
Informatics in Education, 2021, Vol. 20, No. 3, 489–511
© 2021 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2021.20

489

Mediation of Knowledge Transfer in the Transition
from Visual to Textual Programming

Tomáš TÓTH1, Gabriela LOVÁSZOVÁ2

1Department of Informatics, Faculty of Economics and Management,
 Slovak University of Agriculture in Nitra, Slovak Republic
2Department of Informatics, Faculty of Natural Sciences,
 Constantine the Philosopher University in Nitra, Slovak Republic
e-mail: ttoth@uniag.sk, glovaszova@ukf.sk

Received: June 2020

Abstract. In education, we have noticed a significant gap between the ability of students to
program in an educational visual programming environment and the ability to write code in
a professional programming environment. The aim of our research was to verify the methodol-
ogy of transition from visual programming of mobile applications in MIT App Inventor 2 to tex-
tual programming in the Android Studio using the Java Bridge tool as a mediator of knowledge
transfer. We have examined the extent, to which students will be able to independently program
own mobile applications after completing the transition from visual to textual programming
using the mediator. To evaluate the performance of students, we have analysed qualitative data
from teaching during 1 school year and determined the degree of achievement of educational
goals according to Bloom’s taxonomy. The results suggest that students in the secondary edu-
cation can acquire advanced skills in programming mobile applications in a professional pro-
gramming environment, when they have knowledge of visual programming in an educational
programming environment, and a suitable mediator is used to transfer such knowledge into
a new context.

Keywords: knowledge transfer, mobile applications, teaching programming.

1. Introduction

Programming is usually included in the educational content of Informatics teaching if the
goal of teaching is not only to acquire computer skills, but also to learn the foundations
of Informatics as a science. Hromkovič and Steffen (2013) reason why it is important
for the teaching of Informatics in education systems to include real Informatics with its
fundamental concepts. Such Informatics teaching contributes to the understanding the
contemporary world; it contributes to the development of ways of thinking and problem
solving and prepares for further study.

T. Tóth, G. Lovászová490

Programming, as one of the topics of Informatics teaching, makes it possible to
understand the fundamental principle of computer science that information can be
stored as data and can be automatically processed by computer programs. Program-
ming has the characteristics of a fundamental concept as defined by Schwill (1994).
Programming is widely applicable in many contexts both within and outside computer
science and integrates a wealth of phenomena (horizontal criterion). Programming can
be taught on almost every level of understanding (vertical criterion). In Slovakia, the
theme of algorithmic problem solving and programming at the age-appropriate level
is integrated into the curriculum at all levels of compulsory education (primary, lower
secondary and upper secondary education). Algorithmic problem solving belongs to
the field of ordinary intuitive thinking (criterion of sense) and programming teach-
ing turns it to a more exact position. Another feature of programming fundamentality
within the area of Informatics is the historical aspect (criterion of time). Programming
can be clearly seen in the historical development of computer science and is relevant
in the long term.

In the historical context of the programming development, we can see a paradigm
shift from programming as mathematical science to programming as engineering sci-
ence. Programming does not only or mostly mean putting together an abstract algo-
rithm to solve a problem, but also its implementation, testing, installation, and therefore
development of a real product, which is an executable program, whose behaviour cor-
responds with the required specification. A programming language and a programming
environment play an important role in such a concept of programming.

In the literature overview (Tóth, 2017), we have reviewed 37 scientific articles deal-
ing with programming teaching. Articles have repeatedly stated that programming is
difficult to learn, but also to teach. Lack of experience with problem solving, problems
with imagining of abstract concepts, with basic concepts of algorithmization, as well
as problems with syntax and semantics of a programming language were mentioned
as difficulties in the beginning of programming learning. The most common problems
with programming teaching were related to inappropriate teaching methods, poor inter-
action in classrooms, lack of interest, motivation, or even student frustration.

For these reasons, it makes sense to look for teaching means and methods that
are helpful in overcoming the encountered difficulties. This means increasing student
engagement by linking programming with their interests and using educational pro-
gramming environments that have been developed to simplify the process of algorithm
implementation into the resulting executable program. Current trends support the use
of visual programming environments (e.g. Scratch, Alice, etc.) as well as software solu-
tions supported with tangible interfaces (App Inventor, micro: bit, OzoBlockly or other
various tools for programming robotic kits).

Although visual programming environments and visual programming are consid-
ered appropriate in the beginnings of programming learning, in the long run, their ad-
vantages may turn into disadvantages for students over time. In our exploratory re-
search (Tóth and Lovászová, 2018), we have found that the ease of programming of
mobile applications in the App Inventor visual programming environment has been
later limiting for students. Students were limited by possibilities of using and setting

Mediation of Knowledge Transfer in the Transition from Visual to ... 491

properties of components. Modification of code compiled from graphic blocks is also
less flexible, and due to dragging and dropping of graphic blocks also lengthier than
modification of textual code. Moreover, clarity and readability of complex programs is
worse. Students thought they had mastered programming in App Inventor and it was no
intellectual challenge for them anymore. They demanded a more professional way of
programming used in practice for professional application development.

The transition from visual programming to textual programming is a natural step for
a student in programming learning in order to continuously acquire new programming
knowledge and skills. Through this transition, the student makes progress from the
basics of programming to the advanced programming skills. However, we have noticed
that the transition of students from the App Inventor visual programming environment
to the Android Studio textual programming environment is a non-trivial process. We
have noticed a significant “gap” between these two methods of programming, which is
a challenge for both the student and the teacher. While this has a negative impact on the
students’ performance, students’ motivation was not impacted and students’ interest in
a professional way of programming remained.

Although several authors have already addressed the issue of the students’ transition
from a visual programming environment to a textual programming environment in the
process of programming teaching, this research area is still not sufficiently covered.

