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Abstract. Computational thinking (CT) has been introduced in primary schools worldwide. 
However, rich classroom-based evidence and research on how to assess and support students’ CT 
through programming are particularly scarce. This empirical study investigates 4th grade students’ 
(N = 57) CT in a comparatively comprehensive and fine-grained manner by assessing their Scratch 
projects (N = 325) with a framework that was revised from previous studies to aim towards en-
hancing CT. The results demonstrate in detail the various coding patterns and code constructs the 
students programmed in assorted projects throughout a programming course and the extent to 
which they had conceptual encounters with CT. Notably, the projects indicated CT diversely, and 
the students altogether encountered dissimilar areas in CT. To target the acquisition of CT broadly, 
manifold programming activities are necessary to introduce in the classroom. Furthermore, we 
discuss the possibilities of applying the assessment framework employed herein to support CT 
education through Scratch in classrooms.
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Introduction

Computational thinking (CT) has been increasingly incorporated in primary schools 
across the world often by means of graphical programming (Bocconi et al., 2018; Man-
nila et al., 2014). Using Scratch to design interactive games, animations, and stories that 
are thematically connected to different curricular areas is especially popular among the 
age group (Garneli et al., 2015; Moreno-León et al., 2017). Being a new topic in pri-
mary education, however, CT involves areas that necessitate research-based pedagogi-
cal knowledge. In particular, it is vital to more intricately spotlight what CT students 
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can gain in various ways and how their CT learning could be pedagogically supported 
while programming (Lye and Koh, 2014; Shute et al., 2017). On a related note, although 
previous literature (e.g., Barr and Stephenson, 2011) describes what kinds of skills and 
knowledge CT involves, the term still has no universally accepted depiction. Adopting a 
relatively extensive view of CT (as opposed to an overly concise one merely embodying 
tool-specific programming skills) enables investigating skills that are potentially trans-
ferable across problem-solving domains. To that end, this study investigates primary 
school students’ CT deeply based on Scratch projects they programmed in naturalistic 
classroom situations. In the process, we also aim to develop ways to support students’ 
learning of CT in this context.

These aspirations led us to “assessment for learning”, in particular, formative as-
sessment, which can support students’ learning performance and their beliefs about 
their own capabilities (Black and Wiliam, 1998; 2009). When outlining CT rather 
extensively, though, various types of programming contents in Scratch can indicate 
CT (Seiter and Foreman, 2013). Our review of relevant studies shows that although 
several assessments of CT in Scratch projects exist, they mostly cover contents that 
indicate partial areas in CT, such as its certain core concepts or principles in particular 
learning scenarios.

The objective of this study is to gain rich empirical insight of 4th grade students’ CT 
by assessing Scratch projects that they designed during a programming course. In order 
to assess the students’ CT extensively through their Scratch projects and set a stage to 
facilitate known learning benefits in formative assessment in the classroom in the future, 
we were encouraged to build on existing works to revise an especially profound assess-
ment framework. This article reports on the preparatory use of the framework in assess-
ing programming contents and indicative CT in the students’ different kinds of Scratch 
projects in a comparatively comprehensive and fine-grained manner. By comprehensive-
ness, we refer to the wide-ranging categorization embodying what students can learn in 
CT and how manifold programming contents indicate CT. By fine granularity, we refer 
to the way of systematically analyzing small-scale programmatic evidence in Scratch 
projects for advantages in research and learning-support alike. We evaluate and discuss 
the significance of the attained evidence in CT education and the next steps of develop-
ing formative assessment of CT in schools.

Assessing CT in Scratch Projects

Positioning CT in Primary Education

The term computational thinking (CT) was popularized by Jeannette Wing (2006; 
2011) as “the thought processes involved in formulating a problem and expressing its 
solution(s) in such a way that a computer – human or machine – can effectively carry 
out.” CT provides competencies for adapting to the digitalized world and solving prob-
lems across disciplines by applying computational tools, models, and ideas (Denning 
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and Tedre, 2019). Broadly viewed as a competence that, apart from mere programming 
skills, involves broader concepts and practices, such as algorithms, data, and problem 
decomposition, which describe manifold skills and areas of understanding that are ex-
pected to transfer to different problem-solving domains (Angeli et al., 2016; Barr and 
Stephenson, 2011; Csizmadia et al., 2015; Grover and Pea, 2018; Hsu et al., 2018; Shute 
et al., 2017). Amid continuing efforts to conclusively capsulize the exact nature of CT, 
we define the kinds of skills and knowledge it can involve in a relatively inclusive rather 
than overly condensed manner.

In several countries, CT or its proximal topics (e.g., informatics, computer science, 
programming) are integrated in the learning of different curricular areas (Heintz et al., 
2016). At the primary school level, block-based programming has been an especially 
popular way to promote CT (Grover and Pea, 2013). Meaningful learning can occur in 
multidisciplinary project-based settings in which students have autonomy regarding, for 
instance, how they learn (Lonka, 2018). Scratch has been often used in teaching and 
learning practice, for example, through creative game design, storytelling, or animation 
while the substance of other curricular areas is being processed (Garneli et al., 2015; 
Moreno-León et al., 2017).

The focus of this study is in assessment for learning, which aims to promote learning 
rather than merely rank or certify it. In particular, the processes associated with formative 
assessment can support classroom learning (Black and Wiliam, 2009). Programming is 
cognitively complex, and support for learning CT through programming is vital for mak-
ing learning more effective (Lye and Koh, 2014). However, CT involves several aspects, 
and it should be assessed from several entry points (Grover et al., 2017). Earlier research 
has indicated that assessing students’ Scratch projects is among essential entry points be-
cause programmed projects are rich, concrete, and contextualized approximations of the 
students’ conceptual encounters with CT (Brennan and Resnick, 2012; Román-González 
et al., 2019; Seiter and Foreman, 2013). Therefore, whilst adopting a comparatively inclu-
sive view of CT, in the following sections we review previous studies on the assessment 
of students’ Scratch projects from the viewpoint three formative assessment processes: 
what to teach and learn (i.e., clarifying learning objectives), estimating students’ current 
level of understanding, and providing relevant feedback (Black and Wiliam, 2009).

Assessment for Learning in Scratch

What to Teach and Learn
CT can be concretized in programming through core educational principles, such as 
“algorithm control structures”, “parallel execution”, and “Boolean logic”. These prin-
ciples can be manifested in Scratch in at least three categories: code constructs, coding 
patterns, and other programming contents. (Fagerlund et al., 2020.)

Code constructs, akin to language primitives, such as those for controlling the flow 
in programs (i.e., “sequence”, “conditional”, “loop”) can be observed directly as Scratch 
blocks. For instance, Moreno-León et al. (2015) used Dr. Scratch, an automated analysis 
tool, to examine the presence of sequences of blocks, “repeat” blocks and “if” blocks in 
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Scratch projects. Other studies (Basu, 2019; Franklin et al., 2013; 2017; Maloney et al., 
2008; Meerbaum-Salant et al., 2013) additionally examined projects manually for cer-
tain blocks representing constructs, such as “initialization” and “coordination.”

