
Informatics in Education, 2022, Vol. 21, No. 3, 541–568
© 2022 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2022.16

541

Recognizing Algorithmic Concepts in New
Contexts: An Analysis of Students’ Reasoning

Jacqueline NIJENHUIS-VOOGT1, Durdane BAYRAM-JACOBS2,
Paulien C. MEIJER3, Erik BARENDSEN4
1Institute for Science Education, Radboud University, Nijmegen, The Netherlands
2Eindhoven School of Education, Eindhoven University of Technology, Eindhoven,
 The Netherlands
3Radboud Teachers Academy, Radboud University, Nijmegen, The Netherlands
4Institute for Science Education, Radboud University, Nijmegen and
 Department of Computer Science, Open University, The Netherlands
e-mail: jacqueline.nijenhuis@ru.nl, d.bayram.jacobs@tue.nl,
 p.meijer@docentenacademie.ru.nl, erik.barendsen@ru.nl

Received: May 2021

Abstract. Teaching algorithmic thinking enables students to use their knowledge in various con-
texts to reuse existing solutions to algorithmic problems. The aim of this study is to examine how
students recognize which algorithmic concepts can be used in a new situation. We developed a
card sorting task and investigated the ways in which secondary school students arranged algorith-
mic problems (Bebras tasks) into groups using algorithm as a criterion. Furthermore, we examined
the students’ explanations for their groupings. The results of this qualitative study indicate that stu-
dents may recognize underlying algorithmic concepts directly or by identifying similarities with
a previously solved problem; however, the direct recognition was more successful. Our findings
also include the factors that play a role in students’ recognition of algorithmic concepts, such as the
degree of similarity to problems discussed during lessons. Our study highlights the significance of
teaching students how to recognize the structure of algorithmic problems.

Keywords: computer science education, algorithms, secondary education, card sorting.

1. Introduction

Algorithms are at the heart of computer science (CS) (Harel and Feldman, 2004), and
are a central concept for CS education (Schwill, 1994; Zendler and Spannagel, 2008).
Algorithmic thinking is regarded as a special problem-solving competence (Futschek
and Moschitz, 2010) and is one of the main skills that students acquire in CS education.
Learn ing algorithmic thinking is not only important for learning CS but these skills are
also perceived to be useful in other domains as well (Gal-Ezer and Stephenson, 2014).

J. Nijenhuis-Voogt et al.542

CS curricula in secondary education often involve the teaching of algorithmic prob-
lem-solving and standard (or ‘classic’) algorithms (e.g., CSTA, 2017; Barendsen et al.,
2016). To be able to apply this knowledge when solving new problems, students are
required to recognize the underlying algorithmic concepts in a new problem. When stu-
dents encounter a new problem, they may directly recognize the underlying algorithmic
concepts; for example, when students are asked to find an item in a sorted list, they may
directly recognize that they can use a binary search algorithm. On the other hand, stu-
dents may recognize a similarity with a previously seen problem and realize that the al-
gorithm used to solve that solved problem can be used again; for instance, when students
are asked to find the shortest path on a map from city X to city Y, students may remember
a similar problem they solved previously where they also had to find a shortest path,
which may remind them that they could use Dijkstra’s algorithm for finding the shortest
path. These two routes for recognizing algorithmic concepts are illustrated in Figure 1.

To recognize algorithmic concepts directly (route A in Fig. 1), students need skills
such as decomposition and abstraction (Armoni, 2013; Muller and Haberman, 2008; So-
loway, 1986). Students are required to learn that a problem can be decomposed into parts
for which algorithms have already been developed. The ability to identify the essential
aspects of a problem can help in this process.

Another way of recognizing underlying algorithmic concepts is by identifying simi-
larities with a previously solved problem (route B, existing of B1 followed by B2).
Previ ous research has studied this “problem-solving transfer” (Bassok, 2003; Catram-
bone and Holyoak, 1989; Schmid et al., 2003), where students use (or modify) an exist-
ing solution when encountering a new problem. These studies are often based on the de-
gree of sim ilarity between the base (previously solved) problem and the target problem
(in the new context; see B1 in Fig. 1); for example, Bassok (2003) distinguished between
surface and structural similarities between problems.

Both routes (direct or via similar problems) are viable for solving new problems, and
it will be interesting to examine how secondary school students recognize underlying
al gorithmic concepts when they are presented with new algorithmic problems. To the
best of our knowledge, no studies have been found that focus on students’ recognition
of al gorithmic concepts or examine whether students prefer the direct route or if they
more often identify similarities with previous problems. The contextualization of algo-

Fig. 1. Recognition of algorithmic concepts.

Recognizing Algorithmic Concepts in New Contexts ... 543

rithms is a key characteristic of problem-solving in CS. Problems occur in a specific
context, but a solution is developed at a conceptual level. The main aim of this study
is to examine the way in which students handle this contextualization. By investigating
how students match algorithmic problems to underlying algorithms, we aim to provide
insight into the recog nition of algorithmic concepts. Consequently, this study addresses
the following research questions:

How do students recognize algorithmic concepts in new problems? 1.
What factors play a role in students’ recognition of algorithmic concepts? 2.

The data for this study were collected using a card sorting task, for which students
were asked to sort algorithmic problems based on the underlying algorithm. Other stud-
ies have used such categorization assignments to characterize students’ conceptual
knowledge (Chi et al., 1981; Muller and Haberman, 2008; Smith et al., 2013) but no
prior research has used the sorting of Bebras tasks or similar algorithmic problems to
examine students’ recognition of algorithmic concepts.

In this paper, we first present a conceptual framework of the recognition of algorith-
mic concepts. We then describe the method used in this study, with the development of
the card sorting task. This is followed by a description of our findings. Finally, our con-
clusions and a discussion are presented, including a description of some of the potential
implications.

2. Conceptual Framework

2.1. Recognition of Algorithms in the Problem-Solving Process

At the core of algorithmic thinking lies the problem-solving process. Learning algorith-
mic thinking includes learning how to define a problem, how to design and develop an
algorithm that solves this problem, and how to evaluate an algorithmic solution in terms
of correctness and complexity (Futschek, 2006; Selby and Woollard, 2013).

Algorithmic thinking is one of the elements of computational thinking (CT), which is
regarded as a key 21st century skill and is included in K–12 education worldwide (Gro-
ver and Pea, 2018; Selby and Woollard, 2013). CT skills are considered essential for all
stu dents (Wing, 2006; Yadav et al., 2016). Based on a review of existing definitions and
models, Shute et al. (2017) defined CT as “the conceptual foundation required to solve
problems effectively and efficiently (i.e., algorithmically, with or without the assistance
of computers) with solutions that are reusable in different contexts” (p. 151). CT is con-
cerned with algorithmic problem-solving in every domain (Barr and Stephenson, 2011),
hence the importance of reusing solutions in different contexts.

The analysis and specification of the problem to be solved are significant steps in
algo rithmic thinking (Futschek, 2006). Especially for problem-solving in different do-
mains, as is the aim of CT, the specification of the problem includes the translation of
the problem into computational elements (Kallia et al., 2021). In a study investigating
CT in mathemat ics education, Kallia et al. (2021) described the ‘contextualization’ of

J. Nijenhuis-Voogt et al.544

the problem-solving discipline and distinguished four categories of cognitive activities
(see Fig. 2): 1) trans lation of the problem into computational elements; 2) construction
of a solution by using or developing algorithms; 3) translation of this solution in terms
of the specific context or domain; 4) evaluation of whether the solution solves the real-
world problem.

Consequently, when encountering a new problem, it would be helpful for students
to realize when the underlying concepts are similar to the algorithmic concepts of a
previ ously solved problem. Students may recognize the underlying concepts directly,
on the concept level (see Fig. 2), which is comparable to route A in Fig. 1, or they may
iden tify similarities with a previously solved problem (the context level in Fig. 2), en-
abling them to recognize the underlying algorithmic concepts via the previous solution
(route B in Fig. 1).

2.2. Direct Recognition of Algorithmic Concepts

To recognize the algorithmic concepts in a new problem, it is essential that students
under stand how a problem is structured. In his study about learning to program, So-
loway (1986) described the necessity of teaching effective problem-solving skills and
highlighted the importance of teaching students strategies for using common solu-
tions. He proposed a set of design strategies, the first of which is ‘stepwise refine-
ment’: “Break down a problem into subproblems, on the basis of problems that you
have already solved and for which you have canned (or almost canned) solutions”
(Soloway, 1986, p. 855). These ‘canned solutions’ consist of programming plans or
algorithms to achieve a specific goal. To rec ognize common subproblems and to de-
compose the problem, students need to learn about these ‘canned solutions’ and need
to know the algorithms that can be used to solve com mon subproblems. In addition,
attention should be devoted to ‘plan composition methods’ (Soloway, 1986), allow-
ing students to learn how these common solutions should be woven together by, for
example, nesting and merging.

In addition to learning decomposition skills, students also may need abstraction
skills to recognize algorithmic concepts. To support the abstraction processes in prob-
lem-solving, Muller and Haberman (2008) proposed a pattern-oriented instruction. They
com plemented Soloway’s (1986) ‘plan composition methods’ by stating that algorithmic
pat terns can be identified, and subsequently need to be nested or merged to generate an

Fig. 2. Contextualization activities (Adapted from Kallia et al. (2021)).

Recognizing Algorithmic Concepts in New Contexts ... 545

algo rithmic solution. Muller and Haberman (2008) described three facets of abstraction
that support focusing on the essence of a problem. One of these facets is pattern recogni-
tion, a process that will support students in understanding the significant elements of a
problem while ignoring the context of the problem.

Armoni (2013) described a framework for teaching abstraction and emphasized the
im portance of representing only the essential aspects of a problem to reduce the com-
plexity. Likewise, Izu et al. (2019) highlighted the role of using abstraction to identify
‘plans’ as an important part of program comprehension. These plans represent a high-
level schema for solving a problem and are comparable to Soloway’s (1986) ‘canned
solutions’.

Together these studies provide insights into the importance of decomposition and ab-
straction for the direct recognition of algorithmic concepts. Both skills are also charac-
teristics of computational thinking, described by Wing (2006) as “using abstraction and
decomposition when attacking a large complex task or designing a large complex sys-
tem” (p. 33).

2.3. Identification of Similarity with a Previously Solved Problem

When encountering a new algorithmic problem, students may recognize similarities
with a previously solved problem. If the algorithmic concepts of the previously solved
problem are similar to the algorithmic concepts of the new problem, the previously de-
veloped so lution can be applied to the new problem. This problem-solving transfer in-
volves the use (or modification) of existing solutions when encountering new problems
(Bassok, 2003).

There is a considerable amount of research highlighting how the process of transfer
is supported by the acquisition of a solid knowledge base. Haskell (2001) defined the
pre requisites that enable transfer, listing as the first prerequisite that learners need to
acquire a high level of expertise in the area where transfer is needed. Bransford et al.
(2000) high lighted the importance of “learning with understanding” (p. 55), and stated
that merely memorizing sets of facts does not prepare students to transfer their knowl-
edge when solv ing problems. Students’ understanding of concepts as an influencing fac-
tor in the transfer of knowledge has been confirmed by a recent study in the field of
mathematics. In an in vestigation of transfer of algebraic skills from mathematics into
physics (Tursucu et al., 2020), the students lacked sufficient symbol sense behavior and
basic algebraic skills and therefore encountered difficulties during the transfer.

Besides the factors related to students (their prior knowledge or skills), other factors
can also play a role in the process of transfer. Kershaw et al. (2013) examined the con-
straints that impede transfer and made a distinction between constraints that are related
to the ‘problem’ and those related to the ‘individual’. Constraints related to the problem
may be caused by the complexity of the insight problems. In their article, Kershaw
et al. (2013) presented a problem that requires a three-dimensional representation, where
most participants in the experiment only thought of two-dimensional solutions. For CS,
the representation of a problem may play a similar role; for example, The Knight’ tour

J. Nijenhuis-Voogt et al.546

puzzle (included in the Appendix as one of the problems used in our research) is easier
to solve if the problem is represented as a graph (Curzon, 2015).