Perkins and Salomon (1988) have dealt with the transfer of something that was
learned in one context to another context. They specify two types of transfers, namely:

Low road transfer ● – in the case of a new context that has several obvious similar-
ities to the old context, the new context almost automatically activates behaviour
patterns that were satisfactory in the old context.
High road transfer ● – it is based on the purposeful abstraction of knowledge and
skills from one context, when applied in another, more distant context, where the
similarity is not entirely clear.

The authors also deal with the possibilities of how to encourage such transfer for
students. They call this process mediated transfer. They specify two techniques that
support such a transfer:

Hugging ● – is creating such connections between contexts, when teachers intro-
duce a new educational situation which is similar to some of the previous ones
(they try to “hug” it as closely as possible – to get close to it) and it is also related
to the already existing experience of students and thus creates conditions for low
road transfer.
Bridging ● – is a process, when a teacher points out parallels between elements
of content and facilitates the process of abstraction necessary for the high road
transfer.

Cheung et al. (2009), who see a “gap” between a visual programming environ-
ment and a textual programming environment in the teaching of high school students at
grades 11–13, have dealt with the issues of the transition phase. The authors state that
students often find a visual programming environment too restrictive on the one hand,
and a textual programming environment too difficult on the other. They address this gap

T. Tóth, G. Lovászová492

by creating a custom textual-graphical hybrid programming environment BrickLayer.
A program is created by dragging and dropping graphic blocks in the BrickLayer pro-
gramming environment. But at the same time, the syntax of the textual representation of
the created program is displayed in real time. Students therefore can also see what hap-
pens in the textual form of the created program in an interactive way when arranging
blocks. The results of the authors show that the textual-graphical hybrid programming
environment has a positive impact on students’ learning experience.

A similar problem has also been encountered by Dolgopolovas et al. (2017), in
whose research students had difficulties when transitioning from visual programming
in the MIT App Inventor 2 development environment to textual programming in the C
programming language. According to them, the problem is with the different paradigms
that are used in these environments (event-driven programming vs. structured program-
ming), the different teaching approaches that are traditionally used (game creation vs.
the mathematically-oriented approach) and differences in the use of different program-
ming concepts.

Dann et al. (2012) have addressed the transition phase by creating the Alice 3 pro-
gramming environment and a plugin for the NetBeans IDE. Alice 3 provides several fea-
tures to support students in the transition to the Java programming language. One of the
features displays the generated code in the Java programming language alongside with
an algorithm created in the Alice 3 programming environment. It also allows exporting
the code from the Alice 3 programming environment into the NetBeans IDE.

Armoni et al. (2015) investigated the transition from the Scratch visual program-
ming environment to professional textual programming languages (C#, Java). They
have found that programming knowledge as well as knowledge acquired by students
who have learned Scratch has facilitated learning of advanced educational topics. How-
ever, difficulties arose when concepts were implemented differently in programming
languages (defining the data type of a variable, using full and incomplete branching,
and bounded loops). Despite these facilitations, and also the challenges at the end of the
teaching process, there were no significant differences in the success of these students
in comparison with students who have not learned Scratch. On the other hand, students
have shown a higher level of motivation and self-sufficiency.

Hsu and Ching (2013) have stated that when working with the MIT App Inventor 2
programming environment, more advanced students missed the ability to edit textual
code in the Java programming language (i.e. the native programming language used
for the development of mobile applications for the Android OS) through the MIT App
Inventor 2 programming environment.

Chadha and Turbak (2014) have created an extension for MIT App Inventor 2 called
TAIL (A Textual App Inventor Language). TAIL is an isomorphic textual programming
language with a visual programming language of the MIT App Inventor 2 programming
environment. It enables bidirectional conversion between graphic blocks and text frag-
ments. TAIL improves the usability of MIT App Inventor 2 by simplifying readability,
writing, sharing and copying of programs thanks to the textual representation of the
program. At the same time, it can also help in the transition from a visual programming
language to a textual programming language.

Mediation of Knowledge Transfer in the Transition from Visual to ... 493

Wagner et al. (2013) present their approach to students’ transition from a visual pro-
gramming language in the MIT App Inventor 2 environment to the Java textual program-
ming language. For this transition from visual programming to textual programming,
they used the Java Bridge library, which allows using textual programming to create pro-
grams that are equivalent to programs created in App Inventor. The authors have noted
that using a visual programming language first and then displaying a direct mapping to
an equivalent version in the Java programming language code has helped students to
understand application programming in the Java programming language.

2. Visual vs. Textual Programming

In textual programming, a program is created by writing textual code, which can be chal-
lenging for students. When writing a program, they must focus not only on the content
of the solution – an algorithm, but also on the syntactically correct formal notation of the
algorithm in the programming language. However, the disadvantage of more demand-
ing program creation can be overcome by students’ feeling that they are working with
a professional tool. Textual programming can be motivating for students with higher
expectations and needs.

In visual programming environments, a program is created by arranging pre-prepared
graphic blocks that make it impossible to compose a syntactically incorrect program.
A student does not have to know language commands (they are selected from a menu)
and does not have to solve problems with possible syntax errors. All this simplifies the
application development process. This makes programming more accessible for the gen-
eral public and not just for a narrow circle of professional programmers.

2.1. App Inventor vs. Android Studio

Our area of interest is mobile application programming. Programming for a mobile plat-
form increases engagement of students, because it is connected to the object of their
interest – a mobile device. It is motivating for students to create a mobile application
that they can use in their own smartphone also outside the classroom and show it to their
relatives and friends.

Currently, the standard way to develop mobile applications for the Android operating
system is native development using the Java or Kotlin textual programming language,
Android SDK and the Android Studio integrated development environment. This option
is associated with professional application development, requires advanced development
skills and therefore exceeds the skills of students beginning with programming.

