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Abstract. Intelligent Tutoring Systems (ITSs) for Math still use traditional data input methods: 
computers’ keyboard and mouse. However, students usually solve math tasks using paper and 
pen. Therefore, the gap between the manner the students work and the requirements imposed 
by these typing-based systems expose students to an extraneous cognitive load, impairing their 
learning. Our study investigates the impact of the data input method on students’ learning and 
fluency in solving equations using step-based math ITSs. More specifically, we have considered 
the standard typing and handwriting input methods. We hypothesized that the students would be 
more fluent using their handwriting with online recognition to solve math equations than using 
the typing input method. This fluency indicates a reduction in cognitive load, freeing working 
memory for logical reasoning instead of interface preconditions, leading to improved learning. 
We have conducted an experiment with 55 seventh-grade students from a private school to vali-
date the hypothesis, randomly assigned to control and experimental groups. Each group used one 
of the input methods on two different devices (desktop computers and tablets). Although students 
using handwriting solved more equations and were faster than students who typed their equa-
tions, we could not find statistically significant differences in the learning between students that 
used typing or handwriting. Additionally, we have found that the input method used in a not ideal 
device (e.g., handwriting with a computer’s mouse instead of using a touch screen device) can 
negatively affect the students’ performance. 
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1. Introduction

Activities with greater interactivity, enabling students to do rather than just visualize, 
result in improved learning (Koedinger et al., 2015). Intelligent Tutoring Systems (ITS) 
are educational software that can provide this interactivity, as they can assist students 
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individually in solving their tasks, helping to improve their learning (Koedinger et al., 
1997). Unlike other educational software, ITSs are experts in a particular field, and they 
can provide fine-grained personalized assistance, being able to adapt the instruction ac-
cording to the learner’s knowledge (Graesser et al., 2016). They have been seen to be 
almost as effective as individual human tutoring (VanLehn, 2011). 

ITSs in the math field require students to enter the solution of the tasks in a specific 
manner that the computer can understand. One example of these tasks is the first-de-
gree equations. These equations are sentences that contain an equality relation and use 
a mathematical notation represented by symbols, numbers, and letters. They have only 
one variable, for which the student should identify a value to balance the equation. 

To solve first-degree equations, the students must apply basic mathematical op-
erations (addition, subtraction, multiplication, and division). However, it is not always 
simple to type mathematical expressions in a computer-based learning environment due 
to keyboard input restrictions, often requiring students to follow a complex set of steps 
(Anthony et al., 2012). For example, to insert a fraction into an equation in a particular 
ITS, the student must follow 13 steps. This 13-step process may seem intuitive for those 
who have been using the system for a long time, called experienced users, but this is 
considered a complicated and time-consuming task for novice students. 

The cognitive load theory explains that working memory limits human cognitive 
processing. This memory can handle a limited amount of information, thus “high cogni-
tive load can hamper learning and transfer” (Sweller et al., 2019). Cognitive load is as-
sociated with the complexity of the content, or information, to be studied, called intrin-
sic cognitive load. Certain content related to various other contents is considered highly 
complex, and it has a high intrinsic cognitive load. Cognitive load is also associated 
with how the content is presented to the learner, called extraneous cognitive load. Real-
world interfaces cause students to experience high extraneous cognitive load, which 
directly affects the speed at which the task is performed, the focus of attention, meta-
cognitive control, accuracy in problem-solving, and memory (Oviatt et al., 2006). 

Besides how this content is presented to the learner, the requirements imposed by the 
instructional procedure also enhance the cognitive load (Sweller, 2010). Thus, the more 
the student needs to reason about how the content is presented, the less s/he will reason 
about the content to be learned. In ITSs, the system’s graphical user interface can impose 
extraneous cognitive load, which can impose a task-irrelevant to the student goal of 
solving an equation. Thus, by exposing the student to complex and lengthy processes to 
use the interface, the system imposes an additional extraneous cognitive load. It causes 
the student to occupy her or his working memory with restrictions and procedures of 
the user interface rather than reasoning about solving the equations themselves (Oviatt 
et al., 2006). 

One possible way to reduce students’ extraneous cognitive load using a computer-
based learning environment would be to “design interfaces that are more similar to 
existing work practice” (Oviatt et al., 2006). Since the beginning of school classes, 
students use pencils and paper to solve mathematical problems to draw and freely rep-
resent their thoughts on paper using the handwriting method. As this process is repeated 
continuously throughout the student’s school life, handwriting becomes an automated 
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task, leading the brain to save cognitive resources, which could be used to process 
higher-level tasks (Wicki et al., 2014). We have used the term fluency to define the stu-
dent’s ability to easily and fluently enter the equations in the system, i.e., doing without 
thinking about it. 

According to Read et al. (2001), students can write more fluently using handwriting 
when compared to the typing method. However, most of the math ITSs found in the 
literature require the students to use traditional computer devices, such as the keyboard 
and mouse, to insert their equations on the system. The problem with the typing ap-
proach is that students experience difficulties using the keyboard because the text-like 
equation confuses them by requiring a set of unknown patterns. Thus, instead of reason-
ing about solving the equation, the student has to think about how to use the ITS (Read 
et al., 2000). 

Researches on computer-based learning environments using the handwriting as in-
put method have already found that: i) the handwriting input method is faster than 
typing (Anthony et al., 2005, 2007b), ii) students can solve more problems in the same 
time (Glaser, 1976), compared to other methods, and iii) students prefer the handwriting 
(Lee et al., 2012), leading to increased engagement (Elliott and Dweck, 1988). How-
ever, there is still no evidence that the handwriting method can improve learning. Also, 
based on a literature review, we were unable to find research using a step-based math 
ITS to provide feedback on every solving step, neither providing real-time handwriting 
recognition during the use of the system, which has been applied to a performance and 
fluency evaluation, comparing the handwriting and the typing methods. Another differ-
ential of this work is related to the device used for handwriting and typing the equations 
in the ITS. We have verified whether these methods used with different input devices, 
e.g., touchscreen or digital pen versus mouse for handwriting, could affect the students’ 
fluency and performance. 

This work investigates the impact of the typing and handwriting data input methods 
on a step-based ITS over students i) learning and ii) fluency in solving first degree equa-
tions. We hypothesized that, by allowing the students to use their handwriting with real-
time recognition as the equation input method in a step-based ITS for math, they would 
solve the equations more naturally, focusing their reasoning on solving the equation 
instead of the requirements for using the graphical user interface. Therefore, this ap-
proach could lead to improved learning. We have also investigated whether the different 
devices used to input data, i.e., tablet device and computer with mouse and keyboard, 
could impact the results of each input method. This work extends the results from Mo-
rais and Jaques (2017) and Morais et al. (2017b) by presenting a whole new experiment 
and discussions. 

We have conducted an experiment to test our hypothesis, in which the students 
were randomly assigned to control and experimental groups. Students in the experi-
mental group have used the handwriting input method, and the students in the control 
group have used the typing input method to solve the equations on the ITS PAT2Math. 
Besides the input method, the experiment was divided into two phases. The students 
in phase 1 have used the tablet’s touchscreen to handwriting (experimental group) 
and the computer’s keyboard to type (control group). In contrast, during phase 2, we 
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exchanged the input device while maintaining the input method: the students in the 
experimental group used the computer’s mouse for handwriting, and the students in 
the control group typed their equations into the system using the tablet’s keyboard. We 
have chosen this approach to verify the device’s impact on the students’ performance 
and fluency. 

2. Literature Review 

This section aims to present an overview of the learning environments that have been 
using the handwriting input method. Some papers have been published to present or 
improve handwriting recognition accuracy (Anthony et al., 2012; Tran Minh Khuong 
et al., 2019). However, the goal of this work is not related to presenting a novel way 
or improved manner of handwriting recognition. We seek to investigate the impact 
of different input methods and devices on students’ learning and fluency to solve the 
equations. 

We have searched the ACM, IEEE, Elsevier, and Springer digital libraries to iden-
tify learning environments that have been using the handwriting method to replace 
the typing method. Our search was based on the variations of the keywords handwrit-
ing, sketch-based interfaces, tutoring systems, and learning environments. We have 
restricted the search for papers published in the last five years, i.e., between 2015 and 
2020. After finding a set of papers, we have applied one snowballing phase, searching 
for relevant papers that were not included in the first set. At this time, we had no date 
restrictions. 

We have found computer-based learning environments that use the handwriting or 
sketch-based methods as the data input to improve the learning of the students for a va-
riety of domains, such as music theory (Barreto et al., 2016), physics (Cheema and 
LaViola, 2012; Lee et al., 2012; Cheema and LaViola Jr., 2018), Japanese kanji writ-
ing (Taele and Hammond, 2009), drawing techniques (Dixon et al., 2010; Cummmings 
et al., 2012), mathematics (Laviola, 2007; Anthony et al., 2007a; Vuong et al., 2010; 
Anthony et al., 2012; Pacheco-Venegas et al., 2015; Phon-Amnuaisuk et al., 2015; Wang 
et al., 2016), biology (Taele et al., 2009), essentials of writing (Thompson et al., 2016), 
engineering statics concepts (Valentine et al., 2015), freehand engineering sketching 
(Hilton et al., 2019), digital circuit design (Alvarado et al., 2015), and geometry (Kang 
et al., 2016, 2017). From this set of works, we have selected only the papers that are 
more similar to the research goal of our work and the domain of equations solving. 
Therefore, the following paragraphs describe works that have focused on replacing the 
keyboard and mouse with the handwriting/sketch-based input method to improve the 
usefulness of the system in improving the students learning. 

WebMath is a web-based tool that enables students to insert math problems in a web 
browser using their handwriting through a digital pen or the computer’s mouse (Vuong 
et al., 2010). The tool can recognize the handwriting and display it back to the student, 
which can be edited if any error is found. After recognizing the handwriting, WebMath 
provides a step-by-step solution to the problem. However, as the tool is not an ITS, it 
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cannot help students solve the problems, providing step-by-step guidance. In this paper, 
the authors discuss the implementation, architecture of the tool, and an experiment fo-
cused on handwriting recognition accuracy. 