Bransford et al. (2000) identified other factors that influence transfer, including ‘con-
text’ (p. 62). The significance of the context is reiterated in the literature regarding con-
text-based learning; for example, Guzdial (2010) argued for the use of multiple contexts
to prevent a situation where new knowledge is only connected to a single context and
cannot be transferred to other contexts or situations. Likewise, in a study regarding the
Chemie im Kontext (ChiK) Project, Nentwig et al. (2007) described how a variety of
contexts are essential for enabling a ‘step of abstraction’ (p. 1442), which is needed to
acquire a systematic concept understanding that can be used in new situations.

Furthermore, case-based reasoning (CBR), a model of learning from experience
(Kolodner, 1993), may contribute to the process of transfer. CBR promotes the use of
pre vious cases to support the problem-solving process by adapting an old solution or
blend ing parts of a few old solutions. CBR is developed to empower students to learn
from previous experiences; they may remember something relevant from an earlier ex-
perience, assess whether that knowledge is applicable in a new situation, and apply what
they have recalled. In this way, CBR and the reuse of lessons learned from previous ex-
periences may promote the transfer of algorithmic knowledge (Kolodner et al., 2003a).

In all the studies reviewed here, various factors are described that influence the pro-
cess of transfer. These factors may also play a role in the identification of a similarity
with a previously solved problem, as is examined in our study.

3. Method

To collect student data for this study, we used a card sorting task inspired by the works
of Chi et al. (1981) and Smith et al. (2013). We investigated the ways in which upper
sec ondary school students arranged algorithmic problems into groups and how they ex-
plained their grouping to their student peers.

3.1. Card Sorting Task to Examine Students’ Recognition

Previous studies have used card sorting tasks to characterize how conceptual knowledge
is organized and connected (Smith et al., 2013). Since the seminal work of Chi et al.
(1981), sorting tasks are often used to investigate differences in the categories used by
experts and novices. For sorting tasks, participants may be asked to sort cards with either
terms (Brinda et al., 2019) or problems (Chi et al., 1981; Smith et al., 2013). Entities to
be sorted “need to be at the same semantic level as each other” (Rugg and McGeorge,
2005). Card sorting tasks have been used in physics (Chi et al., 1981), biology (Smith
et al., 2013), chemistry (Irby et al., 2016), and computer science (Brinda et al., 2019;
McCauley et al., 2005).

A similar categorization assignment was used by Muller and Haberman (2008) to
examine students’ abstraction skills. To investigate the influence of pattern-oriented in-

Recognizing Algorithmic Concepts in New Contexts ... 547

struction on students’ problem-solving competences, Muller and Haberman (2008) asked
students to sort and group algorithmic problems according to different types of student
choices, revealing that students taught with the pattern-oriented instruction performed
better in identifying structural similarities between problems.

Taken together, these studies support the notion that a categorization assignment
is supportive in research into student reasoning; thus, a card sorting task seemed a
reasonable choice to investigate students’ recognition of underlying algorithms in new
problems.

3.2. Development of Card Sorting Task for Algorithmic Problem-Solving

For the development of the card sorting task, we selected various algorithmic problems,
conducted a pilot study with experts, and piloted the task with students. These different
steps are described below.

We selected a set of algorithmic problems from three sources: a) the Bebras tasks
(Bebras, 2021; Dagienė and Futschek, 2008) which were used in an earlier study regard-
ing concepts in K-9 CS education (Barendsen et al., 2015); b) the tasks found on the
website of the Dutch Bebras contest (Beverwedstrijd, 2018); and c) the puzzle-based
activities of ‘Teaching London Computing’ (CAS & CS4FN, 2018). Bebras tasks are
particularly suitable because a wide majority of these tasks focus on algorithms and pro-
cedures (Izu et al., 2017). The activities of ‘Teaching London Computing’ focus on vari-
ous themes, including algorithmic thinking (Curzon, 2014). After studying the teaching
material that would be used to teach the participating students, we selected problems that
were related to one of the algorithms they had been taught.

In order to test the card sorting task, we performed two subsequent pilot studies,
one with experts and another with students. The pilot study with six experts was car-
ried out during a meeting of the research group ‘Computer science didactics’ in the
Netherlands. We asked the experts to sort the algorithmic problems into groups using
algorithm as the criterion. Participants were handed 16 cards and were asked to sort
them into more than one and fewer than 16 groups, and to provide a name for each
group (i.e., an unframed task condition). We tested two different settings: in the first
group, all participants read the problem descriptions together and decided whether this
problem was defined by a new category or could be added to an existing category. In the
second group, participants read the problems individually and made their own sorting.
When all had finished, each participant explained the groups he or she had identified,
and they discussed the different groupings. The explanations and discussions of both
groups were audiotaped.

This pilot revealed that the second setting (individual sorting followed by explana-
tion and discussion) provided more data regarding the reasoning of participants when
they explained and discussed the different groupings. Based on the results of the pilot,
the pro cedure to start with individual sorting was adopted and the problem descriptions
were modified. Furthermore, we decided to change the unframed task condition into a
framed task condition and to give students the different categories for sorting, because

J. Nijenhuis-Voogt et al.548

partici pants in the pilot study indicated that the current task required a well-developed
power of abstraction and might hinder our efforts to examine students’ reasoning.

In the next phase of developing the card sorting task, we conducted a pilot study with
ten secondary school students who took CS classes taught by the first author. We used the
16 problem cards with the modified descriptions. This time we used a framed task con-
dition protocol and gave students four different categories: sorting algorithms, searching
algorithms, shortest path algorithms, and intractable algorithms (i.e., no efficient algo-
rithm known). These categories correspond to the algorithms that students have learned
in the previous lessons and the selected problems could therefore be matched to one of
those categories. In case students thought a card did not fit in any of the given categories,
they could come up with a new category. First, students were offered the problem cards
individually, and were asked to sort them into groups using algorithm as the criterion.
The next step was a discussion in a focus group, during which the students were asked to
come up with a final grouping. They explained to each other the grouping they had made
and were asked to discuss the underlying reasons. We tested specifically whether all
problem descriptions were clear, and the time needed by students to read all the problem
cards. This pilot showed that it took the students a long time to read all cards properly
and that they became tired of it. The cards with descriptions that were not clear or that
did not con tribute to the real discussions were therefore discarded, resulting in a set of 12
problem cards (see Table 1). All problem cards are included in Appendix 1.

3.3. Participants

Twelve students were asked to participate in the main study, including six students from
a HAVO 4 class (senior general secondary education) and six students from a VWO 4
class (pre-university education), which is comparable to grade 10 (students aged 15–16
years). Both classes were taught by the same teacher. In the weeks before the study,

Table 1
Problems used in the card sorting task (see Appendix 1 for problem descriptions)

Title of the problem Underlying algorithm

Shopping at Shoes World Binary search
Hospitals Intractable
Track the thief Binary search
Give me the change! Intractable
Mega WoodLand discount Intractable
Signal Fire Shortest path algorithm
No turning left! Shortest path algorithm
Apple in the basket (Partial) Sorting algorithm
Putting people in line Sorting algorithm
Collecting candies Shortest path algorithm
A postman Intractable
Knight’s Tour Intractable

Recognizing Algorithmic Concepts in New Contexts ... 549

students had attended lessons regarding standard algorithms such as Dijkstra’s shortest
path algorithm and intractable algorithms such as the knapsack problem. Students were
selected to par ticipate by their teacher, who knew whether these students have a basic
knowledge of the algorithms taught. The teacher was asked to select students who, in his
opinion, under stood the teaching material and were able to express themselves well. In
addition, the teacher was asked to form four groups of three students who perceive each
other as stu dents with equal abilities to avoid the students turning to the ‘smartest kid’
for the correct answer. Our research proposal was approved by the local Ethics Com-
mittee and the data were collected, stored, and analyzed in accordance with the ethical
conduct of research.

3.4. Data Collection

The data were collected during sessions consisting of three phases, resulting in various
data sources (see Fig. 3). Three students participated in each session; thus, we conducted
four sessions for the twelve participants. The sessions lasted approximately 45 -60 min.
The session started with an introduction to explain that this study was aimed at examin-
ing how students use their algorithmic knowledge in new contexts. The slides that were
used during lessons about algorithms were shown to refresh students’ memory. Students
were asked to individually read the problem cards and sort them into four categories
(searching, sorting, shortest path, and intractable algorithms), or a new category if need-
ed. They were instructed that we did not require a correct solution for the algorithmic
problem, only the identification of the underlying algorithm. To create a safe environ-
ment, the students were told that the task was not a test and that results would not be
graded. The students could use as much time as needed to sort the cards.

After the individual sorting, the result was recorded, and each student was given a
sheet with two evaluation questions to answer:

For which problem(s) did you immediately recognize the category to which it 1.
belongs? Why?
For which problem(s) did you find it di2. fficult to determine the correct category?
Why?

Subsequently, the students formed a focus group and were asked to come up with
a joint grouping. For each algorithmic problem, they compared their individual results,

Fig. 3. Phases in a session for data collection and the resulting data sources.

J. Nijenhuis-Voogt et al.550

explained to each other why they had matched a problem to a certain category, and dis-
cussed these reasons until they reached agreement. The results of the focus group sorting
were captured, and the discussions and conversations in the focus groups were audio-
and video-recorded. The audiotapes of the discussion have been transcribed verbatim.

3.5. Data Analysis

We analyzed the data to examine how students recognize algorithmic concepts and what
factors play a role in their reasoning. The data analysis consisted of three consecutive
steps. During the first step, we investigated how students recognized algorithmic con-
cepts in the given problems. We examined the results of both the individual groupings
and the ordering by the focus groups (data sources 1 and 3, see Fig. 3). The results of
the individual sorts are described in Table 2. An asterisk indicates the correct category.
Results of the focus group sorts are described in Table 3.

We studied the extent to which the students had correctly matched the problem cards
to the algorithmic concepts and investigated the variation in answers for each problem
card. In addition, we analyzed the answers to the evaluation questions (data source 2,
see Fig. 3) and prepared a table listing the problems that were either mentioned as ‘easy
to match’ or ‘difficult to determine where it belongs’. Each of the lists was sorted by the
number of times a problem card was mentioned (see Table 4).

The results of this first step in the data analysis revealed widespread agreement for
some problem cards and a large variation in answers for other problem cards, along with
a list of problems considered the most ‘easy’ or ‘difficult’ to match. These results were
beneficial for the next steps, which were aimed at delving deeper to examine students’
recognition of algorithmic concepts and the factors that play a role in this recognition.
For example, we expected that for a problem with a variety of answers and listed as ‘dif-

Table 2
Results of individual sorts

Title of the problem Searching
algo rithm

Sorting
algo rithm

Shortest path
algo rithm

Intract-able
algo rithm

New
cate gory

Un known

Shopping at Shoes World 8 * 3 1
Track the thief 8 * 3 1
Apple in the basket 1 11 *
Putting people in line 12 *
No turning left! 1 11 *
Collecting candies 2 7 * 2 1
Signal fire 1 7 * 1 3
Give me the change! 2 3 1 4 * 1 1
Mega WoodLand discount 3 2 7 *
A postman 3 4 4 * 1
Knights’ Tour 1 6 5 *
Hospitals 1 8 2 * 1

Recognizing Algorithmic Concepts in New Contexts ... 551

ficult to match’ we would find more factors, because students would likely use different
reasons to explain the choices they made during the sorting.

In the second step, we examined how students recognized algorithmic concepts in
more detail by investigating whether students recognized the underlying algorithmic
concepts directly (route A, Fig. 1) or whether they recognized similarities with a previ-
ously solved problem (route B, Fig. 1). In addition, we analyzed whether these criteria
led to a match or a mismatch: did the recognition lead to the student grouping the prob-
lem card to a corresponding algorithm, or to a non-corresponding algorithm. The combi-
nation of these two lenses to examine students’ reasoning about their groupings resulted
in a framework for the analysis of the focus group discussions (see Table 5).

