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Abstract. Over its short disciplinary history, computing has seen a stunning number of descrip-
tions of the field’s characteristic ways of thinking and practicing, under a large number of differ-
ent labels. One of the more recent variants, notably in the context of K-12 education, is “compu-
tational thinking”, which became popular in the early 2000s, and which has given rise to many 
competing views of the essential character of CT. This article analyzes CT from the perspective 
of computing’s disciplinary ways of thinking and practicing, as expressed in writings of com-
puting’s pioneers. The article describes six windows into CT from a computing perspective: its 
intellectual origins and justification, its aims, and the central concepts, techniques, and ways of 
thinking in CT that arise from those different origins. The article also presents a way of analyzing 
CT over different dimensions, such as in terms of breadth vs. depth, specialization vs. generaliza-
tion, and in terms of skill progression from beginner to expert. Those different views have differ-
ent aims, theoretical references, conceptual frameworks, and origin stories, and they justify their 
intellectual essence in different ways.

Keywords: computational thinking, CT, computing as a discipline, history, professionals, ad-
vanced, perspectives.

1. Introduction

We are in a computer revolution. Nearly every device now has computers in it – phones, 
tablets, desktops, watches, navigators, thermometers, medical devices, clocks, televi-
sions, DVD players, and even toothbrushes. Nearly every service is powered by soft-
ware – bookstores, retail stores, banks, transportation, hotel reservations, filmmaking, 
entertainment, data storage, online courses, and even daily fitness. These changes have 
brought enormous benefits as well as worrying concerns. It looks like everything that 
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can be digitized is being digitized and computers are everywhere storing and transform-
ing that information.1

This presents an enormous challenge for educators (Guzdial, 2015). What do we 
need to understand about computers? What must we do to put a computer to work for 
us? How do computers shape the way we see the world? What are computers not good 
for? What should be taught to learners at different stages of their education?

Computational thinking (here abbreviated CT) has offered educators some answers 
to these questions (National Research Council, 2010, 2011). From the days of Charles 
Babbage, we have wanted computers to do for us jobs that we cannot do ourselves. 
Much of CT is specifically aimed at figuring out how to get a computer to those jobs for 
us, and algorithms are the procedures that specify how the computer should do them. 
Computers are much better at carrying out algorithms than humans are – modern com-
puters can do a trillion steps in the time it takes a human to do one step. A major task 
for educators is to teach children how to think so that they can design algorithms and 
machines that reliably and safely do jobs no human can do.

But there is more. Information and computational processes have become a way 
of understanding natural and social phenomena (Kari and Rozenberg, 2008). Much 
CT today is oriented toward learning how the world works. Physical scientists, life 
scientists, social scientists, engineers, humanists, artists, and many others are look-
ing at their subject matter through a computational lens (Rosenbloom, 2013; Meyer 
and Schroeder, 2015). Computer simulation enables previously impossible virtual ex-
periments. The information interpretation of the world offers conceptual and empirical 
tools that no other approach does (Kari and Rozenberg, 2008; Fredkin, 2003). Another 
major task for educators is to teach children how to bring an information interpretation 
to the natural and virtual worlds without sacrificing wisdom in the process (Weintrop 
et al., 2016).

Despite the enthusiasm for the power of computers, most jobs cannot be done by 
computers in any reasonable amount of time, if at all. Students who understand the 
limits of computing can avoid the trap of thinking that all problems are ultimately solv-
able by computers.

Most of the education discussion of CT has been formulated for K-12 schools 
(García-Peñalvo et al., 2016; Guzdial, 2015; Lockwood and Mooney, 2017). It is ori-
ented to helping beginners learn to think about computers. Some of the definitions are 
shallow and have sown confusion among teachers who do not understand how to teach 
basic computing and assess student progress (Mannila, 2014; Lockwood and Mooney, 
2017). Some definitions lead to conclusions that seem to defy students’ common sense 
about computers, and teachers are asking for clarifications.

1 Shoshana Zuboff’s Second Law, “Everything that can be informated will be informated” describes a tech-
no-deterministic development of society and technology. Zuboff traced her three “laws” to the 1980s in 
Be the friction – Our Response to the New Lords of the Ring (Frankfurter Allgemeine, June 25, 2013) and 
they became popular through her mid-1990s lectures and were passed around through word of mouth. 
The original sources, a formulation of her laws, and a yet-unpublished book-length analysis of them, were 
lost in a tragic accident (Zuboff, December 8, 2018, personal communication).
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Our objective in this essay is to describe computational thinking from the viewpoint 
of computing as a discipline. We will examine CT in three dimensions. First, we will 
show that CT has a long and distinguished genealogy that began over 4,000 years ago. 
Many of the concepts of modern CT existed well before digital computers were in-
vented, and many key concepts of CT were painstakingly developed by large numbers 
of people through the formative years of computing as a discipline. Understanding the 
evolution of CT engenders a deep respect for CT as well as a wisdom about its applica-
tions based on human experience that came before.

Second, the essay will demonstrate that the practices of CT fall on a spectrum from 
beginner to professional. Much of the CT literature has focused on CT for beginners – 
a natural consequence of the desire to bring CT into K-12 schools. But there is also 
a considerable literature on advanced CT as used by professional designers, engineers, 
and scientists. Beginner CT, aimed at inspiring students’ interest in computing, has 
little to say about a profession that relies on advanced CT. Because of all it leaves 
out, beginner CT does not describe ways of thinking and practicing of professional 
computer scientists, either. At the very least, the discussion of a spectrum can assist 
teachers in showing their students the path they must follow to become professionals 
in computing.

Third, the essay will show that much of what is today labeled as CT grew out of the 
computational science movement of the 1980s. That movement emphasized comput-
ing as a new way of doing science capable of cracking the visionary “grand challenge” 
problems. Its wide acceptance in science and engineering created a background of 
listening that left us open to the resurgence of CT in the 2000s. Scientists who found 
computing to be materially different from the traditional ways of theory and experi-
ment used the term “computational thinking” to describe the mental disciplines needed 
for this new kind of science. They also discovered that many natural phenomena can 
be understood by modeling them as information processes and using computing to 
simulate them. Thus, CT in the sciences has had a tremendous shaping effect on CT 
in computing.

This essay is aimed at computing educators interested in situating CT ideas in the 
broader picture of computing as a discipline and in the sciences in general. It describes 
computational thinking as an extension of several centuries-long traditions in science, 
mathematics, and engineering, and it describes how many ideas today labeled “CT” 
have been presented, in different forms, in many other sciences much before the birth 
of the modern computer. Science and engineering through the ages are replete with 
basic “computational thinking” ideas like abstraction, modeling, generalization, data 
representation, and logic (see, e.g., Grover and Pea, 2018; Barr and Stephenson, 2011; 
Bundy, 2007; Yadav et al., 2014; Hemmendinger, 2010). The essay describes how the 
most common descriptions of CT – “CT for beginners” – are just a small subset of com-
puting’s disciplinary ways of thinking and practicing. Finally, the essay also explains 
the ways in which computing really is a new and unique way of looking at problem-
solving and automation, as well as of interpreting phenomena in the world.
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2. Defining Computational Thinking

Computational thinking (Papert, 1980) has become a buzz word with a multitude of 
definitions. Much has been written and said about it since 2006 (Wing, 2006; Saqr 
et al., 2021). Numerous books, journal articles, blog posts, and large educational ini-
tiatives have contributed to the development of the concept. High-level workshops 
have been organized to discuss and define it (National Research Council, 2010, 2011). 
Countless years of labor have been invested into descriptions of what exactly CT 
is, how it is different from other kinds of thinking, and, perhaps most visibly, how 
to teach it to schoolchildren (Lockwood and Mooney, 2017; Guzdial, 2015; García-
Peñalvo et al., 2016; Shute et al., 2017; Grover and Pea, 2013; Mannila et al., 2014; 
Apiola, 2019; Larsson et al., 2019). The public face of CT is that of beginner, or basic, 
CT – the kind of computational insights and ways of thinking and practicing that can 
be taught to children in K-9 or K-12 education. That is a laudable goal and a noble 
continuation of the “computing for everyone” efforts that span over half a century 
(Guzdial, 2015).