Cognitive Tutor Algebra I is an ITS that provides step-by-step feedback and helps 
students solving math problems. Anthony and colleagues integrated a handwriting rec-
ognition tool into the tutor’s interface for students to enter equations into the system 
(Anthony et al., 2007a). This tool was based on a device attached to the monitor, al-
lowing the students to use a stylus pen to write on the screen. After handwriting all the 
solving steps of the equation, the students were requested to type the final answer of 
the equation. The ITS provided feedback just when the student entered the final answer 
in the system. The authors reported that students who used the handwriting to enter 
answers in the tutor were twice faster than students who used the keyboard and mouse 
(Anthony et al., 2007b). However, no learning gain difference was found between the 
two groups of students (Anthony et al., 2007b). Requesting the students to type the 
final answer was a strategy to guarantee the correct feedback from the ITS. The authors 
chose this strategy because the handwriting recognition accuracy was not ideal. There-
fore, in later studies, they have focused on improving recognition accuracy (Anthony 
et al., 2012). 

Newton’s Pen II (NP2) (Lee et al., 2012) is an ITS for physics, which uses online 
handwriting recognition to provide a more natural interface. In the solution part of the 
physics equations, the student writes the solving steps using a stylus pen, and the system 
checks the steps entered by the student. An evaluation was conducted with more than 
100 engineering students, in which students answered a survey with questions about 
system usability and its usefulness for learning. The questions obtained above-average 
answers, illustrating students’ acceptance and preference for the proposed system. 

MathDIP is a web-based tool developed to help students during math problem-solv-
ing (Pacheco-Venegas et al., 2015). Although the system cannot provide specialized 
error feedback, the tool can assist students step-by-step, providing automatic evalu-
ation and correct-incorrect feedback, according to a given set of available solutions. 
Also, it allows the students to enter equations with the handwriting input method. A 
qualitative study was conducted in which the students expressed an overall acceptance 
of the system. 

Wang et al. (2016) presented Math Tutor, an application to assist students in solving 
linear and quadratic equations by using the handwriting input method on an Android 
tablet. Although Math Tutor is not considered an ITS, it can provide specialized mes-
sages for wrong expressions to help the students during problem-solving. The authors 
conducted a qualitative study to identify the user experience and get the students’ feed-
back about the tool. As a result, students enjoyed using the application, and they would 
use it for assignments if available. The authors also reported that students became more 
efficient and less prone to error as they used the application. 

AnalyticalInk (Kang et al., 2016) is an environment that uses an interactive online 
handwriting-recognition interface that seeks to help students understand geometric con-
cepts and solve algebra and geometry exercises. The system provides problems in a tex-
tual form, with some highlighted keywords. The student uses this information to solve 
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the problems and can drag the information to the solving part of the equations. It can 
provide visual feedback on students’ handwritten steps using a tablet and a stylus pen. 
A qualitative evaluation with ten students who used the system showed that the system 
is helpful to guide with the geometric and algebraic problems solving, and the students 
were satisfied. 

All related works have reported the usage of the handwriting modality for entering 
information into the systems. This work differs from related ones in three main aspects: 
i) it allows the student to see and edit her or his recognized handwriting in real-time, 
ii) it provides specialized feedback at each solving step of the equation, and iii) it does 
not require the use of a particular device. Another significant difference is related to the 
research goal. Most of the related work performed qualitative research, aiming to verify 
the student’s acceptance over the handwriting modality. This work aims at verifying the 
impact of the typing and handwriting input methods on students learning and fluency. 
An additional contribution of this work is on verifying whether this impact is related to 
the device used to perform the input, i.e., tablets or desktop computers. Also, the experi-
ment goals of the related works and this work are slightly different. This paper aims to 
verify whether the handwriting input reduces the extraneous cognitive load of students. 
Most of the related works did not conduct an experiment, controlling the input methods. 
Besides, they have not considered the effect of the devices on the results. 

3. The Intelligent Tutoring System PAT2Math 

This section describes the ITS used by the students to solve the math tasks, called PAT2-
Math. The PAT2Math (Personal Affective Tutor to Math) is an intelligent tutoring system 
that assists students in the task of solving first-degree equations (Jaques et al., 2013). 
PAT2Math runs as a server-side application with a web-based graphical user interface, 
allowing students to use the system on any computer or device through a web browser. 
Thus, every interaction between the student and the ITS is sent to the server, processed, 
stored, and returned to the student. 

According to Vanlehn’s classification (Vanlehn, 2006), PAT2Math is considered 
a step-based ITS because it contains an inner loop that can provide individualized 
assistance to the students for every solving step of a given equation, called minimal 
feedback. Therefore, the ITS provides specialized feedback for each step; if it is cor-
rect, the student can enter the next step; if it is wrong, the ITS provides error feedback. 
Besides the feedback, PAT2Math also provides scaffolding hints whenever the student 
requests them. 

By default, to solve a given equation in the PAT2Math’s interface, the student must 
use the computer keyboard and type the solution step in an input text box. After typing 
the step, the student can either hit the enter key or push the verify button. Once one 
of these events is fired, the input box gets blurred, the text is converted to a readable 
equation, and the step is sent to the server for checking. If the step is correct, the sys-
tem replaces the input box with the two-dimensionally rendered equation, and it inserts 
a new input box for the next step. This process is repeated until the student provides the 
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final correct answer for the equation. To allow the students to use their handwriting to 
enter math equations into the system, we have replaced the traditional input box with 
a handwriting box. We have developed this new handwriting input box as a plugin to the 
PAT2Math user interface, allowing it to be accessed by smartphones, tablets, or comput-
ers via a web browser. 

This plugin integrates two works: the PAT2Math ITS and the online handwriting 
recognizer MyScript Math. The PAT2Math ITS provides all the feedback and special-
ized hints to assist the student during the whole solving process of an equation. On the 
other side, MyScript provides a web development kit that receives the student’s writing 
and converts it into formatted text (Mouchère et al., 2014). So, when the student writes 
in the handwriting box, the plugin sends the data to the MyScript server that extracts 
static and dynamic handwriting information, inserts that information into a combination 
of a Deep Multi-Layer Perceptron and a Recurrent Neural Network, and gets a list of 
probability symbols1. After a spatial relationship analysis of the writing and this list, My-
Script returns the recognized handwriting in a pre-defined text format. Upon receiving 
this text, the developed plugin interprets the formatted text and displays the equation for 
the student in a multidimensional manner. MyScript is available based on a commercial 
license and has been used by thousands of applications worldwide. In this study, we have 
used the MyScript API based on a free educational account. 

Fig. 1 shows a screenshot of the developed handwriting plugin integrated into PAT2-
Math’s graphical user interface. To use the handwriting input method, the student has to 
access the tool from a mobile device or a computer, using a web browser, and s/he needs 
to login to PAT2Math with her or his user account and choose the handwriting as input 
mode. When accessing a plan, a list of first-degree equations will be displayed (Fig. 1.J). 
If the student has already solved any of them, it will be saved in the PAT2Math’ student 
module and can be reviewed again. If the student has not solved the equation yet, s/he 

1 Winner of the ICFHR 2016 CROHME competition, MyScript has achieved an accuracy of 92,81% for 
math symbols recognition (Mouchère et al., 2016).

Fig. 1. Screenshot of the handwriting tool integrated into PAT2Math ITS interface. 
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can select the chosen equation, and it will be displayed at the top of the screen as the 
initial equation (Fig. 1.A). Below the initial equation, there is a handwriting input box 
where the student can use his or her finger (or a stylus pen) to write the steps to solve 
the equation (Fig. 1.H). As s/he writes the numbers and mathematical symbols, the tool 
displays what has been recognized in real-time (Fig. 1.C). 

Once the solving step has been written, the student must touch the verify button 
(Fig. 1.D) to inform the system that the step is ready to check. The tool then sends the 
written step in the text-like format to the tutor module, which forwards it to the expert 
module for correction and saves the information into the student module. The feedback 
is returned to the tutor module that sends it back to the interface. If the answer is cor-
rect, the tool provides visual feedback (Fig. 1.B), and it allows the student to proceed to 
the next solving step and so on until s/he enters the final correct answer of the equation. 
The student can also request help from the ITS by touching the “Hint” button (Fig. 1.I), 
which will provide a specialized hint message to the student. If the step is incorrect, the 
system allows the student to edit the writing in real-time, including some writing help 
buttons (Fig. 1.E (clean the handwriting input box), 1.F (undo the last writing), 1.G 
(redo the last action)). Besides, the plugin allows the student to use shortcuts to facili-
tate the editing of handwriting. For example, the student can cross out a mathematical 
symbol to erase it. 

4. Method

This research aims to verify the impact of the input data modality on students learning 
and fluency to solve math tasks. We are also interested in identifying whether the device 
used to insert the data into the system can influence the results. Therefore, we have con-
sidered two different input modalities: typing and handwriting. We hypothesized that by 
allowing the students to use their handwriting to enter the solving steps of a math prob-
lem in the system, with step-by-step guidance and real-time handwriting recognition, 
they would solve the equations more fluently. Being able to be more fluent would result 
in the students solving more equations in less time, focusing their reasoning on solving 
the equation instead of the requirements for using the graphical user interface. Thus, 
the system’s extraneous cognitive load would be reduced, freeing the students’ working 
memory, leading to improved learning (Oviatt et al., 2006). 

We have also considered two different devices for the students to use: desktop com-
puters, handled through mouse and keyboard, and tablets, handled by touchscreen. We 
hypothesized that the students on the experimental handwriting condition could be more 
engaged and excited to solve the tasks because of the tablets than students on the tradi-
tional typing condition utilizing the computer’s keyboard, interfering with the results. 
We also want to verify which device is more appropriate for each input method and their 
impact on the students’ fluency and performance. 

