
Informatics in Education, 2022, Vol. 21, No. 2, 331–352
© 2022 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2022.10

331

The Application of Higher-Order Cognitive Thinking
Skills to Promote Students’ Understanding of the
Use of static in Object-Oriented Programming

Noa RAGONIS1, Ronit SHMALLO2

1Faculty of Education, Department of Computer Science, Beit Berl College
 Beit Berl, Kfar Saba, Israel
2Department of Industrial Engineering and Management, Shamoon College of Engineering
 Ashdod, Israel
e-mail: noarag@beitberl.ac.il, ronits1@sce.ac.il

Received: December 2020

Abstract. Object-oriented programming distinguishes between instance attributes and methods
and class attributes and methods, annotated by the static modifier. Novices encounter difficulty
understanding the means and implications of static attributes and methods. The paper has two
outcomes: (a) a detailed classification of aspects of understanding static, and (b) a collection
of questions designed to serve as a learning/practice/diagnostic tool to address those aspects.
Providing answers requires learners to apply higher-order cognitive skills and, hence, to advance
their understanding of the essential meaning of the concept. Each question is analyzed accord-
ing to three characteristics: (a) the static aspects that the question examines according to a de-
tailed classification the paper provides; (b) identification of the question according: to Bloom’s
revised taxonomy, to the Structure of Observed Learning Outcome (SOLO) taxonomy; and to
the problem-solving keywords used in the question’s formulation. Several recommendations for
teaching are presented.

Keywords: computer science education, object-oriented programming, static variable/method,
SOLO taxonomy, Bloom’s taxonomy, higher-order cognitive skills.

1. Introduction

Object-oriented (OO) languages have two main types of attributes and methods – those
of instance (an object) and those of class – that are indicated by the static modifier.
Instance attributes are related to a particular object, and an instance method is in-
voked on a particular object that was previously created, whereas static variables and
methods are associated to the class and are generic and independent of any particular
instance. Apparently, the static aspects are expressed syntactically by including the
static modifier, but the distinction between the static and the non-static contexts is

N. Ragonis, R. Shmallo332

based on the roles of those attributes or methods in the problem solution. The consid-
erations while designing a solution to a problem – whether an attribute characterizes
an object of the class or characterizes the class – are not syntactical, but they involve
a deep understanding of object-oriented programming (OOP). Understanding the stat-
ic notion involves further aspects such as memory allocation, access rules, program
execution, and abstraction.

Students’ obstacles in understanding different OOP concepts have been studied ex-
tensively (Eckerdal & Thuné, 2005; Kaczmarczyk et al., 2010; Qian & Lehman, 2017;
Sorva, 2007, 2008; Xinogalos, 2015), but only a few studies have been concerned about
the static notion and the challenge to learn and understand it (Chen et al., 2012; Sh-
mallo et al., 2012). None of these studies was devoted directly to the static notion or to
its various interpretations and implementations. The current study aims at closing this
gap by presenting a detailed classification of aspects of using static in various contexts,
and by developing a collection of questions covering those aspects. The aim is that the
collection of questions will serve as a learning/practice/diagnostic tool to be used by
educators. Each of the developed questions covers various interpretations and contexts
of static variables and methods, such as the following: refer to static variables in static
and non-static contexts; invoke static methods from static and non-static contexts; ex-
amine the validity of references to static variables or methods; convert code between the
two contexts; and examine the significance of the two contexts referring to aspects of
software design.

The paper presents a classification of seven categories that consist of 24 precise as-
pects of using static; and offers a collection of questions to serve as a learning/practice/
diagnostic tool. Each question is addressed by (a) the static aspects that the question ex-
amines according to the detailed classification; (b) an interpretation of the question in re-
lation to Bloom’s revised taxonomy of the cognitive processes of learners when solving
problems and to the Structure of the Observed Learning Outcome (SOLO) taxonomy;
and (c) the pedagogical aspects reflected in the question formulation. The questions were
tested with 75 college students on two paths and were improved to account for students’
obstacles in understanding the questions. The questions are presented in Java and can be
easily transferred to other OOP programming languages, but the expected answers could
be different, depending on the particular language rules for the use of static.

In what follows we present background on students’ conceptions regarding static
and on the educational learning approaches that led to the development of the ques-
tions; the classifications of aspects of understanding static; and a detailed presentation
of six example questions addressing their goals at the conceptual level, the cognitive
level, and the pedagogical level. We also present some implications for teaching, learn-
ing, and evaluating.

2. Background

In this section we present the basis for constructing the questions: the essential OOP mis-
conceptions particularly in relation to the static notion, the role of static variables and

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 333

static methods as reflected in the code design, and the cognitive educational approaches
that follow the principles under which they were developed.

2.1. Misconceptions about OOP Concepts

It is already well known that novices confuse the basic OO notions “class” and “object”
and run into obstacles when trying to distinguish between their essence and usage (e.g.,
Holland et al., 1997; Qian & Lehman, 2017; Shmallo et al., 2012). In particular, they
demonstrate difficulties in properly comprehending the notion of an instance (Eckerdal
& Thuné, 2005; Xinogalos, 2015). Some view a class as being composed of a collec-
tion of sub-components (Thomasson et al., 2006), sub-parts (Teif & Hazzan, 2006),
or subsets (Xinogalos, 2015) of objects. Others perceive the terms class and object as
equivalent or view a class as being composed of exactly one object (Eckerdal & Thuné,
2005; Garner et al., 2005; Holland et al., 1997).

Those misconceptions seem to stem from novices’ difficulty in differentiating be-
tween the declarative phase of a program, where classes are defined, and the execution
phase, where objects are created and used (e.g., Ragonis & Ben-Ari, 2005a). Some do
not understand the need for the process of instance creation upon execution (Garner
et al., 2005; Ragonis & Ben-Ari, 2005b), and some do not understand the mechanism
of instance creation and have difficulties realizing their memory allocation (e.g., Kacz-
marczyk et al., 2010; Ma et al., 2007; Sorva, 2007). Additional difficulties arise when
coping with how to access objects’ attributes, believing, for example, that it is possible
to access them directly from an outer class, although they were defined with private ac-
cess (Shmallo et al., 2012). Moreover, students demonstrate difficulties in comprehend-
ing the unique role of the “main” class and the main method versus classes that present
an entity type (Ragonis & Ben-Ari, 2005b).