There is a certain degree of consensus on CT basics. The most commonly mentioned 
skills and concepts include decomposition, abstraction, debugging, iteration, generaliza-
tion, and algorithms and their design (Shute et al., 2017). Other recommendations in-
clude representing, collecting, and analyzing data; automation; parallelization; problem 
decomposition; and simulation (Barr and Stephenson, 2011). Although touted as the 
foundations of computing, none of the basic CT descriptions shows students the path to 
becoming a computing professional. Other descriptions have aimed to show such a path, 
including computational design (Denning, 2017), computational participation (Kafai, 
2016), computational making (Tenenberg, 2018), computational doing (Barr, 2016; 
Hemmendinger, 2010), computationalist thinking (Isbell et al., 2010), computational lit-
eracy (diSessa, 2000), computational fluency (Resnick, 2017)2 and computational prac-
tices (Lye and Koh, 2014), to mention a few. These names do not capture the full gamut 
of names used for CT – in previous generations, CT has been known as algorithmizing, 
procedural thinking, algorithmic thinking, procedural literacy, IT literacy, fluency with 
ICT, and proceduracy (Tedre and Denning, 2016).

Despite the success of CT in convincing many decision-makers, teachers, and cur-
riculum designers to include and integrate computing in K-12 educational systems, 
much literature in CT is critical of aspects of the current wave of CT. Concerns have 
been raised about narrow views of CT, such as undue focus on programming, or even 
coding, at the cost of high-level CT strategies (Armoni, 2016; Mannila et al., 2014). 
Concerns have been raised about attempts to separate computing from computers (cf. 
Connor et al., 2017; Nardelli, 2019; Armoni, 2016; Kafai, 2016; Lye and Koh, 2014; 

2 While Resnick’s book (Resnick, 2017) does not use the phrase computational fluency, Resnick links it to the 
book in https://medium.com/@mres/computational-fluency-776143c8d725
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Lu and Fletcher, 2009; Shute et al., 2017; Bers et al., 2014; Repenning et al., 2010). 
Concerns have been raised about the uniqueness claims for basic CT – there are many 
similarities between CT and other kinds of thinking in STEM fields (cf. Grover and Pea, 
2018; Barr and Stephenson, 2011; Bundy, 2007; Yadav et al., 2014; Hemmendinger, 
2010; Pears, 2019; Sengupta et al., 2013; Werner et al., 2012). Concerns have been 
raised about the lack of clear demarcation between CT and computer science (Nardelli, 
2019; Armoni, 2016; Barr and Stephenson, 2011). Concerns have been raised about 
the ahistoricity of the CT story – CT is often presented as a new phenomenon without 
any consideration of its co-evolution with science and mathematics – which has led to 
further critiques that CT ignores past lessons from computing education (cf. Guzdial, 
2015; Voogt et al., 2015; Denning, 2017; Tedre and Denning, 2016). One analyst of 
CT wrote that “flow optimisation in a cafeteria, the classic example offered by Wing, 
is a clear example of the application of techniques first used in time and motion studies 
for process optimisation” (Pears, 2019), and another argued that “considering CT as 
something new and different is misleading: in the long run it will do more harm than 
benefit” (Nardelli, 2019). And while there is little discord over the importance of CT 
to sciences, the relationship between CT and other fields is complicated (cf. Grover 
and Pea, 2018; Barr and Stephenson, 2011; Bundy, 2007; Yadav et al., 2014; Tedre and 
Denning, 2017; Hemmendinger, 2010; Hambrusch et al., 2009).

From our study of the genealogy, the science, and the beginner-professional con-
tinuum, we have distilled the spirit of the multitude into a definition used throughout 
this essay:

Computational thinking is the mental skills and practices for 
designing computations that get computers to do jobs for us, and 
for explaining and interpreting the world in terms of information 
processes.

The design aspect reflects the engineering tradition in computing; in which people 
build methods and machines to help other people. The explanation aspect reflects the sci-
ence tradition in computing; in which people seek to understand how computation works 
and how it shows up in the world. In principle, it is possible to design computations 
without explaining them, or explain computations without designing them. In practice, 
these two aspects go hand in hand.

Computations and jobs for computers are not the same. Computations are complex 
series of numerical calculations and symbol manipulations. Jobs are tasks that some-
one considers valuable. Today many people seek automation of jobs that previously 
have not been done by a machine. Computers are now getting good enough at some 
routine jobs that loss of employment to automation has become an important social 
concern. We do not equate “doing a job” with automation. Well-defined, routine jobs 
can be automated, but ill-defined jobs such as “meeting a concern” or “negotiating an 
agreement” cannot.
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3. Algorithmic Genealogy of Computational Thinking

One of the more common descriptions of computing’s disciplinary work is that it thinks 
in terms of algorithms, procedures, or well-defined processes (e.g. Knuth, 1981; Dijk-
stra, 1974; Harel, 1987). That perspective, which is central to today’s descriptions of CT, 
is also one of the oldest characterizations of computer science3. Long before computer 
science existed, Ada Lovelace, who with Charles Babbage designed the first programs 
for a programmable computer in the 1840s, described computing as a new “science of 
operations” (Menabrea, 1842; Priestley, 2011). In the late 1950s, when computing was 
starting to emerge as a new field, Alan Perlis argued that algorithmizing would even-
tually become necessary for everyone (Katz, 1960). Algorithmizing was his name for 
computing’s unique kind of reasoning for designing solutions to problems. The path 
from Lovelace to Perlis was created from a number of separate historical milestones in 
the first half of the 1900s.

This section has three parts: The first traces the historical roots of algorithm-oriented 
CT concepts, the second presents some central insights from theoretical computer sci-
ence, and the third examines contemporary views of those concepts. The CT concepts 
that were born in the algorithmic tradition of computing range from beginner concepts, 
such as unambiguous computational steps, to advanced concepts, such as regular expres-
sions and computational complexity.

Algorithmic Genealogy
The algorithmic view of CT has roots in computational methods of applied mathemat-
ics. Algorithm-like procedures have been found on ancient Babylonian clay tablets 
(Knuth, 1972), and the term “algorithm” comes from the 800 CE Persian mathema-
tician Muhammad ibn Mūsā al-Khwārizmī whose procedures preceded the modern 
notion of the algorithm (Knuth, 1981). In the history of mathematics, computational 
methods helped traders, builders, and scientists to reliably perform important calcula-
tions (Grier, 2005; Cortada, 1993; Westfall, 1980). Famous examples abound: Euclid’s 
method found the greatest common divisor of two numbers, the Sieve of Eratosthenes 
found prime numbers, and Gauss Elimination found solutions to systems of linear 
equations (Chabert, 1999). These methods were motivated by the pragmatic goal of 
enabling laypeople to perform mathematical procedures without deep knowledge of 
mathematics.

Over the centuries, algorithmists gradually developed a complex set of ideas for 
making algorithms effective. These included representing numbers and other data, speci-
fying unambiguous steps, establishing a rigorous logical framework for a procedure, 
and dealing with round-off errors that result when continuous quantities are represented 
with finite numbers of bits. In the next paragraphs, we will comment on each of these 
elements of the algorithmic tradition of computing. 

3 For examples of operational definitions of CT in education, see Google’s and ISTE/CSTA’s notes at 
https://id.iste.org/docs/ct-documents/computational-thinking-operational-defi-

nition-flyer.pdf and https://edu.google.com/resources/programs/exploring-computa-
tional-thinking/
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Start with representations. Through the long history of algorithms, every algorithm 
designer has had to think about how to represent numbers and other symbols (Grier, 
2005; Cortada, 1993). The numbers computed by algorithms are actually codes stand-
ing for numbers, using a finite set of symbols. Binary coding systems, which use just 
two symbols, can be found as far back as Babbage’s Analytic Engine, and before. The 
Hollerith machines built for the 1890 US Census used punched cards with patterns of 
holes representing a person’s age, education, and marital status – again just two symbols, 
a hole or non-hole at a location on the card. Since the 1940s, digital computers used just 
two symbols, 1 and 0, represented as high or low voltages in the circuits (De Mol et al., 
2018). Today the process of encoding information into a binary representation is called 
“digitization.” Designing good representations is fundamental issue in CT.