This section aims to provide details about the experiment we have conducted to 
validate our hypotheses. Therefore, this section describes the participants, procedure, 
experimental design, research instruments, and measures of this experiment. 
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4.1. Participants 

We have invited 55 students from two seventh-grade classes of a private school from 
southern Brazil to participate in our study. The students have used the ITS weekly to 
solve first-degree equations during one regular math class period of 50 minutes. These 
students were between 12 and 13 years old (average = 12.15, median = 12, and standard 
deviation = .36), 26 boys and 29 girls. To perform the experiment and collect the data 
from the students, we have asked their parents or tutor to sign an informed consent form. 
The ethics committee of our university validated and approved the form, which contains 
all the information about the tool, describing how it works and how it would affect the 
students. 

Although the students were using the system as a classroom aid tool at the school’s 
initiative, we only used the data from the students who returned the consent form signed 
by their parents and by themselves. The data from two students, who did not return the 
form, were excluded from the analysis. From the 53 remaining students, we removed 
the data from 10 more students who did not perform one of the knowledge tests or who 
missed more than one day of data collection. Thus, to generate the results, we have used 
the data from 43 students. Four students who have missed just one class had their data 
included in the analysis. 

4.2. Procedure 

The experiment was conducted in nine 50-minutes sessions, spread between May to 
July 2018, occurring once a week. The first day’s goal was only to meet the students and 
explain to them our research goal and how it would proceed. In all meetings, the teacher 
of the classes was present. The teacher was the same for both classes and supported the 
whole experiment. 

We had 11 iPads available from our university. As the number of students in the ex-
perimental group was greater than the number of tablets, we have asked the students to 
bring their own devices, if possible. Thus, the experimental group students used 15 de-
vices, ranging between brands, versions, sizes, and operational systems. 

4.3. Experimental Design 

The experiment’s goal is to measure the performance of the students based on knowl-
edge tests, as well as the fluency of the handwriting compared to typing, based on the 
time spent and the number of solved tasks. We were also interested in verifying whether 
the device (tablet or computer) could impact the student’s performance and fluency, 
given the handwriting or typing methods. Therefore, we have designed the experiment 
so that all the students could use both devices. We randomly assigned the students into 
two groups, called experimental and control groups. The students in the control group 
always used the typing input method to enter the equations on the ITS, regardless of the 
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device. On the other hand, the students in the experimental group always used the hand-
writing input method to enter the equations. 

As shown in Fig. 2, we have divided the experiment into two phases, called phase 1 
and phase 2. The students solved the knowledge tests before, between, and after the 
phases. The tests do not belong to the phases, but they seek to measure the students’ 
performance in each phase. In phase 1, all 43 students first answered a paper-based test, 
called pretest. After the pre-test, the students used the PAT2Math ITS during three ses-
sions. The control group, containing 22 students, used the ITS in desktop computers, 
entering the equations by typing in the keyboard. The experimental group, comprising 
21 students, used the ITS in the tablets, entering the equations by handwriting on the 
devices’ screen, i.e., touchscreen with students’ fingers (without a stylus pen). After 
the third session of phase 1, all 43 students answered a computer-based test called 
midway-test. Based on this pre and midway-tests strategy, it was possible to verify the 
students’ knowledge before and after they have used the ITS in Phase 1. Still, because 
of the random assignment in control and experimental groups, it was possible to verify 
whether the students’ knowledge was affected by the method of inputting equations 
into the ITS. 

The students performed the midway-test using the ITS. However, there was no 
feedback from the ITS to the student at this moment. All the students completed the 
midway-test individually, and they used desktop computers with a keyboard to enter the 
equations in the ITS. There was no group division during the test; therefore, all of them 
answered the same test. In this ‘test mode’, the PAT2Math ITS accepts all the steps 
from the student without providing any kind of feedback. The pre-test, three sessions 
of ITS usage, and the midway-test were performed on different days according to the 
math class schedule. 

We have used the midway-test as the upper bound of phase 1 and lower bound of 
phase 2 for the knowledge variable, which prevented the students from taking two tests 
in sequence. Thus, after the midway-test, Phase 2 started in which the students used 
the PAT2Math ITS during three more sessions. However, in Phase 2, although students 

 

 
 
 Fig. 2. Experimental design. 
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continued to use the same input method (handwriting or typing), we have changed the 
input device. The students in the control group used the ITS in the tablet, entering the 
equations by typing in the device’s keyboard. The students in the experimental group 
used the ITS in the desktop computers, entering the equations by handwriting with the 
computer’s mouse. 

After the third session of phase 2, all 43 students answered a paper-based test, the 
post-test. Based on this strategy of midway-test and post-test, it was possible to verify 
the students’ knowledge before and after they have used the ITS for the second time. 
Still, due to the random assignment in the control and experimental groups, it was pos-
sible to verify whether the input method affected the students’ performance on tests, rep-
resenting their learning. We were also interested in ascertaining the relationship between 
the input method to enter the equations into the ITS and the devices used to perform this 
task. Thus, by having the students of the same group using the same input method but 
with different devices in the different phases, it was possible to verify this relationship 
between the input method and the device used. 

4.4. Research Instruments 

We have used two types of instruments: the knowledge tests and the PAT2Math ITS. 
The knowledge tests had the goal of measuring the knowledge of the students in solving 
first-degree equations. Thus, we have developed the tests to include all the operations 
needed for the student to master this content. The tests were developed by a partner 
teacher who has more than 30 years of experience by teaching this content to seventh-
grade classes2. The tests were developed according to the content the students were 
learning during the period in which the experiment was performed. In total, there were 
14 isomorphic equations3 for each one of the three tests (pre, midway, and post-tests) for 
the students to solve. The tests covered questions ranging from the simplest equations 
(e.g.,  − 8 = −18) to the most complex equations (e.g., − = − 3

3 16 10 ), given the content 
of first-degree equations4.

The complexity of the equations gradually increased in the tests, from the first to the 
last equation, which allowed the tests to contemplate the need to use multiple operations 
to solve the equations. Besides, all three tests had the same number of equations with 
the same complexity distribution to guarantee that the results were measured in the same 
way for all tests. 

The second instrument we have used was the PAT2Math ITS. As the ITS has been 
described in Section 3, we present here only the equations solved by the students while 
using the system. We have used the set of original equations already available on the 
tutor, which the students solved during six sessions. PAT2Math has a gamified graphi-

2 This teacher is different from the teacher of the classes that participated in the experiment.
3 We have used the isomorphic term to denote equations that are similar in structure but with different num-

bers, e.g.,  − 3 = 2 and  − 9 = 5.
4 The pre, midway, and post-knowledge tests are available in this link: 

 https://drive.google.com/file/d/19T8NE3sjfC4IlL94wWQ6br7g1EH7rksI/view?usp=sharing
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cal user interface, in which the contents are organized in phases and levels. Thus, the 
student has to solve all the equations of the level to unlock the next level. Moreover, the 
student has to solve all the levels to unlock the next phase. Each level has five equations, 
except for the review levels, which might have between 10 to 20 equations. The number 
of levels per phase varies between five to 12, depending on the phase’s complexity. The 
phases and levels are organized to gradually increase the complexity of the equations ac-
cording to the student’s progress within the system. Although the equations in the same 
level follow the same structure, i.e., they are isomorphic, each level has equations with 
a more complex structure than its previous levels. Thus, at each level, the student has to 
solve a more challenging set of equations, requiring the application of a greater number 
of algebraic operations. 

During the experiment, the students solved 200 different equations, starting at the 
first level of the first phase (e.g.,  + 4 = 9) and achieving up to level 26 of the third 
phase (e.g., 9 − (10 − 10) = 218). These equations were already available in the 
PAT2Math ITS from previous experiments. It is essential to highlight that, as PAT2-
Math help students individually, it allows students to work at their own pace. Thus, 

Table 1 
The structure of the equations solved by the students in each phase

Equation Structure Example # Equations

Phase 1 [+−]x[+−]a=[+−]b x+4=9 70 
[+−](x)/(a)=[+−]b (x)/(6)=7 31 
[+−]ax=[+−]b 9x=18 30 
[+−]ax[+−]b=[+−]c 3x+10=91 20 
[+−]ax[+−]b=[+−]cx[+−]d 7x+1=6x+6   6 
[+−]ax[+−]b[+−]cx[+−]d=[+−]ex[+−]f[+−]gx[+−]h 14x+20+26x−12=15x−42−5x+8   1 
[+−]ax[+−]b=[+−]x[+−]c 4x+7=x+25   1 
[+−]ax[+−]b=[+−]c[+−]dx −5x−2=18−3x   1 

Phase 2 [+−]x[+−]a=[+−]b −x−257=−319 37 
[+−]ax[+−]b=[+−]c 3x+10=91 32 
[+−](x)/(a)=[+−]b (x)/(6)=7 31 
[+−]ax=[+−]b 12x=6 30 
[+−]ax[+−]b=[+−]cx[+−]d 7x+1=6x+6   6 
[+−]ax[+−]b=[+−]x[+−]c 4x+7=x+25   2 
[+−]ax[+−]b=[+−]c[+−]dx 23x−16=14−17x   2 
[+−]ax[+−](b[+−]cx)=[+−]d 9x−(10−10x)=218   2 
[+−]ax[+−]b[+−]cx[+−]d=[+−]e[+−]f[+−]gx 5x−15−4x−8=2+3−6x   1 
[+−]x[+−](ax[+−]b)=[+−]c x+(2x+5)=35   1 
[+−]ax[+−]b[+−]cx[+−]d=[+−]ex[+−]f[+−]gx[+−]h 14x+20+26x−12=15x−42−5x+8   1 
[+−]x[+−]a[+−]bx[+−]c=[+−]dx[+−]e[+−]fx[+−]g x+2−3x+4=−5x+6−7x+8   1 
[+−]ax[+−]b[+−]cx=[+−]dx[+−]e[+−]f 10x−5−5x=6x−6−20   1 
[+−]ax[+−]b[+−]c=[+−]d[+−]ex 17x−2+4=10+5x   1 
[+−]ax[+−]b[+−]cx[+−]d=[+−]ex[+−]f 6x−9+2x+2=3x+18   1 
[+−]ax[+−]x[+−]b=[+−]c[+−]x[+−]d 2x−x+1=5−x+3   1 
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some students stopped way behind level 26. We have grouped all the equations solved 
by the students in each phase to compare the structure of the equations. This grouping 
was performed by replacing the numbers in the equations with letters (a, b, c, d,...). 
This way, we could group equations that have the same structure, i.e., isomorphic equa-
tions. Besides, we have considered the different signs, plus or minus, of each number 
in the same way, using the [+ −] symbol. For example, the equations −4 + 2 = −18 and 
3 − 5 = 7 have the same structure, only changing the signs. Thus, both equations in 
this example follow the structure [+ −]  [+ −]  = [+ −] . Table 1 shows all the struc-
tures computed according to the grouping for phases 1 and 2. It also shows an example 
of an equation for each structure and the number of equations solved that followed that 
structure. 