Previous research has dealt with the notion of static in the context of understand-
ing OOP concepts, but it has not been directly addressed. Research regarding novices’
misconceptions found that students confused the properties of static data members
with constant data members (Chen et al., 2012). Research that addressed novices
tended to expand and reduce properties of terms such as static and access and reported
that students believed that a static variable may have many occurrences rather than
only one, thus expanding its number of occurrences (Shmallo et al., 2012). In research
that focused on students’ conceptions and misconceptions regarding the this reference
it was found that only 60% of the students indicated correctly that the this reference
should not be used in any static context, and students showed difficulties when they
needed to develop a static method replacing an instance method comprising the this
reference (Ragonis & Shmallo, 2017, 2018; Shmallo & Ragonis, 2020). Conclusions
in relation to students’ understanding of the static notion are limited, since they arose
during research on other concepts. As far as we know, no research has previously been
dedicated to the static notion per se.

N. Ragonis, R. Shmallo334

2.2. Static Notion in OOP Languages

Two main types of variables and methods are used in OO languages, resulting in im-
portant differences in program design (Lewis & Loftus, 2009; Olsson, 2020; Oracle,
n.d.):

Instance variable vs. 1) static variable – An instance variable is one per instance of
a class (object), while a static variable is one per class. Each instance has its own
instance variables, while all instances share one copy of a static variable.
Instance method vs. static method – An instance method characterizes the be-2)
havior of a class object, while a static method characterizes the class. An in-
stance method is invoked only by an object identifier and refers to the instance
variables, while a static method does not refer to any particular object (even
though the static method can be accessed by the class name or by each of its
instances).

A static variable has the advantage of persisting throughout the life of the program.
Therefore, it can be used, for example, to count the number of times that a method
has been called. Moreover, static methods can be included in (a) a class that defines
an object type; (b) a special class designed to serve as a collection of utils; and (c) the
“main” class, such as the main method, the most common example of a static method,
which is the entry point of any program. This variety adds to students’ confusion. Each
programming language has its own rules about accessing a variable or method declared
as static and about the access to variables or methods from a static method.

2.3. Teaching Approaches That Led to Development of the Tool

Coping with in-depth understanding of the static notion requires students to apply high-
er-order cognitive skills (HOCS). We developed and tested a collection of questions in
the framework of HOCS, in relation to Bloom’s revised taxonomy and the SOLO tax-
onomy and in relation to pedagogical problem-solving aspects reflected in the question
formulation. Here we elaborate on those approaches.

2.3.1. Higher-Order Cognitive Skills
HOCS are skills that go beyond basic comprehension of a problem or concept. Stu-
dents must acquire HOCS in order to make a decision under various conditions and to
apply the knowledge acquired in class in novel and real-life situations (Bagarukayo
et al., 2012; Mbarika et al., 2010; Zoller, 2003; Zoller et al., 2002). HOCS promote
learning and the development of capabilities such as asking questions, critical think-
ing, decision making, problem solving, and conceptualization of fundamental con-
cepts (Leou et al., 2006). Improving students’ HOCS enhances the learners’ abilities
to identify, integrate, evaluate, and interrelate concepts within a given problem domain
and thereby to make the appropriate decisions to solve a problem (Bagarukayo et al.,
2012).

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 335

2.3.2. Bloom’s Taxonomy of Educational Objectives
Bloom’s taxonomy (1956) is the most fundamental taxonomy, classifying learning objec-
tives in education into six levels involved in planning students’ learning and evaluating
their achievements. The revised taxonomy presented by Anderson and Krathwohl (2001)
kept the six classifications but updated the lowest and the highest levels and changed the
wording to verbs that emphasize the doing. Further, the revision suggested that the upper
three levels are not hierarchical but rather express similar cognitive abilities, identified
as metacognitive knowledge. We adopted this approach and use the following verbs (in
gerund form): level 1 is remembering; level 2 is understanding; level 3 is applying; level
4 is analyzing; level 5 is evaluating; and level 6 is creating. Like Anderson and Krath-
wohl (2001), we do not consider levels 4–6 hierarchical.

Attempts to apply Bloom’s taxonomy in computer science (CS) education have
been done earlier. For example, it was applied in CS course design, evaluation, and
assessment, including introductory programming exams (Thompson et al., 2008). It
was also used in determining three difficulty levels for questions; for examining papers
based on the criteria of keywords found in the questions; and for cross analysis of stu-
dent performance, cognitive skill requirements, and module learning outcomes (Jones
et al., 2009).

2.3.3. Structure of Observed Learning Outcome Taxonomy
The SOLO taxonomy describes levels of increasing complexity in learners’ understand-
ing of subjects or performance tasks (Biggs & Collis, 2014). The taxonomy consists
of five levels in the order of students’ understanding of a learning task. Level 1 is pre-
structural (P): the student does not understand the task and refers to irrelevant aspects to
solve it. Level 2 is unistructural (U): the student focuses on one relevant aspect to solve
the task. Level 3 is multistructural (M): the student focuses on more than one relevant
aspect to solve the task but does not integrate those aspects. Level 4 is relational (R): the
student integrates several aspects of the task into a coherent structure in order to solve
it. Level 5 is extended abstract (EA): the student incorporates the structure in a new
one and adds more features, representing a higher and newer state of performance. The
taxonomy may be used as an instructional as well as an evolutional tool. We adopted the
SOLO taxonomy to classify the levels of increasing complexity in learners’ understand-
ing as should be reflected in their answers.