Table 3
Results of focus group sorts

Title of the problem Searching
algo rithm

Sorting
algo rithm

Shortest path
algo rithm

Intract-able
algo rithm

New
cate gory

Un known

Shopping at Shoes World 4 *
Track the thief 3 * 1
Apple in the basket 1 3 *
Putting people in line 4 *
No turning left! 4 *
Collecting candies 3 * 1
Signal fire 2 * 1 1
Give me the change! 2 * 2
Mega WoodLand discount 4 *
A postman 1 2 1 * 1
Knights’ Tour 1 2 * 1
Hospitals 1 1 2 *

Table 4
‘Easy’ or ‘Difficult’ to match problems, according to students

Title of the problem Frequency
of ‘easy’

Title of the problem Frequency
of ‘difficult’

Putting people in line 6 Signal fire 9
Mega WoodLand discount 5 A postman 7
Apple in the basket 4 Give me the change! 6
Track the thief 4 Hospitals 5
Shopping at Shoes World 2 Mega WoodLand discount 4
No turning left! 2 Collecting candies 4
Collecting candies 2 No turning left! 3
Give me the change! 1 Knights’ Tour 3
A postman 1 Shopping at Shoes World 2
Knights’ Tour 1 Track the thief 1
Signal fire 0 Apple in the basket 1
Hospitals 0 Putting people in line 1

J. Nijenhuis-Voogt et al.552

We reread the transcripts of the focus group discussions (data source 4, see Fig. 3)
and coded these transcripts using Atlas.ti qualitative data analysis software. A combina-
tion of deductive and inductive coding strategies was used to develop a code list for the
data analysis. We started with four ‘master codes’ for the type of recognition (direct or
via other problem; route A or B, Fig. 1) and the result of the recognition (match or mis-
match). Subcodes to describe the character of the types of recognition were developed
inductively using in Vivo coding (Miles et al., 2014). We coded each segment in the
transcript where a student explained or reasoned about his or her match of a problem
card and an algo rithm, labeling such a segment with a ‘result code’ and a ‘recognition
code’. For example, a reasoning such as “this problem is like the knapsack -problem and
therefore it should be matched with ‘intractable algorithms’ because it is about some-
thing that you put in your knapsack” would be coded as ‘match’ and ‘similarity with
problem -wording’ (the student matched the problem to a corresponding algorithm based
on specific words of the problem). The query tool of the Atlas.ti software permitted the
analysis of all coded seg ments with a combination of specific recognition and result
codes, allowing us to interpret and gain insight into these combinations.

As a third step, we analyzed the data to investigate what factors play a role in stu-
dents’ recognition of algorithmic concepts (the second research question). We repeat-
edly read the responses to the evaluation questions (data source 2, see Fig. 3) and the
transcripts of the focus group discussions (data source 4). All statements that indicated
an aspect that played a role in their reasoning have been coded. We used descriptive
coding (Miles et al., 2014) to summarize the basic topic of the segments in a word or
short phrase, e.g., the ‘visual elements’. This analysis revealed five categories: ‘Prior
knowledge of algorith mic concepts’, ‘Understanding of the problem’, ‘Representation
of the problem’, ‘Degree of similarity to problems discussed during lessons’ and ‘Algo-
rithm partially solves the problem’. We investigated whether each category was related
to the problem (e.g., the representation of the problem) or to the student (e.g., prior
knowledge).

The resulting factors are described in more detail in section 4.2. Factors that Play a
Role in Students’ Recognition.

To ensure the trustworthiness of the qualitative analysis, the first and second au-
thors met almost every week to discuss the analysis and the coding process. The first
author was the main coder. The second author checked the codes and patterns for the

Table 5
Framework for analysis of focus group discussions

Match Mismatch

Direct recognition of un derlying
algorithmic con cepts (route A)

Problem matched to cor responding
algorithm with recognition of algo-
rithmic concepts

Problem matched to non-correspond-
ing algorithm with recognition of
algorithmic concepts

Similarity with other prob lem
(route B)

Problem matched to corre sponding
algorithm with use of similarity to
other problem

Problem matched to non-correspond-
ing algorithm with use of similarity to
other problem

Recognizing Algorithmic Concepts in New Contexts ... 553

appro priateness of the first author’s interpretation. During meetings with all authors
(one per every six weeks), the process and the preliminary results were discussed until
consensus was reached.

4. Results

In this section, we first report the results for our first research question: How do students
recognize algorithmic concepts in new problems? Furthermore, the results of the analy-
sis of the factors that play a role in students’ reasoning (research question 2) are reported.
The students’ quotes were translated from Dutch to English. We have indicated whether
each quote was taken from the focus group discussion (FGx, where x is the number of
the focus group) or from the individual answers to the evaluation questions (EQ). The
student names are pseudonyms.

4.1. Recognition of Algorithmic Concepts

As described in the Method section, we used a framework that offers two lenses for the
analysis of the data: type of recognition and result of the recognition (see Table 5). The
type of recognition describes whether students recognized the algorithmic concepts di-
rectly (route A in Fig. 1) or whether they observed a similarity with a previously solved
problem (route B in Fig. 1). The result of the recognition refers to matching problems
to a corresponding algorithm (match) or non-corresponding algorithms (mismatch).
Combin ing these lenses yields four different combinations, which are described below.

Direct recognition & Match. In this situation, students matched algorithmic prob lems
to analogous algorithms based on their recognition of the underlying algorithmic con-
cepts. For example, a problem that concerns sorting (here, either apples or people) is
recognized as ‘sorting’. The combination of ‘direct recognition’ and ‘match’ was found
predominantly in the discussion regarding searching or sorting problems. Students were
able to recognize the sorting character of such problems. Alyssa, for example, com-
mented on ‘Apple in the basket’:

“You put an apple in the middle and examine whether “[the other
apples]” are bigger or smaller, and that way you can sort easily”
(Alyssa, FG1)

The concept of the binary search algorithm was also transferred to matching prob-
lems based on the recognition of algorithmic concepts (such as ‘works only when items
are sorted’, ‘start in the middle’, etc.). Frank commented on ‘Shopping at Shoes World’,
a searching problem about finding shoes of the right size in a sorted pile of shoes without
the sizes written on the shoe boxes:

“Since the boxes are in the right order, I thought it would be most
useful if you start in the middle, pick up the box, and check ‘is my size

J. Nijenhuis-Voogt et al.554

bigger or smaller than the one I picked up?’. And when it is bigger,
yeah, you only have to search in the half that is left...then eventually
you’ll get to the right one most quickly.” (Frank, FG2)

Direct recognition & Mismatch. Only a few cases were found where recognizing the
underlying algorithmic concept was combined with a mismatch. These cases reveal that,
to a certain extent, students seem to observe the concepts (such as searching in a sorted
list and starting in the middle for the binary search algorithm) but still match the prob-
lem to a non-analogous algorithm. For example, Alyssa matched the abovementioned
shoe boxes problem to the sorting algorithm, although she recognized the concept of the
binary search algorithm:

“I thought ‘sorting’. They are in order so you start in the middle and
check if your shoe size is smaller or bigger, then you get there faster
than if you had to go through everything.” (Alyssa, FG1)

Similarity with previously solved problem & Match. In this case, the students as-
signed a problem to the matching algorithm by looking mostly at similarities with a
pre viously solved problem, such as similar words or phrases. This is clearly noticeable
in the discussion of two students regarding ‘Mega WoodLand discount’, a problem com-
parable to the ‘knapsack problem’. The knapsack problem was discussed during class:

“You have a set of boxes that differ in weight and value, and you have a knapsack
that can hold 12 kg. Which boxes do you put in the knapsack in order to take the highest
value with you?”

During our research, students were handed a card with a similar problem, but in-
stead of boxes the problem concerned products, and instead of the values of the boxes,
the value of discount for each product was listed. In focus group 3, the following dis-
cussion took place:

Isabel: “this one looked the most like the example. It looked like the
knapsack problem in every way ...”

Hanna: “there is also a ‘knapsack’ in it”
Isabel: “oh, I did not even see that, but it looks like it ...I did not ex-

plain my rea soning well”

Likewise, the students in focus group 4 discussed the ‘Collecting candies’ problem,
and one of the students mentioned a similarity to a problem discussed during the lesson:

“Instead of kilometers as we did during the lesson, it’s just candies.”
(Kevin, FG4)

Similarity with previously solved problem & Mismatch. Students recognized sev eral
similarities with previously solved problems which in the end led to a mismatch. For
example, the phrasing of a problem could suggest a similarity with a non-analogous
prob lem. Several problems with the words ‘shortest’ or ‘fastest’ were matched to ‘short-
est path algorithms’. In this way, Benjamin matched the abovementioned shoe boxes
problem to ‘shortest path algorithms’:

Recognizing Algorithmic Concepts in New Contexts ... 555

“I chose ‘shortest path’ because I thought you were looking for the
shortest way to find a shoe size.” (Benjamin, FG1)

Likewise, the fact that you had to search for a solution caused a match with searching
algorithms:

“I chose ‘searching’ because you are searching for it.” (Daniel, FG2)

The illustration of a problem might also lead to a mismatch; for example, when presented
with an intractable problem that was il lustrated with a map (example in Fig. 4), the students
in focus group 3 commented:

Gabrielle: “yeah, I chose ‘shortest path’ ...I saw a map and I
thought:”

Isabel: “that belongs to ‘shortest path’ ”
Gabrielle: “exactly”

4.2. Factors that Play a Role in Students’ Recognition

The data analysis revealed various factors that play a role in stu dents’ recognition of
algorithmic concepts: ‘Prior knowledge of algorithmic concepts’, ‘Understanding of the
problem’, ‘Representation of the problem’, ‘Degree of similarity to problems discussed
during lessons’, and ‘Algorithm partially solves the problem’. The fac tors have been
categorized into those which are related to the student and those that may be linked to the
problem (see Table 6, in which student quotes are listed as illustrative examples).

Regarding the factors related to the student, it is apparent that students’ understand-
ing of the problem enables them to recognize algorithmic concepts. In addition, prior
knowl edge of algorithmic concepts is required for this recognition. Likewise, we found
that students’ incomprehension or misunderstanding hinders their recognition of algo-
rithmic concepts.

The factors that may be linked to the problem can sometimes hinder and sometimes
enable the recognition of underlying algorithmic concepts; for example, the problem
de scription may indicate similarities and facilitate the recognition, but it may also cause
con fusion. In addition, the degree of similarity with a previously seen problem deter-
mines the extent to which it is supportive for the recognition of similarities.

Fig. 4. Map from one of the problem cards.

J. Nijenhuis-Voogt et al.556

The last factor, algorithm partially solves the problem, describes a common aspect of
solving problems, since a new problem may be more comprehensive than a previously
solved one. Despite this, the existing solution may solve part of the new problem and
might therefore be useful; for example, for problems that are quite dissimilar to those that
have been discussed before (far transfer), it might very well be that a standard algorithm
only partially solves the new problem, which is apparent in the case described below.

4.2.1. Description of the ‘Signal Fire’ Problem to Illustrate Factors
In this section, we describe a case to demonstrate the factors that play a role in stu-
dent reasoning. We selected the problem that ranked highest on the list of problems
that were difficult to categorize: ‘Signal Fire’ (see Fig. 5). This problem was reported
as ‘difficult to determine’ by nine of 12 students. In addition, this problem card was
matched to a wide variety of algorithms during the sorting task. Because of the ap-
parent difficulty of the problem, we expected a comprehensive exchange of thoughts
regarding this problem.

Table 6
Factors that play a role in students’ recognition of algorithmic concepts

Type Factor Illustrative examples

Student Understanding of the problem

Prior knowledge of algorithmic con cepts

Because you compare these two things ...and
that way you sort from low to high
I thought ‘shortest path’; it is actually just the
same concept

Problem Representation of the problem
Degree of similarity to problems discussed
during lessons
Algorithm partially solves the prob lem

All points are connected
We had discussed a similar example in class

So then you have to use the shortest path
algorithm plus something else

Fig. 5. Signal Fire: An example of a Bebras task used in the study.

