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Abstract. Loops concept is one of the basic programming concepts. Students have difficulties in 
learning loops concept. Helping learners understand loops is an important task. Visualization is 
one of the ways to help students improve their understanding. The aim of the study was to con-
struct and evaluate a visualization based instruction related to loops. A mixed method study was 
conducted. In the experimental phase of the study, the effect of visualization based instruction on 
pre-service teachers’ achievement, perceived learning and programming attitude was examined. 
In the qualitative phase of the study, the main purpose was to get more in depth data related to 
experimental phase. Visualization based instruction helped pre-service teachers improve their 
understanding of loops concept. 
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Introduction

Cuny, Snider, and Wing (2010) considered computational thinking as a problem solv-
ing process and defined it as “the thought process involved in formulating problems 
and their solutions so that the solutions are represented in a form that can be effec-
tively carried out by an information-processing agent” (as cited in Wing, 2011, p. 20). 
Depending on their research experience in Scratch, Brennan and Resnick (2012) con-
sidered computational thinking in terms of programming constructs and their use in 
problem solving in a social environment. They provided three facets of computational 
thinking as: 

Computational concepts (programming notions). (i) 
Computational practices (practices of problem solving). (ii) 
Computational perspectives (reflection on computing practices).  (iii) 

Programming is one of the best ways to let students experience power of computa-
tional thinking (Barr and Stephenson, 2011). However, programming can pose cognitive 
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problems for students. There is abundant literature contending that students have diffi-
culties in learning programming (Duboulay, 1986; Robins, Rountree and Rountree 2003; 
Wiedenbeck, Ramalingam, Sarasamma, and Corritore, 1999).

Basic constructs of programming constitute cognitive challenge for students, for ex-
ample, students have difficulties in learning loops (Ginat, 2004; Putnam, Sleeman, Bax-
ter and Kuspa 1986; Seidman, 1989).  Kordaki, Miatidis and Kapsampelis (2008) argued 
that students were not able to value the role of nested loops in the context of Bubble sort. 
Teague and Lister (2014) gave university students, who took 12 weeks, 20 weeks or 24 
weeks of introductory programming instruction, the code that takes an array of numbers 
including five integers and move all of the elements of the array one place to the right 
and replace the first element with the last one. Then they asked students to write a code 
that reverses the effect of the given code, i.e. cancel the effect of the code by reversing 
to get the original state of the list. Only a small percentage of students were able to cor-
rectly handle the problem. Izu, Weerasinghe and Pope (2016) echoed the same result by 
stating that only a small percentage of students were able to correctly handle the revers-
ibility problem. Moreover, there are studies that show students have misconceptions 
related to loops. Cetin (2015) showed that some of the mechanical engineering students 
who are taking introductory programming course perceived a nested loop as if two loops 
are running simultaneously. Similarly, Izu, Weerasinghe, and Pope (2016) reported the 
same misconception for university students. Interestingly, the same misconception was 
reported for middle school students (Mladenovic, Boljat and Zanko, 2018). Moreover, 
Du Boulay (1986) contended that novices were not able to see that control variable is 
increased in each step of for loop and they believed that while loop terminates when the 
loop condition is changed. Ginat (2004) showed that students have problems in con-
structing associations between range conceptions and loop boundaries.

Cetin (2015) described Pre-action, Action, Process and Object stages for loops con-
cept. These stages correspondingly starts from relatively concrete and goes to relatively 
abstract. The details of each stage are given as follows: 

At the Pre-action stage, an individual is not able to write a loop code in a syntacti-(i) 
cally correct way. Although the individual is aware of the fact that the given task 
requires iteration, he/she is not able to use loops to develop running codes.
At the Action stage, the individual explicitly performs each line of instruction in-(ii) 
side the loop. She/he can initialize control variables, check test conditions, repeat 
the body of the loop while test condition is true (but she/he still explicitly per-
forms each line of the instruction in the body) and update the control variables. 
The individual can correctly write a loop code, but he/she can only solve easy 
problems by using iteration at this stage.
At the Process stage, action of the previous stage is interiorized. Conception of (iii) 
loops has dynamic flavor at this stage. The individual can perform action of the 
previous stage, but this time she/he does not need to perform them explicitly. 
Rather she/he can imagine hem being performed. She or he can perform the in-
structions after the loop (called afterward) but needed for the completion of the 
task, e.g. printing the result found in the body. The individual can solve relatively 
complex problems by using iteration. 
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At the Object stage, process described in the previous stage can be seen as a com-(iv) 
pleted totality having input (boundaries of the control variable are determined), 
process (the loop is executed while test condition is true) and output (afterward 
is executed). Rather than a code having individual lines, loops (one-level) can be 
considered as a single line of command having some purpose and can be put in 
the body of another loop to get a nested (two-level) loop. A two-level loop can 
be put into the body of a one-level loop to get a three-level loop. This can be 
proceeded to get an n-level loop.

