
Informatics in Education, 2020, Vol. 19, No. 4, 543–568
© 2020 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2020.24

543

Teacher Perspectives on Introducing Programming
Constructs through Coding Mobile-Based Games
to Secondary School Students

Lara ATTARD, Leonard BUSUTTIL
Department of Technology and Entrepreneurship, Faculty of Education, Malta
e-mail: lcami02@um.edu.mt, leonard.busuttil@um.edu.mt

Received: June 2020

Abstract. Programming is one of the most important aspects of a Computing course. Teach-
ing programming is a challenging task due to a number of factors, ranging from lack of student
problem solving skills to different teaching methods. This paper focuses on Maltese Computing
teachers’ perspectives about the difficulties encountered when teaching programming to second-
ary school students in order to determine whether introducing programming to secondary school
students through creating mobile-based games is an effective method to teach programming con-
structs. A resource pack consisting of various activities using MIT App Inventor 2 was created
which incorporated constructivist approaches to teaching. This resource pack was reviewed by
the teachers and their feedback was collected by means of a case study. The teachers agreed that
developing mobile-based games would be highly stimulating to their students but there were un-
certainties how this would affect students with different learning abilities and due to a general lack
of computational thinking and problem-solving skills by most students.

Keywords: programming, computing, digital games, programming pedagogy.

1. Introduction

Programming is a skill which several students find difficult to grasp when studying
Computing at secondary school level. Unfortunately, many students view this part of
the syllabus as difficult to connect to. Traditionally, programming is perceived as dif-
ficult to master (Bennedsen, Caspersen, & Kölling, 2008). One of the main reasons
identified in literature is that students have a lack of problem solving skills (Apiola
& Tedre, 2012) and computational thinking training, both of which are essential to
learning programming language concepts which can then be applied to various pro-
gramming languages (Chetty & Barlow-Jones, 2014). The way that programming is
taught in schools affects how students perceive programming and their later ability to
understand and use the programming concepts learnt to solve problems. Furthermore,

L. Attard, L. Busuttil 544

a programming language also encounters the barrier that second natural languages face
in the way that they are taught. Two such obstacles include the focus on writing code
instead of reading code and the focus on syntax rather than proper application of the
language (Robertson, Lee, & Miller, 1995).

Maltese secondary school students, similarly, to their international peers, enjoy
playing digital and video games and challenging themselves to master each and every
level (Busuttil, Camilleri, Camilleri, Dingli, & Montebello, 2014). If the motivation
that students show when playing games could be transferred to learning programming
through game design and play, the potential to learn programming and to understanding
the logic needed could be greatly facilitated. Teachers face the challenge of applying
knowledge that students are accustomed to, such as playing games, to the more de-
manding task of writing programs.

This paper attempts to investigate teacher’s perceptions on the introduction of pro-
gramming through game creation by using MIT App Inventor 2. This was the preferred
application to base the resource pack upon, since the educational reform in the Comput-
ing syllabus was considering using MIT App Inventor 2 as a tool to introduce program-
ming to students in their first year of studying Computing in secondary schools.

The following are the research questions that drive this study:
What is the perception of teachers of using App Inventor 2 as a tool to introduce 1.
secondary school students to programming?
What approaches to the teaching of programming are preferred by teachers? 2.

2. Literature Review

According to Ben-Ari (2016, p. 44), programming “is the formal specification of compu-
tation that can be executed by a computer”, be it a text-based programming language or
a visual programming language. Programming is a key aspect of any Computing course
(Ben-Ari, 2016; Preston, 2006), and students following such a course should become
competent in this task. Anyone wanting to work in the IT industry needs to “start out as
programmers” (Ben-Ari, 2016, p.46). Hence, programming is an essential component
of Computing.

2.1. Difficulties in Learning Programming

Despite programming being very important to a Computing student, it is the one element
of the Computing syllabus that is the hardest to teach and the hardest for students to learn
(Apiola & Tedre, 2012; Bennedsen & Caspersen, 2008; Chetty & Barlow-Jones, 2014;
Dekhane, Xu, & Tsoi, 2013; Dolgopolovas, Jevsikova, & Dagiene, 2017; Kalelioğlu,
2015; Ma, Ferguson, Roper, & Wood, 2011; Mladenović, Boljat, & Žanko, 2017; Robins
et al., 2003; Sáez-López, Román-González, & Vázquez-Cano, 2016; Thomsen, 2008).
In fact, at higher levels of education, programming courses have one of the highest drop-
out rates globally (Dekhane et al., 2013; Robins et al., 2003).

Teacher Perspectives on Introducing Programming Constructs through Coding ... 545

Research has concluded that a common problem among students is that although
familiar with the syntax of a programming language, they are not confident in combin-
ing the different structures to form one coherent program (Winslow, 1996). One of the
reasons for this is that students are only learning for the sake of passing an exam. Stu-
dents who learn programming well need “deep level learning skills and problem-solving
skills” (Apiola & Tedre, 2012, p. 285; Dekhane et al., 2013). This is not something that
can be learnt easily since learning programming is a process (Bennedsen & Caspersen,
2008) and it usually takes a student approximately ten years to become an expert in any
given area (Winslow, 1996) – something which cannot be done in a course at tertiary,
post-secondary or secondary level alone. Thus, it is axiomatic that to become an expert
programmer, one needs a lot of practice and time.

When novice programmers are using text-based programming languages, the focus
should be on “language semantics not on syntax” (Mladenović et al., 2017, p. 1485).
Hence, ideally, a language with few syntax rules should be used in order to help the
learner focus on the important items (Brusilovsky, Calabrese, Hvorecky, Kouchnirenko,
& Miller, 1997).

Another reason is that the main skills needed to learn programming, which include
critical thinking and problem solving skills were never taught to students in earlier years
of schooling (Apiola & Tedre, 2012; Chetty & Barlow-Jones, 2014; de Aquino Leal, A V
& Ferreira, 2013; Kalelioğlu, 2015). Thus, it is more difficult for such students to tackle
programming tasks effectively.

Students who want to learn programming should ideally have developed “critical
thought, problem solving, attention to detail, accuracy and abstract thinking” skills
(Chetty & Barlow-Jones, 2014, p. 240). An important skill that encompasses all of
these types of thinking is computational thinking – a skill which all students should ide-
ally be equipped with (Dagienė, Pėlikis, & Stupuriene, 2015). Computational thinking,
a term coined by Papert (1993), and turned into a household name by Wing years later,
is a way to “solving problems, designing systems and understanding human behaviour
that draws on concepts fundamental to computing” (Wing, 2006, p. 33). Computational
thinking attempts to take on a problem and deconstructing it into smaller problems
which can then be approached more easily.

2.2. Visual Programming Languages

Text-based programming languages rely heavily on typing of commands. In the case
of Java such commands are case sensitive. Students must not only focus on the logical
construction of programs but also keep an eye on the necessary syntax to end state-
ments or to enclose commands within conditional, looping and method structures. All
of these syntax rules can hinder learners from focusing on the main aim of program-
ming, that is, problem solving. On the other hand, text-based programming languages
can help the learner to write programs very quickly. This can only occur once the
syntax and problem-solving processes have been mastered.