The SOLO taxonomy has been applied in the field of CS education to categorize
students’ cognitive abilities in various programming tasks, such as code comprehension,
code writing and reading, and algorithm design (e.g., Ginat & Menashe, 2015; Izu et al.,
2016; Lister et al., 2006; Qahmash et al., 2017).

2.3.4. Pedagogical Approach of Problem-Solving Questions in Computer Science
Developing HOCS requires learning assignments that do not just settle on common
types of questions, but rather refine concepts with questions that confront conflicts, and
in relation to programming, in complex contexts that allow coverage of all aspects of
a concept. In the development of our collection of questions and in their interpretation

N. Ragonis, R. Shmallo336

as presented below, we covered multilayers of the static notion and used 11 out of 12
different types of question formulations suggested by Ragonis (2012). In addition, we
classified keywords that appear in problem-solving questions into nine categories related
to Bloom’s cognitive levels 4–6 (Ragonis & Shilo, 2013). The categorization table ap-
pears in Appendix A.

3. Aspects of Understanding static

We categorized the various facets of the static role and usage into seven classifications,
consisting of 24 precise aspects. The classification is based on the background presented
in section ‘Static Notion in OOP Languages’ and on the authors’ accumulated experience
teaching this complicated concept, which includes accumulating some initial findings
from using the collection of questions in classes.

The list is grouped into classifications A–G:
A. Static variable and static method declaration:

A1. A static variable is defined using the static modifier.
A2. A static method is defined by the static modifier.
A3. A static method uses parameters for any needed data.

B. Static variable memory allocation:
B1. A static variable is allocated once.
B2. Each updating of a static variable relates to the same place in memory.
B3. A static variable has one value at a given state.

C. Access to static variable:
C1. A static variable can be accessed by referring to each of the class objects.
C2. A static variable can be accessed by referring to the class name.
C3. An instance method can access a static variable.
C4. A static method can access a static variable.

D. Access to static method:
D1. A static method can be accessed by an object of the same class.
D2. A static method can be accessed from outside the class by the class name.
D3. A static method can be accessed directly from the same class.
D4. A static method cannot be accessed by an object from another class.
D5. A static method can be accessed without creation of any object.

E. Access by static method or from static context:
E1. A static method cannot access an instance attribute.
E2. A static method cannot access an instance method directly.
E3. A class name cannot be used to access an instance method.

F. Connotation and purpose of static variable:
F1. A static variable can be used for communication between objects.
F2. A static variable can be used to count the number of class objects created.
F3. A static variable can be used to create a unique ID of an object.
F4. A static variable should be managed consistently according to the code
design purpose.

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 337

G. Connotation and purpose of static method:
G1. A static method is generic and independent of any instance attributes.

The above classification scheme is the conceptual base that expresses the interpreta-
tion of SOLO taxonomy in the context of the current research and enables us to clas-
sify the collection of questions. The knowledge and thinking skills students require to
answer the questions are reflected in our interpretation of SOLO levels 1–5:

Level 1: ● Prestructural – Providing an answer requires the student to implement
knowledge in relation to static in a superficial manner using basic rules, for ex-
ample, a static variable can be accessed by each of the class objects.
Level 2: ● Unistructural – Providing an answer requires the student to focus on only
one relevant aspect of static, for example, writing an instruction to call a static
method from an outer class.
Level 3: ● Multistructural – Providing an answer requires the student to focus on
more than one relevant aspect of static, but there is no need to integrate those as-
pects. An example is implementation of a static method that relates to an array of
objects that have a static variable.
Level 4: ● Relational – Providing an answer requires the student to integrate several
aspects of static, for example, using discretion in developing a getter or setter
method for a static variable.
Level 5: ● Extended Abstract – Providing an answer requires the student to in-
corporate knowledge on static in a new interpretation representing a higher and
newer state of performance. An example is understanding the consequence of
converting a static method to an instance method, by presenting discretions and
implementing the needed changes, or making up a new goal for a static vari-
able.

4. Collection of Questions

The collection consists of 22 questions, each focusing on different aspect(s) of the im-
plication and implementation of the static notion.
Questions Context. The questions introduced to students relate to a project including
three classes:

Class ● Box: represents a three-dimensional box, with a static variable num, and
a static method whichNum()
Class ● BoxUtils: is a collection of utils methods that implement three static meth-
ods
Class ● Test: has a main() method aimed at creating objects and testing the variety
of instance methods and static methods.

Each question addresses part of the project. The collection of questions appears in
Appendix B.

N. Ragonis, R. Shmallo338

Presentation Structure. The structure of each question consists of the question’s tar-
get, formulation, and expected answer. Each question is analyzed according to three
characteristics:

 (a) The static aspects that the question examines, according to the categories pre-
sented in the section “Aspects of Understanding static”.
 (b) Assignment of the question to level(s) of the two taxonomies: the revised Bloom
taxonomy (Anderson & Krathwohl, 2001), which identifies the learning objective
that the student will achieve when solving the question correctly; and the SOLO
taxonomy (Biggs & Collis, 2014), which identifies the cognitive abilities learners
acquire as learning outcomes for solving future problems. It is important to note
that we relate to Bloom’s taxonomy as nonhierarchical, and a question can address
some learning objectives from different categories. When a question is associated
with more than one level, it is displayed in descending order of the level number,
from the highest to the lowest.
 (c) Pedagogical aspects that examine cognitive ability to cope with questions that
call for a significant understanding of the concepts. This includes the question
type (Ragonis, 2012); and the category of problem-solving keywords used in
the question (Ragonis & Shilo, 2013).

In what follows we present six examples to illustrate the analysis of questions. The
full analysis can be found in the complementary materials.

4.1. Question 2

Question 2 displays three alternative instructions. Each accesses the static method
whichNum() in class Box, which returns the value of the static variable num.
The question

Replace the statement in Line 1 at the main() method with each of the following
statements, and state for each whether it is correct or not. If it is correct, display the
output; if not, explain why.