Additionally, akin to classes, projects can comprise coding patterns: semantically 
meaningful combinations or templates of constructs that achieve specific functionalities 
(e.g., animation of size). For instance, the Progression for Early Computational Think-
ing (PECT) model assesses project-wide patterns, such as “Maintain score” and “User 
interaction”, which incorporate different types of templates that can be programmed by 
combining specific code constructs in specific ways (Seiter and Foreman, 2013). Frank-
lin et al. (2013; 2017), Ota et al. (2016), and Seiter (2015) examined similar patterns to 
those in PECT, such as “Count up score” and “Multi-sprite synchronization.”

Concerning the more social elements of programming and metaprogrammatic ele-
ments, projects can also contain other programming contents, such as “project use in-
structions” and the “appropriate naming of sprites” (Basu, 2019; Funke et al., 2017; 
Wilson et al., 2012).

Manipulating such contents in Scratch simultaneously fosters and demonstrates CT 
(Brennan and Resnick, 2012). Learning goals and intentions (Black and Wiliam, 2009) 
regarding  students’  skills  and  areas of  understanding  in CT can  thus be  clarified  in-
directly as meaningful and reasonably demanding contents for students to creatively 
design in projects. Aggregating the various contents distributed among previous stud-
ies and assessment frameworks can establish systematic and comprehensive (albeit 
not necessarily all-encompassing) coverage of CT-fostering programming contents in 
Scratch.

Estimating Current Level of Understanding
Students’ learning can be enhanced by guiding them to perceive a gap between set learn-
ing goals and their own present skills or understanding. Information regarding this gap 
can be generated by students, peers, or instructors. (Black and Wiliam, 1998.) In CT, 
evidence that points towards students’ skills and understanding can be elicited by ex-
amining what they have programmed in their projects (Grover and Pea, 2013; Román-
González et al., 2019; Seiter and Foreman, 2013). More tangibly, programmed contents 
in projects indicate conceptual encounters with CT’s core educational principles. How-
ever, it is crucial that learning tasks generate and display relevant evidence of learning 
(Black and Wiliam, 1998). Evincing CT through programmed projects can be risky for 
two reasons.

First, static artifacts are not direct measurements of thinking. In particular, block-
based programming environments can present validity concerns, as students can drag 
and drop blocks without knowing what they are doing (Lye and Koh, 2014). Hence, 
observational methods should involve rigorously considering the circumstance of the 
evidence. Analyzing contents primarily through coding patterns improves validity by 
ensuring that the implemented blocks achieve semantically meaningful computational 
models (Seiter and Foreman, 2013).

Second, Scratch enables various project design opportunities: projects can be de-
signed in different genres, such as animation, game, and story (Maloney et al., 2010), 
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which typically contain different programmatic characteristics and, respectively, indica-
tions for CT (Moreno-León et al., 2017). Programming can also be effectuated through 
activities such as remixing or debugging preexisting contents or designing something 
new (Lee et al., 2011). Moreover, individual experiences may vary when students are 
activated as instructional resources for each other, for instance, in pair programming. 
Such contextual factors influencing what constitutes relevant evidence of learning may 
increase the more students are activated in owning their own learning. (Black and Wil-
iam, 2009.) In summary, to advocate the relevance of the examined contents, it is prefer-
able to consider the context of the contents (e.g., recognizing the learning assignment) 
and interpret their semantical significance rather than merely technical one.

Providing Feedback
After a gap between learning goals and the students’ current knowledge has been high-
lighted, the students are guided to take action to close that gap (Black and Wiliam, 
1998). While students program, meaningful and authentic feedback can be provided 
with respect to the contents in their projects. The feedback should facilitate the correc-
tion of specific errors or poor strategies with suggestions on how to improve the work 
(e.g., by providing scaffolding), based on individual progress toward achieving goals 
(Black and Wiliam, 1998). In this respect, alternatively to evincing the most proficient 
segments in students’ projects, assigning scores, and providing generic feedback (see 
Moreno-León et al., 2015; Seiter and Foreman, 2013), project contents can be examined 
“micro-programmatically” (e.g., Vihavainen et al., 2013).

In Scratch, the scripts of a project can comprise individually instantiated coding 
patterns and their underlying code constructs. For instance, sprites’ properties, such as 
location or size, are animated distinctly from one another (see Franklin et al., 2013, 
2017; Meerbaum-Salant et al., 2013). Such fine-grained evidence, that is, specific micro-
programmatic project parts,  in fact, benefits all  three formative assessment processes: 
operating as meaningful learning goals for students to program in projects, semantically 
meaningful evidence of their understanding, and meaningful targets for feedback. How-
ever, examining instantiated coding patterns is an overlooked analytical approach when 
applied to CT-fostering programming contents comprehensively and systematically.

The Current Study

The purpose of this study was to gain rich empirical insight of 4th grade students’ 
(N = 57) CT by assessing the programming contents in Scratch projects (N = 325) that 
they designed during a programming course. Prompted by the means established above 
to attain rich evidence of students’ CT through their Scratch projects along with setting 
a stage to facilitate formative assessment in the future, we were encouraged to revise 
an assessment framework based on previous studies. The research questions (RQs) are 
as follows:

What programming contents did the students’ Scratch projects contain?(1) 
What core educational principles in CT did the students conceptually encounter?(2) 
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Methods

Research Design

This empirical study had an embedded single-case design. The studied case was an in-
troductory programming course organized for primary school students, and the units of 
analysis were the Scratch projects that the students made during the course. This study 
intended to immerse in the particular case deeply rather than acquire data to generalize 
or represent the population for widespread decision-making. Previous studies have as-
sessed students’ Scratch projects in this age group and in compulsory education (e.g., 
Funke et al., 2017). However, this study adopted novel theoretical and analytical ap-
proaches that contributed in uncovering in-depth knowledge. This knowledge, attained 
from one situational context, was intended for wider comparison, creation of theoreti-
cal models, stimulation of hypotheses for experimentation, and further methodological 
development. On that account, the employed research method was that of a descriptive 
case study. Description relied on the theoretical premises regarding the assessment of CT 
in Scratch projects, as outlined in the previous sections. The main theoretical concepts 
and developed framework were determined through a thorough literature review to rein-
force external and code construct validity. (Yin, 2012.)

Participants

The students of three 4th grade classes from an average-sized Finnish municipal primary 
school participated in this study. The classes were selected because the students were 
surveyed as generally inexperienced at programming. Also, a prequestionnaire con-
firmed that the students were largely novices at programming, apart from a few previous 
programming experiences. The classes comprised 22, 21, and 26 students, from which 
57 of them (62% girls and 38% boys) had informed consent provided by their legal 
guardians. The students were between 10 and 11 years old during data collection. Two 
of the participants were nonnative Finnish speakers. The classes also included students 
with special needs who participated in the programming activities but chose not to par-
ticipate in data collection.