Visual programming using the MIT App Inventor 2 development environment cre-
ated specifically for educational purposes is easier to use for beginners. It is a popular
cloud solution that is used online through a web browser. App Inventor is a visual de-
velopment environment providing all the advantages as well as disadvantages resulting
from visual programming described above. A more detailed analysis of the MIT App

T. Tóth, G. Lovászová494

Inventor 2 programming environment, its possibilities and limitations in comparison
with the Android Studio development environment are discussed in more detail in the
article (Tóth, 2019).

2.2. Java Bridge – A Mediator in Moving from Visual to Textual Programming

The problematic transition of students from the development of mobile applications in
App Inventor to professional development using textual programming can be simplified
by using the Java Bridge support tool.

The term Java Bridge includes Java Bridge Library and Java Bridge Code Generator:
Java Bridge Library ● is a Java programming language library designed for creat-
ing applications for the Android OS. Its purpose is to simplify textual program-
ming of applications for the Android OS in comparison with the Android SDK.
The Java Bridge library uses the same terminology as MIT App Inventor 2 – there
is a Java class for each component. Students can use this library directly in the
Android Studio programming environment, where they can use textual program-
ming to create applications for the Android OS (AppInventor, 2020a).
Java Bridge Code Generator ● is a version of the MIT App Inventor 2 program-
ming environment that allows students to create an application just like in the
MIT App Inventor 2 programming environment and then generate an equivalent
version of the application in the Java programming language. The Java Bridge
code generator is intended to help students who already know how to create ap-
plications by arranging blocks in the MIT App Inventor 2, when moving to tex-
tual programming. Generated applications use the Java Bridge library and can
be edited in the Android Studio programming environment (AppInventor, 2020a;
AppInventor, 2020b).

With a correct proposal of teaching methodology using these tools, a smooth transfer
of student knowledge from one context (visual programming in App Inventor) to another
(textual programming in the Java programming language and the Android Studio devel-
opment environment) can be mediated (Fig. 1).

The methodology has three phases:
Visual programming. ● Students program their applications visually in the MIT
App Inventor 2 educational programming environment.

𝑖 = 1:𝑁
𝑥4 > 0

𝑚𝑎𝑥. 𝑎𝑏𝑎𝑛𝑑 = 𝑛. 𝑒𝑥/2 − 1
𝑥6

𝑚𝑎𝑥. ℎ𝑖𝑛𝑡𝑠 = 3
𝑥4

𝑚𝑎𝑥. 𝑒𝑟𝑟𝑜𝑟𝑠 = 3
𝑥3

𝑥5 ← 0
𝑥5 ← 1
𝑝5

𝑝5 = 0.7
𝑥5
𝑝
𝑢

UNIF(1)
level

n. st = 5
n. ex = 10

emotion =

X�
were coded by two researchers independently from each other for the reliability of

the study using the formula (𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠
�onsens�s + �issens�s) (𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

�onsens�s+�issens�s) of Miles and
Huberman (1994), and the consistency between encoders was calculated as .94. Two 3.

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠
�onsens�s + �issens�s

11
16 + 7

8
11
16 + 78

18
16

18
16 25 16

25
 16 1824

18
 24 188 18 8 𝑥7 + 3 𝑥7 14

′
 14

′
 17

′
 17

′

11
16 + 7

8
18
16
25
16
18
24
18
8

𝑥
7 + 3

1
4
′

1′
7

 Fig. 1. Methodology of knowledge transfer from visual to textual programming

of mobile applications.

Mediation of Knowledge Transfer in the Transition from Visual to ... 495

Hybrid programming. ● Students program by arranging graphic blocks in the Java
Bridge Code Generator environment. They transfer the generated Java code to
a prepared blank project in Android Studio. They get to know the textual equiva-
lent of a visual code, and the Java programming language. They experiment with
minor modifications to the textual code – changes to command parameters, ana-
logical code extension. They gain experience in application development in the
Android Studio environment.
Text programming. ● Students program directly by writing text into a prepared
blank project in Android Studio. They use an analogy to programming in App
Inventor using classes from the Java Bridge library.

A low road transfer of knowledge takes place during the transition from the visual
programming phase to hybrid programming. Students explore their program created by
visual programming in a new context of textual programming. They experiment with
textual program editing and find out how they can apply their knowledge in a new con-
text of a textual programming environment.

Full transition to textual programming requires high road transfer of knowledge. It is
based on the abstraction of knowledge from the old context. Students abstract their knowl-
edge of the principle of mobile application creating in a visual programming environment
and transfer it to writing a textual program. They directly write textual code without the
need to create an equivalent program from graphic blocks first. The parallel between pro-
gramming in App Inventor and Android Studio using the Java Bridge library is still used.

3. Case Study

3.1. Research Objectives

The aim of the research was to determine the effectiveness of the methodology of transi-
tion from visual programming of mobile applications in the MIT App Inventor 2 educa-
tional environment to textual programming in the professional environment of Android
Studio using Java Bridge as a mediator of knowledge transfer. The research question
we have studied was, to what extent students are able to independently create a mobile
application using textual programming after completing the transition from visual to
textual programming using a mediator.

The research design is based on the evaluation of students’ ongoing and final perfor-
mance in order to determine whether the teaching strategies used are appropriate to achieve
the goals of education. Such an approach can also be found in other studies examining the
effectiveness of certain teaching methods for reaching results, for example (Alexandron
et al., 2016), in which the authors study “how high-school students understand the concept
of operative nondeterminism after learning the language of live sequence charts”.

We have verified the methodology of transition from visual to textual programming
of mobile applications in an optional hobby programming course for secondary educa-
tion students during one school year.

T. Tóth, G. Lovászová496

3.2. Sample

A total of 21 students took part in the course, of which only 14 students regularly took
part in the lessons; we excluded the remaining 7 students from the research sample.
The students were aged 12–18 years, 13 male and 1 female. Students chose to attend
the course as their leisure activity and participated in the course outside of compulsory
education.

