build secure distributed applications using common cryptographic primitives (symmet-
ric and asymmetric encryption, digital signature, hashing, message authentication codes) 
abstracting from their low-level details. This course is aimed at helping students to quickly 
grasp the main security notions and to effectively apply them to the construction of distrib-
uted programs that can guarantee security goals like authentication and confidentiality.

It should be noted that our objective is not a mere transfer of knowledge but we aim 
at obtaining a cognitive change in the learner. Therefore, the course is also oriented at 
getting the students familiar with techniques like formal modelling and verification of 
security protocols and, when time allows it, also Model Driven Development (MDD) 
(Atkinson and Kuhne, 2003).

For the construction of this course, we identified the needs to be addressed as a series 
of design and pedagogic questions, inspired by the constructivist approach presented in 
Ben-Ari (2001).

We consider mainly constructivism here, for the reasons exposed in Section 3, in 
particular in the works of Ben-Ari (2001; 2006) and Hadjerrouit (1998; 1999; 2005). 
In summary, constructivism allows for the construction of a viable mental model, and 
help misconceptions to be discovered soon. Knowledge is actively built by learners in-
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teracting with the environment and software tools contribute in shaping the way mental 
models are built. In fact, in constructivism, mental processes, tools and interaction with 
the world are tightly bound together (Ben-Ari, 2001).

To this end, the choice of tools, along with the pedagogic reasons, is crucial in this 
context. However, this choice can be flexible, as in general, teachers can consider their 
own preferences and interests in term of software tools for modelling and verification, 
and specification/programming languages, as long as the choice of tools is coherent 
and consistent with the approach and the learning objectives. Therefore, the concrete 
instance of the course we propose should be seen as a proof-of-concept, inspired also by 
our research interests and practice. Therefore, when necessary, we briefly introduce here 
the tools that will be presented in more details in Section 6.

Our conceptual framework is represented in Fig. 2, showing the abstract and concrete 
models, for the three different layers: Network, Cryptography and Channels.
What is the appropriate model of the “system”? 
First of all, from the constructivist point of view (Ben-Ari, 2001; Hadjerrouit, 1998), we 
need to consider what is the appropriate model of the “system”. In the domain of security 
protocols, there are two main approaches: computational and symbolic (Blanchet, 2012). 
In the computational model, messages are bitstrings, and cryptographic primitives are 
functions mapping bitstrings to bitstrings. The model considers the computational prop-
erties of the cryptography primitives (e.g. key size) and the adversary is any probabilistic 
Turing machine.

In the symbolic model, like the Dolev and Yao (1983) adversary model, the cryp-
tographic primitives are represented by function symbols, assuming perfect cryptogra-
phy. The adversary is restricted to use only such primitives. Fig. 3 shows the intruder 
rules, and the fact iknows(m) denotes that the intruder knows the term m. Every com-
munication between honest agents is assumed to be mediated by the intruder, i.e., it 
happens through iknows(·) facts. The model assumes the existence of a set of function 
symbols (with an associated arity) partitioned into two subsets of public and private 
symbols. The first rule describes both asymmetric encryption and signing ({·}), while the 
second one models that a ciphertext can be decrypted if the corresponding decryption 
key is known. inv(·) is a private function symbol representing the secret component of 
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a given key-pair. The third rule allows the attacker to learn the payload of any known 
signed message. Symmetric encryption ({| · |}) can be modelled similarly to the first two 
rules but in this case the same key is employed for both encryption and decryption. Ad-
ditionally, there are rules for tupling and projecting tuple elements, and a rule for the 
application of public function symbols to known messages. Constants, including agent 
identities, are modelled as public functions with zero-arity.

We consider, for the scope of this work, the symbolic model being more appropriate 
than the computational one. In fact, Haberman and Kolikant (2001) found that a black-
box-based approach can be used effectively to introduce programming concepts to nov-
ices. An important characteristic of the symbolic model is its simplicity. According to the 
constructivist approach, the model must be taught explicitly (Ben-Ari and Yeshno 2006; 
Koppelman and van Dijk, 2010), therefore a simpler model is of great advantage.

Interestingly, the model is also realistic. In fact, Herzog (2005) proved that there are 
many significant cases in which the Dolev-Yao adversary can be a valid abstraction of all 
realistic adversaries. Moreover, the model is amenable for automated verification of se-
curity protocols (Blanchet, 2001; Mödersheim and Viganò, 2009; Schmidt et al., 2012) 
and this is important, not only in practical terms, but also pedagogically, to address the 
question of accessing the “ontological reality” discussed later.
What is the suitable level of abstraction? 
Along with the adversary model, we need to teach how to model cryptographic primi-
tives in the symbolic model, and their properties. This is necessary to allow the learner to 
understand the actions that honest agents perform during the protocol execution. This is 
required to understand the model and define a level of abstraction upon which the learn-
ers can build their knowledge. At this point, we should recall the recommendation given 
by Ben-Ari (2001) regarding the need to explicitly presenting a viable model one level 
beneath the one we are teaching. To this end, we propose a series of learning activities, 
aimed at the construction, in a real programming language (Java in our case), of simple 
security protocols.

The activities have an increasing level of difficulty in bite size steps, to help students 
to manage the complexity of the material. The purpose of these activities is also to elicit 
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Figure 3. Dolev-Yao intruder rules

Our conceptual framework is represented in Figure 2, showing the abstract

and concrete models, for the three different layers: Network, Cryptography and

Channels.