System.out.println (“Print:” + boxArr[1].whichNum ());I.
System.out.println (“Print:” + topBox.whichNum ());II.
System.out.println (“Print:” + Box.whichNum ());III.

Expected answer
Instructions I and II are correct, since the static method whichNum() can be accessed by
an instance of the same class. Instruction III is correct, since the reference is by the class
name. The output for all instructions will be “Print:4”.
The question interpretation

Static aspects The •	 static method whichNum() can be accessed by each of the class
objects – boxArr[1], topBox (D1) or by the class name Box (D2)
The •	 static method whichNum() can access the static variable num
(C4)

Bloom’s taxonomy Level 3 – Applying

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 339

SOLO taxonomy Level 3 – Multistructural
Type of question Type 3 – Tracing a given solution

Type 4 – Analysis of code execution
Type 6 – Examination of the correctness of a given solution

Problem-solving
keywords category

Category 2 – Argue and justify
Category 3 – Analyze

4.2. Question 4

Question 4 is aimed at examining students’ conceptions in relation to a static variable. It
asks what the static notion potential and relevant purpose is, beyond the syntactic rules
of its usage. The students are expected to offer a context or purpose for including the
static variable num in the class Box.
The question

What do you think the num variable stands for and how/why do the static proper-
ties support it?

Expected answer
A direct and limited answer could be that it is a shared variable of all class objects. A
more useful implication is that num stands for the number of boxes already instantiated.
Students exposed to other applications could suggest them (such as the idea presented
in question 21).
The question interpretation

Static aspects num•	 can be used for communication between the class Box objects
(F1), or to count the number of boxes already created (F2), or to
give a unique identification to each box at the time of creation
(F3)

Bloom’s taxonomy Level 5 – Evaluating
SOLO taxonomy Level 4 – Relational
Type of question Type 5 – Finding the purpose of a given solution

Type 11 – Programming style/aspects questions
Problem-solving
keywords category

Category 1 – Address / define criteria
Category 7 – Discover

4.3. Question 8

In question 8 students must focus on the semantics and syntactical aspects of method
declaration as an instance method versus a static method.
The question

The programmer seeks to move the volume() method defined in class BoxUtils and
to define it at class Box; should any change be made? If not, explain your position;
if yes, write down the method with the required changes and explain the changes.

N. Ragonis, R. Shmallo340

Expected answer
The changes that should be made are removal of the static modifier and removal of the
parameters that represent the box dimensions, since they are the box attributes. Access
to the attributes can be direct now, but students can keep the getters methods.
The question interpretation

Static aspects Since a •	 static method is annotated by the static modifier, it should
be removed and replaced by an instance method (A2)
The •	 volume() method has to use parameters, one for each dimen-
sion. But, as an instance method, since the box dimensions are part
of the object, they should not appear as parameters (A3)

Bloom’s taxonomy Level 5 – Evaluating
Level 4 – Analyzing
Level 3 – Applying

SOLO taxonomy Level 4 – Relational
Type of question Type 11 – Programming style/aspects questions

Type 12 – Transformation of a solution
Problem-solving
keywords category

Category 2 – Argue and justify
Category 3 – Analyze
Category 8 – Develop

4.4. Question 9

Question 9 is aimed at examining students’ OOP design conceptions and asks them to
take a stand on whether the method volume() should be defined in class BoxUtils, as in
the presented project, or whether it is better to define it as an instance method.
The question

Where do you think it is more appropriate to define the method volume(), in class
BoxUtils or in class Box? Explain your answer.

Expected answer
Software design considerations should lead the students to define the method volume()
as an instance method, since it relates to any box, and the box dimensions are box at-
tributes.
The question interpretation

Static aspects The method should be declared •	 static if it performs a generic func-
tion. The volume() method is indeed a generic calculation, but the
context is boxes. Since there is a particular class that represents
a box – class Box – it should be defined there (G1)

Bloom’s taxonomy Level 5 – Evaluating
Level 4 – Analyzing

SOLO taxonomy Level 5 – Extended Abstract
Type of question Type 11 – Programming style/aspects questions

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 341

Problem-solving
keywords category

Category 1 – Address / define criteria
Category 2 – Argue and justify

4.5. Question 14

Question 14 aims to follow the getter method for a static variable from a static method
defined in another class. In this case, the only option is to use the class name, since none
of the class objects exists in that location.
The question

Complete the instruction “int n = …” in the method build() defined in class BoxUtils
so n will be assigned the value of num from class Box.

Expected answer
Since there is not any object of class Box in the method build(), the only option is to use
the method whichNum() and to access it by the class name Box: Box.whichNum().
The question interpretation

Static aspects The •	 static variable num can be assessed by the static method
whichNum() (C4)
A •	 static method can be accessed from outside the class by using
the class name; hence, using Box is needed (D2)
This is the only option, since there is no object of class •	 Box that
can be used for accessing the method (in contradiction to D1)

Bloom’s taxonomy Level 3 – Applying
SOLO taxonomy Level 3 – Multistructural
Type of question Type 7 – Completion of a given solution
Problem-solving
keywords category

Category 5 – Complete

4.6. Question 21

In question 21 students are expected to complete a software design assignment, in re-
lation to a different usage of a static variable: giving each of the class created objects
a unique identification.
The question

The class Box should fulfill a new request. Each object has to have an attribute that
expresses its unique identification: a serial number, which will start with the string
“SN_” following its unique number. For example, the serial number for the first box
will be “SN_1”, the second will be “SN_2”, etc. Make all the needed changes in the
class Box.