In order to bring the work on learning difficulties related to loops concept to the 
stage at which it is useful in practice, several questions should be considered such as: 
“how to help students to develop their understanding”, “how to help them to over-
come their misconceptions” or “how to help students so that they do not construct 
misconceptions”. Despite the importance of loops as a computational concept, our 
knowledge base about how to facilitate students’ understanding is limited. Visualiza-
tion is one of the suggested tools that can be used to help learners overcome their 
cognitive difficulties in learning programming concepts (Ben-Ari et al., 2011; Sorva, 
Lönnberg and Malmi, 2013; Stasko, Kehoe and Taylor, 2001; Velazquez-Iturbide and 
Perez-Carrasco, 2016). 

Price, Baecker and Small (1998, p.4) focused on the visualization production and its 
purpose and defined the software visualization (SV) as “the use of crafts of typography, 
graphic design, animation, and cinematography with modern human-computer interac-
tion and computer graphics technology to facilitate both the human understanding and 
effective use of computer software.” They classified algorithm visualization (AV), deal-
ing with visualization of higher level abstractions, and program visualization (PV), deal-
ing with the actual programs, as two subfields of SV. Unlike Price, Baecker and Small’s 
(1998) product based definition Zazkis, Dubinsky and Dautermann (1996, p. 441) had 
a cognitive point of view and defined visualization as “an act in which an individual 
establishes a strong connection between an internal construct and something to which 
access is gained through the senses.” The definition sees visualization as an act not the 
product and it is a twofold definition. It both includes the construction of mental struc-
tures with the help of ‘external’ objects or events (e.g. a picture or an animation) and 
the construction of ‘external’ objects or events with the help of mental structures. How-
ever, the definition excludes the construction of mental images from pure mental images 
and transfer of an external image from one place to other (e.g. from paper to computer 
screen) without applying for mental constructions. 

Hundhausen, Douglas and Stasko  (2002) contended that studies imposed students 
to view visualizations did not report significant learning gains. In contrast, the studies 
in which students actively involved in creating the visualizations reported the highest 
percentage of significant results. Considering that, Naps et al. (2003) suggested an 
engagement taxonomy ranging from no AV to presenting AV that is constructed by the 
students: 

No viewing, (1) 
Viewing, (2) 
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Responding, (3) 
Changing, (4) 
Constructing.(5) 
Presenting. (6) 

Highlighting active engagement is important but it does not guarantee qualified ac-
tive engagement experience. Zazkis, Dubinsky and Dautermann (1996) went one step 
further and studied on ways to help students improve their understanding while they 
are actively involved with visualization. They proposed a heuristic model, called V-A 
(Visual – Analytic), that integrates visual and analytical reasoning in constructing rich 
understanding of concepts. The model name is originally abbreviated as VA, but V-A 
was used in this study to better differentiate it from AV (algorithm visualization). Ac-
cording to V-A model, learning starts with an act of visualization. This is followed by 
an analysis in which an individual reason about the visualization and construct some 
internal structures related to concept under investigation. Then, the second step of visu-
alization that represents richer understanding of the concept since individual improved 
her understanding in the first step of analytic thinking. After that the individual reasons 
about the new visualization to improve her understanding that is called the second step 
of analysis. In the process, each act of analysis helps the individual to develop new 
richer visualization that results in a more sophisticated analysis. This process ends with 
the integration of visual and analytical understanding into one coherent and (relatively) 
abstract structure.

Scratch was used as a SV construction tool in this study (Merino, Ghafari, Anslow 
and Nierstrasz, 2018; Sorva, Karavirta and Malmi, 2013). Scratch can be described 
as low floor and high ceiling block based coding environment (Resnick et al., 2009). 
Students used Scratch to construct SVs. V-A model of Zazkis, Dubinsky and Dauter-
mann (1996) was used for this purpose. V-A model proposes stages in which students 
improves and integrates the visualization of a concept and the analytical understand-
ing of the concept. The Scratch and V-A model provides a unique way for program-
ming instruction. This is the first study in which the aforementioned instruction was 
constructed and the effect of it was explored. The details of the instruction is given the 
intervention subsection of the study.  Therefore, the purpose of the study is to examine 
the effect of Scratch-based SV construction guided by the V-A model on pre-service 
teachers’ loops concept achievement, perceived learning, and their attitudes toward 
programming. 

Materials and Methods

Mixed methods research utilizes qualitative and quantitative research approaches in 
combination. This combinatorial approach may provide unique insights and understand-
ings that might be difficult to develop with a single approach  (Johnson and Onwueg-
buzie, 2004). This study utilized two-phased embedded experimental model (Creswell 
and Clark, 2007). Qualitative data has a supportive role in the embedded experimental 
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model. An experimental design with pre-test/post-test control groups was used in the 
first phase of the study. The aim of the first stage was to examine the effects of Scratch-
based and V-A guided SV construction on students’ loops concept achievement, per-
ceived learning and programming attitude. The second stage used qualitative approach. 
The aim of the second stage was to explore the results of the first stage of the study. 
The research questions guided the study are (i) What is the effect of Scratch-based 
SV construction guided by the V-A model on (a) pre-service teachers’ loops concept 
achievement, (b) perceived learning, and (c) their attitudes toward programming and 
(ii) How do qualitative results explain the experimental outcomes? The design of the 
study is shown in Table 1.