What is the appropriate model of the “system”? First of all, from

the constructivist point of view (Ben-Ari 2001; Hadjerrouit 1998), we need to

consider what is the appropriate model of the “system”. In the domain of security

protocols, there are two main approaches: computational and symbolic (Blanchet

2012). In the computational model, messages are bitstrings, and cryptographic

primitives are functions mapping bitstrings to bitstrings. The model considers the

computational properties of the cryptography primitives (e.g. key size) and the

adversary is any probabilistic Turing machine.

In the symbolic model, like the Dolev and Yao (1983) adversary model, the

cryptographic primitives are represented by function symbols, assuming perfect

cryptography. The adversary is restricted to use only such primitives. Figure 3

shows the intruder rules, and the fact iknows(m) denotes that the intruder knows

the term m. Every communication between honest agents is assumed to be medi-

ated by the intruder, i.e., it happens through iknows(·) facts. The model assumes

the existence of a set of function symbols (with an associated arity) partitioned

into two subsets of public and private symbols. The first rule describes both asym-

metric encryption and signing ({·}), while the second one models that a ciphertext

can be decrypted if the corresponding decryption key is known. inv(·) is a private

function symbol representing the secret component of a given key-pair. The third

rule allows the attacker to learn the payload of any known signed message. Sym-

metric encryption ({| · |}) can be modelled similarly to the first two rules but in

this case the same key is employed for both encryption and decryption. Addition-

ally, there are rules for tupling and projecting tuple elements, and a rule for the

application of public function symbols to known messages. Constants, including

agent identities, are modelled as public functions with zero-arity.

Fig. 3. Dolev-Yao intruder rules.
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the prior knowledge needed to construct a viable model. In order to tame the complexity 
and abstract from low-level cryptography details, we rely on a Java library (Modesti, 
2015) that offers an application programming interface (API) simplifying the access to a 
set of standard network and cryptographic primitives required to build and run security 
protocols implemented in Java.

The rationale of this approach is corroborated by Sivilotti and Lang (2010) who sug-
gest to separate the concerns of the interface from the ones of the implementation. One 
potential challenge, as outlined by Alexandron et al. (2012), is that some programmers 
might perceive the right level of abstraction as the one that matches their programming 
experience. This could lead to a cognitive dissonance, that can “even lead to a negative 
attitude towards the high-level abstraction”.
What is a language suitable for the specification of security protocols? 
We propose the Alice and Bob language (AnB) (Mödersheim, 2009), a simple and in-
tuitive notation, that describes messages exchanged by different agents, and allow for 
the formal specification of security goals in a human readable format. Symbolic cryp-
tographic functions can be used to compose messages. This notation makes the coding 
of security protocols considerably simpler (and more compact) than their equivalent 
in other formal languages (e.g. process calculi (Abadi and Fournet, 2001; Abadi and 
Gordon, 1997)) or real-world programming languages. This intuitive language allows 
learners to build their own models of security protocols and experiment with them us-
ing tools that support such notation like the model checker OFMC (Mödersheim and 
Viganò, 2009) and Tamarin (Schmidt et al., 2012).

Integrating Formal Methods for Security in Software Security Education 11

Protocol: Fresh_From_A AnB

Types:
Agent A,B;
Number Msg,Nonce;
Function [Agent -> PublicKey] pk,sk

Knowledge:
A: A,B,pk,sk,inv(pk(A)),inv(sk(A));
B: B,pk,sk

Actions:
A -> B: A
B -> A: {Nonce,B}pk(A)
A -> B: {Nonce,B,Msg}inv(sk(A))

Goals:
B authenticates A on Msg
inv(pk(A)) secret between A
inv(sk(A)) secret between A

Figure 4 AnB Protocol Example

The activities have an increasing level of difficulty in bite size steps, to help
students to manage the complexity of the material. The purpose of these activities
is also to elicit the prior knowledge needed to construct a viable model. In order to
tame the complexity and abstract from low-level cryptography details, we rely on a
Java library (Modesti 2015) that offers an application programming interface (API)
simplifying the access to a set of standard network and cryptographic primitives
required to build and run security protocols implemented in Java.

The rationale of this approach is corroborated by Sivilotti and Lang (2010) who
suggest to separate the concerns of the interface from the ones of the implement-
ation. One potential challenge, as outlined by Alexandron et al. (2012), is that
some programmers might perceive the right level of abstraction as the one that
matches their programming experience. This could lead to a cognitive dissonance,
that can “even lead to a negative attitude towards the high-level abstraction”.

What is a language suitable for the specification of security protocols?

We propose the Alice and Bob language (AnB) (Mödersheim 2009), a simple and
intuitive notation, that describes messages exchanged by different agents, and allow
for the formal specification of security goals in a human readable format. Symbolic
cryptographic functions can be used to compose messages. This notation makes
the coding of security protocols considerably simpler (and more compact) than
their equivalent in other formal languages (e.g. process calculi (Abadi and Four-
net 2001; Abadi and Gordon 1997)) or real-world programming languages. This
intuitive language allows learners to build their own models of security protocols
and experiment with them using tools that support such notation like the model
checker OFMC (Mödersheim and Viganò 2009) and Tamarin (Schmidt et al. 2012).