Recognizing Algorithmic Concepts in New Contexts ... 557

During the lessons before this study, the students learned to work with Dijkstra’s
short est path algorithm to find the shortest route between two cities. Another example
was discussed in class where traveling time instead of distance between cities is used,
demon strating that the algorithm can also be used to find the fastest route. Some students
used this prior knowledge of algorithmic concepts when they explained to each other
why they had matched the problem card ‘Signal Fire’ to the ‘shortest path’ algorithm:

“It is just the same method you use for a shortest route: you check
every path and you continue until you have dealt with the whole map”
(Isabel, FG3)

The ‘Signal Fire’ problem may be characterized as far transfer because it is rather
different from the original context in which the ‘shortest path’ algorithms were learned.
Students were challenged in their understanding of the problem. In the answers to
the evaluation questions, we found various reasons why students listed the ‘Signal Fire’
prob lem as ‘difficult to determine’:

“Signal fire: I do not understand it very well.” (Kevin, EQ)

Another student individually categorized this problem as ‘shortest path’ but during
the focus group he first stated that “that’s not correct”. He then reread the problem and
ex claimed:

“Oh, now I get it! This is a shortest path algorithm but reversed; you
have to find the longest path because you assume that everyone lives
somewhere, right? Of course, this is a shortest path; you find the one
that has the longest path from the red point and that is how long it
takes.” (Lucas, FG4)

The representation of the problem (i.e., the description, the use of signal words, or
the visual elements) also appeared to be a factor that played a role in student reasoning;
for example, the words “a signal lit at all points” caused confusion to Benjamin, who
reported during the discussion in focus group 1:

 “Because, in my opinion, the signal has to go everywhere so you do
not need just the shortest path; you need to reach every point, I think.”
(Benjamin, FG1)

However, Caleb replied:

“but you have to look for the furthest ...”

Then Alyssa read the problem description out loud: “how much later will there be a
signal lit at all points?” and Caleb added:

“so you only need to know the furthest because in the meantime all
the other points are lit as well, so it is the shortest path to the furthest
point.”

J. Nijenhuis-Voogt et al.558

The description of the problem apparently caused confusion for Benjamin but was
clear to Caleb. Reference was also made to missing signal words in the problem descrip-
tion; for example, Gabrielle noted in the evaluation questions that ‘Signal Fire’ was dif-
ficult to determine because:

“it has a route but no distances.” (Gabrielle, EQ)

In focus group 2, there was a lot of discussion regarding this problem. Ezra noticed a
similarity to a problem discussed during lessons when he commented:

“It looks like shortest path, because you have to calculate how long it
takes, similar to shortest path.”

Frank contradicted that it could not be ‘shortest path’:

“It is not really ‘shortest path’ ...the fact is that the red point is lit and
the three adjacent blue points will be lit next, and then the ones that
surround these. So ...youcannot searchfor a specific path.”

But when Ezra claimed that it should be ‘shortest path’, Frank responded:

“Or you have to find the shortest path to the furthest point, but you
don’t know which one is the furthest.”

The students kept discussing that the ‘shortest path’ algorithm would only partially
solve the problem, by allowing you to find the distance to each location. But instead of
realizing that the maximum length of these various paths would be the correct answer,
they proposed using a ‘sorting algorithm’:

“You need to know when the furthest point is lit, because then all
points will be lit, so you will need a sorting algorithm ...because as
Frank just said, you need to sort which one is further and which is
less far.” (Ezra)

In focus group 3, the students commented that an algorithm may not solve the prob-
lem completely because the problem requires the opposite outcome to that which the
algorithm is intended to solve:

“It is actually exactly the opposite; we have to find the longest path.”
(Hannah, FG3)

5. Conclusions and Discussion

Teaching algorithmic thinking, whether in CS or in the broader field of CT, is aimed at
en abling students to use their knowledge in various contexts and to reuse existing solu-
tions to algorithmic problems. When encountering a new problem, students are therefore
required to recognize algorithmic concepts, either directly or via a previously solved
problem (see Fig. 1). In this study, we examined how students recognize the underly-

Recognizing Algorithmic Concepts in New Contexts ... 559

ing algorithm in a new problem. We developed a card sorting task to investigate how
students arranged algo rithmic problems into groups, and we examined their reasoning
when they explained their groupings to student peers. Our findings reveal that students
may recognize the underly ing algorithmic concepts directly, which nearly always leads
to the students connecting the problem to the correct algorithm (match). In addition, our
results show that students used similarities with previously solved problems to connect
problems to underlying algo rithms. We found that this identification of similarities may
lead to a match or a mismatch (connection to a correct or incorrect algorithm). Further-
more, by examining students’ rea soning, we identified the factors that play a role in the
recognition of algorithmic concepts, such as the representation of the problem or the
degree of similarity to problems discussed during lessons.

As described before, contextualization is an essential characteristic of problem solv-
ing in CS or CT. The problem occurs in a specific context, but the solution is developed
on a conceptual level. Our findings suggest that the recognition of algorithmic concepts
is more successful when students recognize these concepts directly at the conceptual
level. Sim ilarities at the context level may support students in recognizing the corre-
sponding con cepts, but may also distract students and lead them to link the problem to a
non-analogous algorithmic concept.

In the following sections, we describe the insights gained through this study regard-
ing students recognizing algorithmic concepts and influencing factors. We address pos-
sible implications, and conclude with the limitations of this study and our recommenda-
tions for future work.

5.1. Recognizing Algorithmic Concepts

When encountering new algorithmic problems, the participating students were more able
to classify the underlying concepts if they could recognize similarities with a problem or
an underlying algorithm that had been previously discussed in class. Particularly when
they recognized algorithmic concepts directly, they were predominantly able to con-
nect a problem to a matching algorithm. Most references for algorithmic concepts were
made regarding sorting and searching algorithms, suggesting that algorithmic concepts
were easier to recognize for new sorting or searching problems than for problems where
shortest path algorithms or intractable algorithms could be used. This might be related
to the fact that the structure of sorting or searching problems is easier to understand,
and therefore may be easier to recognize. Intractable problems are known to be difficult
for students (Gal-Ezer and Trakhtenbrot, 2016). That might clarify why, for some of
the intractable problems, it seemed to be of minor importance whether a new problem
is closely similar or quite dissimilar to problems that have been discussed in class. It
is entirely possible that students did not know how to handle these problems and were
therefore not able to use prior knowledge or experiences, which is consistent with previ-
ous research (e.g., Bransford et al., 2000; Bassok, 2003).

It is noteworthy that sometimes students’ reasoning points to the recognition of al-
gorithmic concepts, but still leads to a mismatch. It seems that students have difficulty
connecting the right ‘term’ to the insight they have.

J. Nijenhuis-Voogt et al.560

Furthermore, our results reveal that students hesitate in expressing the similarities
they have found (e.g., “it is just similar ...I did not explain my reasoning well” during
the discussion in focus group 3 about ‘Mega WoodLand discount’). This might be due to
the difficulty of correctly explaining the choices made. Students might even have recog-
nized the concept, but as algorithmic concepts may be more difficult to clarify, students
might prefer to point to similarities with other problems.

It is expected that the recognition of similarities with earlier solved problems may
support students in finding a solution for a new problem. This is, for instance, the es-
sence of the model of learning as suggested by case-based reasoning (Kolodner et al.,
2003b). However, we found no evidence that this route is successful for recognizing
algorithmic concepts in difficult problems, such as intractable problems.

5.2. Factors that Play a Role in Students’ Recognition

Our study revealed several factors that play a role in students’ recognition of algorith-
mic concepts. In the Introduction, we described how students, when confronted with
a new problem, may see the similarity with a previously solved problem or with the
underlying algorithms (see Fig. 1). From this perspective, it is interesting to consider
whether the factors that play a role in students’ recognition relate to the problem (or
context) or the concepts. This is related to the discussion about context-based learning.
When students learn a new concept in only one specific context, they may connect the
new knowledge to that specific context (Guzdial, 2010). When confronted with a new
problem with the same underlying concept, they might recognize the similarity only
when the new prob lem is presented in the same context. Our findings indicate that both
levels (concepts and contexts) can be found in the factors that play a role in students’
reasoning. The factors ‘prior knowledge of algorithmic concepts’ and ‘algorithm par-
tially solves the problem’ appear to be related to the concept level. On the other hand,
the factors ‘understanding of the problem’, ‘representation of the problem’, and ‘degree
of similarity of problems discussed during lessons’ may be linked to the context of the
problem.

The factors that we found may be connected to the student or to the problem (see
Table 6). This is in line with the study of Kershaw et al. (2013), who distinguished the
properties of the problem and student prior knowledge or experiences as constraints that
both may impede the application of prior knowledge. In addition, our findings demon-
strate that the factors that enable transfer, such as ‘understanding of the problem’ and
‘represen tation of the problem’, may also be distinguished as factors relating to the stu-
dent and factors relating to the problem.

5.3. Implications

This study provides insight into the recognition of algorithmic concepts in new situa-
tions or contexts. Our findings show that both the direct recognition of underlying al-
gorithmic concepts or the identification of similarities with previously solved problems

Recognizing Algorithmic Concepts in New Contexts ... 561

will support students in applying what they learn in different contexts; however, direct
recognition more often leads to connecting a problem to a matching algorithm. These
findings may help us to understand what skills students need to develop to recognize
algorithmic concepts and reuse existing solutions for algorithmic problems. This ex-
ploratory study suggests that recognizing underlying algorithmic concepts may be a
learning goal that needs more attention in CS education. The analysis of students’ rea-
soning points to the significance of teaching students how to identify the structure of the
algorithmic problem. Improving students’ abstraction and decompositions skills may
contribute to this, as proposed by Armoni (2013) and Muller and Haberman (2008). By
teaching students to focus on the underlying algorithmic concepts when encountering a
new problem, they may realize that what is learned in a specific context may be useful
in another context.

In addition, the used research method may be applied as a learning activity, where
teachers show how to recognize these concepts and where students are encouraged to
share their reasoning with their peers. The card sorting task developed for this study
proved to be useful for examining students’ reasoning regarding the matching of the
problem cards with standard algorithms. Although we did not monitor the thinking of
students while matching the cards, the recorded discussions of students explaining their
results to peers in the focus groups provided ample opportunity to gain insight into their
reasoning. This type of card sorting task could be included in teaching materials for
teaching algorithms because it appeared to be an interesting activity that helped students
practice with recog nizing algorithmic concepts and applying what they had learned in
a different situation. The results of this study suggest that it is important for students to
explain their choices and reasoning to peers because the active discussions seemed to
contribute to a clear focus on the underlying algorithmic concepts.

Our findings also indicate several factors related to new problems that play a role in
stu dents’ reasoning, such as ‘representation of the problem’ and ‘degree of similarity to
prob lems discussed during lessons’. We therefore recommend that, to ensure well-struc-
tured learning trajectories, attention should be paid to the representation of the problems
and that tasks should build up from near transfer to far transfer with regard to applying
what is learned.

5.4. Limitations and Future Work

In this study, a limited number of students participated, and we investigated how they
rec ognized algorithmic concepts in new situations after receiving only a first introduc-
tion into the topic of algorithms. It is therefore obvious that we should not make any
general izations; however, the detailed research of this qualitative study has revealed
more insights into the important role of the recognition of algorithmic concepts. It would
be interesting to further examine this topic in connection with the education provided,
exploring how well students recognize algorithmic concepts after receiving more les-
sons on this subject.

In this article, we focused on the recognition of algorithmic concepts and the factors
that play a role in this process within the domain of CS education. Further research is

J. Nijenhuis-Voogt et al.562

needed to examine whether the same factors play a role when students apply their algo-
rithmic knowledge to other domains.

This study focused on enabling students to use their algorithmic knowledge and
skills in various contexts by examining how they recognize underlying algorithmic con-
cepts. Further work is needed to determine the effects of students using their creativity
when designing relevant contexts for the algorithmic concepts they have learned. A fu-
ture study regarding students developing contexts that contribute to learning algorithms
would be worthwhile.

Acknowledgments

We would like to thank all the students who participated in this study.

Funding

This research received funding from the Dutch Ministry of Education, Culture, and Sci-
ence under the Dudoc program.