Data Collection

The data collected in this study was the Scratch projects the students programmed 
during a programming course that followed general guidelines in the Finnish primary 
school core curriculum. Each class attended the course separately one lesson per week 
for 4 months (13 lessons in total) in early 2017. The course was piloted with one class 
in another school to estimate and develop the employed pedagogical methods and data 
collection methods. The lessons were conducted mainly in the school’s computer lab, 
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which had 15 functional computers. The teachers grouped the students (1-3 students per 
group) at the start of the course based on perceived shared skill levels or similar inter-
est areas. The first author was the primary instructor of the course due to the regular 
teachers’ lack of experience in programming education. The regular teacher of each 
class was always present, and a research assistant and learning assistant for special 
needs students were present during most of the lessons. All the teachers participated in 
guiding the students’ work.

The course design was inspired by previous studies (Grover et al., 2014; Meerbaum-
Salant et al., 2013). As the students were relatively young and new to programming, 
the main objective of the course was to introduce fundamental Scratch features and CT 
through perceivably introductory programming contents and activities to the students. 
The course began by discussing applications of programming in the world and “un-
plugged” exercises over one lesson. Subsequently, lesson-specific learning goals were 
targeted by programming Scratch projects (see below), which included selections from 
the Creative Computing guide (Brennan et al., 2014).

The student groups programmed different kinds of projects during the course (Ta-
ble 1). “Tutorial”, “Debugging”, and “Remix” projects involved preset objectives that 
guided toward designing, remixing, or debugging specific contents. Typically, these les-
sons began with a teacher-led demonstration of a feature (e.g., sprites sprint-racing) or 
an incomplete program that required implementing or error-correcting particular con-
tents (e.g., “event-sync” code construct as the opening shot). Subsequently, the students 
were guided to follow the tutorial or remix and complete and creatively extend their 

Table 1
Projects the students programmed during the course used as data

Project Name Type Objective Key contents N

P1 “Scratch surprise” Design Create and modify sprites and 
scripts with blocks.

Scratch GUI (e.g., 
logging in, using blocks); 
experimenting

  33

P2 “Cat dance” Tutorial Program a dance performance. Scripting, iteration, 
“sequence”, “event”

  28

P3 “10 blocks” Design Plan and program your own series 
of instructions.

Planning, animating, 
“wait”, “loop”

  22

P4 “Debugging”, 
part 1

Debug Debug up to four faulty programs. Code-reading, debugging   64

P5 “Dinosaur race” Remix Remix a faulty program and fix an 
animation.

Remixing, “initialization”, 
“event-sync”, “parallelism”

  26

P6 “Riddler game” Design Program a game that asks 
questions, receives keyboard 
inputs and checks the correctness 
of answers.

“Variable”, “conditional”, 
“user interaction”

  30

P7 “Debugging”, 
part 2

Debug Debug up to four faulty programs. Code-reading, debugging   96

P8 Final projects Design Design an interactive game, story, 
or animation.

Planning, creative design   26

Total: 325
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own project. By contrast, the programmatic requirements of “Design” projects were less 
rigorously set: the students imagined and programmed projects within certain negotiated 
boundaries (e.g., a riddler game), having an opportunity to search for ideas from the 
Internet and, with projects P3 and P8, plan their projects with pen and paper over one 
lesson. All projects that the students had assigned to provided studios once the course 
ended were collected as data. Projects made outside the lessons were excluded because 
they were mainly incomplete drafts.

Data Analysis

Revising the Rubrics
As asserted previously, our priority was to aggregate manifold programming contents 
indicating CT thoroughly and systematically in Scratch projects. To prioritize gaining 
especially rich insight on the two essentially interconnected content areas, individu-
ally instantiated coding patterns and their underlying code constructs, the examinations 
of “other programming contents” (see Appendix C) are omitted here. We selected the 
PECT model’s (Seiter and Foreman, 2013) voluminous rubrics as a baseline for our 
rubrics (described below). Several revisions to expand and regularize PECT’s rubrics to 
patterns and constructs and convert its project-wide categorization to an instance-based 
one were made based on other previous studies, our initial reviews of the students’ proj-
ects, and our personal experiences in Scratch as follows.

Concerning coding patterns, for instance, “Animate Motion” and “Animate Looks” 
were merged because sprites’ all properties (e.g., position, size) are animated with the 
same constructs. “Conversate” was revised into “Speech and Sound” to examine sepa-
rately programmed conversations using text, sound, or both. “Maintain score”, which 
originally focused on manipulating score-like integers, was revised into a more general 
“Data manipulation” to also reveal manipulations of other variables, such as strings (Er-
icson and McKlin, 2012). Moreover, we added new ways to program the patterns, such 
as video/audio sensing (see Moreno-León et al., 2015) and extensions (e.g., “Makey 
Makey”) in “User interaction.”

Concerning code constructs, for instance, we renamed “sequencing and looping” to 
“control” (Moreno-León et al., 2015) and included conditional structures in it (Grover 
and Pea, 2018). “Parallelism” was split into parallelism “within” and “across” sprites 
(Meerbaum-Salant et al., 2013). “Initialization” was revised to function correctly on 
any event if a sprite was hidden until then. “Coordination” with timing was revised to 
function correctly with any block with a duration. We also added new Scratch-specific 
constructs: “pen” (Ericson and McKlin, 2012), “I/O” (Moreno-León et al., 2015), and 
“make-a-block” (Basu, 2019; Ota et al., 2016).

Analyzing Programming Contents
In short, the analysis of programming contents in Scratch projects began from examin-
ing individually instantiated coding patterns. Each instance was analyzed in terms of 
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what code constructs established said instance, and this combination determined the 
instance’s type. Each of these contents demonstrated students’ conceptual encounters 
with CT. This analysis is next described in more detail (the analysis rubrics are presented 
in appendices as supplementary online material1).

The coding patterns (Table 2) served as a starting point for categorizing the scripts 
and Scratch blocks of each sprite. Specific code constructs revealed the presence of an 
instance: for example, “property” code constructs revealed “Animation” pattern instanc-
es in a sprite (e.g., “show” and “hide” blocks revealed animations of visibility, see Ap-
pendix A). Similarly, “say” or “think” blocks revealed text-based “Speech and sound” 
instances, while “play sound” or “play note” blocks revealed sound-based ones.

Each uncovered instance was then keyed separately for all of its relevant underlying 
code constructs represented as Scratch blocks (Appendices A and B). The state of the 
constructs was keyed as either present (1) or missing (0) or on a 3-point nominal scale 
(see example in Fig. 1). Each uncovered instance in each sprite (e.g., animation of vis-

1 See link in https://orcid.org/0000-0002-0717-5562

Table 2
Coding patterns in Scratch projects

Coding pattern Instances

Animation (AN) Modify background, costume, visibility, size, layer, an effect, facing direction, or 
position with timing, looping, state-sync, or event-sync

Speech and sound (SS) Text, sound, or text-sound monologues and dialogues
Collision (CO) Test if, repeat until, or wait until colliding with another object
Data Manipulation (DM) Use/modify, test separately, loop until, or wait until a value in a Scratch variable, 

a named variable, or a named list
User Interaction (UI) Green flag, click/key press, mouse use, keyboard input, video/audio, extensions

Fig. 1. Code constructs and resulting types for two example coding pattern instances. 
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ibility for Dog) was considered a single instance unless the sprite’s scripts comprised 
different “control” or “coordination” constructs for separate instances of the same type. 
In such cases, a new instance was detached from the original one (see example in 
Fig. 2). Similarly, the “Speech and Sound” instances in each sprite were considered 
monologues, but monologues in different sprites were merged if they established a 
dialogue with the “parallelism” or “coordination” constructs.