Next is the issue of specifying the computational steps of algorithms. The birth of 
calculus in the mid-seventeenth century gave scientists a much more reliable way to 
deal with problems requiring copious calculations of functions (Westfall, 1980; Grier, 
2005). But that posed a problem: the procedures had to be composed of unambiguous 
operations, for otherwise they might not give the same results in the hands of different 
persons. Each step of a computation had to be so precisely defined that there would be no 
need for human interpretation, intuition, or judgment – or error (Grier, 2005). The use of 
procedures built from unambiguous steps has become a cornerstone of CT.

Next is the issue of devising a logical plan for computing a function. A procedure 
specifies individual operations, such as addition and subtraction, and also choices be-
tween different sets of operations. Mathematicians turned to formalization of logic to 
do this precisely and unambiguously. The usual story of the influence of logic on com-
puting starts with the philosophers René Descartes and Gottfried Leibniz, who sought 
to formalize how humans reason (Dasgupta, 2014; Davis, 2012; Tedre, 2014). George 
Boole made a breakthrough when he presented an algebra of logic that represented logi-
cal formulas with expressions composed from connectives and, or, and not (Boole, 
1854; Davis, 2012). In 1937 Claude Shannon showed how to represent the switching 
circuits of telephone systems and computers with Boolean formulas (Shannon, 1937). 
But Boole's work did not include formal means to deal with making choices and repeat-
ing operations. The basis for that was provided in 1879 by Gottlob Frege (1879). The 
combination of Boole's and Frege's insights became the basis for many programming 
languages and an important element of CT.

It is an irony that despite the great lengths those designing algorithms and machines 
went to avoid error, errors have been a plague for programmers in all ages. One study of 
40 volumes of old mathematical tables found 3700 errors in them, and another found 40 
errors on just one page (Williams, 1997). To reduce execution errors, many algorithms 
include elaborate acceptance checking for whether the computation is producing results 
that meet specifications. Sometimes different algorithms designed by different teams 
are run in parallel. And a great effort has been made to apply formal logic to prove that 
programs meet their specifications. A similar effort is done by hardware designers to 
increase trust that the machine implements the basic operations correctly. Minimizing 
or removing errors will continue to be an important element of CT from the begin-
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ning – CS Unplugged, for example, uses a fun and engaging “magic trick” for teaching 
children error checking4.

Next is the problem of designing algorithms to cope with the limited precision of fi-
nite-string representations. For example, numbers are represented in many computers as 
32-bit quantities, which are incapable of representing all possible numbers. Algorithms 
can be designed to ensure that round-off errors do not accumulate over long calculations. 
Mathematical pioneers such as Euler, Lagrange, and Jacobi worked out methods to mini-
mize round-off errors in algorithms long before there were computing machines (Grier, 
2005; Bullynck, 2016; Goldstine, 1977).

Finally, there is one more important aspect of the algorithmic tradition: characteriz-
ing the limits of computation. The late 1800s to early 1900s were a heyday of formalism 
in that quest: Not only did Frege’s predicate logic fill in gaps where Boole’s logic could 
not reach, but mathematics and logic merged in Principia Mathematica, the magnum 
opus of Russell and Whitehead. Logical empiricism came to rule the sciences. Math-
ematicians fervently believed that logic would finally allow them to realize Descartes’s 
and Leibniz’s dream of formalizing human thought. They sought an ultimate algorithm 
that could definitively solve the Decision Problem: whether a statement in predicate 
logic is true or false. The quest to find an algorithm for the Decision Problem was taken 
in 1928 as one of the major challenges in mathematics (Hilbert and Ackermann, 1928). 
That problem was resolved in the 1930s simultaneously by several people, among them 
a young Cambridge mathematics student named Alan Turing. Turing developed a math-
ematical model of a computing machine capable of hosting any algorithm for the Deci-
sion Problem (Hodges, 1983). He called his machines a-machines, with “a” for auto-
matic (Turing, 1936). Turing’s conclusion was negative: an algorithm for the Decision 
Problem is impossible.

Alonzo Church labeled Turing’s mathematical model the “Turing machine”. Turing 
presented a universal machine that could simulate any other machine, leading to a uni-
versal way of representing all computable activities (Cooper and van Leeuwen, 2013). 
Turing then showed that an algorithm for the Decision Problem was logically impossible 
on any machine. Turing’s machine model of computing was a signal achievement in 
mathematical logic. It soon became a cornerstone of the theory of computing and a ral-
lying point for a new kind of computational thinking (Daylight, 2014, 2016). It led to the 
theory of noncomputable functions and to algorithmic complexity theory.

Nearly all the CT concepts underlying algorithms existed before the dawn of the 
Information Age and were used in many fields including mathematics, logic, science, 
and engineering. The contribution of Computer Science was to unify them together 
into a framework for getting electronic computers to reliably use algorithms to solve 
problems.

Efficiency of Automation
Turing’s model came to symbolize the question of what can be automated – later dubbed 
one of the most inspiring philosophical questions of contemporary civilization (For-

4 https://classic.csunplugged.org/error-detection/
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sythe, 1968; Arden, 1980). But another question vexed those who worked with human 
computing projects: how to minimize the hand-computing effort and keep the time spent 
on computing within bearable limits. In the 1800s, even before fully programmable 
computing machinery had been built, Babbage foresaw the issue of how can “results be 
arrived at by the machine in the shortest time” (Babbage, 1864, p.137). After the birth of 
the programmable, fully-electronic, digital computer, early programmers grappled with 
matters of efficiency, and with the issue that some problems were inherently more open 
to efficient algorithms than others. For the nascent computer science community, a for-
malization of that phenomenon was provided in 1965 (Hartmanis and Stearns, 1965), 
and the concept of computational complexity quickly became a central feature of com-
putational thinking.

As another example of the diverse origins of central CT ideas, an early discussion 
of an “NP-complete” problem and its consequences was started by Gödel, on a question 
concerning linear vs. quadratic time for proofs in first-order logic (Fortnow and Homer, 
2003). In 1971 Steve Cook gave a formal definition of a set of “NP-complete” prob-
lems – their known algorithms took impractically long much time to find solutions, but 
any solutions could be rapidly validated (Cook, 1971).

This idea forever changed computational thinking: Tens of thousands of optimiza-
tion problems from flight scheduling to protein folding were shown to be NP-complete 
(Vardi, 2013). This was gloomy news for those searching for fast algorithms for those 
hard problems – Moshe Vardi commented, “first-order logic is undecidable, the decid-
able fragments are either too weak or too intractable, even Boolean logic is intractable” 
(Vardi, 2013). Over time, algorithm experts found approximations, probabilistic meth-
ods, and other heuristics that do surprising well for problems in the harder complexity 
classes (cf. Fortnow and Homer, 2003; Vardi, 2013). Understanding the framework of 
computational complexity, its foundations, limitations, and its theoretical vs. practical 
consequences has become essential for intermediate to advanced CT.

Is the Algorithm The Spirit of Computing?
Today’s notions of algorithms are rooted in the mathematical definitions of computabil-
ity that emerged around the 1930s from the pioneering work of Church, Gödel, Kleene, 
Post, and Turing (Chabert, 1999, p.457). But with the birth of the digital computer, the 
concept of algorithm developed along a different, much less mathematical path (Bul-
lynck, 2016; Chabert, 1999), shaped by the pragmatics of getting software to run reliably 
on real computers (Daylight, 2016). These pragmatics drove a consensus on the main 
features of algorithms: they are finite sequences of definite, stepwise machine-realizable 
operations that manipulate symbols; they may have inputs; they always have outputs; 
and they finish in a finite length of time (Knuth, 1997). Notice how much this definition 
of algorithm is tied to computers. Knuth saw algorithms as different in kind from nearly 
all types of human-executable plans: “An algorithm must be specified to a degree that 
even a computer can follow the directions” (Knuth, 1997, p.6).

In the 1950s, programming was regarded as a process to specify algorithms in a for-
mal language that instructed a machine to carry out its steps. Originally, the formal 
language was assembly language, which was simply the instruction set of the machine. 
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Programming in assembly language was tedious and error prone. In the mid-1950s, 
higher level languages began to appear. These languages provided single statements 
corresponding to sequences of many machine instructions. They simplified the expres-
sion of algorithms and came with compilers that translated to machine code (Mahoney, 
2011). They included Fortran, algol, cobol, and Lisp. The quest for efficient compil-
ers was a strong driver of the research on automata.