L. Attard, L. Busuttil 546

Visual Programming Languages (VPLs) can overcome the shortcomings of text-
based programming languages. The majority of VPLs, such as Scratch, Alice, and Kodu,
use blockly coding (Howland & Good, 2015; Kalelioğlu, 2015). This means that the
typing of commands is eliminated and instead all of the available commands are shown
on screen and the user simply clicks and drags the command needed onto the instruc-
tion screen in order to create a program (Kalelioğlu, 2015), as shown in Fig. 1. This
eliminates the possibility of syntax errors, a problem that occurs all the time when using
text-based programming languages (Mladenović et al., 2017; Shapiro & Ahrens, 2016).
Furthermore, it offers learners several hints such as the types of blocks that fit in certain
parameters or commands (Shapiro & Ahrens, 2016). This is very useful for students who
have just started studying programming – programming novices – and hence are still
new to this area (Howland & Good, 2015; Shapiro & Ahrens, 2016).

While VPLs offer many advantages as well as supporting an active learning peda-
gogy whereby students are active learners in an environment that stimulates “fun,
motivation, enthusiasm, and commitment from the student” (Sáez-López et al., 2016),
they also offer some limitations especially for intermediate and advanced learners.
Blocks do not give the desired freedom to these learners to edit rapidly, something
which can only be done when using a keyboard. Moreover, with more complex pro-
grams, the programming commands seem to take up more space on screen when using
a VPL (Shapiro & Ahrens, 2016).

 Fig. 1. An example of a VPL.

Teacher Perspectives on Introducing Programming Constructs through Coding ... 547

There are many arguments for and against VPLs and text-based programming lan-
guages. For the time being, the IT industry is still using text-based programming lan-
guages for software development. Some researchers have suggested that more research
should be done on the development of translation software that translates the code of a
program created by a VPL to a text-based programming language for easier transition
(Shapiro & Ahrens, 2016). Others have suggested that students should start off by learn-
ing programming by using a VPL and then transitioning to a text-based programming
language at a later stage (Computing at School, 2013; Shapiro & Ahrens, 2016).

For the time being, at some time or other aspiring prospective programmers will need
to learn how to program using text-based programming languages (Shapiro & Ahrens,
2016). Students learning programming by using a VPL should be made aware that they
cannot rely forever on the use of blocks (Shapiro & Ahrens, 2016) since most companies
in the IT industry do not use VPLs.

2.2.1. MIT App Inventor 2
MIT App Inventor 2 (AI2) is a free “visual, drag-and-drop tool for building mobile apps
on the Android platform” (Wolber, Anderson, Spertus, & Looney, 2014, p. xiii) which
can then be uploaded to the Google Play Store (Dolgopolovas et al., 2017). It offers
the user several features to design a user interface according to what the user desires
to create. The items that the user has included in the user interface are controlled by
blocks – which is the equivalent of text-based programming in other programming edi-
tors, as shown in Fig. 2.

2.3. Programming Pedagogy

Programming pedagogy refers to how programming is taught to students at various edu-
cational levels. This theme has fascinated researchers and teachers alike since program-
ming is the hardest component to teach in a Computing course (Apiola & Tedre, 2012;
Bennedsen & Caspersen, 2008; Chetty & Barlow-Jones, 2014; Ma et al., 2011; Robins
et al., 2003; Thomsen, 2008). If the methods chosen to teach programming are varied to
meet different learners and to help motivate the students, the students could be further
encouraged to develop their programming skills.

The traditional approach for teaching programming, has always been of an objectiv-
ist nature whereby the students sit, listen, and try to absorb whatever the teacher was

Fig. 2. Programming Blocks in MIT App Inventor 2.

L. Attard, L. Busuttil 548

saying (Van Gorp & Grissom, 2001). Even in less hands-on subjects, this can be deemed
as boring since the student is a passive learner. In a very practical subject such as pro-
gramming, it is useless to listen only. One must regularly ‘get their hands dirty’ in order
to learn and progress.

Constructivist learning theories suggest that in order for students to learn program-
ming, they need to be presented with activities in which they are active participants and
in which their kinaesthetic senses can be engaged (Sentance & Csizmadia, 2015). In
order for the students to become active participants, they first need to be provided with
context – a task that offers a problem in a simplified way – construction – whereby the
student is able to “construct knowledge based upon meaningful activities” – and collabo-
ration – here the student works with others to examine and understand different views
about the same problem and so be able to sharpen and enhance their own ideas (Van
Gorp & Grissom, 2001, p. 248). In this way, learning has shifted from teacher centred to
student centred (Van Gorp & Grissom, 2001).

The following are some constructivist teaching strategies used in programming edu-
cation as outlined in literature:

Developing an algorithm to solve a problem (Sentance & Csizmadia, 2015; Van ●
Gorp & Grissom, 2001) which allows students to understand a problem and pro-
vide a solution for it. This increases familiarity with the flow of control of a pro-
gramming problem.
Code walkthroughs (Sentance & Csizmadia, 2015; Van Gorp & Grissom, 2001) ●
which allow students to start becoming familiar with a given programming lan-
guage and gives students the opportunity to read, analyse and interpret readymade
programs.
Code debugging (Van Gorp & Grissom, 2001) which allows students to look ●
more in depth at given code by spotting and resolving syntax, logical and run-
time errors.
Lecture note reconstruction (Van Gorp & Grissom, 2001) which focuses on stu- ●
dents on becoming actively involved in creating their own notes by engaging their
listening skills and short-term memory.
Metacognition (Chetty & Barlow-Jones, 2014; Sprankle & Hubbard, 2012) which ●
requires students to use advanced thinking skills to evaluate their solutions to
analyse whether they are effective, efficient and workable.
Pair Programming learning (Hanks, Fitzgerald, McCauley, Murphy, & Zander, ●
2011; Lau & Yuen, 2009; Preston, 2006) which is a type of collaborative learn-
ing and can be used in conjunction with the above-mentioned strategies. It allows
students to work in pairs by alternately taking on the role of a driver (actually writ-
ing the code) and observer (oversees driver, looks out for mistakes and suggests
improvements to the code).
Active learning pedagogy (Brown, 2006) is used with any of these teaching strate- ●
gies. Students are presented with all the necessary material, and then they decide
themselves when to learn.

In this study, these constructivist teaching strategies in conjunction with game cre-
ation were proposed to introduce programming to novice programmers.

Teacher Perspectives on Introducing Programming Constructs through Coding ... 549

2.4. Learning Programming through Creating Games

Salen & Zimmerman (2003, p.80) define a game as “a system in which players engage
in an artificial conflict, defined by rules, that results in a quantifiable outcome.” Digital
games are similar to traditional ones but within the context of real and virtual lives. In
other aspects, digital games are similar to conventional games in that they also involve
“making choices and taking actions” (Salen & Zimmerman, 2003, p.33). According to
Salen & Zimmerman (2003), such a game is categorised by four main elements: objects,
attributes, internal relationships, and environment.