The resulting construct combinations for coding pattern instances enabled deter-
mining which particular instance type (e.g., “Timed animation” [AN–1], “Time-sync 
dialogue” [SS–2], see Appendix A) the programmed instance was if the minimum re-
quirements for the required constructs in the instance types were met. The instance was 
defined as dysfunctional  if  the construct combinations did not meet  the minimum re-
quirements of any instance type.

The categorization resulted in a collection of different individually instantiated pat-
terns and their underlying constructs that established the scripts in each sprite in each 
project. As the categorization focused on directly observable Scratch blocks following 
rigid rule-based coding (i.e., not requiring interpretation of the contents), it was per-
formed by the first author by examining screenshots taken of the program code in each 
project using Atlas.ti software.

To analyze only relevant programming contents, the scripts in Debug and Remix 
projects (see Table 1), which comprised premade block segments that the students re-
ceived for modification, were categorized only for segments that the students had cre-
ated or changed. Tutorial, Debug, and Remix projects, which had pre-set objectives 
(e.g., designing specific contents), were analyzed according to how much intended con-
tent the students programmed, how the projects varied relative to that content, and what 
other content the projects comprised. Design projects, which were more ill-structured 
regarding programmatic prerequisites, were described for the content the students pro-
grammed in them.

Fig. 2. Left: an instantiated “Timed animation (location)” coding pattern. Right: the location 
modification on the bottom (i.e., ”change x by 10“) is detached as a new instance because it 
is coordinated with another code construct, that is, “event-sync”.
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Interpreting Conceptual Encounters with CT

Based on our prior work in mapping Scratch programming contents and CT (Fagerlund 
et al., 2020), conceptual encounters with the core educational principles in CT’s con-
cepts and practices (Appendix C) were logged for each student through the functional 
and self-designed coding pattern instances and code constructs in these instances. For 
example, each “Animation“ coding pattern instance and each “variable (state 1)” code 
construct logged a conceptual encounter with the “Abstractions of properties” (Abstrac-
tion) core educational principle. Resultantly, each student’s personal project portfolio 
(see also Brennan & Resnick, 2012), which was aggregated by the investigator from 
all projects the student had submitted, included a positive whole number for each CT-
fostering content type.

First, the content types indicating conceptual encounters were examined if they were 
present in the portfolios. To determine variation in the diverse content types (e.g., the 
student could have implemented particular constructs more often than particular instanc-
es that both indicate an encounter with a specific principle), comparability needed to be 
established: coefficients of variation were computed as a quotient of mean and standard 
deviation for each content type.

Additionally, to provide an overview of each conceptual encounter, some of which 
were indicated by potentially more than one content type (e.g., “Sprites’ properties”, 
“Variables”, and “Lists” all indicate an encounter with “Abstractions of properties“), 
the presence of each content type within each core educational principle was totaled. 

Fig. 3. Analysis of programming contents in Scratch projects in this study.
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Subsequently, a mean presence (%) and average coefficient of variation (%) was com-
puted for encounters in each core educational principles as a whole.

An overview of the analysis is portrayed in Fig. 3. In summary, any and all individu-
ally coding pattern instances (see Table 2) were examined from each Scratch project. 
Each instance was analyzed in terms of what relevant code constructs established it, 
and this combination determined the instance’s predetermined type (see Appendices A 
and B). Each of these contents demonstrated the CT the authoring student conceptually 
encountered (see Appendix C).

Results

Programming Contents in Students’ Scratch Projects (RQ1)

Tutorials
 “Getting Started with Scratch” (P2) was a Tutorial that was accessed through the Help 
menu directly in the Scratch editor (see examples in Figures 4 and 5). All submitted 
projects (N = 28) comprised the instructed “Green flag” (UI–1), “Time-sync animation 
(location)” (AN–1) and “Sound monologue” (SS–1) instance types, and all projects but 
one of them contained the instructed “Text monologue” (SS–1). None of the projects 
comprised the remaining instructed instance types, indicating that the projects were 
incomplete or that contents were removed after completing the tutorial. Therefore, the 
final median and mode completion rates of  the  tutorials were 50% (four of eight  in-
stances). However, each project entailed uninstructed instances (Mdn = 2, Max = 7) in 
the “Animation” (total: 24), “Speech and sound” (5), and “User interaction” (1) pat-
terns, indicating that the students had proceeded to custom design halfway through the 
tutorial or after having removed contents from the finished tutorial.

Fig. 4. A fully completed “Getting Started with Scratch” tutorial and the instances as instructed by it.
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Remixes
In the P5 projects (N = 26), the students were tasked to remix an incomplete project and 
add the “Event-sync animation (location)” (AN–5) instance type with the “initialization” 
code construct for two separate sprites. Twenty-two (85%) of these projects met these 
requirements whereas the remaining four projects (15%) comprised the “event-sync” 
construct for starting scripts that entailed location animations, but the locations were not 
initialized (see comparison in Fig. 6).

Similar to the P2 (Tutorial), 69% of the projects comprised other instance types than 
those that the students were minimally required to implement (Mdn = 3, Max = 9) again 
exclusively in the “Animation” (total: 39), “Speech and sound” (24), and “User Interac-
tion” (3) patterns.

Fig. 5. A half-completed tutorial including two uninstructed instances.

Fig. 6. Left: the initial problem. Center: “Event-sync animation (location)” (AN–5) with 
“initialization.” Right: “Event-sync animation (location)” (AN–5) followed by “Looped ani-
mation (location)” (AN–2) with no “initialization”.
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Debugging Challenges
Debugging challenges parts one (P4) and two (P7) each comprised four faulty projects, 
which the students were guided to begin correcting, potentially submitting all four of 
them. In contrast to P7, the numbers of submitted projects decreased drastically in P4 
(Table 3), indicating that many students struggled with P4.3 (looped animation of loca-
tion with move and bounce).

In P4.1, the students were challenged to implement “initialization” to preexisting 
animation of location. Most groups submitted incorrect responses, for example, by pro-
gramming the sprite to glide back to its starting location prior to program termination. In 
P4.2, although all submitted projects comprised a programmatically functional instanti-
ated “Animation (direction)” pattern, complete evaluation of correctness required manu-
ally verifying that the sprite rotated 360 degrees. In P4.3, the two incorrect responses 
lacked the “bounce” code construct.

In P7.3 and P7.4, the challenge was to change the parameters in preexisting “Test 
collision in loop” (CO–2) and “Loop until costume #” (DM–3) instance types. Manual 
observation was again required to verify the correctness of the parameters. Only one 
response in each project respectively was incorrect, comprising “repeat” blocks instead 
of conditional looping.