Expected answer
Three main changes have to be made: (a) add a new instance attribute, a serial number,
to the class Box; (b) build a mechanism that will allow the creation of the needed String;

N. Ragonis, R. Shmallo342

and (c) add an instruction to initial the new attribute in the Box constructor. One option
for the new code is the following:

public class Box
private int width;
private int length;
private int depth;
private String serialNumber = “”;
private static int num = 0;
public Box(int width, int length, int depth) {
 this.width = width;
 this.length = length;
 this.defth = depth;
 num++;
 this.serialNumber = “SN_” + num;
}
public String getSerialNumber() {

 return serialNumber;
}

The question interpretation

Static aspects An additional instance attribute should be defined to fulfill the new •	
request. It should not be static (in contradiction to F1)
The previously defined •	 static variable num can serve in the cre-
ation of the unique identification for each of the created objects
(F1, F3)
Adding the •	 getSerialNumber() method, and not the setSerialNum-
ber() method, is in line with managing the serialNumber variable
(F4)

Bloom’s taxonomy Level 6 – Creating
Level 5 – Evaluating
Level 4 – Analyzing
Level 3 – Applying

SOLO taxonomy Level 5 – Extended abstract
Type of question Type 11 – Programming style/aspects questions

Type 1 – Development of a solution
Problem-solving
keywords category

Category 8 – Develop
Category 9 – Integrate

The full collection of 22 questions covers the entire classification consisting of the
seven categories A–G and the 24 precise aspects addressed, while each question sharp-
ens a different context. The full classifications are presented in Appendix C. Browsing
the full collection is recommended to enable educators and researchers to choose ques-
tions according to their purpose.

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 343

5. Summary

The static notion is one of the OOP foundations. Understanding the concept of static
requires knowledge of aspects of OOP design, memory allocation, access rules, program
execution, and abstraction. The role and usages of static variables and static methods are
not restricted to syntactical distinctions; rather, they involve very basic OOP conceptions
of object and class. Previous research has not directly dealt with the static notion, but
students’ obstacles have arisen during research on other OOP conceptions.

The study has two outcomes. The first is a detailed classification of seven categories
that consist of 24 precise aspects in relation to the use of static. The second is a collec-
tion of 22 questions covering all those multifaceted aspects that can serve as a learning/
practice/diagnostic tool to address students’ difficulties in acquiring the static notion,
which implies students’ HOCS. The classification of the seven categories with 24 precise
aspects is based on the literature background, on the authors’ accumulated experience
teaching the static notion, and on accumulating findings from using the collection of
questions in classes. The categorization of each question into the (a)–(c) characteris-
tics – static aspects, SOLO and Bloom’s taxonomies, and type of question – was firstly
done individually by each of the researchers; later, the researchers discussed their cat-
egorizations until reaching full agreement.

 Developing HOCS requires learning assignments that do not settle on common types
of questions; rather, assignments should refine the concepts with questions that confront
conflicts. In particular, the programming tasks should offer complex contexts that allow
coverage of all aspects of a concept. The collection of questions meets these objectives
and covers 11 of the 12 types of question suggested by Ragonis (2012); it also uses vari-
ous problem-solving keywords of the nine categorized, as suggested by Ragonis & Shilo
(2013), which are themselves attributed to Bloom’s revised cognitive levels 4–6. We
believe that because students cannot be expected to understand intuitively the concept of
the current object this (Ragonis & Shmallo, 2017, 2018; Shmallo & Ragonis, 2020), the
understanding of the static notion cannot be accurate without facilitating it using tools
that enable meaningful learning.

Analysis of the question collection, as presented in Appendix C, reveals the follow-
ing:

In light of the revised Bloom’s taxonomy (Anderson & Krathwohl, 2001), the ●
questions reflect the four advanced cognitive skills: 3, applying (expressed in 12
questions); 4, analyzing (expressed in 8 questions); 5, evaluating (expressed in
10 questions); and 6, creating (expressed in 3 questions). However, there is no
expression of the two lower levels: 1, remembering, and 2, understanding.
In our incorporation of SOLO taxonomy (Biggs & Collis, 2014), the three ad- ●
vanced levels are conveyed widely: 3, multistructural (expressed in 7 questions);
4, relational (expressed in 8 questions); and 5, extended abstract (expressed in 6
questions). Level 1, prestructural, does not appear at all; and level 2, Unistruc-
tural, is expressed only in one question.

N. Ragonis, R. Shmallo344

The collection of questions aims to directly expose students’ perceptions and mis-
conceptions regarding the concept static in different contexts. It is written in Java and
can be translated into other OOP languages, but the answers are subject to the rules
of the particular programming language used. The questions highlight wide and varied
aspects of the use of static, frequent usages, and non-frequent usages. Open-ended ques-
tions are also used to allow students to express their understanding, including from the
perspective of OOP design. We do not recommend using all the questions if the allocated
time is limited. The questions are comprehensive and require time for students to cope
with them in order to respond properly.

The static topic has not been studied in depth in the past; hence, we believe that the
current study makes a valuable contribution. The classification of aspects of understand-
ing the static notion and the collection of questions can be used as tools for learning,
teaching, and research.

References

Anderson, L.W., Krathwohl, D.R. (Eds.) (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revi-
sion of Bloom’s Taxonomy of Educational Objectives. Longman.

Bagarukayo, E., Weide, T., Mbarika, V., Kim, M. (2012). The impact of learning driven constructs on the per-
ceived higher order cognitive skills improvement: Multimedia vs. text. International Journal of Education
and Development using ICT, 8(2), 120–130.

Biggs, J.B., Collis, K.F. (2014). Evaluating the Quality of Learning: The SOLO Taxonomy (Structure of the
Observed Learning Outcome). Academic Press.

Bloom, B.S. (1956). Taxonomy of Educational Objectives. Handbook 1: Cognitive Domain. McKay.
Chen, C.-L., Cheng, S.-Y., Lin, J. M.-C. (2012). A study of misconceptions and missing conceptions of novice

Java programmers. In: Proceedings of the International Conference on Frontiers in Education: Computer
Science and Computer Engineering (FECS’12). Steering Committee of the World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp), pp. 84–89.

Eckerdal, A., Thuné, M. (2005). Novice Java programmers’ conceptions of “object” and “class”, and variation
theory. ACM SIGCSE Bulletin, 37(3), 89–93.