Fig. 2. Programming languages or environments with which students have experience.

Fig. 3. Concepts from programming that students have already encountered.

Mediation of Knowledge Transfer in the Transition from Visual to ... 497

In the entry questionnaire, they stated a positive attitude towards Informatics and
programming. They all stated they enjoyed programming and 57% stated they would
like to become a programmer in the future. All students already had experience with pro-
gramming since in Slovakia, programming is a mandatory part of education already in
lower secondary education, as a part of the Informatics curriculum. Most of the students
stated in the questionnaire that they program 1 or 2 years, one quarter stated 3 or more
years of programming experience.

In the questionnaire, students reported experience with educational programming
environments for children used in schools in lower secondary education, older stu-
dents already had experience with programming in other than educational program-
ming environments (Fig. 2). When asked which concepts of programming are known
to them, students mentioned in the questionnaire concepts from the area of algorithmic
structures, work with data, object-oriented and event-driven programming. The ques-
tionnaire did not ascertain the level of understanding of the concepts. The answers are
shown in Fig. 3.

3.3. Instruments and Procedures

The research was conducted during the school year 2018/2019. The course took place
once a week and comprised two school lessons (total of 90 minutes). The course was
led by one lecturer, who was also a researcher. The course schedule was divided into
3 stages in accordance with the proposed methodology in Fig. 1:

Visual programming stage.1.
Hybrid programming stage. 2.
Textual programming stage.3.

The detailed schedule is shown in table (see Fig. 4). Ideas for applications that
were programmed in the course are taken from the books Wolber et al. (2014) and
Michaličková (2016), or the ideas of the teacher and the students themselves were used.
Games but also “useful applications” that students can use in their real lives were themes
for the applications.

The visual programming stage and the textual programming stage were concluded
with an independent project of students according to their own idea or were chosen from
a list. In the project, the students had to show what they had learned in the previous
period and what application they are able to create independently. The table shows the
complexity of solved projects (simple or complex) according to the number and com-
plexity of specific teaching goals and the highest level of educational goals according to
the revised Bloom Taxonomy (RBT).

During the lessons, in which the level of objectives according to the RBT was la-
belled as Applying, all students worked on the same assignment, which was selected
with regard to the objectives to be achieved. The teacher used the work on the project
to explain the principles of mobile application creation in a given programming en-
vironment, to present various programming techniques, the method of application de-
bugging, testing, and compiling. The aim was to understand and apply the knowledge

T. Tóth, G. Lovászová498

when solving the assignment by creating a functional application. In addition to personal
assistance of the teacher, students had printed handouts containing requirements for ap-
plication functionality, a preview of the application graphical user interface (GUI), an
outline of the solution in the form of a list of sub-tasks, an outline of the project structure
with a list of components to be used, and tasks extending the original assignment. The
use of printed learning materials supported the students in active independent work on
projects and allowed differentiation according to students’ abilities. During the lessons,
in which the students worked on their own individual projects, the level of RBT goals
is higher (Creating). Students did not have a formal description of the final product and
a sketch of the solution, they had to analyse the problem themselves, to propose the
application structure, and how to implement its functionalities. They used handouts for
projects from previous lessons, information from the Internet and individual help from
the teacher as teaching material.

Week Way of programming Theme Difficulty Level of RBT

1

A
pp

 In
ve

nt
or

 (v
is

ua
l)

 Hello, World (V1) Simple

Applying
2

Catch the egg (V2) Simple/complex3
4
5

Project (V3) Complex Creating
6
7
8
9
10

Ja
va

 B
rid

ge
 C

od
e

G
en

er
at

or

(h
yb

rid
)

A
nd

ro
id

 S
tu

di
o

+
Ja

va
 B

rid
ge

 L
ib

ra
ry

 (t
ex

tu
al

)

Hello, World (H1) Simple

Applying

11
12
13

ChatBot (H2) Simple/complex14
15
16

MoleMash (H3) Complex17
18
19 Hello, Purr (T1) Simple
20 Roll the dice (T2) Simple
21
22

Project (T3) Complex Creating

23
24
25
26

Fig. 4. Course schedule.

Mediation of Knowledge Transfer in the Transition from Visual to ... 499

The whole teaching process was constantly reflected and corrected based on the re-
sults of formative assessments. Continuously throughout the course, we were surveying,
how students understand the taught concepts and how they perceive the course manage-
ment (e.g. using handouts, etc.). The formative assessment was carried out using the
Socrative voting system. Students answered questions in an interactive questionnaire
aimed at understanding the curriculum, but also to express their opinion on teaching
methods. The questionnaire was filled by all students at the same reserved time during
the lesson. After answering each question by all students, their anonymized answers
were projected on the screen and discussed with the lecturer.

The total achieved results of students were verified and evaluated on the basis of so-
lution of their own individual project. Such summative evaluation took place at the end
of the visual programming stage and at the end of the textual programming stage. The
creation of both projects ended with its presentation by the author via a data projector on
a screen in front of other students.

3.4. Methods of Data Collection and Processing

We have used several methods of qualitative research for data collection: unstructured
observation, participatory observation, informal interviews with students, problem-solv-
ing interviews, focus groups, questionnaires, field notes and product collection (student-
created applications). In this way we have obtained data of three types:

Data from observations and interviews – after each lesson, the data were con-1.
verted into text in the form of protocols containing field notes from teaching.
Data obtained in writing from questionnaires.2.
Data obtained in the form of collected products – code of applications created by 3.
students.

Methods of data collection and processing to assess student performance are listed
in Table 1.