At the outset, pre-service teachers were randomly assigned to experimental and 
control groups. The intervention, in which students were given loops concept, was 
conducted over three weeks. The instruction consisted of three main components: 
classroom sessions, laboratory sessions and weekly homework. The only difference 
between the control and experimental groups lies in their laboratory sessions. The in-
structional cycle began with a 3-hour classroom meeting. The teaching approach and 
the instructor was the same in both groups. The instructor mainly used lecturing, dis-
cussion and problem solving in classroom meetings. After the classroom meetings stu-
dents attended two-hour computer laboratory. Pre-service teachers studied in groups 
in the computer laboratory. Experimental group pre-service teachers constructed SVs 
of programs written in C by using Scratch in the computer laboratory. Visualization 
construction was guided by V-A model (Zazkis, Dubinsky and Dautermann, 1996). 
Control group pre-service teachers solved assigned problems by using C. The weekly 
instructional cycle continued with homework including relatively classical program-
ming problems. The homework was the same for both groups. Pre-service teachers 
individually submitted homework within one week. After three weeks of instruction 
pre-service teachers were given an achievement test, a practice test, a perceived learn-
ing scale and an attitude scale as posttests in both groups. After the quantitative phase 
of the study, 9 pre-service teachers from both groups were randomly selected for the 
qualitative phase. Semi-structured interviews, each of which lasted about 23 minutes, 
were conducted and audiotaped.  

Table 1
The design of the study

Treatment Posttests Interview

Experimental group V-A guided visualization Achievement test
Practice test
Perceived learning
Attitude scale 

Semi-structured 
interview

Control group Traditional instruction Achievement test
Practice test
Perceived learning
Attitude scale

Semi-structured 
interview
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Subject

The participants of this study consisted of 53 pre-service teachers, 29 male and 24 
female. They attended a four year program including both education and computer sci-
ence related courses. They were studying to obtain a certification in computing educa-
tion from a public university.  They are expected to teach computing related courses 
after the graduation. They enrolled in an introductory programming course that was 
offered in the first semester of the second year. This is the first course on programming. 
The content of the course require students to solve small scale problems in Scratch and 
C. Four weeks of the semester were dedicated to Scratch instruction after which pre-
service teachers develop an educational game or simulation. The remaining 10 weeks 
of the semester were dedicated to C instruction in which students learn the basic con-
structs of the programming language to solve small scale problems.  When the study 
began students had already completed the Scratch sessions and learned variables, con-
ditional statements and arrays in C.

Intervention

Instruction for both groups involved classroom phase, laboratory phase and homework. 
The same instructor instructed both experimental group including 27 pre-service teach-
ers and control group including 26 pre-service teachers for three weeks in this study. 
The instruction included for, while and do-while loops. Pre-service teachers in both 
groups attended three-hour classroom phase in both group. The same type of instruction 
was provided for both of the groups in the classroom phase. Classroom phase started 
with a question with the purpose of reviewing pre-service teachers’ previous knowl-
edge and forming the base for the concept of the week. After questioning, instructor 
explained the main ideas and key concepts related the topic of the week in front of the 
board. This was followed by a demonstration of a simple code related to loops with 
the aim of teaching the syntax of the programming construct in consideration. Then 
instructor provided a programming problem related the topic of the week and gave 
pre-service teachers a few minutes to think on the problem. Instructor solved the prob-
lem on the computer whose screen is projected onto the board. After live coding, pre-
service teachers were provided a programming problem. The problem was considered 
by the whole class. Pre-service teachers were given programming problems at the end 
of the classroom phase. Pre-service teachers studied in groups, including two or three 
members, to solve the problems. The instructor showed how to solve some of the prob-
lems in front of the board when he felt necessary.

Following the classroom phase, pre-service teachers in control group attended two-
hour laboratory phase each week in which the instructor was present. The beginning 
of the laboratory phase was dedicated to summarization of the topics considered in the 
classroom meeting. Then pre-service teachers were given lab-sheets consisted of pro-
gramming problems on the topic of the week. They studied in their groups to solve the 
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problems. Each group had one computer. Study groups were encouraged to negotiate 
their ideas in the computer laboratory. The instructor was present to help students in 
their learning in the computer laboratory. However, instructor tried not to provide whole 
solution to the pre-service teachers. He showed some hints and general approaches to 
solve the problem. The instructor monitored the group and individual work during the 
laboratory phase. He gave group and individual feedback. The instructor tried to enrich 
the discussions in the groups. Finally, pre-service teachers were given a homework 
including relatively classical questions. They were required to submit their homework 
within one week.

After the classroom meeting, experimental group pre-service teachers attended two-
hour laboratory phase each week. The same instructor was present during this phase. 
Pre-service teachers constructed a visualization related to topic of the week in each 
computer laboratory. They used Scratch to construct their visualization in the labora-
tory. Since pre-service teachers had already learned Scratch as a part of regular cur-
riculum before the intervention, they were not given additional Scratch instruction. 
Visualization activities were developed considering the V-A model of Zazkis, Dubinsky 
and Dautermann (1996). The model supports the cyclic mode of visual thinking fol-
lowed by analytical thinking. At each new cycle individuals have a richer version of 
the concept in their mind, i.e. there is a progression from (relatively) concrete to (rela-
tively) abstract. 