An example of an AnB protocol is displayed in Figure 4. The main goal of the
protocol is to achieve authentication (precisely the injective agreement defined by

Fig. 4. AnB Protocol Example.
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An example of an AnB protocol is displayed in Fig. 4. The main goal of the protocol 
is to achieve authentication (precisely the injective agreement defined by Lowe (1997)) 
of the message Msg. The recipient B should have evidence that the message has been 
endorsed by A and is a fresh message. The goal is achieved using asymmetric encryption 
and a challenge-response technique with a Nonce exchange. pk() and sk() are abstract 
functions used to model asymmetric encryption, mapping agents to their public keys, 
for encryption and signature respectively, while inv() is a private function modelling 
the private key (its argument is a public key). It should be noted that private function 
symbols are used to represent symbolically a notion, they are not concrete functions that 
can be computed (Mödersheim, 2009).
Can we further abstract? 
Abstracting from low-level details, where most implementation errors occur (Tsipenyuk 
et al., 2005), the developer can focus on the application design and its security prop-
erties. For this reason, the formal methods research community (Abadi, Fournet and 
Gonthier, 2002; Avalle, Pironti and Sisto, 2014; Bugliesi and Focardi, 2008) have advo-
cated the specification of security protocols with high-level programming abstractions, 
suited for security analysis and automated verification.

Concretely, we can abstract from cryptographic details, using the AnBx language 
(Bugliesi, Calzavara et al., 2016), an extension of the AnB language. In AnBx, channels 
are the main abstraction for communication, providing different authentication and/or 
confidentiality guarantees for message transmission. As we try to build further knowl-
edge on top of the existing one, we may help students to build viable models at an higher 
level of abstraction. For example, if we consider the example in Fig. 4, the three actions 
could be replaced by a single action A->B,(A|B|-): Msg where (A|B|-) represents a 
channel that allows to send a message authentic from A that can be verified by B. In this 
case, the actual implementation of the channel can be abstracted (provided it satisfies 
the desired goal).

Alexandron et al. (2014) suggest that when programmers can work with a less de-
tailed mental model, it becomes easier to work with high-level abstractions. This might 
work also in our case, since this will reduce the gap between the level of the problem (i.e. 
security goals) and the level of the implementation.
How to access the “ontological reality” in this framework? 
Learners can model protocols and reason about their security properties using tools for 
the verification of security protocols in the symbolic model. In a nutshell, the student 
can specify the security protocol and its security goals in AnB and then verify whether 
the protocol satisfies these goals, or if an attack may occur (in this case an attack trace 
is provided).

It should be noted that, with the specification of security goals (section Goals in 
Fig. 4), the learners describe the expectation regarding the security properties of the 
protocol, that reflects their mental model. Running the verification tools, provides an 
(almost) immediate feedback on the correctness of the mental model and helps to build 
their own knowledge autonomously. The analysis of errors is therefore an opportunity 
for individual reflection.
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Moreover, as Ben-Ari (2001) advises, “when a student makes a mistake or otherwise 
displays a lack of understanding, you must assume that the student has a more-or-less 
consistent, but non-viable, mental model”. The task of the teacher “is to elicit this model 
and guide the student in its modification”.

Compiling and running programs in Java, as well as model checking the abstract 
model of a security protocols, also gives the student the opportunity to reflect on the 
error messages and on the run-time behaviour of the programs. This is in line with the 
principle advocated by Lebow (1993), and applied in practice for the design of the 
Network Workbench (Pullen 2001), of strengthening “the learner's tendency to engage 
in intentional learning processes, especially by encouraging the strategic exploration 
of errors”.

5. Course Structure 

As a proof-of-concept, based on the principles discussed in the previous sections, we 
now outline the structure of a course in which learners need to develop, within very tight 
time constraints, their ability to implement secure communication systems, identifying 
and evaluating the security aspects required at different stages of the system develop-
ment life-cycle. A particular focus is given to the role of applied cryptography in secure 
systems design and implementation. Therefore, students are introduced to the applica-
tion of cryptography and specifically on those cryptographic primitives utilised in secu-
rity protocols design and implementation.

In detail, the course addresses the following:
Learning needs: ●  as the students may come from different degree programs (e.g. 
computer science, computing, cybersecurity), their programming skills may be 
mixed. Therefore, the traditional learning curve to master cryptography is likely 
to be too steep for many students. No prior knowledge of network or cryptography 
programming is assumed.
Purpose: ●  in a limited amount of time (e.g. 5 hours of lectures, 8–10 hours of 
supervised tutorials, and 15–20 hours of independent work/self-study, but shorter 
instances are also possible) students should be able to gain an understanding of 
secure design principles, in particular demonstrating the ability to implement 
simple security protocols applying cryptographic primitives like symmetric and 
asymmetric encryption, digital signatures, message digests and message authen-
tication codes.
Activities: ●  while the lecture sessions focus on the theories and the challenges 
associated with putting them into practice, the lab-based tutorial sessions help 
the student to manage the increasing complexity of the material being delivered. 
Activities are detailed in §5.4.
Learning outcomes: ●  critical understanding of principles of secure design, security 
goals and attacker capabilities; ability to implement in reliable and effective way 
simple security protocols, applying cryptography and defensive programming.
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5.1. Scope 

With respect to the ACM, IEEE, AIS & IFIP” Cybersecurity Curriculum 2017” (Joint 
Task Force on Cybersecurity Education, 2017), the scope of this course falls within the 
Data Security and Software Security knowledge areas (KA). Clearly, other cybersecurity 
areas like, for example, ethical hacking and information security auditing, stay out of the 
scope. Therefore, if they are included in the curriculum of a degree program, they shall 
be covered by other learning activities.