Garner, S., Haden, P., Robins, A. (2005, January). My program is correct but it doesn’t run: A preliminary
investigation of novice programmers’ problems. In: Proceedings of the 7th Australasian Conference on
Computing Education, Vol. 42 (pp. 173–180).

Ginat, D., Menashe, E. (2015, February). SOLO taxonomy for assessing novices’ algorithmic design. In: Pro-
ceedings of the 46th ACM Technical Symposium on Computer Science Education (pp. 452–457).

Holland, S., Griffiths, R., Woodman, M. (1997, March). Avoiding object misconceptions. In: Proceedings of
the Twenty-eighth SIGCSE Technical Symposium on Computer Science Education (pp. 131–134).

Izu, C., Weerasinghe, A., Pope, C. (2016, August). A study of code design skills in novice programmers using
the SOLO taxonomy. In: Proceedings of the 2016 ACM Conference on International Computing Education
Research (pp. 251–259).

Jones, K. O., Harland, J., Reid, J. M., Bartlett, R. (2009, October). Relationship between examination ques-
tions and Bloom’s taxonomy. In: 2009 39th IEEE Frontiers in Education Conference. IEEE, pp. 1–6.

Kaczmarczyk, L.C., Petrick, E.R., East, J.P., Herman, G.L. (2010). Identifying student misconceptions of
programming. In: Proceedings of the 41st ACM Technical Symposium on Computer Science Education.
ACM, pp. 107–111.

Leou, M., Abder, P., Riordan, M., Zoller, U. (2006). Using ‘HOCS-centered learning’ as a pathway to promote
science teachers’ metacognitive development. Research in Science Education, 36(1–2), 69–84.

Lewis, J., Loftus, W. (2009). Java software solutions: Foundations of program design (8th ed.). Pearson/
Addison-Wesley.

Lister, R., Simon, B., Thompson, E., Whalley, J.L., Prasad, C. (2006). Not seeing the forest for the trees: Nov-
ice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118–122.

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 345

Ma, L., Ferguson, J., Roper, M., Wood, M. (2007, March). Investigating the viability of mental models held
by novice programmers. In: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (pp. 499–503).

Mbarika, V., Bagarukayo, E., Hingorani, V., Stokes, S., Kourouma, M., Sankar, C. (2010). A multi-experi-
mental study on the use of multimedia instructional materials to teach technical subjects. Journal of STEM
Education: Innovations and Research, 11(2), 24–37‏.

Olsson, M. (2020). Static. In: C# 8 Quick Syntax Reference. Apress, pp. 85–90.
Oracle (n.d.). Oracle Java documentation – The Java tutorials: Using the this keyword. https://docs.ora-

cle.com/javase/tutorial/java/javaOO/thiskey.html

Qahmash, A., Joy, M., Boddison, A., Needs, S.E. (2017). Investigating high-achieving students’ code-writing
abilities through the SOLO taxonomy. In: Proceedings of the 28th Annual Conference of the Psychology of
Programming Interest Group (PPIG 2017). Psychology of Programming Interest Group, pp. 17–27.

Qian, Y., Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory programming: A
literature review. ACM Transactions on Computing Education (TOCE), 18(1), 1–24.

Ragonis, N., Ben-Ari, M. (2005a). A long-term investigation of the comprehension of OOP concepts by nov-
ices. Computer Science Education, 15(3), 203–221.

Ragonis, N., Ben-Ari, M. (2005b). On understanding the static’s and dynamics of object-oriented programs.
ACM SIGCSE Bulletin, 37(1), 226–230.

Ragonis, N. (2012). Type of questions – The case of computer science. Olympiads in Informatics, 6, 115–
132.

Ragonis, N., Shilo, G. (2013). What is it we are asking: Interpreting problem-solving questions in computer
science and linguistics. In: Proceeding of the 44th ACM technical symposium on Computer science educa-
tion (SIGCSE’13). ACM, New York, NY, USA, pp. 189–194.

Ragonis, N., Shmallo, R. (2017). On the (Mis) understanding of the “this” reference. In: Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE’17). ACM, New
York, NY, USA, pp. 489–494.

Ragonis, N., Shmallo, R. (2018). A diagnostic tool for assessing students’ perceptions and misconceptions
regards the current object “this”. In: S. Pozdniakov & V. Dagienė (eds), Informatics in Schools – Funda-
mentals of Computer Science and Software Engineering. ISSEP 2018. Lecture Notes in Computer Science,
vol 11169. Springer, Cham, pp. 84–100.

Shmallo, R., Ragonis, N., Ginat, D. (2012). Fuzzy OOP: Expanded and reduced term inter-pretation. In: Pro-
ceedings of the 17th ACM Annual Conference on Innovation and Technology in Computer Science Educa-
tion (ITiCSE’12), 309–314.

Shmallo, R., Ragonis, N. (2021). Understanding the “this” reference in object oriented programming: Miscon-
ceptions, conceptions, and teaching recommendations. Education and Information Technologies, 26(1),
733–762.

Sorva, J. (2007). Students’ understandings of storing objects. In Proceedings of the Seventh Baltic Sea Confer-
ence on Computing Education Research (vol. 88, pp. 127–135). Australian Computer Society, Inc.

Sorva, J. (2008). The same but different students’ understandings of primitive and object variables. In Pro-
ceedings of the 8th International Conference on Computing Education Research. ACM, pp. 5–15.

Teif, M., Hazzan, O. (2006). Partonomy and taxonomy in object-oriented thinking: junior high school students’
perceptions of object-oriented basic concepts. In: Working group reports on ITiCSE on Innovation and
technology in computer science education. pp. 55–60.

Thomasson, B., Ratcliffe, M., Thomas, L. (2006). Identifying novice difficulties in object oriented design. ACM
SIGCSE Bulletin, 38(3), 28–32.