In the first week of the laboratory sessions, pre-service teachers were given the fol-
lowing two codes and they were asked to construct their visualizations. The content 
of the array in code 2 was given by the instructor to each group and each group had a 
different integer array.

Code 1:

while (i<20){
     if (i%2 == 0)
          printf(“%d”, i);
     i++;
}
 

Code 2:

for (i=0; i<6; i++){
     if (a[i] >= a[i+1]){
          ara = a[i];
          a[i] = a[i+1];
          a[i+1] = ara;
     }}

The visualization construction had three steps: (i) create a storyboard of the visual-
ization and discuss it with the instructor, (ii) develop the visualization, (iii) get feedback 
from the instructor and make changes on the visualization if necessary. 

In the second week, pre-service teachers were given the following code and they 
were asked to construct its SV. The steps of the SV construction were the same for the 
activity and pre-service teachers used the same strategies as they did in week 1 to con-
struct their SVs. 
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for(j=0; j<4; j++){
     for(i=0; i<4-j; i++){
          if (a[i] >= a[i+1]){
          ara = a[i];
          a[i] = a[i+1];
          a[i+1] = ara;
          }
     }
}

The visualization activity of week 2 requires to think on a nested loop while visual-
ization activity of week 1 requires to think on a single loop. In constructing SV of week 2 
pre-service teachers need to reflect on the looping of inner and outer loop. This can help 
them to develop their understanding of loops concept. 

In the third week, pre-service teachers were given the Bubble sort code of the previ-
ous week and required to construct visualization of it. However, they were not allowed 
to have the approach in which states of storyboard are transferred to the Scratch envi-
ronment as they did last two weeks; they were not allowed to only use goto, wait and 
glide blocks. They had to consider loops from more abstract perspective to handle the 
task. Their Scratch code should automatically animate the Bubble sort. For this purpose, 
(i) they needed to use loops, the list and variables of Scratch to sort the given array in 
Scratch, i.e. they needed to implement Bubble sort in Scratch and (ii) they needed to co-
ordinate Bubble sort script of Scratch with the visualization of the C code. Visualization 
construction had mainly three steps: 

Plan how to develop the visualization and discuss it with the instructor. (i) 
Develop the visualization. (ii) 
Get feedback from the instructor and make changes on the visualization if nec-(iii) 
essary. 

Fig. 1 is an example screenshot of stage of Scratch. 
The stage is composed of two parts. The left part displays the current state in the 

animation of the C code. The right part displays the current state of variables i, j, ara, 
and the array named a (list in Scratch terms) that will be sorted at the end of the visu-
alization. The right side itself belongs to the implementation of Bubble sort in Scratch, 
i.e. they are real Scratch list and variables and list a is sorted with a real Scratch Bubble 
sort script. Each line of code on the left side is a sprite in Scratch. To develop the left 
side pre-service teachers needed to coordinate Bubble sort with the highlighting in the 
animation. The visualization activity of week 3 is different from visualization activities 
of week 2 and week 1. Pre-service teachers needed to reconstruct Bubble sort in Scratch 
and coordinate the left and the right side of the stage. 
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Instruments

The study included five different tools to gather data that were composed of (i) a com-
puter programming attitude scale (CPAS), (ii) a practice test (PT), (iii) an achievement 
test (AT), (iv) a perceived learning scale (PLS),  and (v) a semi-structured interview 
protocol. The AT including 20 multiple choice questions was constructed by the re-
searcher of the study considering the objectives of the course. The AT was used as a 
posttest to assess pre-service teachers’ understanding of loops concept. Each item in the 
AT had one correct and four incorrect answers. Each correct item was given 5 points 
and the minimum and maximum points that a pre-service teacher can get are 0 and 100 
respectively. The questions in the questionnaire were checked by a language expert in 
terms of comprehensibility and grammatical aspects. Two domain experts considered 
the content validity of the AT. They contended that questions in the achievement test 
is appropriate to the course content and pre-service teachers’ grade level. The AT was 
conducted to 212 university students who already took at least one introductory pro-
gramming course before the study has begun. The reliability was found to be .83. The 
following is a question from the achievement test. 

Q. Which of the following choices correctly represents the computation stored in the 
variable result after the following code executed? 

int i, inter, n, result = 0;
scanf(“%d”, &n);
for (i = 2; i <= n; i++){
   inter =i * (i - 1);
   result = result + inter;
}

a) 1+3+5+…+(2*n-1)

b) 1!+2!+3!+…+n!

c) 1*2*3*…*(n-1)*n

d) 1*2+2*3+3*4+…+(n-1)*n

e) 1*3+5*7+…+(2*n-3)*(2*n-1)

Fig. 1. Screenshot example for week 3.
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The PT included four open ended questions. The purpose of the PT was to assess 
teacher candidates’ code writing practice related to loops concept. Two independent re-
searchers established the content validity of practice test by considering it in terms con-
tent and pre-service teachers’ grade level. A language expert considered the questions 
in the practice test in terms of their comprehensibility and grammatical aspects. The 
practice test was given in the computer laboratory. Pre-service teachers were allowed 
to execute their codes. They gave their source codes to the instructor at the end of the 
test. An expert and the researcher of the study scored practice tests and .89 (Pearson’s r) 
interrater agreement was achieved. The following question is an from the PT.