As shown in Table 1, we can see that phase 2 has more complex equations than 
phase 1. However, the number of more difficult equations presented to the student was 
small compared to more representative structures. In the first four lines of the table, we 
can see that the vast majority of the equations have the same structure in both phases. 
In fact, from all the equations solved by the students, only eight in phase 2 followed 
a different structure from those seen in phase 1. Besides, only one equation from each of 
these eight structures was solved by the students, representing only 5.3% of the different 
equations’ structures presented to the students during phase 2. 

4.5. Measures 

This section presents the measures we have collected to validate our hypothesis and to 
calculate the results. In our experimental design, Subsection 4.3, we have used tests to 
measure students’ knowledge before and after the three sessions of each phase. There-
fore, the students’ performance on the tests is our first measure. Each test contained 
14 equations worth one point each. The tests were corrected by the same teacher who 
developed them. Also, all three tests were corrected in the same manner, considering one 
point if the result and all steps were correct and half-point if some steps were incorrect. 
For correcting the midway-test (computer-based), we have generated a report from the 
solution entered into the system by the students. Therefore, the teacher analyzed the stu-
dents’ solution step-by-step, as she did for pre and post-tests. Finally, we have converted 
the scores of the tests to a 0 to 10 scale, where ten indicates the student correctly solved 
all the test equations. 

By collecting the scores of each student test, we were able to (i) calculate the learn-
ing gain of each student in each phase after using the ITS, (ii) compare the gain between 
groups in each phase, and (iii) compare the gain of the groups between the phases 1 
e 2. These calculations would contribute to understanding whether the students learned 
more after they used the ITS and to identify if students in the experimental condition, 
who have used the handwriting method, learned more than the students in the control 
condition, who have used the typing method. Also, it will contribute to verify the im-
pact of the device on the students’ learning when comparing the handwriting with the 
typing input method. 
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ITS was stored in the database, containing information about the student, the ITS 
feedback, and a timestamp. This data allowed us to account for all the equations the stu-
dents have solved and all correct and wrong steps the students have entered in the ITS. 
This information contributed to the calculation of two other measures: the number of 
equations each student solved and the number of correct and incorrect steps in each 
equation. 

The selection of tasks for students to solve while using the PAT2Math is based on 
a fixed sequence. Therefore, to go to the next level/phase, the student must solve all the 
previous equations. If s/he got stuck in a given equation/step, s/he could have requested 
the ITS’s help (e.g., by clicking the hint button) or asked the teacher. Thus, there were 
no unsolved equations. However, the number of solved equations could vary based 
on each student’s knowledge and pace, as described in Section 4.4. In addition to the 
number of solved equations, we collected the number of correct and incorrect steps that 
we call just steps for simplification, but we present the results individually. Again, this 
measure is dependent on the group (control or experimental) and the phase. Therefore, 
we were able to (i) calculate the number of equations/steps solved by each student in 
each phase while using the ITS, (ii) compare the amount of equations/steps solved 
between groups in each phase, (iii) compare the number of equations/steps solved by 
the groups between phases, and (iv) verify the relationship between the number of 
equations/steps solved with the test scores of the students, for different conditions and 
phases. 

Lastly, we were able to calculate the time spent by each student to enter a step 
and solve whole equations, called time on step and time on equation, respectively. 
We have stored a timestamp for every solution step entered by the student on the ITS. 
Therefore, we were able to calculate the time difference between the steps entered by 
the student to solve the equation until the answer to the equation was inserted. This 
difference represents the time spent for the student to solve the step. The summation of 
the time spent on steps is equal to the time spent by the student to solve the whole equa-
tion. Again, this measure is dependent on the group (control or experimental) and the 
phase. By computing these time measures, we were able to (i) calculate the time spent 
on each equation/step by each student in each phase while using the ITS, (ii) compare 
the time spent on each equation/step between groups in each phase, (iii) compare the 
time spent on each equation/step by the groups between phases, (iv) verify the relation-
ship between the time spent on each equation/step with the number of equations/steps 
solved, for different conditions and phases, and (v) verify the relationship between the 
time spent on each equation/step with the test scores of the student, for different condi-
tions and phases. 

5. Results 

This section presents the results obtained from the experiment performed in this study 
for the measures described in Subsection 4.5. Section 5.1 shows the scores on the 
performance tests. Section 5.2 presents the findings about the number of solved steps 
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and equations. Furthermore, Section 5.3 describes the results about the time to solve 
the steps and the whole equation. Moreover, according to the groups and phases, we 
have added a subsection (Subsection 5.4) to present the correlation between these 
measures. 

To apply any statistical test5, we have followed the recommendations of Field 
et al. (2012). Thus, we have calculated the Shapiro-Wilk test6 for every distribution 
so we could identify, with a p-value < .05, which distribution did not follow a normal 
distribution. Also, for every condition, based on two or more distributions, we have 
calculated Levene’s test for homogeneity of variance7, so we could identify, with a p-
value < .05, the distributions in which the variances were significantly different. Any 
condition involving a non-normal distribution and different variances between distri-
butions violates the parametric assumptions. Thus, for these cases, we have applied 
a non-parametric test. 

By checking for normality and homogeneity of variance of the distributions, we could 
guarantee the assumptions of parametric tests and, therefore, present more reliable re-
sults. This way, when parametric assumptions were not violated, we have applied paired 
t-tests8 to check conditions in the same group and independent t-tests to check conditions 
between different groups. Otherwise, we have used Wilcoxon signed-rank test to check 
conditions in the same group (i.e., a test to compare means of dependent samples with 
non-parametric distributions) and the Wilcoxon rank-sum test to check conditions be-
tween different groups (i.e., a test to compare means of independent samples with non-
parametric distributions). For all statistical analyses, we have considered a significance 
level of α = .05. Also, for each statistical test, we have computed the effect size, which 
allows verifying whether the effect of the result is important in practical terms. We have 
followed the equations presented in Field et al. (2012) to calculate the effect size for 
parametric and non-parametric distributions, using Pearson’s correlation coefficient . 
Also, as suggested by the authors, we have considered  = .10 as small effect,  = .30 as 
medium effect, and  = .50 as large effect. 

5.1. Tests Performance 

In total, the students have completed three performance tests: pre, midway, and post-
tests. Fig. 39 shows a box plot with the distribution of the students’ scores on each test. 
Fig. 3 is divided into results obtained from the control and experimental groups, and 
each group is divided into three tests. The filled dots represent each student’s score, 
the green plus sign indicates the mean of each distribution, the horizontal black bar 
indicates the median of each distribution, and the red asterisk highlights the outliers of 
each distribution. 

5 We have imported all results into R Studio (Version 1.1.453) to compute all the calculations and plots.
6 The Shapiro-Wilk tests were computed using the stats R package.
7 The Levene’s tests for homogeneity of variance were computed using the car R package.
8 The t-tests and Wilcoxon tests were computed using the stats R package.
9 The plot and calculations of Fig. 3 were computed using the ggplot2 R package.
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Fig. 3 does not highlight the phases, but as stated in Subsection 4.3, the pre and 
midway-tests are the lower and upper bound of phase 1, respectively, the midway and 
post-tests are the lower and upper bound of phase 2, respectively, and the pre and post-
test are the lower and upper bound of the whole experiment, respectively. Table 2 sum-
marizes the descriptive statistics of the test scores, including, for each test in each group, 
the number of students, mean, median, standard deviation, standard error, 95% confi-
dence interval, and Shapiro-Wilk normality test of each distribution. We have computed 
the 95% confidence intervals10, applying a bootstrap technique, based on 2000 bootstrap 
replicates, as suggested by Field et al. (2012). 

Table 2 
Descriptive statistics of the test scores

Test # Mean Median Std. Dev. Std. 
Error

95% conf. int. Shapiro-Wilk
min. max. W p-value

Control pre 22 1.769 1.61 1.117 .231 1.313 2.229 .959 .470
midway 22 7.630 8.21 1.683 .356 6.926 8.364 .936 .163
Post 22 7.224 7.86 1.643 .343 6.547 7.898 .822 .001

Experimental pre 21 2.363 1.43 2.426 .517 1.355 3.387 .857 .006
midway 21 7.550 8.21 2.348 .491 6.608 8.517 .885 .018
post 21 7.143 7.14 1.880 .399 6.350 7.922 .949 .321

10 The bootstrap confidence intervals were computed using the boot R package.

Fig. 3. Distribution of the test scores, according to the group and the test. 



Does Handwriting Impact Learning on Math Tutoring Systems? 71

Based on the results of the Shapiro-Wilk tests, presented in Table 2, it is possible 
to notice that the distribution of the scores of the post-test,  = .822,  = .001, of the 
control group and the distribution of the scores of the pre-test,  = .857,  = .006, and 
midway-test,  = .885,  = .018, of the experimental group are significantly non-normal 
distributions. After calculating the descriptive statistics, we checked the significance of 
the results for the control and experimental groups and comparison between the groups 
based on hypothesis tests. These tests are detailed in the following subsections. 