By the 1960s, algorithms, programs, and compilers were seen as the heart of com-
puting. A number of prominent people even proposed that the field be renamed to “al-
gorithmics” (Traub, 1964; Knuth, 1981; Harel, 1987). In a series of papers, Knuth 
described how algorithmic thinking differed from classical mathematical thinking 
(Knuth, 1974a, 1981, 1985). He concluded that the main differences are the design of 
complex algorithms by composition of simpler algorithmic pieces, the emphasis on 
information structures, the attention to how actions alter the states of data, the use of 
symbolic representations of reality, and the skill of inventing new notations to expedite 
problem-solving.

Others joined Knuth in clarifying how computing differs from mathematics. One 
author highlighted computing's use of procedural (action-oriented) knowledge instead of 
mathematics' declarative knowledge (Tseytin, 1981). Another insisted that while math-
ematicians might be interested in syntactical relations between symbols and their seman-
tics, computing is inherently pragmatic because it aims for software that works (Gorn, 
1963). Another argued that the concerns of mathematicians and computing people are 
fundamentally different (Forsythe, 1968). Another wrote that computer scientists differ 
from mathematicians by their ability to express algorithms in both natural and formal 
languages, to devise their own notations to simplify computations, to master complexity 
and agilely switch between abstraction levels, and to design their own concepts, objects, 
theories, and notations when necessary (Dijkstra, 1974).

The pure algorithmic view of computing began to be challenged in the late 1960s 
from a new direction by a larger view of computing that included many people sharing 
information and machine resources via operating systems and networks (Denning, 2016). 
Operating systems had a pragmatic origin in the late 1950s. Computers were scarce and 
were housed in computing centers where engineers could keep them running. Comput-
ing centers had to process many programs submitted by many independent users. Their 
personnel queued jobs for execution, loaded them into the machine, allocated machine 
resources such as memory and input-output, and delivered results back to their users. 
Computing center engineers invented the first operating systems to automate this work. 
However, users detested those early operating systems for their long turnaround times, 
often 24 hours. In 1960, researchers began to experiment with time-sharing to eliminate 
turnaround times by enabling interactive programming. Time sharing operating systems 
were much more complex. By 1970, a set of operating systems principles had emerged 
to deal with the complexity – concurrent processes, virtual memory, locality of refer-
ence, globally naming digital objects, protection, sharing, levels of abstraction, virtual 
machines, and system programming (Denning, 2016). An operating system was seen 
as a “society of cooperating processes” rather than a set of algorithms. Control of con-
currency to avoid nondeterministic behavior and coordinate signalling across networks 
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became central concerns. The algorithmic view was insufficient to capture everything 
people wanted to do in their shared systems.

Probably because of its relative simplicity, the algorithms viewpoint has dominated 
the K-12 CT movement since 2006. A common description in the K-12 curriculum rec-
ommendations is that CT is the habits of mind involved in formulating problems in 
a way that allows them to be solved by computational steps and algorithms (Aho, 2011). 
These habits include designing abstractions that hide details behind simple interfaces; 
dissecting solutions into discrete, elementary computational steps; representing data 
with symbols; and knowing a library of common useful algorithms (Shute et al., 2017). 
Little or nothing is said about operating systems, networks, concurrency, memory man-
agement, information sharing, and information protection – concepts often seen as more 
advanced forms of CT for which beginners are not ready.

4. A Professional Continuum of Computational Thinking

4.1. CT: Automation and Machine Control

Turn now to automation – how to get computing machines to do jobs for us (Forsythe, 
1969; Arden, 1980; Denning and Tedre, 2019). Automation is a bigger issue than find-
ing an algorithm that will solve a problem. Autopilots, for example, fly planes as well 
as pilots. They are complex mechanisms with gyroscopes, GPS sensors, algorithms, and 
feedback loops. In computing we have looked to automation to enable tasks that humans 
might be able to do at small scale but cannot do at large scale. An example is finding out 
if a particular person is in a video of a moving crowd. Humans can do this reliably only 
for small crowds. By combining neural networks that can recognize faces with algo-
rithms that search images, we can now automate this task for large crowds. Many forms 
of computer automation aim to extend small human tasks to large scales (Connor et al., 
2017). Another example is drawing the next frame of a video on a computer screen; it 
would take a human calculating every second of every day for a year to do this job, but 
a graphics system can do it in 10 milliseconds.

Some proponents of CT have ignored the distinction between doing small and large 
versions of a task. They argue that algorithms are executed by “information agents” and 
that humans are information agents5. This misleading claim is embedded into some K-12 
definitions of CT. While this claim applies to small tasks that can be completed in a short 
time, it does not apply to large tasks. A machine “agent” can, in a short time, complete 
large tasks that are completely beyond human capabilities.6

5 Jeannette Wing, “Computational Thinking: What and Why?”, Manuscript dated to November 17, 2010. 
Available at https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

6 Indeed, before 1940, the term “computer” referred to a person doing computations. The first automatic 
computers were built because jobs such as calculating ballistic trajectories and cracking ciphers were well 
beyond the capabilities of human computers.
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Today’s CT discussions about the role of machinery in thinking about computing 
are strikingly similar to debates in the 1960s over the status of computing machinery 
in the nascent computing discipline (Tedre, 2014). At the time, many scientists in other 
fields claimed that computer science cannot be a science because it is about human-
made computing machines, not processes of nature. The presence of machines meant 
that computer science was not really a science. The modern equivalent of this is the 
idea that an algorithm cannot be an algorithm if it depends on a machine. Even the most 
ardent supporters of the algorithmic view of computing do not endorse this view. They 
emphasize that algorithmic processes must be machine realizable. Donald Knuth, for ex-
ample, in his monumental work The Art of Computer Programming (Knuth, 1997), uses 
a machine language, MMIX, that closely resembles a von Neumann machine instruc-
tion set (Knuth, 1997, p. ix ). One Turing Award winner Richard Hamming quipped that 
without the computer almost everything in computing would be idle speculation, similar 
to medieval scholasticism (Hamming, 1969).

The Machine Counts
In practice algorithms and computing machines are strongly intertwined. On the one 
hand they seem separable because the history of science knew algorithms for centuries, 
if not millennia, with only a scattering of machines to implement them such as Pascal’s 
arithmetic calculator (ca 1650) and slide rules inspired by Napier’s logarithms (ca 1620). 
Early algorithms aided people to undertake complex computations. On the other hand, 
they seem inseparable today: Even the most shining examples of theoretical computer 
science are often investigated with machine-like terminology – such as the Turing Ma-
chine and Knuth’s The Art of Computer Programming. Turing himself argued that ma-
nipulating symbols mechanically was essential for computing numbers.

In his 1936 paper, Alan Turing defined computability using an automaton that imi-
tates a mathematician carrying out a proof. As observers, we would see the mathemati-
cian writing symbols on paper, then moving to adjacent symbols and possibly modify-
ing them, all the while mentally keeping track of some sort of state. He modelled this 
behavior with an infinite tape and a finite state control unit. His simple machine, which 
he called an a-machine (a for automatic), was soon called a Turing Machine. Its moves 
were of the form, “possibly change the current symbol, move a square right (left), and 
enter a new state.” From this he proved the existence of a universal machine (one that 
can simulate any other) and his remarkable proof that the Decision Problem could not 
be solved by any machine.

The Turing model of computation won out over competing models because its me-
chanical, machine-like form was the most intuitive (Kleene, 1981; Church, 1937). The 
modern definition of algorithm depends on the machine realizability of individual in-
structions as in the instruction cycle of a von Neumann CPU. Machines and algorithms 
intertwine.

Today’s debates frame algorithms and automation as points of view that can be com-
pared and contrasted. The algorithmic view sees computations as abstract entities one 
can reason about (cf. Smith, 1998, pp. 29–32). The automation view sees computations 
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as the operations of physical machines that realize algorithmic tasks on physical media 
(Smith, 1998). Whereas the algorithmic view sees computations as abstract, the automa-
tion view sees them as physical processes (cf. Smith, 1998; Tseytin, 1981).