Q. A number is called Armstrong number if it is equal to the sum of its own digits 
each raised to the power of the number of digits, e.g. 371 is an Armstrong num-
ber since 33+73+13=371. Please write a C code that finds if a given number is 
Armstrong or not. 

The PLS was constructed by Rovai, Wighting, Baker, and Grooms (2009). The 
scale was developed to measure students’ perceived learning in a course. It was con-
tended that adult learners themselves can judge their learning in a course (Rovai, 
Wighting, Baker, and Grooms, 2009). So, their learning can be assessed depending 
on self-reports of the learners. The scale consists of nine 5-point Likert-type items. 
The total score that a teacher candidate can get from the PLS ranges from 9 to 45. The 
reliability of the PLS was originally found to be .79. The scale was then adapted into 
Turkish by Top, Yukselturk and Inan (2010). The reliability of translated survey was 
determined to be .81. 

The CPAS was constructed by Cetin and Ozden (2015). It was constructed to assess 
university students’ attitudes towards programming. It includes 18 5-point Likert-type 
items. The scale has three dimensions: cognition, behavior and affection. The total score 
can a pre-service teacher get from the scale ranges from 18 to 90. Cronbach alpha coef-
ficients were originally determined to be .80 for the cognition, .90 for the behavior, .90 
for the affection, and .93 for the scale.  

Nine participants from each group (18 in total) were interviewed after the inter-
vention. A semi-structured interview protocol was utilized to collect data. The aim of 
the interviews was to collect in-depth data to reflect on the results of the intervention. 
Teacher candidates were given programming questions and asked to solve them in the 
interview. The interviews were audio recorded and transcribed. The data were analyzed 
with the guidance of qualitative content analysis. Qualitative content analysis is “… a 
method for systematically describing the meaning of qualitative material” (Schreier, 
2012, p.1). Both inductive and deductive approaches were used for category construc-
tion. A sample of data were coded by an independent researcher and the researcher of 
this study. Then they came together to consider discrepancies related to coding and 
coding scheme. They repeated cycle of coding, discussing and solving issues until they 
had reached an agreement. Then, 10% of the data were independently coded by two 
researchers to assess the inter-coder reliability. The agreement ratio was determined to 
be .88. Researchers continued to discuss and resolve the discrepancies until unanimous 
agreement was achieved. Finally the researcher of this study coded all of the data.
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Results

Quantitative Results

The quantitative results examine the effect of intervention on pre-service teachers’ AT, 
PT, PLS and CPAS scores. Table 2 summarizes the experimental and pre-service teach-
ers’ AT, PT, PLS and CPAS scores. 

An independent sample t-test analysis was conducted to examine whether there was 
a significant mean difference between the groups in terms of pre-service teachers’ AT 
scores after the treatment. It was found that mean difference between the experimental 
(M = 53.2, SD = 14.4) and the control group (M = 42.5, SD = 15.1) in terms of pre-ser-
vice teachers’ AT scores at the end of the instruction was significant. The experimental 
group performed significantly better than the control group; t (51) = -2.630, p = .011.

An independent sample t-test was utilized to compare mean PT scores of the con-
trol and the experimental group after the treatment. It was found that the mean differ-
ence between the experimental (M = 50.5, SD = 16.7) and the control group (M = 38.0, 
SD = 16.2) in terms of their PT scores at the end of the instruction was significant 
( t (51) = -2.759, p = .008 ).

An independent sample t-test analysis was conducted to compare mean perceived 
learning scores of experimental and control group students. It was found that mean dif-
ference between the experimental (M = 34.6, SD = 5.3) and the control group (M = 31.7, 
SD = 5.6) in terms of students’ PLS scores at the end of the instruction was not signifi-
cant ( t (51) = -1.881, p = 0.66 ).

The effect of instruction on students’ attitudes toward computer programming was 
examined by one-way MANOVA. Before carrying out main analysis, its assumptions 
were tested. Skewness and kurtosis values indicated that the normality assumption was 

Table 2
Experimental and control groups’ descriptive statistics

Experimental Group Control Group
N M SD Skewness Kurtosis N M SD Skewness Kurtosis

Post-AT 27 53.2 14.4  0.46 -0.65 26 42.5 15.1  0.63 -0.41
Pots-PT 27 50.5 16.7  0.33 -0.73 26 38.0 16.2  0.18 -0.91
Post-PLS 27 34.6   5.3  0.05 -0.05 26 31.7   5.6  0.16  0.35
Post-CPAS
Cognitive

27 27.1   1.8 -0.29 -1.00 26 26.5   2.3  0.05 -0.87

Post-CPAS
Behavior

27 22.8   3.9 -0.23  0.01 26 21.5   3.6  0.46  0.11

Post-CPAS
Affective

27 23.9   4.1 -0.73  0.85 26 23.3   3.5 -0.08 -0.26



I. Cetin600

met (Table 2). Box’s M was equal to 4.644 and was not significant [f (6, 18767) = 0.724, 
p > .001]. It showed that equality of covariance matrices assumption has not been vio-
lated. Finally, main MANOVA analysis showed that the effect of treatment on students’ 
attitudes toward computer programming was not significant [Wilks Lamda ( λ = .968 ), 
F (3, 49) = 0.542, p = 0.656].