Design Projects
The first  type of Design project  that  the  students programmed during  the course was 
themed as “Riddler games” (P6, N = 30). In these projects, the students were instructed 
to design a game that asks questions, receives keyboard inputs as responses, and evalu-
ates the correctness of the answers. Programmatically, the game minimally required a 
“Keyboard input” (UI–4) and an appropriate instance type in “Data Manipulation” to 
test a stored value in the “answer” variable (i.e., DM–2, DM–3, or DM–4). All but 
two projects (93%) comprised both instances. These two projects involved “ask” blocks 

Table 3
P4 and P7 debugging projects solved by student groups

Project Debugging objective Submitted
N Correct Solved

P4
4.1 “Timed animation (location)” (AN–1) with “initialization” 27   19% 19%
4.2 “Animation (direction)” (any instance type) with 360° rotation(*) 25 100% 93%
4.3 “Looped animation (location)” (AN–2) with “move” and “bounce” 10   80% 30%
4.4 “Text–sound monologue” (SS–1)   3 100% 11%
P7
7.1 “Event-sync animation (costume)” (AN–5) with “repeat” 27   96% 96%
7.2 “Event-sync animation (stop)” (AN–5) in four different sprites 25 100% 93%
7.3 “Test collision in loop” (CO–2) with “Nano” parameter(*) 23   96% 81%
7.4 “Loop until (costume #)” (DM–3) with correct condition to finish looping(*) 21   95% 74%

*The rubrics themselves did not verify the use of correct parameters.
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for question-asking and “if-else” blocks for answer checking, but these blocks were 
unscripted,  rendering  them dysfunctional  and  indicating  that  the projects were unfin-
ished. All functional answer tests were conditional structures in “Test value” (DM–2). 
In addition to the instructed requirements, all the projects entailed other instance types 
(Mdn = 5, Max = 11) exclusively in the “Animation” (total: 55), “Speech and sound” 
(62), and “User Interaction” (49) patterns.

The students had more creative freedom for the other Design projects. These proj-
ects included “Scratch Surprise” (P1), the students’ first self-designed Scratch project; 
“10 Blocks” (P3) as exercises in script planning; and interactive games, stories, or 
animations  (P8) as final project  assignments. The division of  functional  instances  in 
these projects (Table 4) revealed that “Animation” was substantially the most com-
monly instantiated pattern (49% of all instances), followed by “User Interaction” (25%) 
and “Speech and sound” (20%). “Data Manipulation” (4%) and “Collision” (2%) were 
rarely instantiated.

The P1 projects (N = 33) typically comprised various blocks as nascent scripts but 
without events to start them (see examples in Fig. 7). As a result, 58% of all instances 
were dysfunctional, suggesting that the students did not spontaneously grasp event-driv-
en scripting entirely or merely experimented with different features. The most common 
functional instance types were “Monologue” (SS–1) (total: 28, in 45% of the projects), 
“Green flag” (UI–1) (total: 22, in 42%), and “Timed animation” (total: 21, in 30%).

Table 4
The numbers of instantiated coding patterns in the three open-ended design projects  

that students programmed during the course

Coding pattern Instantiated in open-ended design projects Total
P1 “Scratch surprise” 
(N = 33)

P3 “10 blocks” 
(N = 22)

P8 Final projects 
(N = 26)

Animation 83 77 417 577
Speech and sound 64 50 127 241
Collision   3   0   36   39
Data Manipulation 17   0   40   57
User Interaction 30 27 200 257

Fig. 7. Sample unscripted blocks from three P1 projects.
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The P3 projects (N = 22) had typically one or two sprites performing simple behav-
iors, such as introducing themselves with “Timed animation” (AN–1) (total: 45, in 86% 
of the projects), “Monologue” (SS–1) (total: 39, in 86%), and “Click/Key press” (UI–1) 
(total: 15, in 59%) (see Fig. 8). However, in contrast to the P1 projects, only 12% of all 
instances in these projects were dysfunctional, indicating that the students had begun 
internalizing the idea behind scripting.

The final project assignments, the P8 projects (N = 26), entailed thematically and 
programmatically versatile game, animation and story-like projects (see Fig. 9 and 

Fig. 8. An example P3 project.

Fig. 9. The components and scripts in a relatively complex P8 project.



Assessing 4th Grade Students’ Computational Thinking through Scratch ... 627

Fig. 10). 9% of the instances in these projects were dysfunctional, suggesting that the 
students still struggled with implementing contents or that the projects were not en-
tirely finished. Of the functional instance types, the most common were “Event-sync 
animation” (AN–5) (total: 258, present in 89% of the projects), “Green flag” (UI–1) 
(total: 113, in 92%), and “Monologue” (SS–1) (total: 57, present in 81% of the proj-
ects).

Project Portfolios
The students’ portfolios (N = 57) contained between 2 to 14 projects (Mdn = 10), sug-
gesting that few students participated in designing only two projects or that all portfo-
lios did not include all programmed projects. Nevertheless, the portfolios demonstrated 
the varying numbers of instance types that the students programmed during the course 
(Table 5). The most common types were “Event-sync animation” (AN–5), “Monologue” 
(SS–1), and “Green flag” (UI–1). More than half of the instance types received a median 
of zero, potentially highlighting more advanced contents.

Similar statistics were computable for the code constructs as well, but their high 
number rendered reporting inappropriate; however, the most common constructs 
were “sequence” (Mdn = 55), “repeat”/”forever” (Mdn  =  22),  and  “green  flag” 
(Mdn = 16).

Fig. 10. The components and scripts in a relatively simple P8 project.
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Table 5
Minimum, maximum, and median numbers of instance types in students’ project portfolios

Instance types of coding patterns Numbers in project portfolios
Min Max Median

Animation (AN)    
1–Timed animation
2–Looped animation
3–State-sync animation (repeat until)
4–State-sync animation (wait until)
5–Event-sync animation

0
0
0
0
0

  32
  20
  11
  11
146

4
6
0
0
9

Speech and sound (SS)
1–Monologue
2–Time-sync dialogue
3–State-sync (repeat until) dialogue
4–State-sync (wait until) dialogue
5–Event-sync dialogue

2
0
0
0
0

  18
    6
    0
    7
  15

7
0
–
0
0

Collision (CO)
1–Test collision separately
2–Test collision in loop
3–Wait for collision

0
0
0

    5
    5
    3

0
1
0

Data manipulation (DM)
1–Use/modify variable
2–Test value
3–Loop until value
4–Wait for value

0
0
0
0

    6
    5
    2
    0

0
1
1
–

User interaction (UI)
1–Green flag
2–Click/key press
3–Mouse use
4–Keyboard input
5–Video/audio
6–Extensions

1
0
0
0
0
0

  25
  20
    4
    5
    0
    0

6
2
0
1
–
–

Missing Code constructs
Examining code constructs in the instances revealed that the P1 projects were often 
missing the “control” and “coordination” constructs (Table 6), which essentially ren-
dered most instances dysfunctional. Although the lack of these constructs decreased 
greatly in subsequent projects, they were still occasionally missing, indicating recurring 
difficulties or unfinished projects. “Initialization” remained as a frequently missing con-
struct throughout the course.