5.1.1. Control Group 
In the control group, we have applied a paired t-test to verify whether the students learned 
in phase 1, in which the scores on the pre-test (11 = 1.769, 12 = .231) were signifi-
cantly lower than the scores on the midway-test ( = 7.630,  = .356),  (21) = −18.42, 
 < .001,  = .97, with similar variances  (1, 42) = .12, 13. For phase 2 of the control 
group, the results on the midway-test were higher than the results on the post-test. 

5.1.2. Experimental Group 
In the experimental group, we have applied a Wilcoxon signed-rank test to verify wheth-
er the students in the experimental group learned in phase 1, in which the scores on 
the pretest (  = 1.43) were significantly lower than the scores on the midway-test 
(  = 8.21),  < .001,  = −.91, with similar variances  (1, 40) = .01, . For phase 2, 
the results on the midway-test were greater than the results on the post-test. 

5.1.3. Between Groups 
After presenting the results about the performance of each group, we have calculated 
the learning gain of each possible combination of groups and phases. The gain is com-
puted by subtracting the test score performed before the ITS sessions from the score of 
the test performed after the ITS sessions, which we have called lower and upper bound 
measurements, respectively. We have computed the mean, median, standard deviation, 
standard error, 95% confidence interval, based on 2000 bootstrap replicates and Sha-
piro-Wilk. We have considered two types of learning gain for control and experimental 
groups: the midway - pre represents the learning gain on phase 1, and the post - midway 
represents the learning gain on phase 2. Table 3 presents the descriptive statistics of 
these results. 

After computing the learning gain and the descriptive statistics of the distributions, 
we have checked for the significance of the results, based on our hypothesis tests. Ac-
cording to the results presented in Table 3, the Shapiro-Wilk normality test showed 
that all the distributions of the learning gain followed a normal distribution. Thus, we 
have applied an independent t-test to verify the learning gain difference between the 
control and experimental groups in phase 1, i.e., midway - pre, with similar variances 
 (1, 41) = .97, . On average, students in the experimental group achieved lower gains 

11 M is used for the abbreviation for Mean.
12 SE is used for the abbreviation for Standard Error.
13 ns is used for the abbreviation for not statistically significant.
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( = 5.187,  = .484) than students in the control group ( = 5.859,  = .319) in 
phase 1. We have computed the ANCOVA to compare the scores on the midway-test of 
students in both groups of phase 1. The covariate, the pre-test score, was significantly 
related to the midway-test  (1, 40) = 16.36,  < .05,  = .54. However, there was no 
significant effect of the group on the midway-test score after controlling for the effect 
of the pre-test,  (1, 40) = .63,  = .43, partial η2 = .0214. 

We have applied an independent t-test to check the difference in the learning gain 
between the control and experimental groups in phase 2, i.e., post - midway, with similar 
variances  (1, 41) = .49, . On average, students in the experimental group achieved 
lower gains ( = −.408,  = .357) than students in the control group ( = −.405, 
 = .399) in phase 2. We have computed the ANCOVA to compare the scores on the 
post-test of students in both groups. The covariate, the midway-test score, was signifi-
cantly related to the post-test  (1, 40) = 20.04,  < .05,  = .58. However, there was no 
significant effect of the group on the post-test score after controlling for the effect of 
midway-test,  (1, 40) = .01,  = .93, partial η2 < .01. 

5.2. Number of Equations and Steps 

This section describes the results we have collected for the number of equations/steps 
entered in the system by the students during the six sessions of using PAT2Math ITS. 
We also have computed the number of correct and incorrect steps students entered in the 
system. Table 4 summarizes, for each measure in each group, the number of students 
(#), mean, median, standard deviation, standard error, 95% confidence interval, based on 
2000 bootstrap replicates, and Shapiro-Wilk normality test of each distribution. Based 
on the results of the Shapiro-Wilk tests, presented in Table 4, it is possible to notice that 
the number of solved equations,  = .901,  = .031, number of correct steps,  = .895, 
 = .024, and number of incorrect steps,  = .858,  = .005, only on phase 1 of the con-
trol group are significantly non-normal distributions. After the calculation of descriptive 
statistics, we have checked for the significance of the results, based on our hypothesis 
tests, for the control group, experimental group, and comparison between groups. 

14  According to Field et al. (2012), partial η2 is an effect size measure for ANCOVA that “looks the propor-
tion of variance that a variable explains that is not explained by other variables in the analysis.”

Table 3
Descriptive statistics of the learning gain calculated between tests

Gain Group Mean Median Std. 
Dev.

Std. 
Error

95% conf. int. Shapiro-Wilk
min. max. W p-value

midway-pre Control
experimental

5.859
5.187

6.07
5.36 

1.494
2.220 

.319 

.484
  5.245
  4.248 

6.454
6.106

.939

.932
.188
.157

post-midway Control
experimental

−.405
−.408

−.71
  .00 

1.875
1.635 

.399 

.357
−1.167
−1.074

  .373
  .249

.961

.938
.499
.200
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5.2.1. Control Group 
In the control group, on average, the number of solved equations and the number of en-
tered steps to solve the equations in phase 2 were lower than in phase 1. Thus, based on 
a Wilcoxon signed-rank test, the number of solved equations in phase 2 (  = 34.00) 
was significantly lower than in phase 1 (  = 78.50),  < .001,  = −.641, with simi-
lar variances  (1, 42) = .065, . Also, based on a Wilcoxon signed-rank test, the 
number of entered steps in phase 2 (  = 90.00) was significantly lower than in 
phase 1 (  = 239.50),  < .001,  = −.640, with significantly different variances 
 (1, 42) = 7.943,  = .007. We have checked the differences in the number of cor-
rect and incorrect steps, as well. Thus, based on a Wilcoxon signed-rank test, the num-
ber of correct steps in phase 2 (  = 71.50) was significantly lower than in phase 1 
(  = 197.00),  < .001,  = −.641, with similar variances  (1, 42) = 3.911, . Also, 
based on a Wilcoxon signed-rank test, the number of incorrect steps entered in phase 2 
(  = 17.50) was significantly lower than in phase 1 (  = 36.50),  < .001, 
 = −.596, with similar variances  (1, 42) = .187, . 

5.2.2. Experimental Group 
In the experimental group, on average, the number of solved equations and entered 
steps to solve the equations in phase 2 were lower than in phase 1, as in the control 
group. Based on a Wilcoxon signed-rank test, the number of solved equations in phase 2 
(  = 43.00) was significantly lower than in phase 1 (  = 82.00),  < .001, 
 = −.642, with significantly different variances  (1, 40) = 6.340,  = .016. Also, based 

Table 4
Descriptive statistics on the number of equations and steps performed

Measure Group Phase # Mean Median Std. 
Dev.

Std. 
Error

95% conf. int. Shapiro-Wilk
min. max. W p-value

# solved 
equations

control phase 1 22   77.14   78.50 15.92   3.394   70.45   83.81 .901 .031
phase 2 22   31.91   34.00 14.64   3.122   25.82   37.82 .938 .180

experimental phase 1 21   83.09   82.00 22.10   4.822   73.80   92.38 .971 .755
phase 2 21   40.09   43.00 14.25   3.109   34.16   46.03 .970 .736

# steps control phase 1 22 230.67 239.5 48.43 10.326 211.10 250.00 .953 .358
phase 2 22   98.00   90.00 36.70   7.824   83.38 112.45 .936 .163

experimental phase 1 21 222.67 226.00 68.58 14.964 194.50 250.50 .986 .983
phase 2 21 105.81 105.00 43.94   9.588   88.30 123.90 .961 .544

# correct 
steps

control phase 1 22 184.95 197.00 38.46   8.199 169.60 200.70 .895 .024
phase 2 22   77.82   71.50 35.13   7.490   63.78   92.00 .942 .217

experimental phase 1 21 171.76 163.00 58.30 12.722 147.40 196.10  961 .528
phase 2 21   84.14   74.00 39.40   8.597   67.56 100.57 .945 .273

# 
incorrect 
steps

control phase 1 22   45.68   36.50 25.57   5.452   35.06   56.11 .858 .005
phase 2 22   20.18   17.50 11.77   2.509   15.34   25.00 .962 .539

experimental phase 1 21   50.91   49.00 29.03   6.336   38.72   63.14 .916 .071
phase 2 21   21.67   22.00   9.37   2.045   17.75   25.55 .985 .979
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on a Wilcoxon signed-rank test, the number of entered steps in phase 2 (  = 105.00) 
was significantly lower than in phase 1 (  = 226.50),  < .001,  = −.642, with sig-
nificantly different variances  (1, 40) = 15.009,  < .001. We have checked the differ-
ences in the number of correct and incorrect steps. Based on a paired t-test, the number 
of correct steps in phase 2 ( = 84.14,  = 8.597) was significantly lower than in 
phase 1 ( = 171.76,  = 12.722),  (20) = −11.25,  < .001,  = .929, with similar 
variances  (1, 40) = 1.890, . Also, based on a paired t-test, the number of incorrectly 
entered steps in phase 2 ( = 21.67,  = 2.045) was significantly lower than in phase 1 
( = 50.91,  = 6.336), (20) = −4.67,  < .001,  = .723, with similar variances 
 (1, 40) = 1.107, . 

5.2.3. Between Groups 
After testing the results inside each group, we have tested the hypothesis between 
groups, for each measure and phase. The number of solved equations of the control 
group in phase 1 (  = 78.50) was lower than the number of solved equations of the 
experimental group in phase 1 (  = 82.00). But, a Wilcoxon rank-sum test showed 
that they did not differ significantly  = 208,  = .292,  = −.161, with similar vari-
ances  (1, 41) = 2.001, . We have checked the same condition on phase 2, in which 
the number of solved equations of the control group ( = 31.91,  = 3.122) was 
also lower than the number of solved equations of the experimental group ( = 40.09, 
 = 3.109). An independent t-test showed that this difference in phase 2 was significant 
 (40.98) = −1.858,  = .035,  = .279, with similar variances  (1, 41) = .056, . 