Univariate ANOVAs were conducted to examine the effect of treatment on dimen-
sions of CPAS as a follow-up to MANOVA. Table 3 shows results of ANOVA for each 
dimension. Non-significant effect of treatment on students’ attitudes on each dimen-
sion was found with respect to ANOVA results [Affective: F (1, 51) = 0.308, p > .05; 
Cognitive: F (1, 51) = 1.141, p > .05; Behavior: F (1, 51) = 1.525, p > .05].

Qualitative Results

The aim of the qualitative phase of the study was to shed more light on the quantita-
tive findings. Qualitative data analysis produced results related to understandings of the 
participants related to loops concept. As a result of qualitative data analysis three main 
categories were determined. These categories were called: 

Action limited. (i) 
Simultaneous nested loop.(ii) 
Object matured. (iii) 

Action Limited
This is a kind of low level understanding in which individuals cannot imagine instruc-
tions in the loop body being performed and they need to explicitly perform the instruc-
tions. This category will be called Action limited. It was found that 5 of the 9 control 
group pre-service teachers 2 of the 9 experimental group pre-service teachers showed 
indications of Action limited. Pre-service teachers were given the following code seg-
ment and asked to determine the output of it.

Table 3
Results of ANOVA for each dimension

Variable Group N X Sd df F p

Cognitive Exp. 27 27.1 1.8 1–51 1.141 0.291
Cont 26 26.5 2.3

Behavior Exp. 27 22.8 3.9 1–51 1.525 0.223
Cont 26 21.5 3.6

Affective Exp. 27 23.9 4.1 1–51 0.308 0.581
Cont 26 23.3 3.5
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int a[7], b[7], i;
for (i = 7; i >= 1; i-- )
     b[i-1] = i*i;
for (i = 7; i >= 1; i--)
     a[i-1] = i+2;
printf(“%d”, a[3] + b[4]);

This question can be solved by using I = 5 for the first loop that makes b[4] = 25 
and then taking i 4 for the second loop that makes a[3] = 6. So the result can be found 
easily by adding 25 and 6, 6+25 = 31. Nevertheless, as can be seen in the following 
excerpt, the pre-service teacher insists to find all values till a[3] and b[4] to get the 
result.

Student 8: i starts from 7. i is 7. Then from 7-1, b[6] is equal to 7x7, 
49. For the second loop, i is 7. Then a[6] is equal to, i is 7 from 7+2 it 
becomes 9… Then it will go to the beginning again. For the first loop i 
is 6. i-1 is 5 and since i is 6, 6x6=36 [she wrote b[5]=36]. Again for the 
second loop, i is decreased by one and is is 6. Then a[5] uhmm, from 
6+2, is 8. Now i is decreased by 1 and is 5. i-1 is 4 and square of i is 25 
[she wrote b[4]=25]. For the second loop i is 5. a[4] is equal to uhmm 
7. I have found b[4], I will not enter in the first loop again but continue 
with the second loop since I need to find a[3]. i was 5 and now i is 4. 
a[3] is equal to 6, from 4+2. I have found b[4] and a[3], their addition 
is 31. The output is 31.

Fig. 2. Pre-service teacher’s writings.
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Simultaneous Nested Loop
In the literature it was found that some students from different grade levels show a 
cognitive difficulty in understanding nested loops (Izu, Weerasinghe, and Pope, 2016; 
Mladenovic, Boljat and Zanko, 2018). They stepped through simultaneously control 
variables of a nested loop, i.e. they run the inner and outer loops of a nested loop si-
multaneously. This misconception will be called simultaneous nested loop in this study. 
Three of the control group pre-service teachers showed simultaneous nested loop mis-
conception while only one of the experimental group pre-service teachers showed the 
misconception. Pre-service teachers were given the following code segment and asked 
to find the value of x after the code executed.

int i, j, x = 0;
for(i = 1; i <= 9; i++){
     for(j = 1; j <= 20-2*i; j++){
          x = x+i;
     }
}

The following excerpt can be given as an example for simultaneous loop miscon-
ception. The pre-service student determined a value for the control variable of inner 
loop for each value of control variable of the outer loop. Except the first one (for i 
equals 1) she took the upper limit of j for each i. Then two loops were run simultane-
ously for the values of i and j. When the test condition of the outer loop became false, 
she stopped the simultaneous iteration.