When historians analyze the progress of computing, they invariably cite progress 
with machines over progress with algorithms (Williams, 1997; Campbell-Kelly and As-
pray, 2004). Many stories of computing reach back to roots with the Jacquard loom, 
which demonstrated that weaving machines could switch to new patterns by changing 
the cards (a sort of “program” for weaving). Electromechanical tabulating machinery 
enabled the 1890 US Census and eventually took over the jobs of thousands of people 
(Williams, 1997; Cortada, 1993). Analog computers such as mechanical integrators 
could trace the values of complex functions and solve differential equations (Williams, 
1997; Tedre, 2014). Today’s competition for world leadership in computing is measured 
by the speed of supercomputers or banks of Graphics Processing Units, not just the al-
gorithms they run.

In the middle 1980s, John Rice, a pioneer of mathematical software, tried to achieve 
a more balanced view. He said that the mathematical software of the day had improved 
by 1012, of which 106 was attributable to improvements in hardware and 106 to improve-
ments in the design of algorithms. This is still true today. For example, machines to 
recognize faces were very slow and error prone in the 1980s whereas today they use 
the advanced algorithms of deep neural networks combined with the superior speed of 
GPU chips to do the job. Despite the desires of some advocates to simplify CT by rid-
ding it of machines, it cannot be done: machines will continue to gather our attention 
in computing.

Some proponents of basic CT mistakenly conflate the stored program idea with Tur-
ing’s universal computer idea. Historians have showed that those two have developed on 
two parallel historical trajectories (Haigh, 2013). They are separate ideas.

The occasional attempts to separate algorithms from computers floundered in the 
past and will continue to flounder (MacKenzie, 2001). Even the staunchest advocates 
did not model the distinction. For example, Dijkstra showed great prowess writing 
efficient compilers and operating systems and yet said “the computing scientist could 
not care less about the specific technology that might be used to realize machines, be 
it electronics, optics, pneumatics, or magic” (Dijkstra, 1986). This was not a passing 
statement. He repeatedly said “computer science is not about machines, in the same 
way that astronomy is not about telescopes” (Fellows, 1993; Dijkstra, 2000; Daylight, 
2012).

In the end, the marriage of the algorithm and automation views drove CT into central 
questions that shifted as new algorithms and machines were developed. For example, 
Babbage’s idea that computers could eliminate human error was displaced a century 
later with the realization that machines were so complex that no one could be sure they 
did what the algorithms told them to do – and even less sure whether they met their 
designers’ intentions (Smith, 1985, 1998). The early question of measuring “cost” of 
an algorithm as the CPU time it consumed gave way to network performance measures 
such as throughput and response time.
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4.2. Is Programming Essential in CT?

The invention of the computer created a new concept – the program – that came to sym-
bolize the computer age. Useful computer programs written in high-level languages can 
be transferred to different computers, where they can be compiled to different machine 
code and executed. Program libraries such as mathematical software became standard 
features of computing systems. Downloadable software “apps” are a standard feature of 
today’s portable devices. Software libraries are universally available. CT aims to eluci-
date the thought processes behind the designs of all these programs (Bell and Roberts, 
2016; Wing, 2006).

The preponderance of public discourse on CT is not the abstract algorithm but the 
executable computer program. Code.org, International Society for Technology in Educa-
tion (ISTE), Computer Science Teachers Association (CSTA), and Google for Education 
all refer heavily to programming skills and concepts in their CT material, typically using 
Python (Google), Blockly (code.org), or Scratch (CSTA).7

The skilled practice of programming is seen widely as central to CT. Yet, many pro-
gramming language concepts that are today regarded as self-evident –  such as while-
loops, data structures, and recursion – were not initially apparent, but were the result of 
much work by brilliant people over many years (Knuth and Trabb Pardo, 1980). A sig-
nificant body of software was written before crucial programming language concepts 
started to emerge (Glass, 2005). At least one computing pioneer wondered aloud how 
all those non-trivial programs were made to work by people who had only “primitive” 
mental tools for programming (Dijkstra, 1980). Programming methodology, developed 
since 1970, aimed at improving dependability, reliability, usability, security, safety, and 
even elegance of programs, which are not always compatible goals (Daylight, 2012). 
Evolving programming methodology brought new programming language constructs 
and programming techniques such as structured programming and object-oriented pro-
gramming (Liskov, 1996). Much CT terminology and concepts originate directly from 
developments in programming methodology and software engineering.

Origins of Tools for Computational Problem Solving
The five key programming aspects of basic CT – modularity, data structures, encapsula-
tion, control structures, and recursion – are often held to be unique to computing. But 
this is not strictly true. Each has deep roots in many fields. This is good for CT because 
these ideas have stood the test of time.

Because programming is such a central aspect of computing, much effort has gone 
into the design of programming languages starting in the 1950s. High level languages 
simplified the programming job and reduced errors in programs. They came in many 
flavors – such as procedural programming, functional programming, symbolic program-
ming, script programming, artificial-intelligence programming, object-oriented pro-

7 See, e.g., https://code.org/, https://hourofcode.com/,  
www.csteachers.org/resource/resmgr/CTExamplesTable.pdf, and  

   https://edu.google.com/resources/programs/exploring-computational-thinking/
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gramming, and dataflow programming – each attuned to a particular style of problem-
solving (Knuth and Trabb Pardo, 1980; Sammet, 1972; Wexelblat, 1981). The number 
of programming languages multiplied over the 1950s and 1960s (Sammet, 1972). Let us 
take a closer look at the origins of the five basic ideas of CT.
Modularization. The very first programming textbook from 1951 (Wilkes et al., 1951) 
noted the need to divide programs into smaller, manageable pieces. Reducing complex 
systems to structures of many simple components is an old engineering practice. Modu-
larization of programs was achieved by subroutines, functions, procedures, and classes in 
programming languages. The Atlas machine at the University of Manchester introduced 
hardware support for subroutine calls. The major languages of the late 1950s – For-
tran, Algol, Lisp, and Cobol – all included subroutines. Structuring programs as callable 
modules fascinated educators, who called it procedural thinking (e.g., Solomon, 1976; 
Abelson et al., 1976). The early development of software engineering after 1968 used 
metaphors from industrial and mechanical engineering (Mahoney, 2011, pp. 93–104), 
emphasizing parallels with the automobile industry, interchangeable parts, machine 
tools, and industrial mass production (Naur, 1969; Mahoney, 2011; Randell, 1979)
Data Structures and Encapsulation. In the early 1960s, experienced programmers ad-
vised their students to start the design of a program with the organization of the data. 
They had found that choosing the right data structure for the job at hand was key for 
finding a simple algorithm. By the late 1960s, this practice was called “data abstraction”. 
It specified that a data structure would be hidden behind an interface of operations pre-
sented to users; users could not access the data directly. This approach allowed improve-
ments to be made to a module without requiring changes to other modules that used it. 
For instance, Simula 67, a simulation language, incorporated this idea into the structure 
of a language (Holmevik, 1994). The idea evolved into object oriented programming by 
the early 1970s (Krajewski, 2011; Liskov, 1996; Hoare, 1972; Sammet, 1981).
Control Structures. The early ideas of von Neumann architecture conceived of in-
structions as “orders” that the machine obeyed. Programming was seen as a way to con-
trol machines. Thus a lot of attention was paid to the organization of control. In 1966 
Böhm and Jacopini published a theorem that said three control structures (sequence, 
iteration, and selection) are sufficient for any program (Böhm and Jacopini, 1966). In 
1968, Dijkstra introduced structured programming, which had specific statements for 
sequencing, iterating, and selecting; he emphasized that these are the three ways that 
we organize our proofs that a program works correctly. (Although structured program-
ming was fundamentally about good abstraction practices, many well-known expert 
programs did not endorse it (Hoare, 1996). Unfortunately the debate derailed into one 
about whether it was wise to allow the go to statement (e.g., Dijkstra, 1968; Knuth, 
1974b).) The Böhm-Jacopini minimalistic insight was taken as a loose programming 
analog of the basic logic gates for computer circuits. But it is clear from the notes of 
Babbage and Lovelace that they used the same programming and machine structures 
without giving them explicit names, and the same concepts have arisen in different 
contexts throughout history (Rapaport, 2018).