Table 1
Student performance assessment

 Operationalization Assessment Data collection Data processing

Applying understand the principles of mobi-
le application creating, apply
the techniques of programming,
debugging, testing, application co-
mpiling according to an example

Formative –
to optimize the te-
aching process

observation,
individual consultations,
ongoing questionnaires,
product analysis

Qualitative,
Quantitative

Creating analyse a problem, design an ap-
plication structure and how to im-
plement its functionalities, create a
functional application

Summative –
to determine the
degree of achieve-
ment of educatio-
nal goals

product analysis Quantitative

T. Tóth, G. Lovászová500

We have analysed in detail the source code of applications created by students, and
we have quantified the data (have converted it into a numerical form). The complexity
of the project was quantified as the sum of programming and technical complexity. The
programming complexity is represented by activities related to the design of the ap-
plication structure and the creation of program code to ensure all the functionalities of
the application according to the specified requirements. Into the technical complexity
we have included activities related to the implementation of the solution in the given
programming environment, the result of which is the creation of a real product (mobile
application running on a mobile device).

For each project, specific goals were formulated in detail in the form of student
performance, the achievement of which was expected from the solution of the project.
On this basis, it was possible to assign numerical values to individual student projects
according to which goals and to what extent the students managed to meet. We have
quantified the performance of students, or the success of learning, from such numerically
evaluated student projects.

4. Research Results

4.1. Qualitative Findings

Qualitative findings are based on the evaluation of data from observations and quizzes to
determine the level of achievement of goals at lower levels of RBT (memorization, com-
prehension, application) in the phases, when students worked with the help of a lecturer
on the same projects and used handouts with sketches of the solution process. Using
a questionnaire, we have also found out how students themselves evaluate their ability
to program mobile applications after completing the course.

Visual programming phase: In the phase of work in the App Inventor visual program-
ming environment, we have observed very fast progress. Several students had previous
experience with visual block programming in the Scratch environment. They have no-
ticed similarities between the two environments:

“App Inventor is similar to Scratch. We have to arrange blocks as
well.”

Scratch programming experience has helped students to understand and apply knowl-
edge in a new context in App Inventor. An example is the creation of custom procedures.
Scratch programming experience, where there was no way to define custom procedures
in version 2, was essential to understand the importance of using custom procedures:

“Several times, I programmed something in Scratch, then I wanted to
change it, and I had to change it everywhere, which was difficult. Us-
ing a procedure would made it easier.”

Mediation of Knowledge Transfer in the Transition from Visual to ... 501

At this stage, we did not observe problems with memorizing and understanding the
syntax (programs are created by selecting, dragging and dropping blocks from a menu),
or with algorithmic problem solving. Students were able to work independently on the
basis of their previous knowledge of programming and according to instructions in hand-
outs, which contained a rough outline of the solution without details. Students’ solutions
therefore differed in details, even though they worked on the same assignment. The
ongoing formative assessment through interactive quizzes also did not reveal problems
in understanding the principles of programming in App Inventor. Problems that occurred
were mainly of a technical nature and were not related to programming:

Problems with exporting files with application source code, and building the ap- ●
plication.
Problems with differentiating a source code file (aia) and an application installa- ●
tion package (apk).
Problems with remembering how to upload files to cloud storage. ●

Again, the findings from the preliminary research were confirmed, i.e. that the feel-
ing of success is no sufficient motivation for programming mobile applications in App
Inventor, although there were still many things that the students could learn in it. When
expressing their relationship to visual programming in App Inventor, students were rath-
er reserved or directly expressed their ambition to program in a professional environ-
ment, because they considered App Inventor to be “childish”.

Hybrid and textual programming phase. The transition to textual programming
through the generation of textual code from visual code made it possible for all students
to move to textual programming. However, with further progress, there was a more sig-
nificant differentiation between students:

Some could use an analogy for direct text extension of the generated code. ●
Others still helped themselves by generating textual code from the visual code. ●
Some still preferred visual programming. ●

At this stage, we observed a lower degree of independence of students’ work. Only
some students knew how to proceed independently. The higher complexity was not
caused by the textual notation of a program, but rather by the complexity of the devel-
opment environment. When writing a textual code, the occurrence of syntax errors was
sporadic. The problems were in particular:

With orientation in the file structure of a project in Android Studio. ●
With application building. ●
With application startup on a mobile device. ●

When solving a complex assignment in week 16–18 (see Fig. 4), some students
evaluated textual programming in Android Studio as too demanding in relation to their
abilities, and some expressed even frustration from failure:

“Difficulty of App Inventor is closer to my intellectual level. Android
Studio is difficult.”

“I am lost in Android Studio.”

T. Tóth, G. Lovászová502

When the teaching method changed from independent programming according to
a handout to the frontal explanation of the lecturer (gradual solution with explanation),
all students managed to complete the application and the mood in the classroom also
improved.

At the end of the course, the students evaluated the difficulty of programming in
Android Studio on a five-point scale as follows: mostly neutral (7/12), 1 student said
that programming in this environment is rather difficult (1/12), others no longer con-
sidered programming in Android Studio difficult: rather not (2/12) or not at all (2/12).
When evaluating what is difficult on mobile applications programming in Java and
Android Studio, students reported the Java language syntax (“the Java language and
its lengthy and complex syntax”) and work with project structure (“rather lengthy than
demanding: preparation of a project and Java files, subsequent editing and occasional
clutter.“)

Self-assessment: In the final questionnaire, we investigated the attitudes of students
towards various issues related to the completed course. In a self-assessment of their
ability to program mobile applications using textual programming, students stated:

Ability to program the application completely independently: 4/14. ●
Ability to program an application with the help of: ●

a more experienced person (e.g. teacher) 7/14 ○
Internet: 7/14 ○
code generation: 5/14 ○
handout: 5/14 ○

No student has reported the inability to program a mobile application with tex-
tual programming in the self-assessment. Out of the forms of help that were a part of
the teaching methodology, the students mostly specified the help of the teacher as the
condition of success, followed equally by the generation of textual code from visual
code using a mediation tool, and teaching material – handout. From observations of
students’ work and interviews, we have noticed that they used mainly the information
from the Internet as another form of help. The students stated this despite the fact that
information found on the Internet did not usually deal with the use of the Java Bridge
library. Students did not know how to distinguish this sufficiently or apply it in their
own projects. The lecturer had to draw the students’ attention to this fact. Nevertheless,
exactly half of the students (7/14) stated in the final questionnaire that the information
found on the Internet was helpful.