Fig. 3 explains how these four elements are essential to a game being a game accord-
ing to the definition of Salem & Zimmerman (2003).

Games have also been proposed to teach programming in various studies (Busut-
til, 2014; de Aquino Leal, A V & Ferreira, 2013; Kumar & Khurana, 2012) since it
has been shown that games do increase student’s motivation and understanding of the
concepts being proposed in class. Games are very visual tools that can aid students to
visualise certain programming concepts “through the use of graphics and animation”
(Ma et al., 2011, p. 63). They also help students to visualise more abstract ideas in
programming and to create a “mental model” of such concepts (Margulieux, Guzdial,
& Catrambone, 2012). The drawback with many of these visual tools is that they have
not been used from a constructivist point of view and thus treat the student as a passive
learner (Ma et al., 2011).

Some studies seem to propose a gamified approach to learning programming, as
discussed formerly, whereby the topics to be learnt are presented in the form of a game

Sprites and variables in the game
Objects

These include the properties of the objects given by the
rules of the particular game

Attributes

This refers to how objects in the game interact with each
other according to their attributes at any given time during
the game

Internal
Relationships

In the case of digital games, the environment in which the
objects interact is the smartphone, computer or emulator
itself. This is termed as the "context of play"

Environment

Fig. 3. The Elements of a Game.

L. Attard, L. Busuttil 550

with different levels, tasks, and extra quests. Points and badges are earned through the
game and when the game is completed, the student would have gone through the learn-
ing process by using a non-traditional approach (Kumar & Khurana, 2012).

A study conducted by de Aquino Leal & Ferreira (2013) offers a refreshing view
of how one can use actual sports games to teach programming concepts. In their
study, the game of football, which all the students knew how to play is considered
by the class and programming patterns related to it are extracted. These can include
loops, counters, determining the team with the highest points, and so on. This helps
students to relate programming concepts with something that they are already famil-
iar with.

Today, games are not only played on desktop computers but even more so on por-
table devices such as tablets and smart phones. Such devices are quite powerful and
have become cheaper in recent years (Dekhane et al., 2013; Hsu & Ching, 2013).

Many frameworks have been developed in this regard to help students to learn
programming such as Scratch, Alice, Lego Mindstorms, and Kodu (Dekhane et al.,
2013; Ouahbi, Kaddari, Darhmaoui, Elachqar, & Lahmine, 2015). These frameworks
rely on blocks which the users drag and combine together in order to write a program.
Hence the element of worrying about programming syntax is eliminated (Ouahbi
et al., 2015).

Websites such as code.org were created with the aim to get people to learn how to
code by solving puzzles through relatively easy programming. Most of these puzzles
made use of other interfaces such as Scratch, which allows users to drag and drop
commands. In other games, users have to type in commands to solve a level. The
available commands are however shown on the side in order to help out the user.
Such websites are great motivators to help students to learn programming concepts
since they make use of highly visual tools which include graphics and animations
as opposed to the traditional text only approach to teaching and learning program-
ming. Such a platform was found to help students improve their self-confidence and
“problem-solving ability” as well as their “mathematical and geometrical knowledge”
(Kalelioğlu, 2015, p. 207).

Some complex games have indeed been developed to help teach programming such
as Code Warriors which can be played in single-user mode or multi-user mode and
presents the player with different puzzles whereby robots engage in battle by writing
JavaScript commands. This game helps players to develop logical thinking and to learn
JavaScript by progressing through different levels that range from Beginner mode to
Warrior mode.

Other software specifically designed to create mobile applications with relatively
easy programming has also been developed. The MIT App Inventor 2 (MIT AI2) is
one such software that allows the user to create mobile-based applications that are
compatible with Android phones. If one is not in possession of a phone equipped with
this operating system, an online emulator exists for immediate testing. The MIT AI2 is

Teacher Perspectives on Introducing Programming Constructs through Coding ... 551

a free software that uses a drag and drop feature to select commands that will control
items on the screen (Hsu & Ching, 2013; Margulieux et al., 2012). Thus, the user does
not need to remember all the commands by heart or make mistakes in the programming
languages’ syntax. In this way, students are able to learn the programming concepts
without learning a particular programming language. They can then extract and apply
this knowledge to any programming language that they learn later on.

Such progress can have positive repercussions in education. In one way, teachers of
any subject can easily create an educational mobile application for their subject to help
their students to learn more (Hsu & Ching, 2013). Teachers should exploit this interest
in such devices and take advantage of them to teach their students (Dekhane et al., 2013;
Karakus, Uludag, Guler, Turner, & Ugur, 2012).

From another perspective, programming students who are creating mobile applica-
tions, have intrinsic motivation since they are learning to program a contemporary item.
This makes learning very much related to their everyday lives and much more interest-
ing. Thus, learning becomes fun.

On the other hand, prospective programmers may be misled and think that they do
not need to understand and learn a proper programming language in order to create a
successful application (Dekhane et al., 2013).

Students can learn to create applications by being assigned programming tasks, peer
review and by keeping a reflection journal (Hsu & Ching, 2013). The constructivist
teaching methods discussed in the previous chapter work hand in hand with such an
approach. In this case, the MIT AI2 software merely serves as the framework in which
programming concepts are learnt by presenting students with various activities inspired
by constructivist approaches.

Through the teaching of writing mobile applications students can benefit from “im-
mediate visual feedback” and can help to improve their problem-solving skills (Dekhane
et al., 2013, p. 307). Not much research has been carried out to determine how the devel-
opment of mobile game applications can help students to learn programming concepts.
This study attempts to fill that void.

2.5. The Resource Pack

A resource pack was created for this study which included several activities aimed
to introduce programming to computing novices by creating mobile-based games us-
ing MIT App Inventor 2. These activities were evaluated by a group of Computing
teachers.

To better understand what this resource pack consists of and how it aims to deliver
on teaching programming basics by using the constructivist teaching strategies, the
Table 1 has been created to summarise its contents. This will help to understand bet-
ter what the Computing teachers were evaluating. The tasks in the workshops were
purposely scaffolded.

L. Attard, L. Busuttil 552

Table 1
Resource Pack Activities

Task Name Constructivist Method/s Used Description Games
Used and/or
Developed

Deriving
Rules

Planning a Program Students are asked about games and what
types of games they play. The rules of
any game students are familiar with are
derived.

N/A

Understanding
a program

Code walkthroughs
Pair Programming

Students are presented with a readymade
game found on the AI2 gallery: Ping Pong.
Students explore the code and understand
what parts of the code is doing.

Ping Pong
(Fig. 4)

Understanding
and solving
part of a
problem

Develop code from algorithms
Insert comments into existing code
Pair programming

Students are presented with an incomplete
game: Mole Mash. Students add the
appropriate commands in order for the
game to function properly.