Student 3: For i equals to 1, the value of j is 1. x was 0 at the beginning. 
From 0+1, x is 1. For i equals to 2, the value of j is 16. x was 1 and we 
will add i to it. x is 3 now. For i equals to 3, the value of j is 14. x was 
3. I add 3 to 3. It is 6. For i equals to 4, the value of j is 12. x was 6. 
6 plus 4, x is equal to 10. For i equals to 5, the value of j is 10. From 
10+5, x is 15. For i equals to 6, the value of j is [few-second silence] 8. 
From 15+6, x is 21. Then for i equals to 7, the value of j is [few-second 
silence] 6. From 21+7, x is 28. For i equals to 8, the value of j is [few-
second silence] 4. From 28+8, x is 36. For i equals to 9, the value of j is 
2. From 36+9, x is 45. Since i should be less than or equal to 9, it stops 
here and the value of x is 45.
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Object Matured
Cetin (2015) indicated that there is a ‘mature’ kind of understanding of loop concept 
called Object conception. Individuals having this conception can see a loop as a whole 
and can apply operations on it. It can be considered as a procedure or function with in-
put (boundaries of control variable), process (loop is run) and output (afterward if any). 
At this stage, loop is an object, and students can consider it as a single command. The 
category in which pre-service teachers showed indications of Object conception will be 
called Object matured. Two of the experimental group pre-service teachers were clas-
sified under Object matured while none of the pre-service teachers in the control group 
was classified under Object matured. Pre-service teachers were given the following code 
segment and asked to find output of it.

int i, j, k;
for (i = 1;i <= 10; i++){
     for (j = 1; j <= 5; 
j++){
          for(k = 1; k <=8; 
k++){
               printf(“*”);
          }
     }
}

Fig. 3. Pre-service teacher’s writings
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The following excerpt can be given as an example for Object matured category. The 
pre-service teacher saw the inner most loop as 8 stars, in other words he showed indica-
tions of seeing the inner most loop as a totality. He was aware that middle loop repeats 
printing 8 stars 5 times that results in 40 stars. This is also an indication for totality. This 
is especially evident when he said “Assume there is one nested loop including two fors”. 
Then he multiplied 10 by 40 to get the result that means multiplication operation (or one 
can also say repetition) is applied on the totality.

Student 10: At the first stage this will print 8 stars [he means asterisk], 
then it moves to the upper for. For j equals to 2, it again prints 8 stars. 
Rather than proceeding this way for each one, we can get the solution 
by multiplying these three [he means 10*5*8].

Interviewer: Why will this give the solution?

Student 10: Assume there is one nested loop including two fors, 
assume there are j and k and printf(“*”) inside. At the first step, this 
[he showed innermost for loop] will run 8 times, then j becomes 2 and 
this will run again 8 times, that is this prints 8 stars and then 8 stars. 
This is done 5 times. From 8*5 we get 40. Then it will move to one 
upper, moves to  i for-loop. Then for i equals to 1 we have 40 stars, for 
i equals to 2 we have 40 stars. Since i equals to 10, by multiplying 10 
by 40 we get 400 stars.

Discussion

Teacher candidates in the experimental group  performed significantly better than the 
teacher candidates in the control group with respect to both AT and PT. AT requires pre-
service teachers to both understand given code and solve the question depending on their 
understanding. In addition to this, pre-service teachers needed to construct their own 
program to solve the given questions in PT. The reasons for significantly better perfor-
mance of pre-service teachers in experimental group can be considered from different 
perspectives. One such apparent reason in visualization research is related with the en-
gagement levels of the participants. The pre-service teachers in experimental group had 
a more active role in their learning. So, it can be said that their active engagement helped 
them to improve their understanding (Hundhausen et al., 2002; Naps et al., 2003). Ac-
tive engagement is a plausible explanation but it needs a closer consideration to get a 
better explanation of the phenomena. 

The intervention given in experimental group depended mainly on Scratch based 
visualization and V-A model of Zazkis, Dubinsky and Dautermann (1996). The reason 
of students’ better performance might be due to these two components (or their combina-
tion) in addition to active engagement explanation. Scratch is a high ceiling, wide walls, 
and low floor, programming environment (Resnick et al., 2009). It can be said that use 
of Scratch might have a positive effect in helping students to learn. Pre-service teachers 
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needed to use visual loop blocks present in Scratch to learn the loops concept in a text-
based environment. The use of block based loops is easier and can form a step to learn 
harder text based loops. This will be called dual effect.

The second component of the intervention was V-A model. The V-A model posits 
that visualization helps individuals to improve their analytic understanding (Zazkis, 
Dubinsky and Dautermann, 1996). Depending on the V-A model one can hypothesize 
that pre-service teachers who were given loops instruction depending on the V-A model 
have more coherent understanding and less misconceptions. The qualitative findings 
of the study is in line with this hypothesis. Fewer pre-service teachers who were inter-
viewed showed simultaneous nested loops misconception in the experimental group. 
Fewer pre-service teachers who were interviewed showed low level understanding 
of loops concept (called Action limited) in the experimental group. More pre-service 
teachers who were interviewed showed a coherent understanding of loops concept 
(called Object matured) in the experimental group.