4.2. Quantitative Findings

Quantitative findings are based on the evaluation of the complexity and goal fulfilment
rate in programming products created and submitted by the students in the course. The
methodology of data processing is specified in Section 3.4 Methods of Data Collection
and Processing.

Mediation of Knowledge Transfer in the Transition from Visual to ... 503

Each stage (visual, hybrid and textual programming) consisted of creating three ap-
plications, so the students worked together on 9 projects. We categorized the projects
(see also Fig. 4) to:

Visual / Textual – according to the method of programming, to projects created ●
using visual (projects V1, V2, V3) and textual programming, including hybrid
programming (projects H1, H2, H3, T1, T2, T3).
Applying / Creating – according to the level of educational objectives, to projects ●
requiring understanding and application of knowledge (projects V1, V2, H1, H2,
H3, T1, T2), and to projects requiring independent creation, including problem
analysis and solution proposal (projects V3, T3).

Table 2 shows the results of the evaluation of students’ products from individual
categories from three points of view:

Assignment difficulty – overall / programming, ●
Solution success rate – achievement of goals in percentage, ●
Weighted performance – the product of the coefficient of project complexity (ratio ●
of project complexity to average complexity) and solution success rate.

The assignment difficulty and the solution success rate are shown in more detail in
Fig. 5 for each project.

The Fig. 5 shows that:
Applications created at each stage of the programming method (visual, hybrid, F1
textual) had increasing difficulty score, and after the transition to a new pro-
gramming method, the difficulty of the project was reduced.
The success rate of projects decreased with increasing difficulty, with the ex-F2
ception of the first project in the hybrid programming stage (H1), where the
solution success rate decreased despite the decrease of difficulty.
The technical difficulty of the projects is the lowest for visual programming (on F3
average 5.58), the highest for hybrid programming (on average 11.33), and has
decreased again for textual programming (on average 8.37).

Fig. 6 shows in more detail and compares the solution success rate for programming
projects V3 in App Inventor and T3 in Android Studio, which were independently cre-
ated by the students according to their own ideas.

Table 2
Results of quantitative evaluation of student products

Assignment difficulty
(total / programming)

Solution success rate
(%)

Weighted performance

Applying Creating Applying Creating Applying Creating

Visual 18.5 / 12.5 21.92 / 17.17 81.11 77.78 0.8071 0.8623

Textual 20.2 / 10.2 18.00 / 10.88 71.04 55.04 0.7008 0.5012

T. Tóth, G. Lovászová504

The Fig. 6 shows the following findings:
The solution success rate for application creation using visual programming is F4
higher than using textual programming for most students (with the exception
of Student9), also on average.

Fig. 5. Difficulty of application topics vs the average solution success rate of applications.

Fig. 6. Solution success rate of individual projects in App Inventor and in Android Studio.

Mediation of Knowledge Transfer in the Transition from Visual to ... 505

There were more successfully completed and submitted projects for visual pro-F5
gramming than for textual programming (12 vs. 8).
If we consider 50% fulfilment of the goals to be a success, all students who F6
submitted the project were successful in visual programming, half of the stu-
dents (4/8) were successful in textual programming – one slightly and three
significantly below the success limit.

A similar trend can be observed when comparing the difficulty score achieved by
students’ own projects according to their own ideas in App Inventor (V3) and Android
Studio (T3) (Fig. 7):

A standalone T3 project created in Android Studio has a higher score of techni-F7
cal difficulty than an independent project V3 created in App Inventor for all
students.
In contrast to F7, the programming difficulty of the T3 project is lower than the F8
programming difficulty of the V3 project for all students with one exception
(Student9).
The total difficulty score of the T3 project is lower for each student than in the F9
V3 project, with one exception (Student9).
The average score of the achieved total difficulty is higher in the visual pro-F10
gramming stage than in the textual programming stage.

The synthesis of both indicators of student performance evaluation (application
difficulty and solution success rate) represents the weighted student performance as

Fig. 7. Comparison of difficulty of individual projects created in App Inventor and in Android Studio.

T. Tóth, G. Lovászová506

the product of both indicators. When examining the weighted performance (Fig. 8), we
came to the following findings:

Significantly higher values of weighted performance are in the visual program-F11
ming stage than in the textual programming stage (including hybrid program-
ming): 0.8071 vs. 0.7008.
In all three stages, there was an increase in weighted performance after program-F12
ming the initial application (biggest in the visual programming stage 0.2231)
and a subsequent decrease when programming complex projects (biggest in the
textual programming stage 0.1843). We observe a significant decrease below
the level of the weighted performance of the initial application (T1) in the tex-
tual programming stage.
If we observe a decrease in weighted performance during the transition from F13
one stage to another, we observe a significantly higher decrease in weighted
performance between visual and hybrid programming (decrease of 0.2036) than
during the transition to pure textual programming (decrease of only 0.0515).
The achieved value of the average weighted performance of students for each F14
initial application in all three stages (V1, H1, T1) has only a slight deviation
(0.6956 vs. 0.6587 vs. 0.6594).

Other important findings can be observed in the measured values of average weight-
ed performance in the case of individual student projects (V3 and T3):

Students achieved F15 significantly higher average weighted performance in in-
dependent programming of own applications in the visual programming stage

Fig. 8. Average weighted performance of students with respect
to the coefficient of difficulty of application created.