Thompson, E., Luxton-Reilly, A., Whalley, J.L., Hu, M., Robbins, P. (2008, January). Bloom’s taxonomy for
CS assessment. In: Proceedings of the Tenth Conference on Australasian Computing Education. (vol. 78,
pp. 155–161).

Xinogalos, S. (2015). Object-oriented design and programming: An investigation of novices’ conceptions on
objects and classes. ACM Transactions on Computing Education (TOCE), 15(3), Article 13.

Zoller, U. (2003). HOCS problem solving vs. LOCS exercise solving: What do college science students prefer?
In Science Education Research in the Knowledge-Based Society. Springer, pp. 201-207.

Zoller, U., Dori, Y., Lubezky, A. (2002). Algorithmic, LOCS and HOCS (chemistry) exam questions: Perfor-
mance and attitudes of college students. International Journal of Science Education, 24(2), 185–203.

N. Ragonis, R. Shmallo346

N. Ragonis is a senior lecturer. She is the head of the M.Ed. in Integrative STEM Edu-
cation program and the head of the Computer Science Department, at Beit Berl College.
She is also a senior lecturer at the Faculty of Education in Technology and Science,
Technion. Ragonis is a graduate of the Faculty of Mathematics and Computer Science
at Bar-Ilan University. She received her MSc ‎and PhD degrees at the Weizmann Insti-
tute of Science ‎and was a postdoctoral fellow at the Faculty of Education in Technology
and Science, Technion. Her research mainly focuses on cognitive aspects of teaching
and learning of Computer Science and Computational Thinking, in particular in relation
to Logic Programming and Object-Oriented Programming, as well as integrating ICT
and innovation in teaching and learning processes. She has published over 60 articles
in journals, conferences and chapters in books. She has co-authored the book Guide to
Teaching Computer Science (2011; 2014; 2020, Springer) and has authored ten Com-
puter Science high-school textbooks and teachers book guidelines, in relation to OOP,
Logic Programming, and Computational Models. Engaged in pre-service and in-service
teachers’ preparation programs.

R. Shmallo is a senior lecturer in the Department of Industrial Engineering and
Management and a member of the Center of the Advancement of Teaching at SCE
(Shamoon College of Engineering). She received her PhD in Computer Science Educa-
tion from Tel-Aviv University in 2013. Her teaching is primarily in computer science
programming and analysis and design of information systems using the object-orient-
ed approach. Her research focuses on difficulties encountered by novices in trying to
understand the cornerstones of object-oriented programming. Her study involved an
examination of a new teaching method that integrates explicit orientation to errors in
a way that enables students to strive to learn from those errors in computer science,
databases, and other areas.

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 347

Appendix A: Problem-Solving Question Categories and Keywords

Table A1
Problem-Solving Question Categories and Keywords (Ragonis & Shilo, 2013)

Category Keywords Interpretation

1.
Address /
define criteria

address / apply / note / mention /
specify / indicate / sort / mark

Address and apply different kinds of criteria and attri-
bute the criteria to a list of elements; define criteria

2.
Argue and
justify

argue / state / assert / determine,
followed by justification: explain /
argue / prove / justify / demonstrate
/ illustrate / clarify

State opinion and further establish the claim using
any kind of justification

3.
Analyze

analyze / examine / investigate / ex-
plore

Identify and analyze the meaning or significance of
components and factors

4.
Compare

compare / classify Compare different objects/issues by applying prin-
ciples and observing from different viewpoints; gen-
eralize insights

5.
Complete

complete / add Complete or add components to a given structure ac-
cording to detailed requirements

6.
Convert

convert / represent in different forms
/ modify / adjust / change / transform

Convert a given paragraph/section/clause according
to specified, meaningful, qualitative-related instruc-
tions (not technical translation)

7.
Discover

discover / identify / find out / say
what

Discover a phenomenon / indicate an occurrence /
find out the purpose / identify components and the
relations between them

8.
Develop

develop / compose / write / create
new elements

Develop a new component / write a new module

9.
Integrate

integrate / order / arrange / merge /
combine

Integrate some given components into a new struc-
ture

Appendix B: The Collection of Questions in Java

The following is a project that includes:
The class ● Box with a static variable num, and a static method whichNum().
The class ● BoxUtils, which implements three static methods.
The class ● Test with a main method.

public class Box
private int width;
private int length;
private int height;
private static int num = 0;

N. Ragonis, R. Shmallo348

public Box(int width, int length, int height) {
 this.width = width;
 this.length = length;
 this.height = height;
 num++;
}
public int getWidth()
public int getLength()
public int getHieght()
public int getNum()
public void setWidth(int width)
public void setLength(int length)
public void setHeight(int height)
public String toString()
public static int whichNum() {
 return num;
}
public class BoxUtils
public static int volume(Box c) {
 return c.getWidth() * c.getLength()* c.getHeight();
}
public static Box Build(Box c1, Box c2) {
 return new Box(c1.getWidth(), c1.getLength(), c1.getHeight()+c2.getHeight());
}
public static Box build() {
 int n = ;
 return new Box(n, n*2, n*3);
}
public class Test
public static void main(String[] args) {

(*) …………………………………………………..
Box[] boxArr = new Box[10];
for (int n=1; n<4; n++) {

boxArr[n] = new Box(n, n, n);
}
Box topBox = new Box(1, 2, 3);

 System.out.println (“Print: “ + 1));
 __________________________ ;2)
 boxArr[4] = 3) ;
 System.out.println (“Print: “ + 4));
 __________________________ ;5)

}

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 349

Answer the following questions:
Replace the statement in Line 1 at the 1. main() method with each of the following
statements, and state for each whether it is correct or not. If it is correct, display
the output; if not, explain why.

System.out.println (“Print: “ + boxArr[1].getNum());I.
System.out.println (“Print: “ + boxArr[2].getNum());II.
System.out.println (“Print: “ + topBox.getNum());III.
System.out.println (“Print: “ + Box.getNum());IV.