For the number of entered steps during phase 1, on average, the experimental group 
( = 222.67,  = 14.964) entered fewer steps than the control group ( = 230.67, 
 = 10.326). But, based on an independent t-test, this difference was not significant 
 (35.84) = .438,  = .332,  = .073, with similar variances  (1, 41) = 2.692, . Dur-
ing phase 2, the control group ( = 98.0,  = 7.824) entered fewer steps than the 
experimental group ( = 105.81,  = 9.588). But, based on an independent t-test, this 
difference was not significant  (39) = −.631,  = .270,  = .101, with similar variances 
 (1, 41) = .533, . 

We have checked the number of correct steps between groups for phases 1 and 2. Dur-
ing phase 1, the experimental group (  = 163.0) entered less correct steps than the 
control group (  = 197.0). But, a Wilcoxon rank-sum test showed that they did not 
differ significantly  = 261.5,  = .233,  = −.182, with significantly different variances 
 (1, 41) = 5.386,  = .025. During phase 2, the control group ( = 77.82,  = 7.49) 
entered less correct steps than the experimental group ( = 84.14,  = 8.597). But, 
based on an independent t-test, this difference was not significant  (39.96) = −.555, 
 = .291,  = .087, with similar variances  (1, 41) = .019, . 

Finally, we have also checked the number of incorrect steps between groups for phas-
es 1 and 2. During phase 1, the control group (  = 36.5) entered fewer wrong steps 
than the experimental group (  = 49.0). But, a Wilcoxon rank-sum test showed that 
they did not differ significantly  = 206.5,  = .280,  = −.165, with similar variances 
 (1, 41) = .166, . During phase 2, the control group ( = 20.18,  = 2.509) entered 
fewer incorrect steps than the experimental group ( = 21.67,  = 2.045). But, based 
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on an independent t-test, this difference was not significant  (39.75) = −.459,  = .324, 
 = .073, with similar variances  (1, 41) = 1.23, . 

5.3. Time to Solve the Equations and Steps 

This section describes the results we have collected about the time that students spent 
(in seconds) to solve the equations and steps during the six sessions of using PAT2-
Math ITS. Table 5 summarizes, for each measure in each group, the number of students, 
mean, median, standard deviation, standard error, 95% confidence interval, based on 
2000 bootstrap replicates, and Shapiro-Wilk normality test of each distribution. Based 
on the results of the Shapiro-Wilk tests, presented in Table 5, it is possible to notice that 
the distribution of time spent in equations for the control group of phase 2,  = .909, 
 = .045, and the experimental group of phase 1,  = .837,  = .003, are significantly 
non-normal distributions. Again, after the calculation of descriptive statistics, we have 
checked for the significance of the results, based on our hypothesis tests, for the control 
group, experimental group, and comparison between groups. 

5.3.1. Control Group 
In the control group, according to a Wilcoxon signed-rank test, the students spent 
significantly more time solving the equations during phase 2 (  = 97.93) than 
phase 1 (  = 62.13),  < .001,  = −.779, with significantly different variances 
 (1, 42) = 20.89,  < .001. For the time spent on a step measure, according to a paired t-
test, students spent significantly more time on a solving step during phase 2 ( = 34.71, 
 = 1.91) than phase 1 ( = 20.18,  = .717),  (21) = 7.842,  < .001,  = .863, with 
similar variances  (1, 42) = 0, . 

5.3.2. Experimental Group 
In the experimental group, according to a Wilcoxon signed-rank test, the students 
spent significantly more time solving the equations on phase 2 (  = 82.06) than 

Table 5 
Descriptive statistics on time to solve the equations/steps

Measure Group Phase # Mean Median Std. 
Dev.

Std. 
Error

95% conf. int. Shapiro-Wilk
min. max. W p-value

time on 
equation

control phase 1 22   60.82 62.13 12.50 2.666 55.77   65.89 .953 .355
phase 2 22 114.60 97.93 41.25 8.794 97.20 131.00 .909 .045

experimental phase 1 21   57.57 51.81 12.68 2.767 52.31   62.75 .837 .003
phase 2 21   85.39 82.06 25.55 5.575 74.59   96.21 .956 .438

time on 
a step

control phase 1 22   20.18 20.35   3.36   .717 18.83   21.54 .979 .905
phase 2 22   34.71 33.43   8.96 1.910 31.02   38.38 .934 .146

experimental phase 1 21   22.11 21.53   5.20 1.134 19.85   24.33 .974 .818
phase 2 21   32.75 30.98   9.77 2.132 28.68   36.78 .937 .191
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phase 1 (  = 51.81),  < .001,  = −.649, with significantly different varianc-
es  (1, 40) = 5.917,  = .020. For the time spent to solve a step measure, according 
to a paired t-test, the students spent significantly more time on a step during phase 2 
( = 32.75,  = 2.132) than phase 1 ( = 22.11,  = 1.134), (20) = 5.774,  < .001, 
 = .791, with similar variances  (1, 40) = .078, . 

5.3.3. Between Groups 
After testing the results inside each group, we have computed the hypothesis tests be-
tween groups, for each measure and phase. The time spent to solve an equation in the 
experimental group (  = 51.81) was lower than the time spent by the control group 
during phase 1 (  = 62.13). But, a Wilcoxon rank-sum test showed that they did not 
differ significantly  = 286,  = .094,  = −.256, with similar variances  (1, 41) = .01, 
. We have checked the same condition on phase 2, in which the time spent to solve an 
equation in the experimental group (  = 82.06) was also lower than the time spent by 
the control group (  = 97.93). And, a Wilcoxon rank-sum test showed that they differ 
significantly  = 326,  = .010,  = −.391, with similar variances  (1, 41) = 3.401, . 

For the time spent by the students to solve the steps in phase 1, on average, the 
control group ( = 20.18,  = .717) spent less time than the experimental group 
( = 22.11,  = 1.134). But, based on the result of an independent t-test, this differ-
ence was not significant  (34.01) = −1.44,  = .0795,  = .240, with similar variances 
 (1, 41) = 1.984, . During phase 2, the experimental group ( = 32.75,  = 2.132) 
spent less time on steps than the control group ( = 34.71,  = 1.910). But, based on 
the result of an independent t-test, this difference was not significant  (40.28) = .683, 
 = .249,  = .107, with similar variances  (1, 41) = .119, . 

5.4. Relationship Between Measures 

After computing the descriptive statistics and the hypothesis tests for all the measures, 
we have calculated the correlation between these measures15. We have performed this 
calculation for the control and experimental groups in phase 1 and phase 2. We have in-
cluded 11 variables in total: (i) score on the pre-test (only in phase 1), (ii) midway-test, 
and (iii) post-test (only in phase 2), (iv) gain midway - pre (only in phase 1), (v) gain 
post - midway (only in phase 2), (vi) number of solved equations, (vii) number of steps, 
(viii) number of correct and (ix) incorrect steps, (x) time on the equation, and (xi) time 
on a step. 

To better present the results, we have created a correlogram16 for each group in each 
phase. Fig. 4 shows the correlogram of the control and experimental groups in phase 1, 
and Fig. 5 shows the correlogram of the control and experimental groups in phase 2. The 

15  We could not compute the significance level for Pearson’s correlation because the distributions do not 
follow a normal distribution. Thus, we have applied the Spearman’s correlation coefficient rs, which is a 
nonparametric statistic to calculate the correlation between two distributions, as suggested by Field et al. 
(2012).

16  The correlograms were computed using the ggcorrplot R package.
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calculation of the correlogram is based on a correlation matrix, calculated for each com-
bination of measures. The blank spots presented in the correlogram represent correla-
tions that are not statistically significant for the combination of measures. Thus, the cor-
relograms presented in this paper show only significant correlations, i.e., p-value < .05. 
Also, the greener, the more positively correlated and the redder, the more negatively 
correlated the combinations are. Besides the color, for each significant correlation, the 
correlogram shows the corresponding  value. 

6. Discussions 

This section presents discussions about the results reported in Section 5, according to 
the collected measures, as described in Section 4.5. We have divided this section into 
specific subsections for each measure. 

Fig. 4. Correlogram of measures from the control and experimental groups in phase 1. 

Fig. 5. Correlogram of measures from the control and experimental groups in phase 2.
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6.1. Tests Performance 

In Section 5.1, we have presented the test scores obtained by the students in phases 1 
and 2 for control and experimental groups. We have shown, with statistical significance, 
that students in control and experimental groups had their learning improved in phase 1 
(comparing scores of the pre and midway-tests) and in the whole experiment (comparing 
scores of the pre and post-tests). Both results presented very large effects. This indicates 
that all the students learned in phase 1 and during the whole experiment using the ITS, 
independent of whether they used the handwriting or the typing method. 

For phase 2, according to the results of the statistical tests, as we can also see in 
Fig. 3, the performance median of the students in the post-test was lower than in the mid-
way-test. We have three assumptions about this result. The first one is that perhaps the 
students may have forgotten the content. The second one is that maybe the students may 
have become confused with more complex equations solved during phase 2, according 
to the PAT2Math ITS lessons plan structure, which gradually increases the equations’ 
complexity according to the student’s progress in the system. Moreover, the third one is 
that the student’s performance decreased on phase 2, possibly due to the device inver-
sion. However, we could not affirm this finding because there were no significant differ-
ences in the hypothesis tests for both groups. Although, it presented a small to medium 
effect on the control group and a medium effect on the experimental group. 

Based on the results of the learning gain, the students in control and experimental 
groups achieved a higher gain on phase 1, when comparing with the gain achieved in 
phase 2, both groups with a very large effect. The difference between phases 1 and 2 
on the experimental design was the device used to enter their equations on the ITS. It 
indicates that regardless of the handwriting or typing methods, students learned more 
in phase 1 than phase 2. During the sessions, we noticed the students’ actions and the 
teacher’s concern that the students were not satisfied using the computer’s mouse for 
handwriting neither utilizing the tablet’s keyboard to enter their solving steps in the 
ITS. Thus, we believe that the negative effect on learning in phase 2 is perhaps associ-
ated with device inversion. 