Mole Mash
(Fig. 5)

Finding Errors Code debugging
Code walkthroughs
Pair programming

Students are presented with a Minigolf
game which is purposely riddled with
errors.
Students work in groups to locate and fix
the errors in this program.

Minigolf
(Fig. 6)

Creating a
Solution

Planning a Program
Develop code from algorithms
Code debugging
Pair Programming

Students are presented with the rules of
the ‘Ladybug Chase’ game including a
readymade design framework for this
app. Students work in pairs to develop the
appropriate code to construct a working
program, based on the given rules.

Ladybug
Chase
(Fig. 7)

Designing a
Game

Planning a Program
Code debugging
Develop code from algorithm
Metacognition
Pair Programming
Active Learning

Students are presented with the game
description of a new game: Brick Break.
Students are asked to extract the rules of
the game, design the game and program
it.

Brick Break
(Fig. 8)

Creating a
Game

Planning a Program
Code debugging
Develop code from algorithm
Metacognition
Pair Programming
Active Learning

Students decide on a game they want to
program. They should provide the game
description and rules and then design and
program the game.

Students
develop any
game that
they like

Teacher Perspectives on Introducing Programming Constructs through Coding ... 553

Fig. 4. Ping Pong. Fig. 5. Mole Mash. Fig. 6. Minigolf Game.

Fig. 4. Ping Pong. Fig. 5. Mole Mash. Fig. 6. Minigolf Game. Fig. 4. Ping Pong. Fig. 5. Mole Mash.

Fig. 4. Ping Pong. Fig. 5. Mole Mash. Fig. 6. Minigolf Game.

Fig. 7. Ladybug Chase. Fig. 8. Brick Break. Fig. 6. Minigolf Game. Fig. 7. Ladybug Chase.

L. Attard, L. Busuttil 554

3. Methodology

Qualitative research seeks to get an in-depth view of a person’s perceptions rather than
a wider interpretation (Haralambos & Holborn, 2004). The qualitative research method
was adopted as the main research method in thus study, in particular the use of case stud-
ies. A case study is an ideal approach to gather “in-depth, multi-faceted understanding
of a complex issue in its real-life context” (Crowe et al., 2011, p. 1). Also, a case study
is helpful when observing as a third party and seeing a somewhat unbiased view of the
situation, which will allow one to understand better what can be improved in the given
situation (Crowe et al., 2011).

Case studies were an ideal method of data collection in this research since in-depth
data about teachers’ perceptions of teaching programming through game creation and
evaluation of the resource pack was needed.

3.1. The Participants

Computing teachers in secondary schools were asked to participate in a day workshop
at the end of the scholastic year, to evaluate the resource pack and to obtain their

Fig. 7. Ladybug Chase. Fig. 8. Brick Break. Fig. 8. Brick Break.

Teacher Perspectives on Introducing Programming Constructs through Coding ... 555

perceptions on the teaching of programming through mobile game creation. These
teachers were sought out by using an online contact form which was distributed to
all the heads of schools in Malta, after obtaining the necessary permissions from the
Education Department, the Secretariat for Catholic Education and the respective heads
of private schools. The contact form was also distributed on the Computing and IT
Teachers Malta Facebook page, which gave information about the workshop, as shown
in Fig. 9.

Out of a total of approximately 85 Computing teachers in secondary schools, six
teachers agreed to participate in this case study over the course of a day workshop held
at the University of Malta. Another computing teacher carried out this workshop, to al-
low for observation.

Four of the six participants were male and the other two were female. Two teachers
worked in state schools, three others in church schools while the other teacher worked in
a private school. The teachers had a variety of teaching experience in Computing. One
teacher had been teaching for over twenty years, two others had been teaching between
fifteen and twenty years, two others for between ten and fifteen years and another for
less than ten years.

Fig. 9: Teacher Workshop Information

L. Attard, L. Busuttil 556

3.2. The Workshop

During the workshop, the resource pack was reviewed one activity at a time, and partici-
pants had the ability to create mobile-based games using MIT App Inventor 2. During
these activities, discussions regarding the current practices of teaching Computing as
well as the impending education reform took place. All of the discussions were relevant
to the teaching of Computing at secondary level.

3.3. Data Collection

Data from the workshop was collected by digitally audio recording the entire workshop.
This allowed for better data analysis. The researcher also kept a research journal with
observations.

3.4. Data Analysis

The audio recording of the workshop had to first be transcribed. This was done soon
after the workshop so as to correctly identify persons who were speaking. Once the
transcripts were ready, they were analysed by means of a Computer Assisted Qualitative
Data Analysis Software (CAQDAS), in this case NVivo.

Each transcription was re-read and coded by the themes that were prevalent. Once
all of the transcriptions were coded, a document for each identified theme was extracted
from this software. The themes with the highest frequency were deemed to be the most
important. Themes which were the least recurring were re-categorised under a similar
theme which had a higher frequency.

The researcher’s journal observations were also inputted in the CAQDAS software
and coded as well. The themes which emerged where compared with those emerging
from the teacher workshop.

4. Findings and Discussion

The teacher workshop resulted in several recurring themes which were condensed into
seven main areas, in order of frequency. These are discussed and compared to literature
in this section.

4.1. Blocks-based vs. Text-based Programming Languages

An issue that dominated the teacher workshops was the choice of programming lan-
guage that one should introduce programming to students with, in particular whether a
blocks-based programming language or a text-based programming language would be

Teacher Perspectives on Introducing Programming Constructs through Coding ... 557

more appropriate. The discussion did not reach a consensus due to the different perspec-
tives that the teachers had on the matter.

Nonetheless, all the teachers agreed that using an interface such as MIT AI2 would
attract students immediately due to its visual nature as opposed to a text-based lan-
guage such as Java. This also allows for immediate experimentation and testing, since
there is no need to learn commands beforehand in order to create something, unlike
a text-based programming language. Other teachers also noted that using a graphical
user interface is more appealing to the students this advantage of using a blocks-based
programming language.

Other teachers, while seeing all of these advantages, reflected on whether secondary
school was the best place to introduce blocks-based programming languages. Teacher
2, in particular, questioned this notion and suggested that such a programming language
was more appropriate for primary school children, who would benefit largely from learn-
ing the basic programming constructs from a young age.

Another strong argument against text-based programming languages was made by
Teachers 3 and 6, who were perplexed about the reality that in today’s age everything
has become visual and thus uses of graphics. Today’s students are millennials and they
are accustomed to learning visually. Teacher 3 in fact questioned why when teaching
programming using textual languages, most of the exercises seem to be related to creat-
ing text-based interfaces. This contradicts the multi-modal nature of the world around
us. This might make it harder for students to relate to programming. No graphical ele-
ments are used when teaching Java. The points raised by the teachers about the nature
of the programming language chosen to teach students programming is similar to what
has been found in literature. Research has shown that VPLs offer more motivation and
enthusiasm for students as opposed to a text-based programming language (Sáez-López
et al., 2016) while focusing on the actual problem solving rather than the syntax of the
language, which is highly beneficial to programming novices (Howland & Good, 2015;
Kalelioğlu, 2015; Mladenović et al., 2017; Shapiro & Ahrens, 2016).