References

Armoni, M. (2013). On teaching abstraction in CS to novices. Journal of Computers in Mathematics and
Science Teaching, 32(3), 265–284.

Barendsen, E., Grgurina, N., Tolboom, J. (2016). A new informatics curriculum for secondary education
in the Netherlands. In: Brodnik, A., Tort, F. (Eds.), Informatics in Schools: Improvement of Informatics
Knowledge and Perceptions. Springer, Cham, pp. 105–117.

Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirole, C., Sentance, S., Settle, A., Stupuriene,
G. (2015). Concepts in K -9 computer science education. In: Proceedings of the 2015 ITiCSE on Working
Group Reports. Association for Computing Machinery, New York, NY, USA, pp. 85–116.

Barr, V., Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the
role of the computer science education community? ACM Inroads, 2(1), 48–54.

Bassok, M. (2003). Analogical transfer in problem solving. In: Davidson, J.E., Sternberg, R.J. (Eds.), The
Psy chology of Problem Solving. Cambridge University Press, Cambridge, MA, pp. 343–369.

Bebras (2021). Bebras -International challenge on informatics and computational thinking.
https://bebras.org

Beverwedstrijd (2018). Beverwedstrijd -The Dutch Bebras contest. www.beverwedstrijd.nl
Bransford, J.D., Brown, A.L., Cocking, R.R. (2000). How People Learn (Expanded ed.). National Academy,

Washington, DC.
Brinda, T., Napierala, S., Tobinski, D., Diethelm, I. (2019). Student strategies for categorizing IT-related

terms. Education and Information Technologies, 24(3), 2095–2125.
CAS & CS4FN (2018). Teaching London Computing: A resource hub from CAS London & CS4FN.

https://teachinglondoncomputing.org

Catrambone, R., Holyoak, K.J. (1989). Overcoming contextual limitations on problem-solving transfer. Jour-
nal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1147–1156.

Chi, M.T.H., Feltovich, P.J., Glaser, R. (1981). Categorization and representation of physics problems by
experts and novices. Cognitive Science, 5(2), 121–152.

CSTA (2017). Computer Science Teachers Association K-12 computer science standards, Revised 2017.
http://www.csteachers.org/standards

Recognizing Algorithmic Concepts in New Contexts ... 563

Curzon, P. (2014). Unplugged computational thinking for fun. In: Brinda, T., Reynolds, N., Romeike, R.,
Schwill, A. (Eds.), KEYCIT 2014 -Key Competencies in Informatics and ICT. Universitätsverlag Potsdam,
Postdam, Germany, pp. 15–28.

Curzon, P. (2015). Computational Thinking: Puzzling tours. Computer Science for Fun, CS4FN, London.
http://www.cs4fn.org/graphs/puzzlingtours

Dagienė, V., Futschek, G. (2008). Bebras international contest on informatics and computer literacy: Criteria
for good tasks. In: Mittermeir, R.T., Sysło, M.M. (Eds.), Informatics education -Supporting computa-
tional thinking. Springer, Berlin, pp. 19–30.

Futschek, G. (2006). Algorithmic thinking: The key for understanding computer science. In: Mittermeir,
R.T. (Ed.), Informatics Education – The Bridge between Using and Understanding Computers. Springer,
Berlin, pp. 159–168.

Futschek, G., Moschitz, J. (2010). Developing algorithmic thinking by inventing and playing algorithms. In:
Proceedings of Constructionist Approaches to Creative Learning, Thinking and Education.

Gal-Ezer, J., Stephenson, C. (2014). A tale of two countries: Successes and challenges in K-12 computer sci-
ence education in Israel and the United States. ACM Transactions on Computing Education, 14(2).

Gal-Ezer, J., Trakhtenbrot, M. (2016). Identification and addressing reduction-related misconceptions. Com-
puter Science Education, 26(2–3), 89–103.

Grover, S., Pea, R. (2018). Computational thinking: A competency whose time has come. In: Sentance, S.,
Barendsen, E., Schulte, C. (Eds.), Computer Science Education: Perspectives on Teaching and Learning
in School. Bloomsbury Publishing, London, pp. 19–38.

Guzdial, M. (2010). Does contextualized computing education help? ACM Inroads, 1(4), 4–6.
Harel, D., Feldman, Y. (2004). Algorithmics: The Spirit of Computing (3rd ed.). Pearson Education Limited,

Harlow, England.
Haskell, R.E. (2001). Transfer of Learning. Academic Press, San Diego, CA, USA.
Irby, S.M., Phu, A.L., Borda, E.J., Haskell, T.R., Steed, N., Meyer, Z. (2016). Use of a card sort task to assess

students’ ability to coordinate three levels of representation in chemistry. Chemistry Education Research
and Practice, 17(2), 337–352.

Izu, C., Mirole, C., Settle, A., Mannila, L., Stupuriene, G. (2017). Exploring Bebras tasks content and perfor-
mance: A multinational study. Informatics in Education, 16(1), 39–59.

Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., Lonati,
V., Mirolo, C., Weeda, R. (2019). Fostering program comprehension in novice programmers -Learning
activities and learning trajectories. In: Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education (ITiCSE-WGR ’19). ITiCSE-WGR ’19. Association for Com-
puting Machinery, New York, NY, USA, pp. 27–52.

Kallia, M., van Borkulo, S.P., Drijvers, P., Barendsen, E., Tolboom, J. (2021). Characterising computational
thinking in mathematics education: A literature-informed Delphi study. Research in Mathematics Educa-
tion, 0(0), 1–29.

Kershaw, T.C., Flynn, C.K., Gordon, L.T. (2013). Multiple paths to transfer and constraint relaxation in in-
sight problem solving. Thinking & Reasoning, 19(1), 96–136.

Kolodner, J.L. (1993). Case-based Reasoning. Morgan Kaufmann, San Mateo, CA, USA.
Kolodner, J.L., Gray, J.T., Fasse, B.B. (2003a). Promoting transfer through case-based reasoning: Rituals and

practices in Learning by Design™ classrooms. Cognitive Science Quarterly, 3, 119–170.
Kolodner, J.L., Camp, P.J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Puntambekar, S., Ryan, M.

(2003b). Problem-based learning meets case-based reasoning in the middle school science classroom:
Putting learning by design into practice. Journal of the Learning Sciences, 12(4), 495–547.

McCauley, R., Murphy, L., Westbrook, S., Haller, S., Zander, C., Fossum, T., Sanders, K., Morrison, B.,
Richards, B., Anderson, R. (2005). What do successful computer science students know? An integrative
analysis using card sort measures and content analysis to evaluate graduating students’ knowledge of pro-
gramming concepts. Expert Systems, 22(3), 147–159.

Miles, M.B., Huberman, A.M., Saldana, J. (2014). Qualitative Data Analysis: A Method Sourcebook. Sage
Pub lications, Los Angeles, CA, USA.

Muller, O., Haberman, B. (2008). Supporting abstraction processes in problem solving through pattern-ori-
ented instruction. Computer Science Education, 18(3), 187–212.

Nentwig, P.M., Demuth, R., Parchmann, I., Ralle, B., Gräsel, C. (2007). Chemie im Kontext: Situating learn-
ing in relevant contexts while systematically developing basic chemical concepts. Journal of Chemical
Education, 84(9), 1439–1444.

Rugg, G., McGeorge, P. (2005). The sorting techniques: A tutorial paper on card sorts, picture sorts and item
sorts. Expert Systems, 22(3), 94–107.

J. Nijenhuis-Voogt et al.564

Schmid, U., Wirth, J., Polkehn, K. (2003). A closer look at structural similarity in analogical transfer. Cogni-
tive Science Quarterly, 3(1), 57–89.

Schwill, A. (1994). Fundamental ideas of computer science. Bulletin -European Association for Theoretical
Computer Science, 53, 274.

Selby, C., Woollard, J. (2013). Computational thinking: the developing definition.
https://eprints.soton.ac.uk/356481/

Shute, V.J., Sun, C., Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research
Re view, 22, 142–158.

Smith, J.I., Combs, E.D., Nagami, P.H., Alto, V.M., Goh, H.G., Gourdet, M.A.A., Hough, C.M., Nickell,
A.E., Peer, A.G., Coley, J.D., Others (2013). Development of the biology card sorting task to measure
conceptual expertise in biology. CBE-Life Sciences Education, 12(4), 628–644.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations. Communica-
tions of the ACM, 29(9), 850–858.

Tursucu, S., Spandaw, J., de Vries, M.J. (2020). Search for symbol sense behavior: Students in upper second-
ary education solving algebraic physics problems. Research in Science Education, 50, 2131–2157.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Yadav, A., Hong, H., Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to em-

bedding 21st century problem solving in K-12 classrooms. TechTrends, 60(6), 565–568.
Zendler, A., Spannagel, C. (2008). Empirical foundation of central concepts for computer science education.

Journal on Educational Resources in Computing, 8(2), 1–15.

J. Nijenhuis-Voogt is a PhD candidate at the Institute for Science Education at Rad-
boud University (Nijmegen, the Netherlands) and a computer science teacher in sec-
ondary education. Her research focuses on computer science education, specifically
on teaching algorithms and algorithmic thinking and on the use of a context-based
approach for CS education.

D. Bayram-Jacobs is an assistant professor at the Eindhoven School of Education
(ESoE), Eindhoven University of Technology (TU/e). Her research interests are: Socio-
scientific Issues (SSI), science education for citizenship, Pedagogical Content Knowl-
edge (PCK) of science teachers, formative evaluation of SSI lessons, and innovation
in educa tion.

P.C. Meijer is a professor of Teacher Learning and Development at the Radboud Teach-
ers Academy at Radboud University (Nijmegen, the Netherlands). Her research fo cuses
on teacher education, the development of teachers’ professional identity, workplace
learning and teaching for creative learning.

E. Barendsen is a professor of Science Education at Radboud University (Nijmegen,
the Netherlands) and a professor of Computing Education at Open University of the
Netherlands. His scientific interests include design-based and context-based teaching
and learning in computer science and STEM subjects, computational thinking and its
inte gration into the school curriculum, digital literacy, and teachers’ practical knowl-
edge, in particular Pedagogical Content Knowledge (PCK).

Recognizing Algorithmic Concepts in New Contexts ... 565

A. Appendix 1 -Problem cards

Unless indicated otherwise, all problems are based on Bebras tasks.
Bebras – International Challenge on Informatics and Computational Thinking,

https://www.bebras.org/

! "!

!""#$%&'()(*(!+,-.&/01&2(".-3+#14(54#%(&$(/0#(4/5%6(
!
#$%&''!($)(*+,&)!-,.&/0('&1!+%%!2/-3%&4'!+/&!3+'&)!-$!5&3/+'!,+'6'7!!"#$%&'(')*+"$*%+,-*%.'/0%.."*1"'
-*')*2-$3%+,4&'%*5'/-367+%+,-*%.'80,*9,*1:!"##$%&''((()*+*,-%).,/'!
!
!
70-""&$,(8/(70-#4(9-.+%(
!
5&+8&/!9:3+',(&$!('!+,!!"#$%!;-/%)<!=&!0->%)!%(6&!,-!3>?!+!$&0!2+(/!-@!'.-&'<!
A@,&/!'&+/*.($B!@-/!+!%-$B!,(4&1!.&!@($+%%?!@->$)!,.&!4-)&%!.&!0+$,'<!
#$@-/,>$+,&%?1!,.&!'(C&'!+/&!$-,!0/(,,&$!-$!,.&!3-D&'1!3>,!-$%?!-$!'.-&'<!E$!
-/)&/!$-,!,-!4+6&!+!4&''!($!,.&!',-/&1!.&!0(%%!-$%?!*.&*6!-$&!3-D!+,!+!,(4&<!=&!
+%'-!6$-0'!,.&!3-D&'!+/&!'-/,&)!($!+'*&$)($B!-/)&/!-@!'(C&<!
!
F.&/&!+/&!GH!3-D&'!-@!,.&!4-)&%!.&!%(6&'1!+$)!0&!+''>4&!,.+,!,.&!'(C&!.&!('!
'&+/*.($B!@-/!('!+8+(%+3%&<!
=-0!4+$?!3-D&'!4>',!9:3+',(&$!-2&$!+,!%&+',!,-!3&!'>/&!,-!@($)!.('!'(C&I!
!
!
!
:-4"&/8+4(
!
F.&!3&+8&/!)-*,-/!0+$,'!,-!3>(%)!+!
.-'2(,+%!-$!,./&&!('%+$)'<!F.&!('%+$)'!+/&!
($)(*+,&)!-$!,.&!/(B.,!+$)!.+8&!$+4&'!
@/-4!A!,-!J<!
!
=&!0+$,'!,-!3>(%)!,.&!.-'2(,+%'!($!'>*.!+!
0+?!,.+,!,.&!3&+8&/'!-$%?!.+8&!,-!'0(4!,./->B.!-$&!*.+$$&%!,-!B&,!,-!+!
.-'2(,+%1!$-!4+,,&/!0.(*.!('%+$)!,.&!3&+8&/!('!-$<!
!
K.--'&!,./&&!2%+*&'!@-/!,.&!,./&&!.-'2(,+%'!'-!,.+,!,.&!*-$)(,(-$!('!4&,<!
!
!"#$%&'()&!"#!$%"&'"#()"*)+),-).$#,/0."123#4("*)5,!$"4(!66)78)9:&;#/4(#/78"<7'&,=!#/4!">6?=@/!.)"