In the 1960s, the idea of control structures blossomed into many new ways to specify 
the order of operations in programs. They included new ways to control instruction flow 
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between blocks of statements such as repeat-until, do-while, if-then-else, and case state-
ments. They also included ideas to allow concurrent operations within a program, con-
trolled by fork and join operations and synchronized with semaphore operations (Hoare, 
1996; Knuth and Trabb Pardo, 1980; Glass, 2005).
Recursion. The technique of recursion was known to mathematicians in the 1800s as 
“definition by induction”. It entered computing as a theoretical construct from math-
ematical logic in the 1930s (Soare, 1996). It was an integral part of Gödel’s and Kleene’s 
models of computation. It entered as a practical means of programming through the lan-
guages Algol and Lisp (Daylight, 2012, Ch.3). It entered as a means to specify elegant 
algorithms, such as Hoare’s 1961 Quicksort. In the 1960s, the Burroughs Corporation 
built the B5000 and B6700 machines to provide highly efficient stack-oriented execu-
tion environments for recursive programs. These machines removed any doubts that 
recursive program execution could be efficient. Implementation of stacks in hardware 
and operating system software became permanent fixtures in computing.

These five ideas appropriated from early computer science and other fields of engi-
neering, science, and mathematics formed the core of a new way of solving problems 
(Forsythe, 1959; Katz, 1960). Hundreds of articles and books described computational 
methods and CT concepts as tools for problem-solving in different programming lan-
guages. These ideas have become the core of the modern movement for beginner CT 
(Aho, 2011; Wing, 2006)8.

4.3. Software Development and Design

Programming methodology promoted best programming practices for designing and 
writing programs. It helped programming evolve from a “black art of obscure codes” 
to a rigorous discipline (Wirth, 2008; Backus, 1980; Dijkstra, 1980). It provided the 
mental tools for analyzing problems in a way that permitted computational solutions. 
But, by the late 1960s, the software industry and its customers were painfully aware 
of how inadequate their programming methods were for large software systems, and 
just how difficult it is to write reliable program code for large systems (Ensmenger, 
2010). Developers of large software systems faced chronic problems with missed 
deadlines, overrun budgets, poor reliability, usability, unmet specifications, manag-
ing software projects, and safety (Mahoney, 2011; Ensmenger, 2010; Friedman and 
Cornford, 1989). None of those problems could be addressed with improvements in 
programming methodology. In 1968 a NATO conference acknowledged the software 
crisis and agreed to launch a new field, software engineering, to do something about 
it (Friedman and Cornford, 1989). As software engineering gradually became a re-
spected profession (Ensmenger, 2001), its new ideas gradually entered advanced com-
putational thinking.

8 For example, Google’s CT course for educators states, “Computational Thinking (CT) is a problem solving 
process [. . . ] used to support problem solving across all disciplines”  see:

   https://computationalthinkingcourse.withgoogle.com/unit
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Software engineering had broad appeal. It suggested that many traditional ideas 
from engineering could be brought to the development of large software systems. Soon 
the term software engineering turned into an umbrella term for a variety of practices 
to bring large, complex, safety-critical software systems into production (Ensmenger, 
2010; Tedre, 2014). There was soon a debate among educators about whether software 
engineering is a branch of computer science or of engineering. Many doubted whether 
the mathematical mindset of computer science departments would be amenable to an 
engineering mindset for software. Many aspects of software engineering, such as design 
strategies, management of software projects, customer service issues, and safety issues 
did not seem to fit in computer science departments (Naur and Randell, 1969).

The terms programming in the small and programming in the large were used to 
distinguish between the design of single procedures, algorithms, or programs, and the 
design of large systems possibly consisting of many interacting programs. Computing 
pioneer David Parnas summed up programming in the large as managing “multi-person 
development of multi-version programs” (Parnas, 2011). He cited the issues of com-
municating with the intended users and elucidating their requirements, managing large 
teams of programmers, coordinating software development projects, dealing with com-
plexities that arise from millions of lines of code and increasingly complex hardware, 
maintaining and improving software after its release, and training programmers to think 
like engineers (Ensmenger, 2010; Parnas, 2011; Mahoney, 2011). All the efforts for 
large systems opened a whole world of advanced CT concepts, practices, and profes-
sional skills.

Software Systems Thinking for Professionals
Systems engineering emerged when new sociotechnical systems grew so complex that 
single individuals could no longer design them. Grace Hopper pointed out the turning 
point in computing: “Life was simple before World War II. After that, we had systems” 
(Schieber, 1987).

Operating systems were among the first large complex software systems. There have 
been a few instances in history where the entire operating system was designed and 
implemented by one or two persons – for example, the THE multiprogramming system 
around 1968 (Dijkstra, 1968), the UNIX system around 1972 (Ritchie and Thompson, 
1974), and the XINU system around 1980 (Comer, 2012). When large systems have 
been put together by large teams, they become too large for any one person to under-
stand (Brooks, 1975).

Similar to other engineering fields, as software systems grew too large for any 
single person to develop and maintain, there was a need to recognize new ways of 
planning, designing, and developing systems. The emergence of software engineering 
was a systems thinking-based response that superseded the older programming-in-the-
small practices (Brooks, 1975, 1987). The systems responses typically arose to meet 
problems encountered in production. One computing pioneer reminisced, “I have never 
seen an engineer build a bridge of unprecedented span, with brand new materials, for 
a kind of traffic never seen before – but that’s exactly what has happened on OS/360 
and TSS/360” (Randell, 1979).
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Software modules assumed a strong place in software engineering. Like hardware 
bolt-on modules familiar to engineers, software modules are system components that 
can be developed and maintained independently. Most modules are designed as black 
boxes that internally hold a hidden data structure, with an external interface that speci-
fies the functions that can be performed on the internal data. Modules have external 
interfaces that provide all the functions implemented by the module. Modules devel-
oped for one system can be reused in another. Modularization facilitates decomposi-
tion of a large problem into small subproblems whose modules are easier to design. 
Modularization is the pragmatic approach of software developers to putting principles 
of abstraction to work.

For a while, development engineers believed that modules were the key to large 
systems, where the programming and testing had to be distributed among many pro-
grammers. Each programmer was given a detailed specification of the interface and 
asked to prove and validate through testing that the interface worked as intended and all 
the internal data were completely hidden. Yet, when independently developed modules 
were brought together in a system, they often failed. The failures arose from subtle dif-
ferences in the ways that the development teams interpreted the interface operations. 
Somehow the overarching principles of the system must be communicated and under-
stood by all the module development teams (Brooks, 1975)

Portability was an important side benefit of modularity. This meant that a module 
developed on one system could be transported into another system with possibly differ-
ent operating systems and hardware. One approach is to gather a set of related modules 
into a library, such as mathematical software or Java language add-ons, and provide 
the library to users on many machines so they could link modules as needed. Another 
approach was to design the modules in high level languages and use the compilers to 
translate them into machine code for the specific machine. Still another was to design 
a family of machines (such as IBM OS/360) with the same instruction set, which al-
lowed modules to be reused on other members of the family without recompilation 
(Brooks, 1975). And finally is the approached of the Java language, which defined 
a middle level virtual machine that can be compiled for each host machine. The compil-
ers of the modules translate module operations to the virtual machine interface, which 
in turn the virtual machine translates into machine code.

In the 1990s, expert designers concluded that exchanging models is not necessarily 
the best way to share design expertise. Inspired by the work of Christopher Alexander, 
a famous architect (Alexander, 1979), they specified a number of important thought 
patterns that appear in software systems (Gamma et al., 1994). They identified design 
patterns for a large number of common programming situations, such as where a pro-
gram needs only one instance of a class, or where the program needs to sequentially 
access elements of a set. Another approach to sharing experts’ computational thinking 
was design principles (e.g. Saltzer and Schroeder, 1975), which are holistic ways of 
thinking about rigorous designs for systems consisting of numerous interacting compo-
nents. Another approach was design hints, which acknowledged the difference between 
designing algorithms and designing systems. Design hints were an attempt to crystal-
lize the design choices and judgments skilled systems designers had learned to make: 
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They included maxims like “separate normal and worst cases,” “make actions atomic,” 
and “keep interface stable” (Lampson, 1983). Design patterns, principles, and hints are 
advice from experts to other experts and probably would make little sense to novice 
programmers.