Students’ Conceptual Encounters in CT (RQ2)

According to the students’ conceptual encounters in CT, as indicated by the program-
ming contents in their project portfolios (Table 7), all the students re-instantiated the 
coding patterns and code constructs (Patterns) and decomposed the projects into smaller 
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parts (Problem decomposition). Nearly all (>90%) the students designed complex proj-
ects (Abstraction), implemented algorithm control structures and “initialization” (Algo-
rithms), remixed (Collaboration), and utilized logical operators (Logic).

Table 6
Code constructs missing from coding pattern instances in the students’ projects

Code construct Missing from projects
P1 P2 P3 P4 P5 P6 P7 P8

“Control”         
 Number   99     8   7   4   2 15     2   30
 Percentage   50%     5%   5%   4%   2%   7%     1%     4%
“Coordination”
 Number 113   15 16   6   3 24     6   54
 Percentage   57%   10% 10%   7%   3% 11%     3%     7%
“Initialization”(*)
 Number   24   41 61 73 37 33 587 131

Percentage   83% 100% 91% 92% 45% 73% 100%   35%

*Only in functional Animation instances.

Table 7
Presence of and variation among conceptual encounters with  

CT’s core educational principles in students’ project portfolios

CT concept/practice Core educational principle Indication in project portfolios
Presence Coefficient of variation

Abstraction Abstractions of behaviors   34% 277.4
Abstractions of properties   63%   66.3
Abstractions of states   54% 291.2

Algorithms Algorithm control   91%   84.6
Procedures   34% 277.4
Starting from initial state   93% 216.6
Recursion     0%    –

Automation I/O devices   33% 152.1
Coordination Coordinating scripts   57% 183.8

Synchronizing scripts   18% 437.5
Creativity Modifying remixes   81%   69.8
Data Storing and manipulating data   50% 240.6
Logic Boolean logic     0%    –

Conditional structures   44% 239.0
Operations   96% 104.5

Modeling and design Algorithm animation   66%   58.6
Patterns Re-instantiated coding patterns/code constructs 100%   23.1
Problem 
decomposition

Decomposition 100%   76.3
Modularized features   63% 153.9
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However, less than half (<50%) of the students abstracted behaviors for sprites (Ab-
straction), used procedures (Algorithms), utilized I/O devices (Automation), and syn-
chronized parallel scripts (Coordination). None of the students implemented recursive 
solutions (Algorithms) or Boolean logic (Logic). Variation was large among instantiat-
ing synchronized parallel scripts (Coordination), demonstrating that the few students 
who encountered this principle did so several times.

Discussion

CT through programming is a new topic in primary education that necessitates evidence-
based pedagogical knowledge, especially regarding assessment that enhances learning 
(Lye and Koh, 2014). This study assessed 4th grade students’ CT by focusing on their 
Scratch projects designed in naturalistic classroom situations. We adopted a compara-
tively inclusive view of what students can learn in CT through Scratch and, by revis-
ing a profound assessment framework, focused uniquely on individually instantiated 
coding  patterns  and  their  underlying  code  constructs,  that  is,  relatively  fine-grained 
evidence. The framework uncovered ample and manifold empirical findings of contents 
programmed by the students and respective indications of their conceptual encounters 
with CT. Next, we discuss the significance that this evidence and employing the assess-
ment framework may have in teaching and learning CT in Scratch, highlighting also 
limitations that our analysis poses. Moreover, we address our outlying goal: developing 
formative assessment systems in schools.

Programming Contents Indicating CT

Coding Patterns
The students implemented instances of “Animation”, “Speech and Sound”, and “User 
Interaction” by far the most, specifying previous findings (Seiter and Foreman, 2013) 
concerning that these patterns are altogether most typically present in students’ proj-
ects. These patterns were also exclusively volitionally designed. Concerning conceptual 
encounters with CT, these contents indicated that the students repeatedly experienced 
abstracting properties and behaviors (Abstraction), designing procedures (Algorithms), 
animating algorithms (Modeling and design), manipulating pre-provided data (Data), 
decomposing projects into coding patterns and code constructs (Problem decomposi-
tion), and reinstantiating patterns and constructs (Patterns). These experiences could be 
expected to occur somewhat naturalistically in Scratch, which is essentially a tool for 
designing interactive media (Brennan and Resnick, 2012).

Perhaps more intriguing and relevant for pedagogical consideration is that, by contrast, 
“Data manipulation” and “Collision” were seldom designed. This influenced the students’ 
conceptual encounters with CT mainly via the relative scarcity of variables, condition-
als, and logical operations (specified in the following sections), which can, however, be 
considered as fairly fundamental computational concepts (Grover and Pea, 2018). An 
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underlying cause may concern the designed types of projects: Moreno-León et al. (2017) 
showed that the presence of certain constructs typically varies between projects in differ-
ent genres. We perceived the students’ projects most akin to animations and stories with 
little interactivity. Therefore, they may have lacked opportunities to explore supplemen-
tary genres, such as simulations or more sophisticated games to which Data Manipulation 
and Collision may be more typical (see Seiter and Foreman, 2013). Facilitating the design 
of such presumably more complex projects can be justified in advanced stages of learning 
CT. These patterns were also not systematically introduced during the course, proposing 
that students may be inclined to volitionally designing familiar contents and that they 
could benefit from deliberate guidance towards unfamiliar contents.

Instance Types
Our systematic categorization of instance types in the coding patterns allowed analyz-
ing the students’ CT in novel detail. The most often instantiated instance types, such 
as “event-sync animation” (AN–5), “monologue” (SS–1), and “green flag” (UI–1) (see 
Table 5), indicated that the students repeatedly experienced coordinating scripts with 
timing and events (Coordination), controlling algorithms by sequencing and looping 
(Algorithms), and modularizing animations and speaker roles (Problem decomposition). 
The prominence of these experiences may stem from the nature of event-driven pro-
gramming in Scratch (Maloney al., 2010) and blocks representing code constructs that 
novice programmers typically first learn to use (see Grover et al., 2014).

Again, perhaps more interesting and allusive in terms of CT pedagogy was that the 
students sporadically experienced utilizing conditional logic and arithmetic operations 
(Logic), abstracting program states with continuous events (Abstraction), coordinating 
scripts with states (Coordination), modularizing data manipulation and collision detec-
tion (Problem decomposition), and utilizing key pressing, clicking, and keyboard in-
puts (Automation). Supplementing prior studies (Burke, 2012; Franklin et al., 2013; 
Maloney et al.,  2008),  these  findings  specified  exactly  how  students  implement  user 
interaction in their projects: in this study, they mainly implemented “green flag” instead 
of different I/O devices, indicating that the projects typically lacked usability and, con-
sequently, resembled projects more for viewing than playing. As discussed above, the 
other features, such as logical operations and collision detection, may be more typical to 
presumably more advanced game-like projects (Moreno-León et al., 2017), proposing 
a need for educators to purposefully introduce game-like features in Scratch and thus 
CT more extensively. Despite few examples in prior studies (e.g., Burke, 2012; Sáez-
López et al., 2016), how the substance of different curricular topics could be processed 
while creatively designing usable Scratch projects, such as games and simulations, is not 
extensively known. The integration of CT in Scratch thoroughly across the curriculum 
at the primary school level presents a fruitful opportunity for pedagogical planning and 
further research.