!
!
;#,8(<--%=8$%(%&42-5$/(
!
&$'()*##+,(-+)('!4+6($B!)('*->$,!-$!+%%!-@!,.&(/!2/-)>*,'<!5&+8&/!L?%+$!('!B-($B!,-!3>?!$&0!',>@@!
@-/!.('!.-4&1!3>,!.&!*+$$-,!*+//?!4-/&!,.+$!"M!6B!($!.('!3+*62+*6.!
=&/&!('!+!%(',!-@!+%%!,.&!+8+(%+3%&!2/-)>*,'1!0(,.!,.&(/!0&(B.,!+$)!,.&!8+%>&!-@!,.&!)('*->$,N!
!

O/-)>*,! ;&(B.,! L('*->$,!
P-B! "H!6B! Q!""!
9,+,>&,,&! R!6B! Q!"H!
5--6! S!6B! Q!S!

!
;.(*.!*.-(*&!-@!2/-)>*,'!'.->%)!5&+8&/!L?%+$!2>/*.+'&!,-!B&,!,.&!
4-',!)('*->$,I!
!

! "!

!""#$%&'()(*(!+,-.&/01&2(".-3+#14(54#%(&$(/0#(4/5%6(
!
#$%&''!($)(*+,&)!-,.&/0('&1!+%%!2/-3%&4'!+/&!3+'&)!-$!5&3/+'!,+'6'7!!"#$%&'(')*+"$*%+,-*%.'/0%.."*1"'
-*')*2-$3%+,4&'%*5'/-367+%+,-*%.'80,*9,*1:!"##$%&''((()*+*,-%).,/'!
!
!
70-""&$,(8/(70-#4(9-.+%(
!
5&+8&/!9:3+',(&$!('!+,!!"#$%!;-/%)<!=&!0->%)!%(6&!,-!3>?!+!$&0!2+(/!-@!'.-&'<!
A@,&/!'&+/*.($B!@-/!+!%-$B!,(4&1!.&!@($+%%?!@->$)!,.&!4-)&%!.&!0+$,'<!
#$@-/,>$+,&%?1!,.&!'(C&'!+/&!$-,!0/(,,&$!-$!,.&!3-D&'1!3>,!-$%?!-$!'.-&'<!E$!
-/)&/!$-,!,-!4+6&!+!4&''!($!,.&!',-/&1!.&!0(%%!-$%?!*.&*6!-$&!3-D!+,!+!,(4&<!=&!
+%'-!6$-0'!,.&!3-D&'!+/&!'-/,&)!($!+'*&$)($B!-/)&/!-@!'(C&<!
!
F.&/&!+/&!GH!3-D&'!-@!,.&!4-)&%!.&!%(6&'1!+$)!0&!+''>4&!,.+,!,.&!'(C&!.&!('!
'&+/*.($B!@-/!('!+8+(%+3%&<!
=-0!4+$?!3-D&'!4>',!9:3+',(&$!-2&$!+,!%&+',!,-!3&!'>/&!,-!@($)!.('!'(C&I!
!
!
!
:-4"&/8+4(
!
F.&!3&+8&/!)-*,-/!0+$,'!,-!3>(%)!+!
.-'2(,+%!-$!,./&&!('%+$)'<!F.&!('%+$)'!+/&!
($)(*+,&)!-$!,.&!/(B.,!+$)!.+8&!$+4&'!
@/-4!A!,-!J<!
!
=&!0+$,'!,-!3>(%)!,.&!.-'2(,+%'!($!'>*.!+!
0+?!,.+,!,.&!3&+8&/'!-$%?!.+8&!,-!'0(4!,./->B.!-$&!*.+$$&%!,-!B&,!,-!+!
.-'2(,+%1!$-!4+,,&/!0.(*.!('%+$)!,.&!3&+8&/!('!-$<!
!
K.--'&!,./&&!2%+*&'!@-/!,.&!,./&&!.-'2(,+%'!'-!,.+,!,.&!*-$)(,(-$!('!4&,<!
!
!"#$%&'()&!"#!$%"&'"#()"*)+),-).$#,/0."123#4("*)5,!$"4(!66)78)9:&;#/4(#/78"<7'&,=!#/4!">6?=@/!.)"

!
!
;#,8(<--%=8$%(%&42-5$/(
!
&$'()*##+,(-+)('!4+6($B!)('*->$,!-$!+%%!-@!,.&(/!2/-)>*,'<!5&+8&/!L?%+$!('!B-($B!,-!3>?!$&0!',>@@!
@-/!.('!.-4&1!3>,!.&!*+$$-,!*+//?!4-/&!,.+$!"M!6B!($!.('!3+*62+*6.!
=&/&!('!+!%(',!-@!+%%!,.&!+8+(%+3%&!2/-)>*,'1!0(,.!,.&(/!0&(B.,!+$)!,.&!8+%>&!-@!,.&!)('*->$,N!
!

O/-)>*,! ;&(B.,! L('*->$,!
P-B! "H!6B! Q!""!
9,+,>&,,&! R!6B! Q!"H!
5--6! S!6B! Q!S!

!
;.(*.!*.-(*&!-@!2/-)>*,'!'.->%)!5&+8&/!L?%+$!2>/*.+'&!,-!B&,!,.&!
4-',!)('*->$,I!
!

! "!

!""#$%&'()(*(!+,-.&/01&2(".-3+#14(54#%(&$(/0#(4/5%6(
!
#$%&''!($)(*+,&)!-,.&/0('&1!+%%!2/-3%&4'!+/&!3+'&)!-$!5&3/+'!,+'6'7!!"#$%&'(')*+"$*%+,-*%.'/0%.."*1"'
-*')*2-$3%+,4&'%*5'/-367+%+,-*%.'80,*9,*1:!"##$%&''((()*+*,-%).,/'!
!
!
70-""&$,(8/(70-#4(9-.+%(
!
5&+8&/!9:3+',(&$!('!+,!!"#$%!;-/%)<!=&!0->%)!%(6&!,-!3>?!+!$&0!2+(/!-@!'.-&'<!
A@,&/!'&+/*.($B!@-/!+!%-$B!,(4&1!.&!@($+%%?!@->$)!,.&!4-)&%!.&!0+$,'<!
#$@-/,>$+,&%?1!,.&!'(C&'!+/&!$-,!0/(,,&$!-$!,.&!3-D&'1!3>,!-$%?!-$!'.-&'<!E$!
-/)&/!$-,!,-!4+6&!+!4&''!($!,.&!',-/&1!.&!0(%%!-$%?!*.&*6!-$&!3-D!+,!+!,(4&<!=&!
+%'-!6$-0'!,.&!3-D&'!+/&!'-/,&)!($!+'*&$)($B!-/)&/!-@!'(C&<!
!
F.&/&!+/&!GH!3-D&'!-@!,.&!4-)&%!.&!%(6&'1!+$)!0&!+''>4&!,.+,!,.&!'(C&!.&!('!
'&+/*.($B!@-/!('!+8+(%+3%&<!
=-0!4+$?!3-D&'!4>',!9:3+',(&$!-2&$!+,!%&+',!,-!3&!'>/&!,-!@($)!.('!'(C&I!
!
!
!
:-4"&/8+4(
!
F.&!3&+8&/!)-*,-/!0+$,'!,-!3>(%)!+!
.-'2(,+%!-$!,./&&!('%+$)'<!F.&!('%+$)'!+/&!
($)(*+,&)!-$!,.&!/(B.,!+$)!.+8&!$+4&'!
@/-4!A!,-!J<!
!
=&!0+$,'!,-!3>(%)!,.&!.-'2(,+%'!($!'>*.!+!
0+?!,.+,!,.&!3&+8&/'!-$%?!.+8&!,-!'0(4!,./->B.!-$&!*.+$$&%!,-!B&,!,-!+!
.-'2(,+%1!$-!4+,,&/!0.(*.!('%+$)!,.&!3&+8&/!('!-$<!
!
K.--'&!,./&&!2%+*&'!@-/!,.&!,./&&!.-'2(,+%'!'-!,.+,!,.&!*-$)(,(-$!('!4&,<!
!
!"#$%&'()&!"#!$%"&'"#()"*)+),-).$#,/0."123#4("*)5,!$"4(!66)78)9:&;#/4(#/78"<7'&,=!#/4!">6?=@/!.)"

!
!
;#,8(<--%=8$%(%&42-5$/(
!
&$'()*##+,(-+)('!4+6($B!)('*->$,!-$!+%%!-@!,.&(/!2/-)>*,'<!5&+8&/!L?%+$!('!B-($B!,-!3>?!$&0!',>@@!
@-/!.('!.-4&1!3>,!.&!*+$$-,!*+//?!4-/&!,.+$!"M!6B!($!.('!3+*62+*6.!
=&/&!('!+!%(',!-@!+%%!,.&!+8+(%+3%&!2/-)>*,'1!0(,.!,.&(/!0&(B.,!+$)!,.&!8+%>&!-@!,.&!)('*->$,N!
!

O/-)>*,! ;&(B.,! L('*->$,!
P-B! "H!6B! Q!""!
9,+,>&,,&! R!6B! Q!"H!
5--6! S!6B! Q!S!

!
;.(*.!*.-(*&!-@!2/-)>*,'!'.->%)!5&+8&/!L?%+$!2>/*.+'&!,-!B&,!,.&!
4-',!)('*->$,I!
!

J. Nijenhuis-Voogt et al.566

! "!

!"#$%&'(")*'
!
#!$%&'!()*+!,'%!)&!-,.,&/!0%*+!1)&2,0!0+34+5!(6+!7+,4+3!8%**9&)(:!(%!6+$.!(6+*!5+;+&5!(6+)3!
7+,4+3!$%5'+<!=&!8,0+!%;!+*+3'+&8:/!(6+:!90+5!0*%>+!0)'&,$0!(%!8%**9&)8,(+!?)(6!+,86!%(6+3<!
!
=&!(6+!;)'93+!,(!(6+!3)'6(/!(6+!3+5!.%)&(!)0!(6+!$%8,()%&!%;!(6+!
7+,4+3!$%5'+<!@,86!7$9+!.%)&(!)0!,!$%8,()%&!?6+3+!,!0*%>+!
0)'&,$!8%9$5!7+!$)(<!#$0%/!(?%!.%)&(0!,3+!2%)&+5!7:!,!$)&+!);!(6+)3!
0*%>+!0)'&,$0!8,&!7+!0++&!;3%*!+,86!%(6+3<!
#(!+4+3:!.%)&(/!(6+3+!,3+!0%*+!7+,4+30!?6%!0(,&5!%&!,$$!5,:!
$%&'<!A6+:!;)3+!,!0*%>+!?6+&!(6+:!0++!,!0)'&,$!;3%*!,!.%)&(!
2%)&+5!(%!(6+)30/!290(!B!*)&9(+!,;(+3!(6)0!0)'&,$!?,0!;)3+5<!
!
C6+&!,!0*%>+!0)'&,$!)0!$)(!,(!(6+!7+,4+3!$%5'+/!6%?!*986!
$,(+3!?)$$!(6+3+!7+!,!0)'&,$!$)(!,(!,$$!.%)&(0D!
!
!
!
+,,&*'"$'-.*'/%01*-'
!
1+E(!(%!:%9!(6+3+!)0!,!7,0>+(!;9$$!%;!,..$+0!%;!5);;+3+&(!0)F+0<!
G(+.!BH!I%9!(,>+!,&!,..$+!%9(!%;!(6+!7,0>+(!,&5!.9(!)(!%&!(6+!(,7$+!
)&!;3%&(!%;!:%9<!
G(+.!"H!I%9!3+,86!;%3!(6+!&+E(!,..$+!%9(!%;!(6+!7,0>+(!!
¥! =;!(6+!,..$+!)&!:%93!6,&5!)0!0*,$$+3!(6,&!(6+!%&+!%&!(6+!(,7$+/!