All these aspects of system thinking for professionals are examples of advanced 
concepts of computational thinking. Whereas basic CT is typically more generic, more 
widely applicable, and less unique to computing as a discipline, advanced CT is typi-
cally more specialized, born and honed through experience in design, implementation, 
and maintenance of large computer and information systems.

5. Computational Thinking and Science

There is wide appreciation that computing has transformed science and engineering in 
fundamental ways. This appreciation is one of the most important reasons for the attrac-
tiveness of CT. Computing fundamentally improved the collection and analysis of data, 
the design of simulations and models, and the ability to model information processes 
found in nature. Computing has been called the “third pillar” of science (Oberkampf 
and Roy, 2010), the “fourth great scientific domain” (Rosenbloom, 2013), and the “most 
disruptive paradigm shift in the sciences since quantum mechanics” (Chazelle, 2006). 
Along with this shift, computing professionals deemphasized the idea that computing is 
a science of automation and embraced the idea that it is a science of natural and artificial 
information processes (Denning, 2007). Throughout computational science, computing 
does not just “enable” better research, but often drives productive new kinds of research 
(Meyer and Schroeder, 2015, p.207) – although many “new” ideas in computational sci-
ence have clear counterparts in pre-computer science, too (Agar, 2006).

Despite early claims that basic computing ideas are easily transferred across do-
mains, STEM educators have concluded that CT is not domain-independent; it looks 
different in different disciplines (Weintrop et al., 2016; Yadav et al., 2017; Barr and 
Stephenson, 2011). Critics have called the over-zealous push of a standardized notion 
CT into other domains of science “arrogant”, “imperialistic”, and “chauvinistic” or just 
plain “ill considered” (Hemmendinger, 2010; Denning et al., 2017). What is more, the 
info-computational (Dodig-Crnkovic and Müller, 2011) or algorithmic revolution in sci-
ence has not been a monolithic single revolution that overthrows an old regime (Tedre 
and Denning, 2017). The transformation has been gradual. Four distinctions emerged 
that were emblematic of computational thinking in science. They are discussed next.
1. A new instrument of science. Massive increases in computer speed and memory 
allowed scientists to run simulations and evaluate mathematical models that were previ-
ously untouchable (Grier, 2005). For example, scientists in computational fluid dynam-
ics knew how to build models for complete aircraft simulation, but did not have access 
to supercomputers capable of running them until the late 1980s. Experimental scientists 
embraced data science as a new set of analytic methods to analyze very large data sets. 
Theoretical scientists got tools for numerically solving equations that had no closed-
form solutions (Tedre and Denning, 2016).



P.J. Denning, M. Tedre380

These tools allowed complex models of dynamic systems to be evaluated in near 
real-time. Models for weather forecasting (Grier, 2005, pp.142–144,169) and nuclear 
reactions (Haigh et al., 2016, p.5) pushed the state of the art since the 1940s. In the 
1980s, scientists from all fields compiled a list of “grand challenge” problems that 
would be solved with sufficient computing power and, with help from Moore’s law, 
they predicted when these solutions would be feasible (Executive Office of the Presi-
dent: Office of Science and Technology Policy, 1987). These problems included fusion 
energy, design of hypersonic aircraft, full simulation of aircraft in flight, cosmology, 
and natural language understanding.
2. New scientific methods. Since 1950, scientists were able to bring to their investiga-
tions new methods enabled by the electronic digital computer. Early computers during 
World War II allowed rapid calculation of ballistic trajectories of new ordnance and 
cracked the German Enigma cipher. Monte Carlo simulation became fashionable in 
the mid-1940s to find probabilistic approximations for thermonuclear and fission de-
vices, cosmic rays, high-temperature plasma, and many other phenomena (Eckhardt, 
1987). In the 1980s, supercomputers led to a rapid proliferation of simulations in 
the sciences, leading to discoveries that earned Nobel Prizes on topics such as phase 
transitions in materials and interactions between tumor viruses and cells (Tedre and 
Denning, 2017).

Computer modeling and simulation evolved into a new way of doing science. The 
new way, was investigations using the computer as the instrument and experimental 
apparatus. Physicists studied phase changes of materials, chemists design of new mol-
ecules, economists simulation of national and world economies, cosmologists the evo-
lution of the universe, biologists the structures of DNA, and much more. None of these 
investigations could be done with the traditional methods of experimental or theoreti-
cal science. Computation was seen as a new way of doing science. All the fields using 
computational methods established new branches of computational science. The term 
“computational thinking” came into vogue to characterize the new kind of thinking 
required for this new way of science. The computational sciences movement received 
political support in the US on the passage of the High Performance Computing and 
Communications Act (1991), which opened new streams of funding for computational 
science research and development. Simulation has become so important that it is today 
inconceivable that major infrastructure investments could be built without exhaustive 
simulations in advance.
3. New lens for interpreting results. Simulations enabled “virtual experiments” in 
which natural processes could be modeled as information processes. The good agree-
ment between these models and the real processes led many scientists to change their 
views and interpret their fields as study of “natural information processes”. Biology was 
the first field to fully embrace this in its study of DNA sequencing and genome edit-
ing – in 2001, David Baltimore, who won a Nobel Prize in Biology, claimed “Biology 
is an information science” (Baltimore, 2002). Leonard Adleman declared himself to be 
a scientist studying information processes in DNA transcription and cell metabolism 
(Adleman, 1998). Many other fields soon followed. For example, cognitive science said 
it studies natural information processes in the brain, physics said that quantum processes 
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are fundamentally information processes and can be used to power quantum computers, 
and economics said it is an information science. In short, computing changed the epis-
temology of science.

Since the computational science revolutions of the 1980s, many scientific fields es-
tablished computational branches that interpret natural processes as information pro-
cesses and study them with computers (Kari and Rozenberg, 2008). The term “natural 
computing” is often used for them. It is now common in many fields to explore natural 
phenomena with computational models such as cellular automata, neural networks, and 
quantum computing.

The computational methods of science are subject to the same limitations as any 
computations. Computational methods do not help with problems for which compu-
tational solutions are intractable. Computing’s major question “P=NP?” has become 
a fundamental question in science, too. When science becomes more computational, the 
limits of computation draw new boundaries for knowledge.

An interesting side effect of this transformation of science is that the early contro-
versy about whether computer science is science has disappeared.
4. New Speculations on the Structure of the World. The enthusiasm for natural in-
formation processes has led some prominent scientists to claim that the universe it-
self is an information process. For example, some theoretical physicists believe that the 
quantum wave functions that govern all the basic particles are information processes; 
since all matter is build from quantum particles, they speculate that the whole world 
an information processing system (Dodig-Crnkovic and Müller, 2011; Dodig-Crnkovic, 
2013; Fredkin, 2003). Others argue that the unreasonable effectiveness of computational 
models in sciences demonstrates that everything in nature computes. Molecules com-
pute their bonds and interactions (Hillis, 1998, pp.72–73), living organisms compute 
life (Mitchell, 2011), the universe computes its own time-evolution (Chaitin, 2006), the 
universe is a cellular automaton (Zuse, 1970;Wolfram, 2002), the universe is a quan-
tum computer (Lloyd, 2007), and everything physical is information-theoretic by nature 
(Wheeler, 1990; Davies, 2010). In the “it from a bit” interpretation (Wheeler, 1990), 
information in the form of bits – or recently qubits – is the fundamental building block 
of the world. There are many forms of computational accounts of the world (Piccinini, 
2017). But many of those views are controversial and are not widely accepted.

All these information views of the universe give the potential of CT being a funda-
mental thinking tool for understanding the mechanisms of the universe.