Several instance types were instantiated infrequently or never. The students therefore 
experienced little if any abstracting program states with discrete events (Abstraction), 
utilizing Boolean logic (Logic), modularizing behaviors with state-sync (Problem de-
composition), and utilizing mouse, video/audio, and extensions (Automation). Devices, 
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such as microphones or extensions like Makey Makey, which could have promoted ex-
ploring these areas in CT, were not available in the school. As the use of various I/O 
devices is key in CT, schools could acquire such physical add-ons for learning purposes, 
and their meaningful use in cross-curricular programming with Scratch could also be 
diversely considered. Implementing mouse use (UI–3) could also again be more typical 
to game-like projects, although the students may have also disregarded it because it was 
not explicitly taught or demonstrated. For the abundance of creative opportunities in 
Scratch, students could be guided to browse existing projects in the Scratch repository 
to gain ideas and knowledge of what possibilities exist altogether. In turn, code blocks, 
such as the “wait until” and Boolean operations, which essentially relate to the other 
above-mentioned less encountered areas of CT, are specified below.

Code Constructs
Several previous studies have examined students’ use of code constructs. However, 
assessing them within instantianted coding patterns allowed us to gain insight regard-
ing their use in diverse creative circumstances that were, perhaps most importantly, 
semantically meaningful, thus also favoring the legitimacy of the examination. Among 
notable findings was that the students’ first projects (P1) comprised mainly unscripted 
blocks and parameter state changes without “coordination”, suggesting that the stu-
dents did not intrinsically grasp controlling algorithms (Algorithms) and coordinating 
them with, for instance, timing (Coordination). Control and coordination became great-
ly more prevalent after the students had completed the scripting tutorial (see Table 6), 
suggesting that direct instruction can be effective for learning these fundamentals of 
programming and an effective way to launch especially introductory courses in schools. 
However, these constructs were occasionally still missing in the final projects (P8), pos-
sibly exhibiting “bad programming habits” (Moreno-León et al., 2015), situated here 
under other programming contents (see Appendix C), and highlighting a need to remind 
students to maintain their use. However, the projects may have been incomplete, sug-
gesting a lack of time and underlining the ever-challenging need for educators to ensure 
sufficient time for designing.

The students typically controlled the programmed instances with “sequences” and 
“loops” and coordinated them with “timing” and “event-sync” (see Table 5). “Condi-
tional looping” (i.e., the “repeat until” block) and “conditional structures” were rare 
in control whereas “state-sync”, “blocking”, and “stopping” were rare in coordination. 
Consequently, the students seldom encountered the different ways to control algorithms 
(Algorithms) and coordinate automated processes (Coordination). Coordination by stop-
ping and blocking may be somewhat exceptional in Scratch: stopping causes repeat-
ing animations  to halt, being relevant mainly  in projects  involving  infinite  looping  in 
“looped animation” (AN–2) (e.g., stopping a sprite from moving forever), and blocking 
is established with the “ask/set and wait” block, being relevant mainly in projects where 
“keyboard input” (UI–4) blocks the execution of an “Animation” pattern (e.g., sprite 
motion temporarily stopped to receive a specific  input). However, because  these con-
tents are relevant for CT, an opportunity remains to consider pedagogically meaningful 
ways to incorporate them in programming tasks.
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Then again, “repeat until” and “wait until”, which represent “state-sync”, are blocks 
that have been noted to be difficult for students to use (Basu, 2019; Seiter and Foreman, 
2013). These blocks can be used, for instance, to synchronize collision detection (e.g., 
CO–2, CO–3) and speaker roles in dialogues (e.g., AN–3, AN–4), highlighting game-
like and story-like projects with colliding and conversing sprites as potentially mean-
ingful – although presumably more advanced – contexts to introduce these constructs. 
However, most students debugged the “repeat until” block correctly in a structured de-
bugging challenge (P7.4), suggesting that such challenges could offer a viable route 
between direct instruction and more open-ended design to teach students to understand 
and use even more advanced constructs.

Concurring with  the  findings  of  Franklin  et al. (2013, 2017), “initialization” was 
missing to varying degrees throughout the course. Most students debugged initialization 
correctly in P4, however, few students demonstrated avoiding it by programming the 
sprite to glide back to the starting location. Initialization was explicitly instructed with 
P5, which may have reflected on its high presence (see Table 6). Nevertheless, we found 
that its presence subsequently decreased and varied, suggesting that a conceptual en-
counter may not self-evidently guarantee gaining a deep understanding. Instead, encoun-
tering contents repeatedly over time can be necessary for enhancing understanding and 
developing more rigorous skills. However, initialization is not mandatory for programs 
to execute in Scratch, contesting whether Scratch facilitates conceptually encountering 
it consistently and demonstrating students’ understanding reliably in it.

The students manipulated exclusively Scratch variables, resulting in no experiences 
with abstracting properties as custom variables and lists and manipulating them (Ab-
straction, Data). Similarly, the lack of arithmetic and Boolean operations revealed that 
the core educational principles in Logic remained largely unencountered. Moreover, the 
students rarely implemented “parallelism”, resulting in sparse experiences in synchro-
nization (Coordination). Variables, Boolean operations, and parallelism have been pre-
viously discovered to be somewhat difficult for students to understand and use (Basu, 
2019; Maloney et al., 2008; Meerbaum-Salant et al., 2013; Seiter and Foreman, 2013). 
In Scratch, parallelism could be introduced meaningfully when synchronizing anima-
tions (e.g., AN–4), establishing dialogues (e.g., SS–2), or waiting for sprites to collide 
(e.g., CO-3) especially in game-like projects. For variables and logical operations, stu-
dents could design Data Manipulation with comparisons (DM–2, DM–3, or DM–4) in, 
for instance, a math quiz project.

Lastly, the students never used “pen”, which can visualize sprites’ movement paths 
(Ericson and McKlin, 2012) and, therefore, animate algorithms (Modeling and de-
sign). However, algorithm animation occurs naturalistically through most programmed 
features in Scratch, contesting the significance of this construct. Moreover, “make-a-
blocks” were nonexistent, and only one student used “cloning” once. Consequently, 
the students mainly never abstracted and programmed custom behaviors or clones’ be-
haviors (Abstraction, Algorithms) or implemented recursive solutions (Algorithms). 
These constructs have been rarely addressed in prior K–9 studies, suggesting that they, 
in addition to other contents that were rarely implemented, may better suit more expe-
rienced programmers.
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Implications for Research and Practice

Despite the prevalent ideology of interest-driven design and discovery-based learn-
ing in Scratch (Brennan and Resnick, 2012), direct instruction and structured debug-
ging could effectively introduce students to fundamental contents and contents which 
they cannot manage to implement or fail to realize as hidden possibilities. These ap-
proaches can be purposeful when students begin to learn scripting in Scratch, become 
later introduced with such fundamental constructs as “initialization”, and are guided 
to realize previously unknown creative opportunities, such as mouse use (UI–3). In-
vestigating how the instruction of particular contents (e.g., user interaction) could 
pave way for students’ constructive less-structured explorations (e.g., moving from 
green flag to other kinds of interactivity) and how students’ interactions with various 
resources in different tasks could lead to successful content implementations could 
be pedagogically informative. The model of scope of autonomy recently introduced 
by Carlborg et al. (2019) could provide a vignette through which to examine such 
issues. Moreover, our results suggest that a mere conceptual encounter may not as-
sure gaining robust knowledge, and learning through implementing contents requires 
repetitions. Therefore, we restate known concerns (e.g., Lye & Koh, 2014) providing 
reason to meticulously examine when and how students gain genuine skills and deep 
understanding in CT while programming.