Mediation of Knowledge Transfer in the Transition from Visual to ... 507

(V3) compared to the average weighted performance in the textual program-
ming stage (T3).
The average weighted performance achieved in individual projects in the visual F16
programming stage (V3) is higher than the average value of the weighted per-
formance that students achieved in applications programmed together with the
lecturer during the first stage (V1, V2).
The average weighted performance achieved for individual projects in the tex-F17
tual programming stage (T3) is significantly lower than the average value of
the weighted performance that students achieved in applications programmed
together with the lecturer during the second and third stage (H1-T2).
While the average weighted performance in the case of an individual project F18
in the V3 visual programming stage is only slightly lower than the average
weighted performance achieved in previous application V2 programmed to-
gether with the lecturer (the difference of 0.0564), the decrease in the average
weighted performance in the textual programming stage between the T3 indi-
vidual project and the previous application T2 created together with the lecturer
is more pronounced (the difference of 0.1843).

5. Discussion

The aim of the research was to find out to what extent students are able to independently
create a mobile application using textual programming after completing the transition
from visual programming in App Inventor to textual programming in Android Studio
using the Java Bridge mediator, and thus how successful the methodology of mediated
knowledge transfer using a mediator was.

The use of the App Inventor visual programming environment in the introduction
to programming of mobile applications can be considered a suitable choice. Visual
programming environments do not burden programmers with so many technical as-
pects of development – the lowest technical complexity was measured in the visual
programming stage (finding F3). In this programming environment, students can make
rapid progress in creating functional mobile applications. This is evidenced by the high
increase in the average weighted performance of students in programming at the begin-
ning of the course (finding F12) and the high weighted performance also when creating
an individual project (finding F16).

The transition to textual programming represents an increase in the overall complex-
ity of programming. The aim of the used teaching methodology was to bridge the gap
between the complexity of visual and textual programming by including the stage of
hybrid programming. Research results show that this transition is still challenging. The
difficulty of the transition between the visual and hybrid programming was reflected
by the increase in the technical complexity of programming in the hybrid programming
stage (finding F3). The reason was the introduction of another programming environ-
ment into teaching – Android Studio, while still using the visual programming envi-
ronment. At this stage, there was also a significant decrease in weighted performance

T. Tóth, G. Lovászová508

(finding F13). However, the benefit of using a mediator was subsequently reflected in
the transition to textual programming, where the decrease in weighted performance
was only minimal. The success of bridging the gap between the visual and textual pro-
gramming is confirmed by finding F14. In all three stages, the weighted performance in
programming of initial applications was maintained at approximately the same level.

We have evaluated the ability to independently design and create a mobile appli-
cation based on the results achieved in the creation of individual projects (V3, T3).
Using visual programming, students achieved significantly higher average weighted
performance than using textual programming (finding F15). This result in favour of
visual programming was influenced by both components of weighted performance –
difficulty and success rate. Students were able to create more complex projects with
higher overall and programming difficulty (findings F8, F9), and were more success-
ful in completing their projects (findings F5, F6). The difference in students’ perfor-’ perfor-
mance can be explained by higher technical difficulty of programming in Android
Studio (finding F7). The authors of projects programmed in Android Studio, which
had less than a 50% solution success rate, were the youngest students aged 12, 13 and
14 years. It turns out that textual programming is especially challenging for students
in lower secondary education. On the other hand, in applications that these students
programmed in a text-based way together with the lecturer, they managed to achieve
a solution success rate in the range of 83.75%–100%. Although students were able
to emulate the work of a lecturer in jointly created applications, non-specific knowl-
edge transfer could not be fully achieved and students could not independently apply
knowledge in textual programming. Since each student is an individual personality,
this finding may not generally apply to all students at this age. This is also confirmed
by exceptions in our sample – more than half of the solution success rate for a 14-year-
old student and less than half of the rate for a 17-year-old student.

The results obtained in our research match the final statement of the researchers
Wagner et al. (2013) who found that when programming teaching starts with a visual
programming language and then equivalent Java code is presented using direct map-
ping (pointing to context), it can help students to understand programming techniques
in programming mobile applications in the Java programming language. Moreover, we
extend this result with other specified facts.

The limitation of our research is the group of research participants – students with
whom the research was carried out. It is a selection of students with increased interest
in computer science and programming. This fact may affect the achieved results, which
cannot be generalized.

6. Conclusions and Implications

The aim of our research was to apply the methodology of transition from visual pro-
gramming of mobile applications in the App Inventor educational programming en-
vironment to textual programming in the Android Studio professional programming
environment using Java Bridge as a mediator of knowledge transfer on a sample of

Mediation of Knowledge Transfer in the Transition from Visual to ... 509

students. We were interested in the extent to which students were able to create mobile
applications using text programming after completing the transition from visual to tex-
tual programming using a mediator.

Based on quantitative evaluation of the collected data we found that the weighted
performance of students in the examined sample, which combines difficulty and success
rate, was on average 0.7 in the case of programming according to the instructions and
using analogy, and on average 0.5 in the case of independent creative programming.
In terms of the ability to independently create mobile applications using textual pro-
gramming in Android Studio, large differences in students’ performance, both based on
quantified evaluation of created projects and self-evaluation of students’ own program-
ming skills were noted. Nevertheless, we can state a certain (lower or higher) level of
success and a positive attitude towards textual programming in the Android Studio for
all students.

Regarding the comparison of students’ visual and textual programming skills, the
degree of understanding the principles of mobile application creation and the degree
of ability to analyse a problem, creatively design a solution, apply programming tech-
niques and create a functional application was significantly higher in the case of visual
programming in App Inventor than in textual programming in Android Studio. In gen-
eral, students were able to deliver higher performance using visual programming and
App Inventor.