The teachers’ concerns about whether blocks-based programming languages were ap-
propriate for secondary school children where similar to other researchers’ concerns that
blocks-based programming languages may be too limited for intermediate and advanced
learners (Shapiro & Ahrens, 2016). Hence, it could be suggested that some secondary
school students quickly outgrow blocks-based programming languages. The suggestion
that a fusion of blocks-based programming language and a text-based programming lan-
guage is used was also put forward and has also been suggested in literature to exploit
the advantage of both (Shapiro & Ahrens, 2016). Another concern that also emerged in
literature was that students may think that using a VPL is enough to create an application
and would thus be misled into thinking that they do not need to learn a proper program-
ming language (Dekhane et al., 2013).

From this fervent discussion regarding the choice of programming languages, it
was obvious that teachers were in favour of students learning programming concepts
by using a visual programming language, without excluding the possibility that stu-
dents might be exposed to a text-based programming language once those concepts
have been mastered.

L. Attard, L. Busuttil 558

4.2. Catering for Different Student Abilities

Teachers noted that the MIT AI2 interface benefits high achievers more than average
or low achievers. Teacher 1 voiced concern that if students see the code from the very
first lesson, they would “define programming as something difficult and unattainable.”
Teacher 3 in fact suggested that students are not shown any code at first but are in-
stead exposed to examples of the games that can be created by using MIT AI2 while
keeping the students in a reality check that to be able to create such games, there are
many steps that needed to be taken along the way. Students also need to be told that
to create a game, different aspects of the game need to be tackled one by one, and not
all at one go.

Teacher 6 mentioned that students had different abilities, with some students be-
ing able to carry on with minimal direction while others were not able to under any
circumstance despite trying to introduce concepts through games, group work etc.
Teachers were also concerned about high achieving students who found the program-
ming aspect easy. Although only a few students fall in this category, teachers were
concerned that such students could become easily bored and become demotivated. A
Computing school, similar to the sports school, was suggested to cater for students
who were good at Computing-related subjects and who could flourish abundantly in a
specialised environment.

Teacher 5 voiced concern over the issue that some of the students have serious
literacy problems and as such, an interface like MIT AI2 would be too difficult for
them since it would not be at their appropriate level. In fact, these students often use
Scratch to program, which offers simpler words, and usually do not go past a VPL.
This teacher spoke of these students’ probable attitudes about using such a tool. Most
probably, these students “would rather do nothing, rather than fail.” This teacher also
ruled out the possibility of introducing something basic for all and then giving extra
tasks to those who succeeded. This teacher noted that from past experience such an
approach would not work since the students would not perform well on purpose so that
they would not be given any extra or more challenging tasks. Furthermore, this teacher
also pointed out the importance of trying to reach the students at their own level and
to empathise with them:

“You need to show them that you understand that the concept you’re explaining is
not easy, otherwise they will simply shut down.”

The concerns that this group of teachers had regarding the suitability of an IDE
such as MIT AI2 for all students has also been voiced by other researchers who ac-
knowledge that high ability students perform better in programming tasks, while lower
ability students need further support to attempt to achieve the same task (Lau & Yuen,
2009). Other issues that were raised about this theme are mostly pertinent to the situa-
tion in Maltese schools.

Teacher Perspectives on Introducing Programming Constructs through Coding ... 559

4.3. Catering for Different Student Scenarios and the Class Setting

A common theme which also emerged in other research, is that today’s generation of
students are living in highly different times and situations from previous generations,
and as such, require different support and approaches to education (Prensky, 2001). This
is not to mention the fact that each individual learns in different ways, and thus, different
approaches to teaching need to be adopted to try and target as many learners as possible
(Mladenović et al., 2017).

Generation differences also play a factor in the ever-changing student scenarios.
Some teachers who have been teaching for a longer number of years could easily com-
pare the situation of a few years ago with that of today. The situations of our students
are far from linear in terms of family life, activities undertaken after school and time
management, to mention only a few. These differences are challenging for teachers to
plan homework, which is not being given importance by all the students. A suggestion
of a flipped classroom concept by giving students video tutorials to watch was made by
the researchers, who experienced increased student motivation from the first part of this
study, which is not discussed here. Teacher 2 however pointed out that this was not pos-
sible with students who do not do anything at home and as such, similar activities need
to be included during lessons. Hence, the teachers cannot always rely on students doing
their work at home, and then building upon that work during the next lesson. Teacher 2
remarked that with the different family aspects in today’s society, students do not always
sleep in the same house, and as such may have their resources, including books and com-
puter, in different locations, making it impossible for them to work. Hence, the work that
is done at home “should be over and above” what is done in class.

Another factor that hindered the proper delivery of programming concepts was class
size. Teacher 5 noted that the number of students in class did not allow for individual
attention especially when introducing more abstract concepts.

Possible solutions to help low ability students emerged. Teacher 5 suggested that stu-
dents who have difficulty in reading and writing or who are low ability students, would
benefit more if they used Scratch.

A different perspective was offered by Teacher 1 who acknowledged that at second-
ary level, some students are still developing and may be somewhat immature to take on
studying or programming seriously. Hence age could also be a barrier for students.

4.4. Problems with App Inventor 2

Teachers were not familiar with the syntax of the interface and although they knew what
had to be done, they had a hard time finding the appropriate commands. The fact that
each object had its own set of commands had to be explained. Furthermore, the use of
the canvas also had to be clarified to the teachers. Teacher 1 remarked that “you have to
learn the interface more than learn the language.” Other teachers also remarked that stu-
dents would ultimately find some concepts to be abstract as well even though graphics

L. Attard, L. Busuttil 560

were being used. The reasoning behind controlling certain events in the game required
abstract thought.

One of the most difficult concepts that the teachers themselves found challenging
in their initial encounter with MIT AI2 was the clock timer which allowed for simulta-
neous events by checking statuses and updating variables or different elements of the
game at the same time. This issue also related to the mathematical aspect that is needed
to program various events and which the teachers felt that the students may find dif-
ficult to accomplish. On a similar note, Teacher 6 noted that writing an equation using
Java was done much quicker than by using a drag and drop interface. Hence, time could
be wasted by dragging the appropriate blocks instead of focusing on the equation that
needs to be written.

Some teachers were concerned that novice programming students who were intro-
duced to such an interface would feel lost since they would not have awareness of certain
things. Teacher 6, in fact, mentioned an example whereby the teacher would be explain-
ing what an increment was, and a student would still be trying to figure out from where
a variable can be created in the interface. Teacher 6 also commented that students are
shrewd enough to calculate that if a simple game required a good amount of code, then
more complex games required more programming. This could ultimately result in stu-
dents ‘fearing’ code due to its never-ending commands.