Also, we have compared the learning gain of students between groups for differ-
ent phases. In general, the students in the experimental group achieved lower gain 
than the students in the control group for phases 1 and 2 and the whole experiment. It 
means that the students who used the handwriting method had a lower performance 
than students who used the typing method. However, this finding was not significant 
for any of the tests. 

We can also notice some negative mean gains during phase 2. These negative means 
indicate that the students achieved worse results after the ITS use sessions, perhaps 
because they forgot or became confused about the content. However, based on the re-
sults described for the control group (Section 5.1.1), for the experimental group (Sec-
tion 5.1.2), and for between groups measurements (Section 5.1.3), it was not possible to 
find significantly statistical results to confirm this finding. 

Based on the results of the test scores, we were able to identify that all the students, 
regardless of using the typing or handwriting input methods, performed equivalently. We 
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have applied statistical tests to measure students’ knowledge differences, but we could 
not find any remarkable difference. Although this result is not statistically significant, we 
believe that the equations solved by the students did not require them to insert long and 
complicated steps that demand multidimensional viewing. 

Typically, the more complex the equations are, the more multidimensional viewing 
they require, for example, to solve equations with fractions. The work of Anthony et al. 
(2007b) stated that the time required for students to solve equations with fractions is 
almost twice when using typing vs. the handwriting input method. If the students had 
started the experiment on more complex equations, they would have entered more com-
plicated steps containing fractions operations. It is easy to enter fractions in the student’s 
notebooks because they can draw them as they want, using multiples lines. However, to 
do this on the system using the traditional keyboard, they must follow a given pattern. In 
the PAT2Math ITS, this pattern consists of utilizing a parenthesis structure. For example, 
to enter a solving step like this: 

+ −
− = −

+ +
2 3

10
3 4 16 8

 
     

the student would have to type an input like this: “( ) ( ) ( ) ( )+ + − − + = −3 4 3 162 8 10  ” 
in order for the system to interpret the step. This required pattern is far away from what 
the students are used to write in their notebooks. 

One of our hypotheses was that by allowing the student to use the handwriting with 
real-time recognition as an input method in step-based math ITS, receiving feedback for 
every solution step, the students would reason more about the content than the graphical 
interface, leading to reduced cognitive load and improved learning. However, based on 
the results we have calculated, we do not have evidence for this hypothesis. Although 
the students have learned during the experiment, we could not find any significant differ-
ence in learning when considering the students divided into the control and experimental 
groups. 

Our results are in line with the findings reported by Anthony et al. (2007b). In their 
work, the authors also performed one experiment with students in the control group us-
ing the typing and the students in the experimental group using the handwriting input 
method. Although they have found favorable results for handwriting-based interfaces, 
the authors have identified no difference in student learning. We come up with two pos-
sible explanations why we could not find significant results on students learning for our 
work. 

First, the students in this experiment did not achieve advanced content on first-degree 
equations, as presented in Section 4.4. Thus, we believe that on more simple equations 
that do not require structured input on the system, the students learn really fast to use the 
keyboard because they have to insert just numbers and the plus (+) or minus (−) sym-
bols. However, this task would get more challenging for advanced equations, leading the 
students who would use the handwriting input method to perform better than students 
using the typing method. Therefore, we believe that the handwriting-based interface ef-
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fectiveness may depend on the content complexity and the need for multidimensional 
visualization. 

Second, before conducting this experiment, we have performed multiple usability 
evaluations on the old graphical user interface of the PAT2Math17. In short, we have 
identified that the old interface of the system had several problems, and it was inappro-
priate for the students to use. This old version was a stand-alone applet that followed the 
WIMP (windows, icons, menus, pointer) user interface style. Therefore, we have devel-
oped a new web-based interface that removes all these elements and allows the student 
to type in a text box freely. This developed new version was used in this experiment 
for the students in the control group, using the typing input method. We brought this 
discussion because most of the related works were also based on the WIMP style. Thus, 
the good results related to the handwriting-based interfaces could be related to usability 
problems of the other interface versions in comparison. Therefore, we hypothesized that 
the easier it is to use the interface, the lower the cognitive load imposed by the system, 
regardless of the need for multidimensional visualization. This hypothesis needs to be 
further investigated, and we have considered it as future work. 

6.2. Number of Solved Equations and Entered Steps 

Besides the test scores, we have also analyzed the number of equations and steps that the 
students have entered for different groups and phases. According to the results, for both 
control and experimental groups, the number of solved equations, entered steps, correct 
steps, and incorrect steps in phase 2 were significantly lower than in phase 1. It means 
that, in general, students solved more equations and entered more steps using the most 
suitable device for each modality, independent of the input method. The handwriting is 
best performed on the tablets by touchscreen, and the typing is best performed on the 
computer’s keyboard. 

When comparing the difference between groups, we were able to identify that the 
number of solved equations of the students in the control group was lower than the 
number of solved equations of the students in the experimental group. It means that 
students using the handwriting input could solve more equations than students using the 
keyboard input. Although the mean of the number of solved equations for the experi-
mental group is greater than the control group in both phases, this finding is significant 
only during phase 2. 

Even solving more equations, students in the experimental group entered fewer steps 
and fewer correct steps than students in the control group during phase 1. One possible 
reason for this finding is that the handwriting method may have led the students to feel 
more comfortable solving the equations in the way they are used to solve in their note-
books. PAT2Math does not impose any requirement about a minimum number of steps 
or the required mathematical operations the student must insert. However, when the 
student sees the input box used for typing, s/he may think that s/he has to insert every 

17  The details about these evaluations can be found here: Morais and Jaques (2013) and Morais et al. 
(2017a).
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step for the system to understand her/his solution, leading to a greater number of solving 
steps and fewer equations solved. This assumption needs to be further investigated in 
future work. 

Inversely, during phase 2, students in the control group entered fewer steps and fewer 
correct steps than students in the experimental group. Although none of these results 
were statistically significant, it means that even solving more equations than students 
using the typing input method, students that used the handwriting input method entered 
fewer steps and, consequently, fewer correct steps during phase 1. Nevertheless, during 
phase 2, the students using the typing input method entered fewer steps, fewer correct 
steps and solved fewer equations than students using the handwriting input method. 

For the number of incorrect steps, in both phases, the students on the control group 
entered fewer incorrect steps than students on the experimental group. It means that 
students using the typing input method made fewer mistakes when entering steps than 
students using the handwriting input method. However, this result was not statistical-
ly significant. By analyzing the number of solved equations and entered steps in the 
system, we were able to identify that, in general, students using the handwriting input 
method solved more equations but also entered more incorrect steps than students that 
used the typing input method. Some of these results are not statistically significant, but 
it helps us understand the students’ behavior. In this case, we believe that by spending 
more time on the typing task, the students can reflect more on the solution before enter-
ing the solving step. 

6.3. Time Spent on Equations and Steps 

This work aimed to verify the impact of the input method on a step-based ITS over the 
students’ fluency to solve first-degree equations. Thus, we measured the time spent by 
the students using different input methods to solve the equations and enter the solving 
steps. 

We have computed the time spent on the equation and steps by students in different 
groups and phases. According to the results, for both control and experimental groups, 
students on phase 2 spent significantly more time solving the equations and entering 
the steps than on phase 1. According to Table 1, which shows the structure of the equa-
tions solved in both phases, only a tiny quantity of the equations solved by the students 
in phase 2 was more difficult than phase 1, i.e., they needed more operations to be 
solved. Thus, although the complexity of the equations may have interfered in the time 
spent by the students to solve the equations, this represents a tiny number of equations 
solved. Therefore, we believe the main reason for this difference in the time between 
phases is due to the device inversion. It means that students using the handwriting input 
method spent less time using tablets than using the computer mouse. Also, students 
using the typing input method spent less time using the computer keyboard than the 
tablet keyboard. 

When comparing the time spent between groups, we could identify that students in 
the experimental group spent less time to solve equations in both phases when compared 



F. Morais, P.A. Jaques82

to the control group. It means that the students using the handwriting input method spent 
less time than students using the typing input method to solve the equations, regardless 
of the device. This finding was statistically significant only for phase 2. 

For the time spent on a step, students in the control group spent less time on a step 
than students in the experimental group during phase 1. Inversely, students in the ex-
perimental group spent less time on a step than students in the control group during 
phase 2. Nonetheless, none of these results are statistically significant. It means that 
students typing on the computer keyboard spent less time on a step than students hand-
writing on tablets. Moreover, students handwriting with the computer’s mouse spent 
less time on a step than students typing on the tablets’ keyboard. Thus, regardless of the 
input method, students using the computer spent less time on equations than students 
using the tablets. 

The most remarkable result of the time measure is about the time spent solving the 
equations. According to our tests, we could report, with statistical significance, that 
students were faster to solve the equations using the handwriting than the typing input 
method. According to Oviatt et al. (2006), graphical user interfaces cause students to 
experience high extraneous cognitive load, directly affecting the speed at which the 
task is performed. Thus, by reducing the time spent to solve the equations, we can 
assume that we have reduced the extraneous cognitive load imposed by the graphical 
interface, as reported by Sweller (2010). This finding is in line with the work of An-
thony et al. (2005, 2007b), which also reported a faster speed for handwriting-based 
interfaces compared to the typing method. However, Anthony et al. (2007b) only found 
this evidence for equations containing fractions. In our work, we have found this result 
for the whole experiment. 

6.4. Relationship between Measures 

After computing the results according to our measures, we have calculated the correlation 
between all the measures. The correlation helped us to find trends and understand the be-
havior of the students using the ITS. We have calculated the correlation for each phase. 