6. Reflections

We have taken a deep dive into several fundamental aspects of computational thinking: 
its definition, its genealogy, its continuum from beginner to professional, and its in-
heritance from computational science. Our findings are based on extensive literature on 
computing’s disciplinary history and computational thinking. Now the question is, what 
is important for us educators to focus on as we continue our journey with computational 
thinking? Here are our reflections on this.
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The Importance of Our History
A number of analysts have raised warnings about the tendency to present CT devoid of 
its historical context (e.g., Nardelli, 2019; Guzdial, 2015; Voogt et al., 2015; Denning, 
2017). Why is it important to know the history of those ideas? There are many reasons. 
None of the ideas about CT have formed in the emptiness of a new mind-space opened 
in the early 2000s. The disciplinary history of computing includes many attempts to 
describe the unique intellectual core of computing (Tedre, 2014). There is no shortage 
of literature to support investigations of the origins of ideas. These histories enable us to 
trace CT concepts back through the beginnings of computer science in the 1950s, and in 
some cases back much further, hundreds or even thousands of years. In short, the ideas 
we work with today are distillations of the work of many people before us. Our prede-
cessors have sharpened and honed them, adopting ideas that work and steering clear of 
ideas that do not work. For example, our idea of information-hiding software structures 
originated as the engineering idea of modules – components with a definite interface 
whose inner workings are hidden. Software modules can be treated like hardware mod-
ules; they can be replaced by new versions without disrupting the rest of the system. 
When we make ourselves familiar with the history of our ideas, we become wiser and 
can tell our students why things have evolved as they are.

Awareness of history can also reveal blindnesses we have in the current day. Consid-
er the Turing machine model for computation. When he introduced his model in 1936, 
Turing entered a competition to provide an answer to a problem in mathematical logic. 
Other proposals to represent computing included the string substitution systems of Post, 
the lambda-calculus of Church, and the recursions of Gödel. Within a few years, it was 
established that each model could be simulated by any of the others, showing that they 
are all equivalent in their power to represent computations. The Turing model won out as 
the standard because its mechanical, machine-like form was the most intuitive (Kleene, 
1981; Church, 1937). Later, pioneers of computing learned much about what real com-
puters could do (or not do) by studying the capabilities and limits of Turing machines. 
In our thinking today, we have inherited the Turing machine notion that algorithms are 
step-by-step procedures carried out by machines. Few of us think of computations as 
string substitutions, function evaluations, or recursive functions. The Turing model may 
be too narrow to allow us to understand new forms of computation such as deep learning 
networks and quantum computers.

Programming and Machines Are Essential
Some CT proponents have tried to distance CT from the computer and a few also from 
programming (see discussions in, e.g., Connor et al., 2017; Nardelli, 2019; Armoni, 
2016; Lye and Koh, 2014; Lu and Fletcher, 2009; Shute et al., 2017). We have argued 
that it is difficult to understand many CT concepts without understanding the machine 
in the background. We repeat our prior warning that attempting to define and study 
algorithms without reference to a computing machine creates an unrealistic image of 
algorithms that is disconnected with how algorithms are understood in today’s broader 
scientific and engineering discourse. Without a machine to execute it, an algorithm is 
an abstract mathematical construct that cannot produce real results in the world. If there 
were no computers, programming would be limited to narrow theoretical uses. In today’s 
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computing, algorithm is the connection from our mental idea of what we want done to 
a machine that carries out our intent. Since the birth of the field, computing as a disci-
pline has been driven by the union of algorithms and machinery.

Another casualty of treating algorithms independently of machines is an understand-
ing of differences between what a machine can do and what a human can do. A machine 
can carry an enormous number of calculations in the time a human can do just one cal-
culation. Human agents are limited by their biology: they can carry out small algorithms 
that complete in a few minutes or hours. It is utterly impossible for a human agent to 
carry out the operations of most software programs. For example, a single frame refresh 
for a graphics display would take a human years to calculate. Similarly, most things 
that are routine for humans turn out to be computationally intractable for machines. The 
way humans reason about problems is fundamentally different from the way computers 
calculate solutions to problems.

We are able to get machines to go fast because the individual calculations are com-
pletely independent of context. They are executed by circuits that respond to their inputs 
by well-defined local rules. Humans bring great wisdom and understanding to their jobs 
and decisions because through their biology they can sense the context. Humans and 
machines are not equivalent. Computational thinking is, to all intents and purposes, not 
about how to design and reason about algorithms, but about how to make machines do 
algorithmic tasks for people. Without the machine there would no computational think-
ing today. It important to keep the machine in view, even if from a distance.

Basic CT Is Not Unique to Computing
We have expressed our concern that beginner CT, which is the public face of CT, leaves 
out many aspects computing’s rich body of knowledge. We have stressed the importance 
of recognizing that there is a range of CT skills from the beginner to the professional. 
The beginner skills emphasize basic programming and algorithm design. It is entirely 
appropriate for K-12 curriculum recommendations to emphasize beginner skills – be-
cause the students are beginners.

However, therein lies a dilemma: basic “computational” thinking for beginners con-
sists of skills and concepts that are not unique to computing: most of its central concepts 
are found in many disciplines. The ideas that make computing unique ideas are found 
much further along the spectrum from basic to advanced CT. The advanced skills of pro-
fessionals include designing and building large, reliable, and safe software, simulations, 
and artificial intelligence, as well as performance evaluation of systems, distributed net-
works and operating systems, and interfaces for complex systems. Our teachers need an 
appreciation for what professionals do because many students will ask what comes next.

Domain Knowledge is Essential to Computational Thinking
One of the conceits of CT has been a claim that CT enriches the mind and enables prob-
lem-solving in many domains. This notion, which dates back to the 1950s (Forsythe, 
1959; Katz, 1960), appears to have been reinforced by the 1980s computational science 
movement, when scientists from many fields claimed that computing is a new way to 
do science. It seemed that every field of science defined a computational branch to ap-
ply computing. This gives the appearance that computing concepts entered science and 
transformed how science is done.
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But all experience in computational sciences tells us that the participating scientists 
need deep knowledge of the domain in addition to their computing knowledge. Take 
aircraft design as an example. In the 1980s, the largest aircraft were too big for any wind 
tunnel facility. In collaboration with the aircraft industry, NASA embarked on “aero-
dynamic simulation,” meaning the simulation of air flows around the wings and bod-
ies of planes. The objective was a full simulation of an aircraft in flight – designed by 
supercomputer without wind tunnel testing. This required supercomputers doing com-
putations of advanced fluid-flow equations around the aircraft. The scientists who pro-
grammed the simulations needed deep knowledge of fluid dynamics to understand how 
to design grids and prevent round-off errors from accumulating. No computer science 
curriculum teaches computational fluid dynamics.

This is true of every domain using computers. Algorithms and systems are designed 
with deep knowledge of the domain. They are not simply straightforward, uncompli-
cated applications of computing techniques.

Basic CT is not Computer Science
It is important to avoid the trap of equating CT with the academic discipline of comput-
ing. Basic CT does not teach how professional computer scientists see the world; it con-
sists of a set of basic ideas that are the foundation for learning many skills and concepts 
central to computing (and other fields). For example, basic CT does not discuss operat-
ing systems. Operating systems, which have contributed a number of fundamental ideas 
to computing such as autonomous processes, concurrency control, and virtual memory 
are a core course in a CS curriculum. They are not discussed in basic CT. The basic CT 
skills come nowhere near describing what an Apple Genius knows.

A less obvious but more important reason is that basic CT is a practice of the computing 
discipline, along with advanced CT practices including large-scale programming, design, 
and modeling. The discipline of computing includes all these practices and has become 
one of their best teachers. Basic CT is not aimed at teaching the advanced practices.

Conclusion

The latest CT wave has done a remarkable job bringing the need for K-12 computing 
education into the global limelight. The arguments for integrating CT in the classroom 
have persuaded national decision-makers, and resources flow in. The concerted effort of 
educators in schools has resulted in impressive advances in methods for teaching com-
puting in schools, both with computers and without. But the CT community continues to 
struggle with what seems an impenetrable fog of interrelated concepts. We have argued 
that much of the fog would disperse if we broaden CT’s perspective to include advanced 
(professional) CT. Some of this broader perspective can be integrated into the upper ends 
of a K-12 curriculum. We have also argued that a historically grounded view of comput-
ing practices increases understanding of what works and what does not, and reveals why 
certain ideas have stood the test of time. With these expansions, many will come to see 
the full richness of the computing field.
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