5.2. Prerequisites 

We consider now the prerequisites for this course with reference to the “Computer Sci-
ence Curricula 2013”, a document covering curriculum guidelines for undergraduate 
degree programs in computer science written by the ACM and IEEE Computer Society 
Joint Task Force on Computing Curricula (2013).

The most important prerequisite is a sufficient theoretical and practical knowledge of 
programming. In our case, we expect most students having learned Java, C++ or C# in 
the past, at a level that can be described as at least equivalent to the Object-Oriented Pro-
gramming unit (Core-Tier1) of the Programming Language  (PL) KA of the “Computer 
Science Curricula 2013”. This includes object-oriented design, class-hierarchy design 
for modelling, definition of classes (fields, methods, and constructors), subclasses, in-
heritance, and method overriding. Knowledge in this area implies Software Development 
Fundamentals (SDF) Core-Tier1, e.g. Algorithms and Design, Fundamental Program-
ming Concepts, Fundamental Data Structures.

The security prerequisites include the foundational concepts of security (Core-Tier1) 
as defined in the Information Assurance and Security (IAS) KA. For example, CIA (con-
fidentiality, integrity, availability), risk, threats, vulnerabilities, attack vectors, authenti-
cation and authorization, access control, trust and trustworthiness.

For the networking prerequisites, we refer to the Networking and Communication 
(NC) KA: prior knowledge shall include the organization of the Internet, basic knowledge 
of internet protocols, networked and distributed applications (e.g. client-server model).

No prior knowledge of network and cryptography programming is assumed, and the 
basic knowledge of cryptographic primitives is acquired during the lectures that are part 
of the course. While further prior knowledge of Information and Network Security can 
be helpful, our experience (see Section 8) suggests that overall these prerequisites are 
sufficient for the objectives of this course.

5.3. Content 

The course is structured as a series of lectures, each followed by a practical tutorial that 
not only allows to apply and reinforce what learned during the lecture, but also stimulate 
further learning. The main topics covered are:
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Principles of secure design. ●
Security protocols and security goals. ●
Client-Server programming. ●
Key generation. ●
Public Key Infrastructure (PKI): setting up a certification authority, registration  ●
and certification process.
Simple secret exchange, based on asymmetric encryption. ●
Weak authentication using digital signature. ●
Strong authentication using challenge-response and digital signature. ●
Implementation of a secure channel combining secrecy and authentication. ●
Defensive programming/secure coding: checks on reception. ●
Configuration of cryptographic algorithms. ●
Modelling and verification of security protocols specified in the AnB/AnBx. ●
Model Driven Development (MDD) of security protocols. ●

The last two topics can be omitted or briefly mentioned if the course runs in the 
shorter variant (basically limited to the programming part).

5.4. Activities 

The practical programming tutorials2 are based on the Java programming language and 
the cryptographic services offered by the Java Cryptography Architecture (JCA). We 
chose this language and toolkit because they are widely adopted by the industry and 
freely available. Moreover, we use the AnBxJ library which is part of the AnBx Com-
piler and Code Generator (Modesti, 2015), an open-source tool developed by the author 
as an academic research project aimed at the automatic generation of security protocol 
implementations, from a simple, formally verifiable, abstract model. The AnBxJ li-
brary wraps, in an abstract way, the JCA interface and implements the custom classes 
necessary to write programs in Java. This allows to escape the complexity of the JCA 
programming interface, and offer to the developer a simplified API for cryptography 
and communication. For the modelling and verification phase, we employ the OFMC 
model checker (Mödersheim and Viganò, 2009), a tool for symbolic security protocol 
analysis that supports the Alice and Bob notation. The hierarchy of tools and notions, 
used in this course, for abstract and concrete models is shown in Fig. 2.

Fig. 5 shows an example of the kind of Java code students must be able to under-
stand and write. Since we map our symbolic model to concrete primitives that preserve 
the syntactical simplicity of the abstract one, there is no need, even in the concrete 
model, to explicitly use low-level network and cryptographic primitives (e.g. sock-
ets and ciphers). Therefore, the exchange of messages can be done by simply invok-
ing the send() and receive() methods, while encrypt(), decrypt(), sign() 
and verify() can be used to implement public key encryption and digital signature. 

2 Available at https://paolo.science/anbxtutorial/
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It should be noted that the code in Fig. 5 is, conceptually, very similar to the AnB 
model (Fig. 4). This is possible because the details of the actual code implementing 
the networking and cryptographic functionalities is shielded by the AnBxJ library (see 
§6.1). Therefore, the code that student use/write preserves the high-level and declara-
tive nature of AnB. According to Alexandron et al. (2014) and Haberman (2004) this 
approach can reduce to the cognitive load which is in general introduced by the com-
plexity of the OOP abstractions.

5.4.1. Examples 
The tutorials are structured in a series of activities of increasing complexity. Each pro-
gramming task usually starts with the source code of a program that students have to 
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import anbxj.*;

import java.security.SignedObject;

class Server_Fresh_From_A {

public Server_Fresh_From_A (AnB_Crypto_Wrapper anb, Channel_Properties cp) {

String name;

Channel_Abstraction s = Channel.setup(cp);

do {

// the server waits for incoming connections

s.Open();

String msg = new String("Hello! What’s your name?");

s.Send(msg);

// A -> B: A # A: client, B: server

name = (String) s.Receive();

// B -> A: {Nonce,B}pk(A)

Crypto_ByteArray nonce = anb.getNonce();

msg = "Hi " + name + "! Please sign this challenge and your message:\n"

+ anb.getName() + "," + nonce.toString()

+ "\nCut&Paste and press <ENTER>"

s.Send(anb.encrypt(msg,name));

// A -> B: {Nonce,B,Msg}inv(sk(A))

msg = (String) anb.verify((SignedObject) s.Receive(),name);

if (msg.equals(null))

s.Send("Sorry " + name + ", I am unable to verify your signature");

else

// we omit here the checks on nonce and agent’s name

s.Send("Thank you " + name + ", your signature has been verified\n"

+ "Your message was: " + msg);

System.out.println(msg);

s.Close();

} while (true);

}

}

Figure 5. Java Protocol Example - Server class

server to run on two different machines. Next, the application should be amended

to swap the role of client and server.