Another challenge posed by MIT AI2 was the way that errors are shown to the user.
Each time an error occurred, a window would appear notifying you and while in the pro-
cess of arranging said error, that same window would reappear every few seconds until
no more errors are detected. Such an approach was frustrating for the teachers and they
in turn could see that this would also be frustrating for the students alike.

A main problem of MIT AI2 was its setting up especially the use of the emulator. The
initial part of setting up was found to be easy by the teachers. The problems ensued with
the advent of the emulator which was not working properly for all the teachers despite a
good Internet connection. Concern was raised that since some emulators took a while to
run properly, should a similar scenario occur in class, some students would get bored and
might cause unnecessary disruptions in class. Teacher 6, who had previously used MIT
AI2, commented that programs created using this interface were better tested by using
a mobile phone since testing was much faster. This was however not an ideal solution
in schools, were mobile phones are not allowed in class. Furthermore, as already stated
previously, mobile testing can only occur on an Android phone which is on the same
Internet connection as the computer being used.

Teacher 2 noted that while MIT AI2 offered the ‘wow’ factor of creating mobile
apps, the same could be achieved academically by using Scratch. In Teacher 2’s opinion,
Scratch was more user friendly and less time consuming to set up when compared with
MIT AI2. Teacher 1 concurred with this and went on to point out that using MIT AI2 in
class would require a good infrastructure, ideally a mobile to test programs within class
in lieu of the emulator as well as a thorough training course for teachers. Teacher 6 also
agreed that students would be thoroughly engaged with using such an interface. How-
ever, concerns were also raised whether using such a tool would be enough for students
who wanted to work in the industry. Even though novice programmers are still at the

Teacher Perspectives on Introducing Programming Constructs through Coding ... 561

start of their journey in programming and will have training over a number of years, a
smooth transition between blocks based and text-based IDEs is much needed.

Other researchers had also found that some features of a block based language like
MIT AI2, although having a lot of benefits, also had their limitations, such as the time-
wasting needed to find the commands and assemble them as opposed to type in the
needed commands (Shapiro & Ahrens, 2016).

Teachers saw the potential of MIT AI2 but since its implementation is not as smooth
as other interfaces that the teachers previously used, proper preparation for use in class
is needed. Some problems are easy to deal with, while others are more difficult since
they are hard-wired in the interface. Yet again, other require the teacher to find a way to
deliver abstract concepts to students. This latter problem is present in all programming
editors and is always a challenge.

4.5. A Stronger Framework for Programming Education

Teachers 1 and 2 seemed put forward the idea that programming should also be taught at
primary school level. A blocks-based interface is ideal to be introduced at primary level
since children are still learning how to read and write. However, this does not prevent
them from being able to use their thinking faculties to solve small problems through
programming.

The teachers suggested that Scratch can be introduced at primary school level, which
then transitions to MIT AI2, which could then further transition to a more advanced edi-
tor such as Visual Studio. The ideology of these teachers was that if students are well
versed in programming concepts by the time they finish primary, then they can easily
take on more challenging tasks in programming, since they would no longer be novices
to it, but rather they would be enhancing their knowledge and applying it further.

Teacher 2 went on to note that in this regard the education system may have failed
since students were not being well prepared for programming and instead of advanc-
ing in the subject, we seem to have lowered the level. Furthermore, if things “are being
done in the way they are supposed to, the students would arrive already knowing how
to do basic programming at Year 9 and then we move on with Java.” Teacher 3 agreed
with this and remarked that abroad, in schools where programming is introduced from
a young age, the students flourished in other subjects as well, since they were actually
being challenged to think and to solve problems.

The shared proposal between the teachers attending the workshop and other research-
ers is that students should be exposed to learning situations where they can develop their
problem solving skills from a young age (Apiola & Tedre, 2012; Chetty & Barlow-
Jones, 2014; de Aquino Leal, A V & Ferreira, 2013; Kalelioğlu, 2015). These skills reach
their culmination in the acquisition of computational thinking skills which are vital for
any person wishing to learn programming (Computing at School, 2013; Sentance &
Csizmadia, 2015; Wing, 2006). The younger a person starts to acquire these skills, the
more prepared that person will be to tackle programming problems and attempt to solve
it by considering various approaches.

L. Attard, L. Busuttil 562

It was evident from the teacher workshops that more needs to be done in terms of pre-
paring students to take on programming. This issue needs to be dealt with from primary
schools, especially since the skills acquired through computational thinking, such as
problem solving, can be applied to all areas of our society and not just programming.

4.6. Scaffolding

Another theme that emerged in the workshop was that of scaffolding in order to support
students in their learning of new concepts and ideas.

An idea that seemed to resonate with most teachers was that an interface such as MIT
AI2 could be introduced to students in a project like manner.

Teacher 6: We can move in baby steps. It’s better to tackle one piece at a time…for
example, first I code the ball to move on its own – I simply focus on it. Then I start an-
other piece of the program, then another, in order to reach the required level.

Teacher 5: As an introduction to using Scratch, I usually ask students to think of a
game such as Ping Pong. Then I give them small tasks like changing the background
of the game to a football net, adding a goalkeeper of their choice and editing it using
Scratch itself, and then adding a ball. For them that is already an accomplishment.

In fact, some teachers start introducing this concept immediately to their Year 9
students from their first programming lesson. They ask students to think of the games
that they play, such as FIFA. However, it is explained that at this level they cannot
recreate something similar since there are many things that they need to learn first. Mr
Brown also suggested that students should be made aware that the programs and apps
they use were actually coded by people who did not program that app on their first
attempt. Instead they had started with something more basic and gradually advanced
to more complex programs. Teacher 2 continued with this suggestion and recounted
how in introductory programming lessons, students would be able to recreate simple
methods for games that they play. An example was that of Prince of Persia, whereby
students could write a method for when the Prince is hit, so that the life value is dec-
remented. The element of the game factor could really encourage the use of scaffold-
ing in programming lessons. This method for introducing programming to students
has also been found in literature whereby students tend to be more enthusiastic and
keen to learn programming when it is presented by means of activities in which they
already actively participate in (Sentance & Csizmadia, 2015). Hence, they can relate
to programming much better.

Scaffolding was found to also happen by teachers giving video tutorials to students
so that they are supported at home too as well as giving students reference sheets with
the basics of a programming language. Teacher 2 proposed the idea of scaffolding in a
different manner by using Scratch as a tool for scaffolding. Students would at first use
Scratch to control sprites by doing simple things. Once they have enough knowledge of
how to do basic coding using Scratch, they are able to move to a similar but more com-
plex interface, that is, MIT AI2. Teacher 3 went on to further this concept by suggesting
that MIT AI2 could also serve as a scaffolding for text-based editors.

Teacher Perspectives on Introducing Programming Constructs through Coding ... 563

The use of scaffolding amongst programs created with MIT AI2 itself was also
mentioned. The teachers noted that there were elements common to many games pro-
grammed with MIT AI2. Thus, these elements could be used in new programs and could
help to serve as a guide to the students.