Replace the statement in Line 1 at the 2. main() method with each of the following
statements, and state for each whether it is correct or not. If it is correct, display
the output; if not, explain why.

System.out.println (“Print:” + boxArr[1].whichNum ());I.
System.out.println (“Print:” + topBox.whichNum ());II.
System.out.println (“Print:” + Box.whichNum ());III.

In the 3. main() method at the place marked by (*) the programmer added the next
instruction: System.out.println (“Print: “ + Box.whichNum());

a. State whether it is correct or not. If it is correct, display the output; if not,
explain why.

b. Instead of Box, the programmer wrote boxArr[0]; state whether it is cor-
rect or not. If it is correct, display the output; if not, explain why.

What do you think the 4. num variable stands for and how/why do the static proper-
ties support it?
Do you think it is necessary to include the conventional 5. setNum(int num) method
in the class Box? Explain your answer.
Do you think that each 6. static variable should be initialized by 0 (zero)? Please
explain your answer. If you think differently, suggest a scenario where a differ-
ent initialization of a static variable is relevant.
Explore the method 7. volume() defined in class BoxUtils. Replace the statement
in line 2 at the main() method with each of the following statements, and state
for each whether it is correct or not. If it is correct, display the output; if not,
explain why.

System.out.println (“The volume is:” + topBox.volume (topBox));I.
System.out.println (“The volume is:” + volume (topBox));II.
System.out.println (“The volume is:” + BoxUtils.volume (topBox));III.

The programmer seeks to relocate the 8. volume() method defined in class BoxUtils
and to define it at class Box; should any change be made? If not, explain your
position; if yes, write down the method with the required changes and explain
the changes.
Where do you think it is more appropriate to define the method 9. volume(), in class
BoxUtils or in class Box? Explain your answer.
Complete the instruction in line 3 at the 10. main() method to build a new box us-
ing the build method that has two parameters. Choose any two boxes previously
created.

N. Ragonis, R. Shmallo350

Complete the instruction in line 4 in the 11. main() method in order to print the value
of num.
What will be the output of the instruction you completed in line 4 (ques-12.
tion 11)?
If the access modifier of the class 13. Box num variable is changed from private to
public, can the instruction in line 4 at the main() method be written differently
from what you suggested in question 11? Explain your determination, and if
your answer is positive please write the new instruction.
Complete the instruction “int n = …” in the method 14. build() defined in class Box-
Utils so n will be assigned the value of num from class Box.
In class 15. BoxUtils, two methods named build are defined, one with two parameters
and the other with none. Those two methods return a new object of class Box.
Does their declaration follow your answer to question 5 in relation to what the
static variable num stands for? Do they keep the objective of num objective?
Develop a method in class 16. Box to achieve the same task as the method build()
with no parameters in class BoxUtils.
Do you think that it is more appropriate to define the two build methods defined 17.
in the class BoxUtils in the class Box? elaborate your considerations.
The programmer adds the next 18. sumHights() method to the class Test. The method
aims to return the sum of heights of the boxes in the array of boxes. See the
method code and add relevant parameter/parameters, if needed.

public static int sumHeights(______ - ? - ______) {
 int sum = 0;
 for (int i=1; i<boxes.length && boxes[i] != null; i++) {

 sum+= boxes[i].getHeight();
 }
 return sum;
}

In line 5 at the 19. main() method, write an instruction to call the method sumHeights(),
in relation to the array of boxes existing in the main() method.
The programmer wishes to relocate the 20. sumHeights() method from the class Test
to the class BoxUtils. Which changes should be made in the method code or in
the method call?
The class 21. Box should fulfill a new request. Each object has to have an attribute
that expresses its unique identification: a serial number, which will start with the
string “SN_” following its unique number. For example, the serial number for
the first box will be “SN_1”, the second will be “SN_2”, etc. Make all the needed
changes in the class Box.
What additional objective of a 22. static variable can fit into the implementation of
this project? Write down what the purpose of this variable is, for what it can be
used, and where it will be defined.

The Application of Higher-Order Cognitive Thinking Skills to Promote ... 351

Appendix C: Mapping All Question Classifications

Table C1
Mapping All Question According to the five Classifications

Q
ue

st
io

n
N

o.

Static aspects Bloom’s taxonomy SOLO taxonomy

Ty
pe

 o
f

qu
es

tio
n

C
at

eg
or

y
of

PS

Q
*

A B C D E F G 1 2 3 4 5 6 P U M R EA

 1 B1
B2
B3

C3 D1 E3 X X 3
 4
 6

2
3

 2 C4 D2 X X 3
 4
 6

2
3

 3 C4 D1
D2
D5

X X 3
 4
 6

2
3

 4 F1
F2
F3

X X 5
11

1
7

 5 F4 X X 11 1
2

 6 F4 X X 6
11

1
2

 7 D1
D2
D4

X X 3
 4
 6

2
3

 8 A2
A3

X X X X 11
12

2
3
8

 9 G1 X X X 11 1
2

10
D2

X X 7 5

11 C1
C2
C3
C4

X X 7 5

12 B1
B2
B3

X X 3
 4

3

13 F4 X X 3
 4
 8
11

2
4
8

14 C4 D1
D2

X X 7 5

Continued on next page

N. Ragonis, R. Shmallo352

Q
ue

st
io

n
N

o.
Static aspects Bloom’s taxonomy SOLO taxonomy

Ty
pe

 o
f

qu
es

tio
n

C
at

eg
or

y
of

PS

Q
*

A B C D E F G 1 2 3 4 5 6 P U M R EA

15 F2
F4

X X 11 1
2
3

16 A2 C3 X X X X X 2 6

17 G1 X X 11 1
2

18 A3 E1 X X X 7 5

19
D3

X X 7 5

20 A2
A3

D2

X X X 11
12

3
6
8

21 F1
F3
F4

X X X X X 1
11

8
9

22 F1
F2
F3
F4

X X 10 1
2
8

 * Category of Problem-Solving Keywords

Table C1 – continued from previous page