2. Key generation and usage of a PKI : the keytool command (available within

the Java JDK) is used to generate cryptographic keys and save them into keystores.

cfssl (CloudFlare’s PKI/TLS tool) is used to set up a Certification Authority

and for the registration and certification process.

3. Secret exchange: the sample program performs a simple secret exchange

between two agents using asymmetric encryption. Cryptographic keys for different

agents are provided. Students are required to run the program using different

identities. The output of the program is analysed in order to identify successful

and unsuccessful run of the program. Then they are asked to modify the code in

order to allow different agents to perform different roles (client or server).

4. Authenticated exchange: an activity similar to the previous one, but fo-

Fig. 5. Java Protocol Example – Server class
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analyse and run. As the AnBxJ library allows running the application with different 
debugging levels, log messages are available to report about every step of the programs 
execution. Students are then asked to modify or extend the program in order to add some 
functionalities or to achieve some security goals, thus applying and reinforcing their 
knowledge. Examples of activities include:

 1. Client/Server: the sample program runs a client and a server on the same ma-
chine. Students are asked to modify the program in order to allow client and server 
to run on two different machines. Next, the application should be amended to 
swap the role of client and server.
 2. Key generation and usage of a PKI: the keytool command (available within the 
Java JDK) is used to generate cryptographic keys and save them into keystores. 
cfssl (CloudFlare's PKI/TLS tool) is used to set up a certification Authority and 
for the registration and certification process.
 3. Secret exchange: the sample program performs a simple secret exchange 
between two agents using asymmetric encryption. Cryptographic keys for 
different agents are provided. Students are required to run the program using 
different identities. The output of the program is analysed in order to iden-
tify successful and unsuccessful run of the program. Then they are asked to 
modify the code in order to allow different agents to perform different roles 
(client or server).
 4. Authenticated exchange: an activity similar to the previous one, but focusing on 
the authentication mechanism (considering digital identity and digital signature). 
Students are also asked to implement the checks on reception, actions performed 
on the receiver side in order to verify if the incoming messages meet the ones ex-
pected according to the protocol specification. Therefore, this is also an exercise 
on secure coding/defensive programming.
 5. Secure channel: provided that in the previous tasks students have successfully 
used encryption and digital signature, they are asked to implement a secure chan-
nel combining the two techniques.
 6. Modelling and verification of security protocols: students use the model check-
er (OFMC in our case) to test a set of given protocols in order to verify if they 
satisfy the expected security goals. Afterwards, they are required to modify the 
safe protocols in order to violate some security goals and explain why protocols 
fail. Conversely, unsafe protocols will need to be fixed.
 7. (Manual) implementation of security protocols: from a formally verified mod-
el, students are asked to write the code that implements the protocol in Java. Previ-
ous examples can be used as a template.
 8. Model driven development: students can now automatically generate a Java 
application from a model formally verified, using the AnBx compiler. They can 
compare their solutions to the previous exercises with the code automatically gen-
erated. It should be noted that the AnBx compiler automatically generates the 
checks on reception, giving the opportunity to compare these checks with the ones 
encoded by hand in the previous exercises.
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6. Toolkit 

Although, as previously discussed, the actual choice of tools and languages for the 
practical activities can be influenced by the instructor’s preferences and interests, we 
think it is useful to give a concrete example of a toolkit and describe possible work-
flow scenarios (Fig. 8 and Fig. 9) that can support the learning activities. Therefore, 
we briefly describe here the tools that, along with the Java programming language and 
development kit (JDK), are part of the toolkit we use for the practical tutorials. These 
tools were developed as part of academic research projects in the area of formal meth-
ods for security. In fact, we believe it is important, in the spirit of research-led teaching, 
to expose students not only to practitioner’s tools, but also to state-of-the art research 
tools than can be applicable in the professional practice.

All tools are accessible from the command line and are available under Windows, 
Mac and Linux. It is also possible to use an Eclipse plug-in (AnBx IDE (Garcia and 
Modesti, 2017)) that extends the standard Java programming support offered by the 
Eclipse IDE with functionalities for the design, verification and implementation of 
security protocols that can support the learning activities. Along with providing a 
GUI access (Fig. 6) to the toolkit, the plug-in simplifies the setup and utilisation of 
the tools.

6.1. AnBxJ Library 

This Java library provides an application programming interface (API) that implements 
the communication and cryptographic primitives required to run the programs. To pro-
vide exibility, the API does not commit to any specific cryptographic solution (algo-
rithms, libraries, providers). Instead, it is structured as a modular, easily configurable, 
framework that leaves the developer free (at compile, deployment or even at runtime) 
to decide which cryptographic scheme to use, according to the cryptographic strength 
and performance requirements the application must satisfy.