The use of scaffolding to teach programming has been suggested in literature (Mar-
gulieux et al., 2012; Van Gorp & Grissom, 2001) whereby students are supported with
the necessary material in order to reach some higher goal. As is evident from the discus-
sion of this theme and the research explored in literature, the concept of scaffolding is
used in conjunction with other teaching methods such as pair programming and code
walkthroughs.

4.7. Teacher Training and Peer Discussion

The teachers were concerned that if MIT AI2 or something similar were to be imple-
mented in the syllabus, a lot of training would ensue especially since the nature of such
a programming language was quite different from the sequential and object-oriented
nature of Java. Teachers also noted that even if the training is well planned and imple-
mented, there would still be some teachers who would still resist such ideas.

The teachers also agreed that there is much needed discussion between Computing
teachers in Malta. It was evident from the workshops that most of the teachers were
thinking on the same lines but were rarely getting an opportunity to meet with their col-
leagues and discuss pertinent issues. Computing teachers only meet formally once a year
during in-service course – when these are held – and in which new reforms are usually
introduced and discussed and then are never implemented from a higher level. Hence,
the teachers felt that they need to be at the forefront of discussions since they were the
ones dealing with students directly.

5. Evaluation and Recommendations

During the teacher workshops, teachers agreed that different methods need to be used
with different learners. The focus however was more on the tools used to teach pro-
gramming rather than the specific teaching methods outlined in literature. Neverthe-
less, the tools that teachers use, in themselves aid students to learn. The way that such
tools are presented to students will affect whether students learn a particular tool or
learn general concepts which can then be applied to similar tools as well. The latter
scenario would have employed better use of teaching methods and will have equipped
the students with better adapting strategies than the former scenario. It is up to teach-
ers to understand which teaching methods are best suited for their students and to
continue informing themselves about the different approaches that other teachers,
both locally and abroad, employ to deliver effective programming concepts to their
students.

L. Attard, L. Busuttil 564

The final research question of this study was to determine whether the teach-
ing process for teachers was facilitated when programming was introduced through
games. The teacher workshops carried out during this research aimed to answer this
question. The teachers saw an advantage to using games to introduce programming
and anticipated that students would enjoy programming lessons done in this way.
They predicted that their students would be greatly motivated to learn programming
in such an exciting manner. The teaching process in terms of preparation would how-
ever increase since teachers would need to be trained to teach in this manner as well
as to prepare various resources which are appropriate for such a manner of teach-
ing programming. Furthermore, many teachers would need to change their manner
of delivering concepts to students and instead provide guidance to their students in
such a way as to help them construct the knowledge that would traditionally have be
spoon-fed.

Although the teachers saw that a task for programming a game would be better
received by students than writing a program that calculates numbers or emulates
a quiz, they were unsure regarding the interface used. They anticipated that high
achieving students would find little problems in using the interface. However, they
were concerned that students of lower ability would struggle to cope. They suggested
that other blocks-based interfaces are explored, which ideally made less use of math-
ematics and that are simpler to use so that these students could also be introduced to
programming at the appropriate level. A strong point that emerged from this research
was that a radical change in the educational system needed to occur to provide a solid
foundation for the education of programming. All the teachers felt quite strongly that
students were not equipped with computational thinking skills or problem-solving
skills, and this was hindering their capacity to solve simple programming tasks. This
tied closely with the fact that students were not being exposed to programming at
primary level, something that the teachers attending the workshop felt that students
would benefit a lot from, even if they did not choose to pursue Computing.

Thus, from this research, it has become apparent that teachers yearn to have new
and innovative ways to introduce programming to students, which would stimulate
their learning. The current situation is far from ideal. While some teachers continual-
ly reinvent their lessons to meet their students’ needs, others seem to be stuck in more
traditional approaches to teaching programming. A common national approach needs
to be taken if we are to raise a generation that is capable to write simple programs in
the same way that they are capable of playing and winning a video game.

Through the course of this research, we reflected about various possibilities as to
how programming education in Malta could be enhanced. The following are some
suggestions, which may require further research to properly evaluate and determine
whether they would be effective:

Introducing computational thinking skills and problem-solving skills to pri- ●
mary school students.

Teacher Perspectives on Introducing Programming Constructs through Coding ... 565

Programming should be made available for all Guzdial (2015) to study, through- ●
out compulsory schooling, regardless of the career path the student will choose
later on.
Further training of Computing teachers in programming. ●
Sharing of good practices by Computing teachers. ●
Catering for different student ages and abilities by using different IDEs. ●
Creating a relevant programming education programme which is regularly up- ●
dated to meet today’s needs and learners.

7. Conclusion

Summarising, the highlights of this research are as follows:
Teachers agree that using blocks-based programming languages, such as MIT ●
App Inventor 2, to introduce programming to students increases student moti-
vation rather than using text-based programming languages.
Teachers agreed that blocks-based programming languages may be better suit- ●
ed to younger students.
While MIT App Inventor 2 is a great tool to teach programming concepts to ●
students, it has its limitations.
Programming education needs to have strong foundations based on logical and ●
computational thinking from a young age.
The use of constructivist approaches to teaching programming is highly impor- ●
tant and useful.
Teachers agree that more teacher training with regards to teaching program- ●
ming should take place regularly.

Programming has always been at the heart of Computing and in order for it to
attract more students to pursue it, the way that it is taught needs to remain relevant
to our students. Education needs to evolve to meet the current situations and it is the
duty of each and every educator to provide the best possible learning experiences for
their students. In the area of programming education, we need to do more. More re-
search is needed to understand different and effective ways of teaching programming.
Furthermore, programming lessons should not be restricted to learning specific lan-
guages but should allow students to be presented with various problems which they
can solve together as a team and which they may program eventually. Programming
should be seen as a tool to create solutions for the world and as something exciting,
not something boring which results in a few lines of text as output. We need to keep
programming education relevant to our millennial students. We would be doing them
a disservice if we do not integrate normal day-to-day technology in programming
lessons.

L. Attard, L. Busuttil 566

References

Apiola, M., & Tedre, M. (2012). New perspectives on the pedagogy of programming in a developing country
context. Computer Science Education, 22(3), 285–313.

Ben-Ari, M. (2016). In defence of programming. Paper presented at the 20th Conference on Innovation and
Technology in Computer Science Education, Vilnius, Lithuania. , 7(1) 44–46.

Bennedsen, J., & Caspersen, M. E. (2008). Exposing the programming process. In: J. Bennedsen, J., Caspers-
en, M. E., & Kölling, M. (Eds.). (2008). Reflections on the Teaching of Programming (1st ed.). Berlin
Heidelberg: Springer-Verlag.

Brown, C. (2006). An active learning pedagogy in a programming course. Issues in Information Systems, 7(1),
124–128.