In spite of that, we consider the methodology of transition from visual to textual
programming using a mediator to be successful. Students were able to design non-triv-
ial applications in Android Studio using analogy with programming in App Inventor.
Through the Java Bridge library, students were able to write textual code containing the
component hierarchy and terminology known from App Inventor.

Java Bridge Code Generator was helpful in bridging the gap between visual and
textual programming. On the other hand, it complicates the transition to some extent
by using two programming environments at the same time. Students perceived hybrid
programming and combined work with both programming environments as complicated
and hindering. With gradual improvement of skills in textual programming and with the
intent to simplify their work with multiple programming environments, they naturally
moved to textual-only programming. Every student who subjectively perceived that he/
she had already mastered textual programming made effort to make this natural transi-
tion. This applied to 50% of students. A smoother transition to textual programming was
also made possible by the use of the Java Bridge library as a mediator in textual program-
ming (this is not a standard development method used in professional development).
However, in the case of the youngest students (12–14 years old), we have noticed that
textual programming is difficult for them and they preferred rather visual programming.

The results of our research can be considered the first step in exploring knowledge
transfer in the transition from visual programming in App Inventor to text programming
in Android Studio. We focused on supporting the transition through the Java Bridge li-
brary and the Java Bridge Code Generator. The next step would be to continue research
focused on the subsequent transition to the native development of mobile applications
without the use of the Java Bridge library as a mediator.

T. Tóth, G. Lovászová510

Acknowledgments

The article was created thanks to the support of KEGA project 018UMB-4/2020 Imple-
mentation of new trends in computer science to teaching of algorithmic thinking and
programming in Informatics for secondary education.

References

Alexandron, G., Armoni, M., Gordon, M., Harel, D., (2016). Teaching nondeterminism through programming.
Informatics in Education, 15(1), 1–23.

AppInventor. (2020b). App Inventor Java Bridge. http://www.appinventor.org/jbridge
AppInventor. (2020a). Java Bridge Programming. http://www.appinventor.org/jBridgeIntro
Armoni, M., Meerbaum-Salant, O., Ben-Ari, M. (2015). From Scratch to “Real” programming. ACM Transac-

tions on Computing Education, 14(4), 25.
Chadha, K., Turbak F. (2014). Improving AppInventor usability via conversion between blocks and text. Jour-

nal of Visual Languages and Computing, 25, 1042–1043.
Cheung, J., Ngai, G., Chan, S. And Lau, W. (2009). Filling the gap in programming instruction: a Text-en-

hanced Graphical Programming Environment for Junior High Students. ACM SIGCSE Bulletin, 41(1),
276–280.

Dann, W., Cosgrove, D., Slater, D., Culyba, D. And Cooper, S., (2012). Mediated transfer: Alice 3 to Java.
In: Proceedings of the 43rd ACM Technical Symposium on Computer Science Education – SIGCSE ‘12,
141–146.

Dolgopolovas, V., Jevsikova, T., Dagienė, V. (2017). From Android games to coding in C-An approach to
motivate novice engineering students to learn programming: a case study. In: Computer Applications in
Engineering Education, 1–16.

Hromkovič, J., Steffen, B. (2011). Why Teaching Informatics in Schools Is as Important as Teaching Math-
ematics and Natural Sciences. In: ISSEP 2011: Informatics in Schools. Contributing to 21st Century Edu-
cation, 7013, Berlin, Heidelberg, 21–30.

Hsu, Y. -C., Ching, Y. -H. (2013). Mobile app design for teaching and learning: Educators’ experiences in
an online graduate course. The International Review of Research in Open and Distance Learning, 14(4),
117–139.

Michaličková, V. (2016). Programovanie Mobilných Aplikácií v Prostredí MIT App Inventor 2. Univerzita
Konštantína Filozofa v Nitre. ISBN 978-80-558-1101-7.

Perkins, D. N., Salomon, G. (1988). Teaching for transfer. In: Educational Leadership, 22–32.
Schwill, A. (1994). Fundamental ideas of computer science. Bull. European Assoc. for Theoretical Computer

Science, 53, 274–295.
Tóth, T. (2017). Current trends in teaching of introductory programming: A literature review and research di-

rections. In: Proceedings of 10th International Conference of Education, Research and Innovation, ICERI
2017, Seville, Spain, 4852–4862.

Tóth, T. (2019). App inventor vs professional application development: A comparative study. In: Proceedings
of 10th International Conference of Education, Research and Innovation, ICERI 2019, Seville, Spain,
4447–4456.

Tóth, T., Lovászová, G. (2018). On difficulties with knowledge transfer from Visual to Textual programming.
In: DIVAI 2018 – The 12th International Scientific Conference on Distance Learning in Applied Informat-
ics. Conference Proceedings. Wolters Kluwer ČR, a. s., 379–386.

Wagner, A., Gray, J., Corley, J., Wolber, D. (2013). Using app inventor in a K-12 summer camp. In: Proceeding
of the 44th ACM Technical Symposium on Computer Science Education – SIGCSE ‘13, 621–626.

Wolber, D. Abelson, H., Spertus, E., Looney, L. (2014). App Inventor 2: Create Your Own Android Apps.
O’Reilly Media.

Mediation of Knowledge Transfer in the Transition from Visual to ... 511

T. Tóth is a recent graduate of doctoral studies (PhD.) in the field of Theory of Teach-
ing Informatics. The results presented in this article are the part of his research carried
out within the dissertation thesis. He currently works as Assistant Professor at Depart-
ment of Informatics, Slovak University of Agriculture in Nitra, Slovak Republic. His
scientific interest is focused on the software development, teaching programming and
creating websites.

G. Lovászová is an Associate Professor of Informatics Education at Constantine the
Philosopher University in Nitra, Slovakia. Her academic interest areas are methodology
of teaching Informatics, mobile technology integration into education, and professional
competencies of future Informatics teachers.