The API is structured as a layered architecture (Fig. 7), whose main components 
are:

The  ● transport layer provides all the networking functionality necessary to trans-
mit messages over the network, using both plain and secure sockets (TLS). In 
fact, although the enforcement of the security properties is often delegated to the 
cryptographic layer, it is also possible to run applications over a secured channel 
rather than over a plain one.
The  ● cryptographic layer essentially provides methods to encrypt and decrypt, sign 
and verify, digest messages using the features included in libraries like java.se-
curity and javax.crypto. The public key infrastructure (PKI) binds public keys 
with their respective user identities by means of a certificate authority (CA).
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Fig. 6. Toolkit GUI.20 Paolo Modesti
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Figure 7. AnBxJ Java Library Architecture

infrastructure (PKI) binds public keys with their respective user identities

by means of a certificate authority (CA).

• The session layer offers the functions to send() and receive() data. Any

serializable object can be a message exchanged by means of these

primitives, thus it is possible to transmit a wide range of object classes

across a network connection link. Methods to open() and close() sessions

are also provided.

• The protocol layer gives an abstract description of the protocol: data and

control flow, steps and principal roles, and checks on reception.

6.2. OFMC Model Checker For the tutorials, the OFMC model-checker

(Mödersheim and Viganò 2009) is used for the verification of abstract models.

Students can experiment with the specification of protocols and the verifica-

tion of their security goals. OFMC employs the AVISPA Intermediate Format

IF (AVISPA 2003) as “native” input language, defining security protocols as an

infinite-state transition system using set-rewriting. Notably, OFMC also supports

the more intuitive language AnB (Mödersheim 2009), and the AnB specifications

are automatically translated to IF.

OFMC performs both protocol falsification and bounded session verification

by exploring, in a demand-driven way, the transition system. If a security goal is

violated, an attack trace is provided.

6.3. AnBx Compiler and Code Generator The AnBx Compiler and Code

Generator (Modesti 2015) is an automatic Java code generator for security pro-

tocols specified in AnBx or AnB. In the tutorials, AnBx is used in the context

Fig. 7. AnBxJ Java Library Architecture.
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The  ● session layer offers the functions to send() and receive() data. Any seri-
alizable object can be a message exchanged by means of these primitives, thus it 
is possible to transmit a wide range of object classes across a network connection 
link. Methods to open() and close() sessions are also provided.
The  ● protocol layer gives an abstract description of the protocol: data and control 
ow, steps and principal roles, and checks on reception.

6.2. OFMC Model Checker 

For the tutorials, the OFMC model-checker (Mödersheim and Viganò, 2009) is used 
for the verification of abstract models. Students can experiment with the specification 
of protocols and the verification of their security goals. OFMC employs the AVISPA 
Intermediate Format IF (AVISPA, 2003) as “native” input language, defining security 
protocols as an infinite-state transition system using set-rewriting. Notably, OFMC also 
supports the more intuitive language AnB (Mödersheim, 2009), and the AnB specifica-
tions are automatically translated to IF.

OFMC performs both protocol falsification and bounded session verification by ex-
ploring, in a demand-driven way, the transition system. If a security goal is violated, an 
attack trace is provided.

6.3. AnBx Compiler and Code Generator 

The AnBx Compiler and Code Generator (Modesti, 2015) is an automatic Java code 
generator for security protocols specified in AnBx or AnB. In the tutorials, AnBx is used 
in the context of Model Driven Development. Provided that a model has been validated 
with OFMC, the user can automatically generate a Java implementation. This is useful 
to familiarise with the software engineering approach of Model Driven Development, 
but also to compare a manual implementation with an automated one. The main features 
of the compiler are:

Automatic computation of the defensive checks that an agent has to perform on  ●
incoming messages.
Optimisation of cryptographic operations in order to minimise the number of  ●
computational steps and reduce the overall execution time (Modesti, 2014).
Mapping of abstract types and API calls to the concrete ones provided by the  ●
AnBxJ library.
A set of template files is used to generate the code. Template files can be cust- ●
omised, for example, to integrate the generated application in larger systems.

Since the compiler translates the intermediate format to the Applied pi-calculus 
(Blanchet 2001), the verification of the protocol logic used for the code emission phase 
can be performed with the protocol verifier ProVerif (Blanchet et al., 2019).
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7. Framework and Workflow Scenarios 

An overview of the framework is shown in Fig. 8, and is inspired by the AnBx Com-
piler architecture (Modesti, 2015). The main ideas behind this framework have been 
discussed in Section 4 when we presented the rationale behind the course. The toolkit 
presented here can be employed in a variety of configurations. In particular, we identify 
four main workflow scenarios related to the learning activities (Fig. 9):

Activities involving the analysis, editing and execution of existing code or writing 1. 
new code from an informal description of the application and its requirements. 
Tools involved are mainly the JDK and the AnBxJ security library. These ac-
tivities allow to familiarize with the communication and cryptographic functions 
necessary to build secure distributed applications. Tasks include, for example, 
Client/Server programming, key generation and setup of a PKI, construction of 
distributed applications implementing secret, authentic and secure channels. The 
execution of the application may require the editing of the configuration file which 
provides the runtime parameters to the underlying layers (JRE and JCA). Stu-
dents are free to use different design approaches (e.g. pseudo-coding, flow-charts, 
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specification of the model involves the need to specify in AnB not only the actions

performed by the agents, but also their initial knowledge. A crucial aspect in this

phase is the specification of the security goals that protocols are meant to achieve.