(6+&!:%9!.9(!(6+!,..$+!;3%*!:%93!6,&5!)&(%!(6+!%(6+3!7,0>+(<!
¥! =;!(6+!,..$+!)&!:%93!6,&5!)0!$,3'+3!(6,&!(6+!%&+!%&!(6+!(,7$+/!

(6+&!:%9!.9(!(6+!,..$+!%&!(6+!(,7$+!)&(%!(6+!%(6+3!7,0>+(!,&5!
.9(!(6+!,..$+!;3%*!:%93!6,&5!%&!(6+!(,7$+<!

I%9!3+.+,(!(6+!"!"!0(+.!9&()$!(6+!)&)(),$!7,0>+(!)0!+*.(:<!
C6)86!,..$+!3+*,)&0!%&!(6+!(,7$+!,(!(6+!+&5D!
!
!"#$%&'"(%#)$%*+#)"',-%#).,%/'"01$(%(.2)#%0$%,$$3%*,%*%,$*'4).32%/'"01$(%5,$*'4).32%&"'%#)$%1*'2$,#%*//1$6%0+#%*1,"%*,%*%
,#$/%.3%*%,"'#.32%/'"01$(%5#)$%&.',#%,#$/%"&%#)$%,$1$4#."3%,"'#%*12"'.#)(67%8).,%/'"01$(%'$(.39$9%(",#%"&%#)$%/*'#.4./*3#,%
9+'.32%0"#)%/.1"#,%#"%#)$%,$1$4#."3%,"'#%*12"'.#)(:%;$%#)$'$&"'$%'$2*'9$9%#).,%/'"01$(%*,%(*#4).32%#"%,"'#.32%*12"'.#)(,7%

!
!
!
23&&*4-"$#'4%$5"*0'
!
J+,4+3!J39&%!+&(+30!,!8,4+!8%&0)0()&'!%;!0+4+3,$!3%%*0!8%&&+8(+5!
7:!.,00,'+0<!!
A6+!.,00,'+0!,3+!%&+K?,:!%&$:/!J39&%!8,&!*%4+!;3%*!$+;(!(%!3)'6(!
,&5!;3%*!7%((%*!(%!(%./!79(!&%(!)&!(6+!(?%!%(6+3!5)3+8()%&0<!!
A6+3+!,3+!0%*+!8,&5)+0!)&!+,86!3%%*!L(6+!&9*7+30!06%?&!)&!
?6)(+!%&!(6+!;)'93+M<!!
J39&%!?,&(0!(%!8%$$+8(!,0!*,&:!8,&5)+0!,0!.%00)7$+/!79(!6+!)0!
,$$%?+5!(%!+&(+3!(6+!8,4+!290(!%&8+<!!
N%?!*,&:!8,&5)+0!8,&!6+!8%$$+8(D!
!

! "!

!"#$%&'(")*'
!
#!$%&'!()*+!,'%!)&!-,.,&/!0%*+!1)&2,0!0+34+5!(6+!7+,4+3!8%**9&)(:!(%!6+$.!(6+*!5+;+&5!(6+)3!
7+,4+3!$%5'+<!=&!8,0+!%;!+*+3'+&8:/!(6+:!90+5!0*%>+!0)'&,$0!(%!8%**9&)8,(+!?)(6!+,86!%(6+3<!
!
=&!(6+!;)'93+!,(!(6+!3)'6(/!(6+!3+5!.%)&(!)0!(6+!$%8,()%&!%;!(6+!
7+,4+3!$%5'+<!@,86!7$9+!.%)&(!)0!,!$%8,()%&!?6+3+!,!0*%>+!
0)'&,$!8%9$5!7+!$)(<!#$0%/!(?%!.%)&(0!,3+!2%)&+5!7:!,!$)&+!);!(6+)3!
0*%>+!0)'&,$0!8,&!7+!0++&!;3%*!+,86!%(6+3<!
#(!+4+3:!.%)&(/!(6+3+!,3+!0%*+!7+,4+30!?6%!0(,&5!%&!,$$!5,:!
$%&'<!A6+:!;)3+!,!0*%>+!?6+&!(6+:!0++!,!0)'&,$!;3%*!,!.%)&(!
2%)&+5!(%!(6+)30/!290(!B!*)&9(+!,;(+3!(6)0!0)'&,$!?,0!;)3+5<!
!
C6+&!,!0*%>+!0)'&,$!)0!$)(!,(!(6+!7+,4+3!$%5'+/!6%?!*986!
$,(+3!?)$$!(6+3+!7+!,!0)'&,$!$)(!,(!,$$!.%)&(0D!
!
!
!
+,,&*'"$'-.*'/%01*-'
!
1+E(!(%!:%9!(6+3+!)0!,!7,0>+(!;9$$!%;!,..$+0!%;!5);;+3+&(!0)F+0<!
G(+.!BH!I%9!(,>+!,&!,..$+!%9(!%;!(6+!7,0>+(!,&5!.9(!)(!%&!(6+!(,7$+!
)&!;3%&(!%;!:%9<!
G(+.!"H!I%9!3+,86!;%3!(6+!&+E(!,..$+!%9(!%;!(6+!7,0>+(!!
¥! =;!(6+!,..$+!)&!:%93!6,&5!)0!0*,$$+3!(6,&!(6+!%&+!%&!(6+!(,7$+/!

(6+&!:%9!.9(!(6+!,..$+!;3%*!:%93!6,&5!)&(%!(6+!%(6+3!7,0>+(<!
¥! =;!(6+!,..$+!)&!:%93!6,&5!)0!$,3'+3!(6,&!(6+!%&+!%&!(6+!(,7$+/!

(6+&!:%9!.9(!(6+!,..$+!%&!(6+!(,7$+!)&(%!(6+!%(6+3!7,0>+(!,&5!
.9(!(6+!,..$+!;3%*!:%93!6,&5!%&!(6+!(,7$+<!

I%9!3+.+,(!(6+!"!"!0(+.!9&()$!(6+!)&)(),$!7,0>+(!)0!+*.(:<!
C6)86!,..$+!3+*,)&0!%&!(6+!(,7$+!,(!(6+!+&5D!
!
!"#$%&'"(%#)$%*+#)"',-%#).,%/'"01$(%(.2)#%0$%,$$3%*,%*%,$*'4).32%/'"01$(%5,$*'4).32%&"'%#)$%1*'2$,#%*//1$6%0+#%*1,"%*,%*%
,#$/%.3%*%,"'#.32%/'"01$(%5#)$%&.',#%,#$/%"&%#)$%,$1$4#."3%,"'#%*12"'.#)(67%8).,%/'"01$(%'$(.39$9%(",#%"&%#)$%/*'#.4./*3#,%
9+'.32%0"#)%/.1"#,%#"%#)$%,$1$4#."3%,"'#%*12"'.#)(:%;$%#)$'$&"'$%'$2*'9$9%#).,%/'"01$(%*,%(*#4).32%#"%,"'#.32%*12"'.#)(,7%

!
!
!
23&&*4-"$#'4%$5"*0'
!
J+,4+3!J39&%!+&(+30!,!8,4+!8%&0)0()&'!%;!0+4+3,$!3%%*0!8%&&+8(+5!
7:!.,00,'+0<!!
A6+!.,00,'+0!,3+!%&+K?,:!%&$:/!J39&%!8,&!*%4+!;3%*!$+;(!(%!3)'6(!
,&5!;3%*!7%((%*!(%!(%./!79(!&%(!)&!(6+!(?%!%(6+3!5)3+8()%&0<!!
A6+3+!,3+!0%*+!8,&5)+0!)&!+,86!3%%*!L(6+!&9*7+30!06%?&!)&!
?6)(+!%&!(6+!;)'93+M<!!
J39&%!?,&(0!(%!8%$$+8(!,0!*,&:!8,&5)+0!,0!.%00)7$+/!79(!6+!)0!
,$$%?+5!(%!+&(+3!(6+!8,4+!290(!%&8+<!!
N%?!*,&:!8,&5)+0!8,&!6+!8%$$+8(D!
!

! "!

!"#$%&'(")*'
!
#!$%&'!()*+!,'%!)&!-,.,&/!0%*+!1)&2,0!0+34+5!(6+!7+,4+3!8%**9&)(:!(%!6+$.!(6+*!5+;+&5!(6+)3!
7+,4+3!$%5'+<!=&!8,0+!%;!+*+3'+&8:/!(6+:!90+5!0*%>+!0)'&,$0!(%!8%**9&)8,(+!?)(6!+,86!%(6+3<!
!
=&!(6+!;)'93+!,(!(6+!3)'6(/!(6+!3+5!.%)&(!)0!(6+!$%8,()%&!%;!(6+!
7+,4+3!$%5'+<!@,86!7$9+!.%)&(!)0!,!$%8,()%&!?6+3+!,!0*%>+!
0)'&,$!8%9$5!7+!$)(<!#$0%/!(?%!.%)&(0!,3+!2%)&+5!7:!,!$)&+!);!(6+)3!
0*%>+!0)'&,$0!8,&!7+!0++&!;3%*!+,86!%(6+3<!
#(!+4+3:!.%)&(/!(6+3+!,3+!0%*+!7+,4+30!?6%!0(,&5!%&!,$$!5,:!
$%&'<!A6+:!;)3+!,!0*%>+!?6+&!(6+:!0++!,!0)'&,$!;3%*!,!.%)&(!
2%)&+5!(%!(6+)30/!290(!B!*)&9(+!,;(+3!(6)0!0)'&,$!?,0!;)3+5<!
!
C6+&!,!0*%>+!0)'&,$!)0!$)(!,(!(6+!7+,4+3!$%5'+/!6%?!*986!
$,(+3!?)$$!(6+3+!7+!,!0)'&,$!$)(!,(!,$$!.%)&(0D!
!
!
!
+,,&*'"$'-.*'/%01*-'
!
1+E(!(%!:%9!(6+3+!)0!,!7,0>+(!;9$$!%;!,..$+0!%;!5);;+3+&(!0)F+0<!
G(+.!BH!I%9!(,>+!,&!,..$+!%9(!%;!(6+!7,0>+(!,&5!.9(!)(!%&!(6+!(,7$+!
)&!;3%&(!%;!:%9<!
G(+.!"H!I%9!3+,86!;%3!(6+!&+E(!,..$+!%9(!%;!(6+!7,0>+(!!
¥! =;!(6+!,..$+!)&!:%93!6,&5!)0!0*,$$+3!(6,&!(6+!%&+!%&!(6+!(,7$+/!

(6+&!:%9!.9(!(6+!,..$+!;3%*!:%93!6,&5!)&(%!(6+!%(6+3!7,0>+(<!
¥! =;!(6+!,..$+!)&!:%93!6,&5!)0!$,3'+3!(6,&!(6+!%&+!%&!(6+!(,7$+/!