For learning CT comprehensively, it can be important to design various, presumably 
more complex kinds of projects, including narratives with several speakers, games with 
colliding objects and score count, projects with data manipulation, and, altogether, proj-
ects that are usable with different I/O devices. Creative contexts in which students could 
implement such contents, especially the seemingly more advanced ones (e.g., Data Ma-
nipulation, Collision, coordination by stopping and blocking, custom variables, Boolean 
operations), could be adapted from the rubrics in future empirical studies. This could be 
to examine their feasibility along with considering how to organize compact yet fruitful 
programming courses in schools. It seems especially important for practitioners to find 
time to introduce the potentially more complex contents through more complex projects 
(e.g., games and simulations). The rubrics employed herein may suggest some content 
organization and the results may suggest the kinds of programming capabilities that 
students may gain more intrinsically than they do others. However, developing rigid 
learning trajectories applying, for instance, the Bloom/SOLO taxonomy (e.g., Meer-
baum-Salant et al., 2013) for contents would require more studies. In practice, however, 
it is pedagogically justifiable to offer a “high ceiling” for students to potentially reach 
(Brennan and Resnick, 2012).

Limitations in Analysis

Although programmed artefacts are latent manifestations of thinking, evidence to rein-
force their validity in analyzing CT has begun to emerge. For instance, analysis by Dr. 
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Scratch, whose rubrics were included in our framework, has been convergent with edu-
cators’ grades, various software complexity metrics, and CT tests (Román-González 
et al., 2019). We aimed to reinforce validity by building our rubrics on existing frame-
works and, especially, focusing on semantically meaningful contents that the students 
had assuredly encountered. Nevertheless, finished projects may not have exposed all 
relevant evidence especially gained by ways that deviate excessively from implement-
ing contents (e.g., code-reading, social interactions). Hence, it is vital to complement 
assessment with other methods, such as examining students’ programming processes 
(Basso et al., 2018; Grover et al., 2017).

The students’ conceptual encounters with CT were problematic to analyze deeply 
regarding the quality of gained skills and understanding. For instance, systematically 
investigating learning progressions would have required examining more projects. Ad-
ditionally, this study did not investigate other programming contents, such as “no extra-
neous blocks” (see Appendix C), which could have complemented the findings.

The rubrics covered most blocks available in Scratch 2.0, allowing the assumption 
that they are relatively comprehensive. However, parametric precision (see Meerbaum-
Salant et al., 2013) was not analyzed as it would have required labor-intensive in-
terpreting of sprites’ parameters in different program states. Moreover, large projects 
may include more complex contents, such as synchronized coding patterns (see Seiter, 
2015), which we similarly determined too labor-intensive to categorize. CT also em-
bodies  aspects  that were  difficult  to  instrumentalize  in  Scratch,  such  as  recognizing 
computing in the world (Barr and Stephenson, 2011; Csizmadia et al., 2015). There-
fore, the rubrics should be interpreted as representing core CT-fostering contents and 
not necessarily as all-inclusive.

Approaching Formative Assessment

Learning goals for CT represented as programming contents can be presented rela-
tively comprehensively to students with the rubrics in Appendix C. Educators could 
systematically introduce CT in semantically meaningful contexts through storytelling, 
animating, or game development in more open-ended or structured programming tasks 
that are thematically connected to different curricular areas (Bocconi et al., 2018). As 
exemplified in this work, eliciting evidence of students’ skills and understanding in CT 
can be carried out by assessing students’ Scratch projects. To moderate the hindrance 
concerning slow and laborious manual analysis, assessment could focus only on se-
lected code segments.

The purpose  of  feedback  is  to  stimulate  the  correction  of  specific  errors  or  poor 
strategies with clear suggestions on how to improve the work based on progress toward 
achieving goals (Black and Wiliam, 1998). Feedback in micro-programmatic analysis 
can, firstly, pinpoint errors directly or by hinting when fundamental constructs  (e.g., 
control, coordination, initialization) are missing from a specific instance. Second, more 
generally, it can guide towards improving the current instance types (e.g., relative in-
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stead of absolute parameter changes, synchronized dialogues instead of monologues, 
using different synchronization methods) or provide tutorials demonstrating how to 
design new instance types (e.g., score counting as Data Manipulation, Collision of 
sprites in a game).

Altogether, the formative assessment processes discussed above can be carried out 
by the teacher. However, as highlighted in formative assessment, especially for nur-
turing students’ metacognition and collaboration (Black and Wiliam, 2009), students 
could assess their own or their peers’ projects. Our aspiration is that the rubrics could 
be automated to be employed in a learning-support system that can assess projects ac-
curately and provide timely suggestions (see also Moreno-León et al., 2015).

Conclusions

CT continues finding  foothold  through programming  in schools, although  it has been 
enveloped by a scarcity of research focused especially on supporting learning. Pushing 
from such circumstance, this study used a comparatively comprehensive and fine-grained 
framework aimed towards enhancing especially primary school students’ learning of CT. 
We assessed the programming contents and indicative conceptual encounters with CT 
through 4th grade students’ versatile Scratch projects. The results provided in-depth in-
sight of students’ experiences with diverse areas in CT and the future steps of assessing 
it in Scratch in classroom situations.

To target the acquisition of CT through Scratch broadly in the classroom, it can be 
necessary to introduce manifold programming activities and design various kinds of 
projects apart from merely those that are especially characteristic to the tool. Pedagogi-
cal focus could be placed especially on guiding students towards unfamiliar and more 
advanced contents and creative possibilities. However, returning to familiar contents 
may be necessary occasionally to reinforce skills. Direct instruction and structured 
debugging can accompany the prevalent discovery-based learning approaches. Rather 
worryingly, however, available time to complete very intricate projects during lessons 
can be limited, which accentuates the potential benefit of incorporating programming 
in different curricular areas. Programming courses could thus promote designing us-
able projects that gamify or simulate other curricular topics. Devising and testing such 
learning tasks in practice provides an important aspiration for pedagogical planning and 
further investigation. However, Scratch can be effective for acquiring certain areas in 
CT, which should be learned in various contexts.

Concerning holistic assessment of CT, this study presents a framework for assessing 
particular areas in CT through Scratch projects. Future scholarly works could include 
large-scale reports of CT encountered over periods of time (e.g., entire curricula) and 
detailed investigations into individual students’ experiences. Future studies could espe-
cially examine how the rubrics could be used to support learning in dynamic classroom 
contexts in the ways theorized herein. However, it is altogether important to comple-
ment the assessment of static projects with other methods.
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