This is a critical and often neglected activity as most informal descriptions of

protocol used in the industry fail to give a rigorous definition of the security goals

but rather use the natural language to describe them. This is the case, for example,

of the ISO/IEC 9798 standard for entity authentication (ISO/IEC 2010). Once the

model is tested, unsafe protocols may require an iterative process of revision and

verification of the model until the protocol is successfully verified. In some cases,

even the requirements may need a revision if they are ambiguous or ill-formed.

Although the students use the model checker as a black-box security oracle, the

tool can print an attack trace if the protocol is unsafe. This provides elements

Fig. 8. Framework: Toolkit and Workflow (- - - manual ___ automatic); 
adapted from (Modesti 2015).
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UML diagrams, etc.) but given the high-level of abstraction offered by the AnBxJ 
library, writing the code directly is a viable option as the level of abstraction is 
reflected in the programming style (see Fig. 5).
Activities involving the abstract modelling of security protocols from their re-2. 
quirements and/or informal description. In our case, for the verification task, 
the main tool used in these activities is the OFMC model checker. The tasks are 
aimed at getting the students familiar with abstract reasoning and formal model-
ling. The specification of the model involves the need to specify in AnB not only 
the actions performed by the agents, but also their initial knowledge. A crucial 
aspect in this phase is the specification of the security goals that protocols are 
meant to achieve. This is a critical and often neglected activity as most informal 
descriptions of protocol used in the industry fail to give a rigorous definition of 
the security goals but rather use the natural language to describe them. This is the 
case, for example, of the ISO/IEC 9798 standard for entity authentication (ISO/
IEC 2010). Once the model is tested, unsafe protocols may require an iterative 
process of revision and verification of the model until the protocol is success-
fully verified. In some cases, even the requirements may need a revision if they 
are ambiguous or ill-formed. Although the students use the model checker as 
a black-box security oracle, the tool can print an attack trace if the protocol is 
unsafe. This provides elements that help understanding why the protocol fails in 
satisfying the security goals. Such iterative process is quite standard in formal 
design of security protocols, and it is aimed at capturing design errors in the very 
early phases of software development.
After modelling and verification (#2), manual coding of the Java application can 3. 
be attempted. Practising this activity allows to develop the skills needed to bridge 
the gap between the abstract and the concrete model. It also integrates the knowl-
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1
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checking)

– – – 6

3

#2 + Manual
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6,8

Figure 9. Workflow scenarios and related tools

that help understanding why the protocol fails in satisfying the security goals.

Such iterative process is quite standard in formal design of security protocols,

and it is aimed at capturing design errors in the very early phases of software

development.

3. After modelling and verification (#2), manual coding of the Java applica-

tion can be attempted. Practising this activity allows to develop the skills needed

to bridge the gap between the abstract and the concrete model. It also integrates

the knowledge developed in the scenarios #1 and #2. This is a crucial step in the

learning process as, like in software engineering, this is a phase where implement-

ation errors typically occur, e.g. Durumeric et al. (2014). Therefore, an important

focus is given to the implementation of the defensive checks on incoming messages

to allow students to develop the adversarial thinking.

4. After modelling and verification (#2), a Java implementation can be gen-

erated automatically from the AnB abstract model with the AnBx compiler. This

activity allows to become familiar with the Model Driven Development. Further

activities involve the comparison of the manual implementation, in particular the

defensive checks, with the automatically generated one. This scenario involves the

usage of all tools of the framework.

Fig. 9. Workflow scenarios and related tools.
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edge developed in the scenarios #1 and #2. This is a crucial step in the learning 
process as, like in software engineering, this is a phase where implementation 
errors typically occur, e.g. Durumeric et al. (2014). Therefore, an important focus 
is given to the implementation of the defensive checks on incoming messages to 
allow students to develop the adversarial thinking.
After modelling and verification (#2), a Java implementation can be generated 4. 
automatically from the AnB abstract model with the AnBx compiler. This activity 
allows to become familiar with the Model Driven Development. Further activities 
involve the comparison of the manual implementation, in particular the defensive 
checks, with the automatically generated one. This scenario involves the usage of 
all tools of the framework.

8. Lessons Learned 

Although the main purpose of this paper is to present the theoretical foundations of the 
framework and its pedagogic approach, we discuss here some lessons learned running 
two instances of this course at the University of Sunderland (UK), during the academic 
year 2017–2018. Given the limited data available, we do not claim that these results are 
decisive, as an evidence-based controlled experiment, part of a future work, will be nec-
essary for it. Nevertheless, we consider useful to report some reflections on the teaching 
practice so far.

In both deliveries of the course, students did not have any prior knowledge in secu-
rity programming and implementation of security protocols, but only some program-
ming and general cybersecurity and networking notions (not including cryptography), 
in line with the prerequisites described in §5.2. For contingency reasons, this learning 
activity was part (as a short course) of the Advanced Cybersecurity module (undergradu-
ate, year 3) and, in the complete version, of the Principles of Cybersecurity and Cyber 
Resilience module (postgraduate taught).

For the latter course, the development of a secure application was a component of 
the formal assessment. Students were asked to implement a secure PIN distribution 
system, where the communication channel between the client and the server should 
provide both secrecy and authentication. For this cohort (n = 13), we analysed the 
submitted artefacts and computed a score (range: 0–100, ƞ = average, σ = standard 
deviation) linked to the completion of the implementation of the required security and 
communication goals.