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997). Mini-languages: A
way to learn programming principles. Education and Information Technologies, 2(1), 65–83. DOI:
1018636507883

Busuttil, L., Camilleri, L., Camilleri, V., Dingli, A., & Montebello, M. (2014). Digital and video game usage
in Malta. (). University of Malta: gamEd (Games in Education). Retrieved from http://www.digital-
gamesmalta.com/digital-games-report

Busuttil, L. (2014). I want to be a game maker: Experiences of digital game making with eleven year olds
Retrieved from http://etheses.whiterose.ac.uk/7593/

Chetty, J., & Barlow-Jones, G. (2014). Novice students and computer programming. Mediterranean Journal
of Social Sciences, 5(14), 240–251.

Computing at School. (2013). Computing in the National Curriculum – A Guide for Primary Teachers. ().
Retrieved from http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.
pdf

Crowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A., & Sheikh, A. (2011). The case study approach.
BMC Medical Research Methodology, 11, 100.

Dagienė, V., Pėlikis, E., & Stupuriene, G. (2015). Introducing computational thinking through a contest on in-
formatics: Problem-solving and gender issues. Informacijos Mokslai, (73), 55–63. Retrieved from http://
www.ceeol.com/search/article-detail?id=467909

de Aquino Leal, A V, & Ferreira, D. J. (2013). Teaching computer programming based on patterns with ac-
tivities and collaborative games using concrete materials for high school students. Paper presented at the
Frontiers in Education Conference, 2013 IEEE, 1604–1610.

Dekhane, S., Xu, X., & Tsoi, M. Y. (2013). Mobile app development to increase student engagement and prob-
lem solving skills. Journal of Information Systems Education, 24(4), 299–308.

Dolgopolovas, V., Jevsikova, T., & Dagiene, V. (2017). From android games to coding in C – An approach
to motivate novice engineering students to learn programming: A case study. Computer Applications in
Engineering Education, 26(1), 75–90. DOI:10.1002/cae.21862

Guzdial, M. (2015). Learner-Centered Design of Computing Education. San Rafael: Morgan & Claypool
Publishers. Retrieved from http://ebookcentral.proquest.com/lib/[SITE_ID]/detail.

action?docID=4205923
Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair programming in education: A

literature review. Computer Science Education, 21(2), 135–173.
Haralambos, M., & Holborn, M. (2004). Methodology. Sociology Themes and Perspectives (6th ed., pp. 864–

933). London: HarperCollins Publishers Limited.
Howland, K., & Good, J. (2015). Learning to communicate computationally with flip: A bi-modal programming

language for game creation. Computers & Education, 80, 224–240. DOI:10.1016/j.compedu.2014.08.014
Hsu, Y. C., & Ching, Y. H. (2013). Mobile app design for teaching and learning educator’s experiences in an

online graduate course. The International Review of Research in Open and Distributed Learning, 14(4)
Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in

Human Behavior, 52, 200–210. DOI:10.1016/j.chb.2015.05.047
Karakus, M., Uludag, S., Guler, E., Turner, S. W., & Ugur, A. (2012). Teaching computing and programming

fundamentals via app inventor for android DOI:10.1109/ITHET.2012.6246020

Teacher Perspectives on Introducing Programming Constructs through Coding ... 567

Kumar, B., & Khurana, P. (2012). Gamification in education – learn computer programming with fun. Interna-
tional Journal of Computers and Distributed Systems, 2(1), 46–53.

Lau, W. W. E., & Yuen, A. H. K. (2009). Exploring the effects of gender and learning styles on computer
programming performance: Implications for programming pedagogy. British Journal of Educational Tech-
nology, 40(4), 696–712.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of programming
concepts held by novice programmers. Computer Science Education, 21(1), 57–80.

Margulieux, L., Guzdial, M., & Catrambone, R. (2012). Subgoal-labeled instructional material improves per-
formance and transfer in learning to develop mobile applications. Proceedings of the Ninth Annual Inter-
national Conference on International Computing Education Research – ICER’12, 71–78.

Mladenović, M., Boljat, I., & Žanko, Ž. (2017). Comparing loops misconceptions in block-based and text-
based programming languages at the K-12 level. Education and Information Technologies, 1–18. DOI:
10.1007/s10639-017-9673-3

Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015). Learning basic programming
concepts by creating games with scratch programming environment. Procedia – Social and Behavioral
Sciences, 191, 1479–1482. DOI:10.1016/j.sbspro.2015.04.224

Papert, S. (1993). Mindstorms: Children, Computers and Powerful Ideas (2nd ed.) Basic Books.
Prensky, M. (2001). Digital natives, digital immigrants part 1. On the Horizon, 9(5), 1–6.
Preston, D. (2006). Using collaborative learning research to enhance pair programming pedagogy. ACM

SIGCSE Newsletter, 3(1), 16–21.
Robertson, S. A., Lee, M. P., & Miller, J. (1995). The application of second natural language acquisition peda-

gogy to the teaching of programming languages – a research agenda. ACM SIGCSE Bulletin, 27(4), 9–12.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discus-

sion. Computer Science Education, 13(2), 137–172.
Sáez-López, J., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages integrated

across the curriculum in elementary school: A two year case study using “scratch” in five schools. Comput-
ers & Education, 97, 129–141. DOI:10.1016/j.compedu.2016.03.003

Salen, K., & Zimmerman, E. (2003). Rules of Play: Game Design Fundamentals. USA: MIT Press.
Sentance, S., & Csizmadia, A. (2015). Teachers’ perspectives on successful strategies for teaching computing

in school. Paper Presented at IFIP TCS,
Shapiro, R. B., & Ahrens, M. (2016). Beyond blocks: Syntax and semantics. 59(5), 39.
Sprankle, M., & Hubbard, J. (2012). Problem Solving & Programming Concepts (9th ed.) Pearson.
Thomsen, B. (2008). Using on-line tutorials in introductory IT courses. In J. Bennedsen, M. E. Caspersen & M.

Kölling (Eds.), Reflections on the Teaching Of Programming (pp. 68–74). New York: Springer.
Van Gorp, M. J., & Grissom, S. (2001). An empirical evaluation of using constructive classroom activities to

teach introductory programming. Computer Science Education, 11(3), 247–260.
Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

DOI:10.1145/1118178.1118215
Winslow, L. E. (1996). Programming pedagogy – a psychological overview. SIGCSE Bulletin, 28(3), 17–25.
Wolber, D., Anderson, H., Spertus, E., & Looney, L. (2014). App inventor 2: Create your own android apps

L. Attard, L. Busuttil 568

L. Attard received the B.Ed and M.Ed degrees in Computing Education from the
University of Malta in 2012 and 2018 respectively. She is currently a lecturer of Com-
puting at St Aloysius College Sixth Form and a part-time lecturer at the Department
of Technology and Entrepreneurship Education at the University of Malta. Her cur-
rent research and teaching interests include strategies to introduce programming and
educational technology.

L. Busuttil is a senior lecturer in Computing Education at the Department of Technol-
ogy & Entrepreneurship Education (TEE) within the Faculty of Education. He received
a PhD from the University of Sheffield in 2014. As part of his work in TEE, Leon-
ard is involved in the formation of pre-service and in-service Computing educators.
His research interests include Computational Thinking, Computing education, design
of educational software, game-based learning and human computer interaction.