6.4.1. Phase 1 
During phase 1, we have observed some common correlations between the control 
and experimental groups. These common correlations indicate that the different input 
methods and devices did not influence these measures during phase 1. We can report 
that the higher the score on the pre-test, the higher the score on the midway-test. With 


2 = .28, this correlation could explain 28% of the results in the control group, and with 


2 = .42, this correlation could explain 42% of the results in the experimental group. 
Also, we have found that the greater the score on the pre-test, the more equations the 
students have solved. 

We have also identified that the  solved equations, the more steps entered by 
the students. This correlation is a bit obvious, but the number of steps depends on each 
student-solving strategy. PAT2Math ITS allows the student to solve the equations by 
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entering the solution step-by-step or just the final answer. Thus, the student is not forced 
to enter more steps. Although this result is not statistically significant, when comparing 
different input methods, the students who used the handwriting input method entered 
fewer steps and solved more equations than students using the typing input method. 

The more steps entered in the system or, the more solved equations, the more cor-
rect steps the student entered. When comparing the input methods, students using the 
handwriting input method entered, in general, fewer steps and also fewer correct steps 
than students using the typing input method. However, they solved more equations 
than students using the typing input method. None of these results were statistically 
significant. About time correlations, the more solved equations the student had, the less 
time on equation the student spent. This correlation is also a bit obvious because we 
have controlled the time range of the experiment. Thus, all the students had the same 
amount of time to use the ITS. If some of them solved a greater number of equations, 
they had to be faster than others. None of these results were statistically significant. 
Also, the more time the student spent solving the equation, the more time the student 
spent solving a step. 

Besides the common correlations, we could find some results that were unique for 
each group. Thus, we are going to discuss the striking correlations for the control 
group in phase 1. The higher the score on the pre-test, the smaller the number of incor-
rect steps and the less time spent on equations by the students. Thus, the pre-test score 
can be considered an indicator of the rest of the results. Still about score tests, the higher 
the score on the midway-test, the greater the gain midway-pre, the more solved equa-
tions, and the fewer incorrect steps the students entered in the ITS. It means that solving 
equations on the ITS helped not just the students to achieve a higher score. Instead, it 
allowed the students to learn more, solve more equations, and commit fewer errors. The 
last correlation of the control group in phase 1 shows that the more steps entered in the 
system, the more incorrect steps entered by the student. This correlation was significant 
only for the control group. Therefore, the number of wrong steps was growing according 
to the number of steps for students using the typing input method. 

We have also found striking correlations for the experimental group in phase 1. 
An interesting point on this is that all the correlations in the experimental group are 
related to time. The higher the number of correct steps or the number of steps, the less 
time spent by the student to solve the equation. The greater the number of incorrect 
steps, correct steps, number of steps, or the number of solved equations, the less time 
the student spent solving a step. All these correlations indicate that students who used 
the handwriting input method spent less time solving the steps and less time solving 
the equations. 

6.4.2. Phase 2 
We have also computed the correlations for phase 2, in which the students switched 
devices to enter equations in the system. Again, we have identified some common 
correlations between the control and experimental groups for phase 2. These cor-
relations that are common between groups indicate that the input method did not affect 
the results. 
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The higher the score on the midway-test, the smallest the post-midway gain, the 
more solved equations, and the less time spent on the equation during phase 2. The 
more solved equations, the higher the number of steps and correct steps, and the less 
time spent on the equation and step. The more time spent on the equation, the more time 
spent on a step. Also, the higher the number of correct steps, or the number of steps, the 
less time spent on a step. And, the higher the number of steps, the greater the number 
of correct steps. 

We have found striking correlations for the control group in phase 2. The higher 
the score on the post-test, the higher the post-midway gain. The higher the score on 
the midway-test, the smaller the number of incorrect steps. The higher the number of 
correct steps or the number of steps, the less time spent on the equation by the student. 
We have also found striking correlations for the experimental group in phase 2. The 
higher the score on the midway-test, the greater the score on the post-test. The more 
solved equations, the higher the score on the post-test. The higher the number of correct 
steps, the number of steps, or the number of solved equations, the higher the number of 
incorrect steps. The higher the number of wrong steps, the less time the student spends 
to solve a step. 

6.4.3. Between Phases 
We have compared the correlation matrices between phases, considering only signifi-
cant correlations, aiming to identify the correlations regardless of input methods or 
devices. We could observe that, in general, the number of steps, correct steps, and 
solved equations grows linearly. The number of the solved equations depends on the 
score on the first test of each phase, i.e., the pre-test for phase 1 and midway-test for 
phase 2. Also, the time spent solving an equation is smaller for the students that solved 
more equations. Furthermore, the time to solve an equation is dependent on the time to 
solve the steps. 

7. Conclusions 

This paper describes an experiment with a math ITS, PAT2Math, which was integrated 
with a plugin that allows students to insert equations into the system through their hand-
writing. In this version, the student can see the recognized handwriting in real-time and 
receives specialized step-based feedback from the ITS to solve first-degree equations. 
The research hypothesis of this work is that this combination of real-time handwriting 
recognition with step-by-step guidance from an ITS would provide a more natural input 
data approach compared to the typing method. Thus, the students would have more 
fluency to solve the equations, reducing the extraneous cognitive load imposed by the 
typing method, leading to improved learning. 

In the typing method, the students have to memorize the text-like patterns to insert 
the equations in the system. We have replaced the traditional typing input box with 
a handwriting area that recognizes the student’s handwriting in real-time. We have con-
ducted an experiment in which 55 students were randomly distributed to control and 
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experimental groups. Whereas the students in the control group used the typing method, 
the students in the experimental group used the handwriting approach. 

The experiment comprised two phases. The students in the control group used the 
computer’s keyboard for phase 1 and the tablet’s keyboard for phase 2 to type the equa-
tions on the ITS. The students in the experimental group used the tablet’s touchscreen 
for phase 1 and the computer’s mouse for phase 2 to handwriting the equations. By 
collecting the students’ data about their interaction while using the ITS and the per-
formance scores from knowledge tests for each phase, we were able to compute the 
learning gain, the number of solving equations, and the time spent by the students to 
solve the equations. 

We have found that students in both groups significantly learned by using the ITS. 
However, there was no difference in the performance test scores between groups for both 
phases. It indicates that the different input methods did not impact students learning. 
Students in both groups achieved significantly lower gains in phase 2 than in phase 1. 
Although this result was not statistically significant, it indicates that the handwriting 
input method with the mouse on the computer and the typing input method in the tablet 
keyboard may negatively affect the students’ learning. 

We also have compared the number of solved equations between phases and groups. 
In phase 1, the students solved more equations and entered more steps, correct steps, and 
incorrect steps than phase 2. It indicates that the handwriting input method was a better 
strategy when students used tablets or touch screen devices instead of the computer mouse. 
The same is true for the typing input method, which is better on a computer keyboard than 
a tablet keyboard. In general, we have noticed that students using the handwriting input 
method solved more equations than the students using the typing input method. However, 
conversely, they also entered more incorrect steps than students who typed. 

Finally, about the time measure, in general, the students spent more time in phase 2 
than in phase 1 to solve the equations and to enter the steps in the system. Although 
a small set of the equations in phase 2 was more difficult them the equations solved in 
phase 1, this finding may indicate that the handwriting input method is more efficient 
on tablet devices, and the typing input method is more productive on the computer key-
board. Comparing input methods, the students using the handwriting method spent less 
time solving the equations than students using the typing method. 

Thus, we can conclude that the handwriting input method allows the student to be 
faster in solving equations. We can attribute this speed difference to a reduced cogni-
tive load interface, which helps students insert the equations more fluently using their 
handwriting. Although this finding is related to our hypothesis, we cannot assume this 
measure is enough to define if the handwriting input method can impact the students 
learning. 

In general, we have found that the input method did not impact the students learn-
ing. This finding is also in line with related studies in this area. On the other side, the 
device used to insert the equations, when used with not ideal input methods, had a more 
significant effect, negatively affecting the students’ performance. Thus, we can conclude 
that the handwriting input method is not able to impact the learning of the students using 
math step-based ITS to solve not too complex first-degree equations. 
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7.1. Limitations 

This section highlights some limitations of this work. We have conducted the experiment 
with a small number of students from the same private school from southern Brazil, 
which does not allow us to generalize our findings to the global population. 

The midway-test was conducted differently from the pre and post-tests. Whereas 
the pre and post-tests were paper-based, the midway-test was a computer-based test. 
We have decided not to expose the students to three sequential performance tests, in the 
same manner, in a short period. We have controlled all the variables not to cause any 
result difference. However, this computer-based test could have motivated the students 
once it was their first time solving a performance test on the computer. 

Finally, the experiment was conducted during six ITS usage sessions, which did not 
allow the students to go further on the content. In the PAT2Math ITS, the more equa-
tions the student solves, the more complex the equations become. As the experiment 
was not long enough to achieve the hardest content, students did not solve complex 
equations that required more text-like patterns to be typed, for typing input method 
only. We believe that to solve equations with more operations, the students using the 
typing input method would spend much more time than students using the handwriting 
input method to solve the same equations. This difference could have also impacted the 
test scores. 

7.2. Future Work 

The students using the typing input spent more time solving the equations and entered 
fewer wrong steps than the students using the handwriting method. Thus, as future 
work, we plan to investigate whether the extra time required from students during typ-
ing leads them to more reflection before entering the solving step. Also, the students 
using the handwriting method solved more equations and entered fewer steps than stu-
dents who used typing. Thus, we plan to research whether the students using the typing 
have entered more steps due to the belief that the ITS only recognizes the solving when 
entered step-by-step. 

We also plan to verify whether solving more complex equations, i.e., first-degree 
equations containing more fractions during solving, could affect students’ fluency using 
the typing input method due to the multidimensional viewing requirement. When using 
a typing-based interface, the students must insert the solving steps following a set of pat-
terns. In the case of fractions, this text-like equation pattern would be challenging for the 
students to remember. Finally, we have seen many works reporting favorable results to 
the handwriting input method had the previous graphical interface version based on the 
WIMP pattern. Thus, we plan to investigate whether the usability of the interfaces could 
impact when testing different input methods. 
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