# Security/communication goal ƞ σ

1 Establish a client/server communication channel 100.0   0.0
2 The server should be able to authenticate the client   84.6 36.1
3 Encrypted channel between client and server   90.0 24.2
4 The client should be able to decrypt the data received from the server   90.0 24.2

Participants (n = 13)
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Although this gives limited possible evidence of the effectiveness of the proposed 
approach, as data was not collected as part of a controlled (quasi) experiment and the 
participant number is too small, observation has nevertheless provided several interest-
ing and promising insights:

First of all, the major achievement was that students without any specific security 1. 
programming background were indeed able to build successfully simple distrib-
uted applications implementing security goals like authentication and secrecy.
Another important aspect was that, for the first time, students approached a topic 2. 
like modelling and verification of security protocols. Interestingly, this allowed 
to demystify the common misconception among students new to this topic, that 
using strong cryptography is sufficient to build secure protocols. Indeed, under-
standing that defects in the design of the protocols may allow the intruder to attack 
them without the need to break any cipher scheme, proved to be extremely forma-
tive and deeply appreciated by the students.
With this respect, the symbolic approach has helped to develop the adversarial 3. 
thinking, as formal verification requires a precise characterisation of the intruder 
in the Dolev and Yao (1983) style (Fig. 3). To this end, having to explicitly define 
the security goals of the model and ensure that these goals are satisfied at every 
stage, was crucial to assimilate this concept.
Moreover, this experience offered the students the opportunity to become aware 4. 
and familiarise with methodologies and techniques, i.e. formal methods, that are 
not only used in academic research but also are becoming increasingly adopted 
by the industry. This may be also useful to help students in pursuing further stud-
ies or increasing chances to find a qualified job in the software development and 
cybersecurity sector. Overall, the students appreciated that that security needs to 
be considered from the early stages of the software life cycle.
We realized that students with limited OOP experience sometimes faced more 5. 
difficulties than others in completing practical programming tasks. This was 
not totally unexpected because programming skill was one of the prerequisites. 
Students familiar with C#, which was the main programming language taught 
at the university, generally adapted rather quickly to our technical toolkit based 
on Java.
Supervised tutorials were run in laboratory and we used a formative evaluation 6. 
strategy with one to one feedback from the tutor. Ongoing testing/evaluation 
was also embedded in the programming activities, guiding students to progress 
through the materials, improving gradually their coding technique as the course 
progressed.

These preliminary findings can be interpreted in light with the literature reviewed 
in the first part of paper. Firstly, constructivism allows for the construction of a viable 
mental model, and help misconceptions to be discovered soon. In particular, knowledge 
is actively build by learners interacting with the environment and, as in constructivism 
mental processes, tools and interaction with the world are tightly bound together (Ben-
Ari, 2001), this contribute in the way mental models are built.
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Secondly, the symbolic model and its black-box abstractions can be employed ef-
fectively to introduce programming concepts (Haberman and Kolikant, 2001). A crucial 
characteristic of our symbolic model is its simplicity and, since constructivism requires 
the model to be taught explicitly (Ben-Ari and Yeshno, 2006; Koppelman and van Dijk, 
2010), this is extremely useful.

Thirdly, abstracting from low-level details, where most implementation errors oc-
cur (Tsipenyuk et al., 2005), the developer can focus on the application design and its 
security properties. An additional advantage is that, as highlighted by Avalle, Pironti and 
Sisto (2014) and Bugliesi and Focardi (2008), such high-level programming abstrac-
tions are suitable for security analysis and automated verification, therefore abstract and 
concrete model are clearly related.

9. Conclusion 

Building on previous pedagogic and technical scholarly work, in this paper we devised 
an approach for the development of a course on design and implementation of security 
protocols. Such approach leverages on constructivism and research-led teaching, inte-
grating formal methods for security tools into the teaching practice. We also proposed a 
framework aimed at making such tools and methodologies more accessible to students 
and practitioners.

We think that along with the theoretical contribution, it was also useful to report 
about our initial experience and lessons learned. As noted by Allodi et al. (2018), there 
is a relative small number of experimental studies on the effectiveness of different soft-
ware security education approaches. For instance, Tabassum et al. (2017) investigated 
how an IDE can support secure coding with instant security warnings, detailed expla-
nations, and auto-generated remediation code. Bishop, Dark et al. (2019) considered 
how programming clinics can impact in assimilating secure programming principles into 
practice, and Theisen et al. (2016) compared the delivery of courses on software security 
on campus and MOOCs (Massive Open Online Courses).

To the best of our knowledge, there is not yet an experimental investigation about 
the application of high-level abstractions and formal method security tools in the spirit 
of what we proposed here. For this reason, in terms of future work, it would be useful to 
run a controlled experiment applying an evaluation methodology similar to the one used 
by Allodi et al. (2018) and Mirkovic et al. (2015) to evaluate cybersecurity education 
interventions.

Moreover, a pedagogic question that would be interesting to explore is the opportu-
nity of changing the order in which the content is delivered, considering advantages and 
disadvantages of teaching first modelling and verification, and then programming secu-
rity protocol techniques. In our context, so far, we preferred a bottom-up approach. Since 
programming was part of the academic background of the students, they could build a 
viable mental model based on their previous knowledge and experience. However, in 
institutions where students are already familiar with a more theoretical and rigorous 
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approach to computer science concepts, considering abstract modelling first and then 
programming may be a viable option.

Finally, although the methodology presented here was mostly discussed in the con-
text of higher education, we think it has the potential to be beneficial also for profes-
sional training, in particular programmers without prior specific background in security. 
Therefore, an investigation in that direction would be appropriate.
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