No significant difference between the experimental and the control group with re-
spect to perceived learning was found, although experimental group pre-service teach-
ers’ mean score was higher than the control group pre-service teachers’ mean score. 
Similarly, no significant difference between control and experimental groups in terms 
of their programming attitudes was found. It might be concluded that the intervention 
failed to produce intended improvement in experimental group pre-service teachers’ 
perceived learning and attitudes in the context of the study. However, this result should 
be carefully read considering the duration of the study. The intervention lasted in three 
weeks in the study. Three weeks might not be enough to observe attitude difference 
(Papanastasiou and Papanastasiou, 2004). Results of the study related to perceived 
learning supports this idea. Perceived learning might play an intermediary role between 
programming achievement and attitude in the context of this study. Significant differ-
ence was detected between experimental and control group in terms of programming 
achievement. However, non-significant difference was detected in terms of perceived 
learning. The non-significant difference might be due to the fact that pre-service teach-
ers could not construct the awareness of their achievement in three weeks yet. This 
might result in no difference between experimental and control groups in terms of their 
programming attitude. This idea can be further tested by using structural equation mod-
eling in the future studies.

Conclusion

There have been an interesting phenomenon in visualization research. The computing 
teachers or instructors stated that they believe visualization is useful in teaching their 
courses but at the same time they are not willing to use it in their courses (Baker and 
O’Neil Jr, 2002; Shaffer et al., 2010). It might be the case that integration of an ad-
ditional visualization tool that is hard to learn and will not be used for programming 
(the main purpose of the course) is not practical for them. Visual programming environ-
ments like Scratch can be a solution (Xu, Ritzhaupt, Tian and Umapathy, 2019). They 
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are easy to learn and individuals practice computing while constructing visualizations 
to learn the concepts of computing which is called dual effect in the study. Teachers or 
instructors experiencing the dual effect might be more willing to incorporate visualiza-
tion in their courses. They can experience dual effect both in (i) learning the introduc-
tory programming concepts first time in their university years and (ii) their teaching in 
their classes after graduation. 

The main framework in visualization research is related with students’ role in visual-
ization activities. Hundhausen, Douglas and Stasko (2002) figured out students playing 
more active role in visualization activities gain more understanding in programming. 
Following this finding Naps et al. (2003) proposed an engagement taxonomy to classify 
and take attention to students’ role in visualization activities. It can be said that learning 
environment that does not require active involvement of learners would probably fail to 
help students constructing or improving their understanding. Although active engage-
ment is important in helping learners to improve their learning, it cannot be responsible 
for all the success in helping students to improve their learning. Cetin (2013) found and 
argued that a specific type of active engagement caused different results in helping stu-
dents to improve their understanding. One can construct different kinds of instructions 
in which learners can play different active involvement roles (Mikropoulos and Bellou, 
2013). Moreover, it is possible that these roles might suit better for some situations. The 
idea that knowledge is actively constructed by the learner or learners should have active 
involvement in their learning is called trivial constructivism (Von Glasersfeld, 1991). 
Trivial constructivism falls short in explaining learning. Therefore there is a need for 
frameworks or theories to situate visualization in a broader context to explain learners’ 
understanding and construct instruction to help learners to improve their understanding. 
Al-Sakkaf, Omar, and Ahmad (2019) conducted a review study and stated that there is a 
need for theories, models, or frameworks in visualization research. In the current study, 
V-A model was used to construct the visualization activities. It can be concluded from 
the findings of the study that V-A model was useful in helping students to improve their 
understanding. The V-A model sees visualization as a tool to help students construct 
necessary abstractions. Having necessary abstractions might help pre-service teachers 
develop better schema and have a good base for problem solving related to concept 
(Dubinsky, 1991).  

Block based programming environments can enhance teachers’ daily classroom 
practice. They are easy to learn and students can tinker to explore basics of program-
ming. However, these are the property of the programming environment, its pedagogical 
value will be created by teachers as designers of the instruction. Abstraction is one of 
the keys or barriers in the learning programming and developing computational think-
ing. Students need to construct necessary abstractions to achieve in computer science 
classes. Block based programming environments in the visualization context can be used 
to create dual effect (being both tool and content for abstraction) for students. Students 
used more concrete concept of loops in block based visualization context to learn more 
abstract concept of loops in C in this study. As a (relatively) concrete visualization tool, 
with which students developed virtually concrete products, block based programming 
environments can help students develop necessary abstractions. In addition to this, stu-
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dents already started to learn the loop concept while involving in visualization in this 
study, i.e. the visualization tool was itself the content of the study. Teachers can produce 
practical pedagogical value from the property of blocked based programming environ-
ments in the visualization context. The dual effect can be utilized in the instruction by 
teachers for students’ concept formation process. 

The intervention in the study lasted three weeks. Three weeks of instruction related 
to loops might not be enough to master loops concept. The preservice teachers would see 
the concept throughout their programming courses again and again. This study is limited 
to three weeks part of preservice teachers’ whole experience. In addition to this, visu-
alization was add on to the classroom instruction. This might be counted as limitation. 
Whole instruction could be designed based on visualization. However, this approach 
might have its disadvantages too. The teachers/instructors need to radically change their 
usual way of teaching. They might be less willing to adapt radical changes. Future stud-
ies can explore this hypothesis. Moreover, the study included 53 participants. Future 
studies can be done with more participants. 
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