(6+&!:%9!.9(!(6+!,..$+!%&!(6+!(,7$+!)&(%!(6+!%(6+3!7,0>+(!,&5!
.9(!(6+!,..$+!;3%*!:%93!6,&5!%&!(6+!(,7$+<!

I%9!3+.+,(!(6+!"!"!0(+.!9&()$!(6+!)&)(),$!7,0>+(!)0!+*.(:<!
C6)86!,..$+!3+*,)&0!%&!(6+!(,7$+!,(!(6+!+&5D!
!
!"#$%&'"(%#)$%*+#)"',-%#).,%/'"01$(%(.2)#%0$%,$$3%*,%*%,$*'4).32%/'"01$(%5,$*'4).32%&"'%#)$%1*'2$,#%*//1$6%0+#%*1,"%*,%*%
,#$/%.3%*%,"'#.32%/'"01$(%5#)$%&.',#%,#$/%"&%#)$%,$1$4#."3%,"'#%*12"'.#)(67%8).,%/'"01$(%'$(.39$9%(",#%"&%#)$%/*'#.4./*3#,%
9+'.32%0"#)%/.1"#,%#"%#)$%,$1$4#."3%,"'#%*12"'.#)(:%;$%#)$'$&"'$%'$2*'9$9%#).,%/'"01$(%*,%(*#4).32%#"%,"'#.32%*12"'.#)(,7%

!
!
!
23&&*4-"$#'4%$5"*0'
!
J+,4+3!J39&%!+&(+30!,!8,4+!8%&0)0()&'!%;!0+4+3,$!3%%*0!8%&&+8(+5!
7:!.,00,'+0<!!
A6+!.,00,'+0!,3+!%&+K?,:!%&$:/!J39&%!8,&!*%4+!;3%*!$+;(!(%!3)'6(!
,&5!;3%*!7%((%*!(%!(%./!79(!&%(!)&!(6+!(?%!%(6+3!5)3+8()%&0<!!
A6+3+!,3+!0%*+!8,&5)+0!)&!+,86!3%%*!L(6+!&9*7+30!06%?&!)&!
?6)(+!%&!(6+!;)'93+M<!!
J39&%!?,&(0!(%!8%$$+8(!,0!*,&:!8,&5)+0!,0!.%00)7$+/!79(!6+!)0!
,$$%?+5!(%!+&(+3!(6+!8,4+!290(!%&8+<!!
N%?!*,&:!8,&5)+0!8,&!6+!8%$$+8(D!
!

Recognizing Algorithmic Concepts in New Contexts ... 567

! "!

!"#$%&'()&'(*)+&
!
#$%!&'()*+!,-.*%!/0'()12,!3'+!+4).%1!&5)(!4$%!(*+%*(!4)2'67!8!4$0%&!+3'99%2!4$%!:.*%!20'()12!
304$!'!;$%'9!&'<%!20'()12!304$!'!=5%%1!;).)57!
!
#)2'6!>???!9%)9.%!@0+04%2!4$%!%A$0:040)1!304$!4$%!
20'()127!#$%6!%14%5%2!4$%!5))(!304$!4$%!20'()12!)1%!
:6!)1%7!!
B1+9%;4)5!-C@'5!$'+!4)!&012!4$%!4$0%&!:6!D*%+40)101=!'!1*(:%5!)&!@0+04)5+7!E%!$'+!'!.0+4!)&!'..!4$%!
@0+04)5+!01!4$%!)52%5!01!3$0;$!4$%6!@0+04%2!4$%!5))(!304$!4$%!20'()127!!
E%!'+<+!%';$!9%5+)1!4$%!+'(%!D*%+40)1F!,E'@%!6)*!+%%1!'!=5%%1!)5!'!:.*%!20'()12G!!
H@%56!@0+04)5!30..!'1+3%5!45*4$&*..6!%A;%94!4$%!4$0%&I!3$)!30..!+'6!$%!+'3!'!=5%%1!20'()127!
!
B1+9%;4)5!-C@'5!3'14+!4)!014%55)='4%!'+!&%3!9%)9.%!'+!9)++0:.%I!:*4!$%!3'14+!4)!&012!4$%!4$0%&7!B+!04!
1%;%++'56!4$'4!$%!014%55)='4%+!'..!@0+04)5+G!B&!1)4I!$)3!('16G!
!
!"#$%&'()&!"#!$%"&'"#()"*)+),-).$#,/0."123#4("*)5,!$"4(!66)78)9:&;#/4(#/78"<7'&,=!#/4!">6?=@/!.)"

!
!
!
,-*.('/0&'12"&
!

8!;$%++!<10=$4!0+!':.%!4)!()@%!.0<%!4$0+F!
! >!+9';%+!&)53'52!'12!J!+02%3'6+I!)5!
! J!+9';%!&)53'52!'12!>!+9';%+!+02%3'6+7!
!
8!+01=.%!;$%++!<10=$4!0+!+*99)+%2!4)!K*(9!)1!'!+('..!
;5)++L+$'9%2!:)'52I!+%%!&0=*5%7!
M)*!(*+4!&012!'!+%D*%1;%!)&!()@%+!4$'4!+4'54+!&5)(!
+D*'5%!J!'12!&010+$%+!'='01!01!+D*'5%!J7!
N'<%!+*5%!4$%!<10=$4!@0+04+!%@%56!+D*'5%!%A';4.6!
)1;%7!
!

!
!"#$%&'(&*A&=@3#!#/&7!6"B(/7%/78C"D3EE6/78"#&3,$C"B()"F7/8(#G$"B&3,"D3EE6)H&
A,)!#)."5?"D!36"A3,E&7I"J3))7"K!,?"L7/+),$/#?"&'"M&7.&7"-/#("$3@@&,#"',&="#()"K!?&,"&'"M&7.&7&
'&,"B)!4(/78"M&7.&7"A&=@3#/78C"(##@CNN#)!4(/786&7.&74&=@3#/78O&,8+&
!
!
31&'2"-*-.&4)+'5&
!
#5'&&0;!K'(!01!'!;046O!B4!0+!0(9)++0:.%!4)!4*51!.%&4!01!+*;$!'!45'&&0;!
2%1+0467!!
-%'@%5!P.)50+!0+!$*55601=!*9!$)(%!:6!;'5!&5)(!4$%!$)4%.!$%!3)5<+7!
B1!4$%!90;4*5%!4)!4$%!50=$4I!4$%!+45%%4+!'5%!5%95%+%14%2!:6!4$%!
:5)31!.01%+7!#$%!1*(:%5+!0120;'4%!4$%!45'@%.!2*5'40)1!&)5!%';$!
+45%%4!01!(01*4%+7!
P.)50+!*+%+!$0+!QRS!1'@0='40)1!4)!&012!4$%!+$)54%+4!3'6!$)(%!01!
(01*4%+7!!
E)3!.)1=!30..!04!4'<%!'4!.%'+4!4)!=)!&5)(!4$%!$)4%.!4)!$0+!$)(%!
3$%1!04!0+!1)4!9)++0:.%!4)!4*51!.%&4G!

! "!

!"#$%&'()&'(*)+&
!
#$%!&'()*+!,-.*%!/0'()12,!3'+!+4).%1!&5)(!4$%!(*+%*(!4)2'67!8!4$0%&!+3'99%2!4$%!:.*%!20'()12!
304$!'!;$%'9!&'<%!20'()12!304$!'!=5%%1!;).)57!
!
#)2'6!>???!9%)9.%!@0+04%2!4$%!%A$0:040)1!304$!4$%!
20'()127!#$%6!%14%5%2!4$%!5))(!304$!4$%!20'()12!)1%!
:6!)1%7!!
B1+9%;4)5!-C@'5!$'+!4)!&012!4$%!4$0%&!:6!D*%+40)101=!'!1*(:%5!)&!@0+04)5+7!E%!$'+!'!.0+4!)&!'..!4$%!
@0+04)5+!01!4$%!)52%5!01!3$0;$!4$%6!@0+04%2!4$%!5))(!304$!4$%!20'()127!!
E%!'+<+!%';$!9%5+)1!4$%!+'(%!D*%+40)1F!,E'@%!6)*!+%%1!'!=5%%1!)5!'!:.*%!20'()12G!!
H@%56!@0+04)5!30..!'1+3%5!45*4$&*..6!%A;%94!4$%!4$0%&I!3$)!30..!+'6!$%!+'3!'!=5%%1!20'()127!
!
B1+9%;4)5!-C@'5!3'14+!4)!014%55)='4%!'+!&%3!9%)9.%!'+!9)++0:.%I!:*4!$%!3'14+!4)!&012!4$%!4$0%&7!B+!04!
1%;%++'56!4$'4!$%!014%55)='4%+!'..!@0+04)5+G!B&!1)4I!$)3!('16G!
!
!"#$%&'()&!"#!$%"&'"#()"*)+),-).$#,/0."123#4("*)5,!$"4(!66)78)9:&;#/4(#/78"<7'&,=!#/4!">6?=@/!.)"

!
!
!
,-*.('/0&'12"&
!

8!;$%++!<10=$4!0+!':.%!4)!()@%!.0<%!4$0+F!
! >!+9';%+!&)53'52!'12!J!+02%3'6+I!)5!
! J!+9';%!&)53'52!'12!>!+9';%+!+02%3'6+7!
!
8!+01=.%!;$%++!<10=$4!0+!+*99)+%2!4)!K*(9!)1!'!+('..!
;5)++L+$'9%2!:)'52I!+%%!&0=*5%7!
M)*!(*+4!&012!'!+%D*%1;%!)&!()@%+!4$'4!+4'54+!&5)(!
+D*'5%!J!'12!&010+$%+!'='01!01!+D*'5%!J7!
N'<%!+*5%!4$%!<10=$4!@0+04+!%@%56!+D*'5%!%A';4.6!
)1;%7!
!

!
!"#$%&'(&*A&=@3#!#/&7!6"B(/7%/78C"D3EE6/78"#&3,$C"B()"F7/8(#G$"B&3,"D3EE6)H&
A,)!#)."5?"D!36"A3,E&7I"J3))7"K!,?"L7/+),$/#?"&'"M&7.&7"-/#("$3@@&,#"',&="#()"K!?&,"&'"M&7.&7&
'&,"B)!4(/78"M&7.&7"A&=@3#/78C"(##@CNN#)!4(/786&7.&74&=@3#/78O&,8+&
!
!
31&'2"-*-.&4)+'5&
!
#5'&&0;!K'(!01!'!;046O!B4!0+!0(9)++0:.%!4)!4*51!.%&4!01!+*;$!'!45'&&0;!
2%1+0467!!
-%'@%5!P.)50+!0+!$*55601=!*9!$)(%!:6!;'5!&5)(!4$%!$)4%.!$%!3)5<+7!
B1!4$%!90;4*5%!4)!4$%!50=$4I!4$%!+45%%4+!'5%!5%95%+%14%2!:6!4$%!
:5)31!.01%+7!#$%!1*(:%5+!0120;'4%!4$%!45'@%.!2*5'40)1!&)5!%';$!
+45%%4!01!(01*4%+7!
P.)50+!*+%+!$0+!QRS!1'@0='40)1!4)!&012!4$%!+$)54%+4!3'6!$)(%!01!
(01*4%+7!!
E)3!.)1=!30..!04!4'<%!'4!.%'+4!4)!=)!&5)(!4$%!$)4%.!4)!$0+!$)(%!
3$%1!04!0+!1)4!9)++0:.%!4)!4*51!.%&4G!

! "!

!"#$%&'()&'(*)+&
!
#$%!&'()*+!,-.*%!/0'()12,!3'+!+4).%1!&5)(!4$%!(*+%*(!4)2'67!8!4$0%&!+3'99%2!4$%!:.*%!20'()12!
304$!'!;$%'9!&'<%!20'()12!304$!'!=5%%1!;).)57!
!
#)2'6!>???!9%)9.%!@0+04%2!4$%!%A$0:040)1!304$!4$%!
20'()127!#$%6!%14%5%2!4$%!5))(!304$!4$%!20'()12!)1%!
:6!)1%7!!
B1+9%;4)5!-C@'5!$'+!4)!&012!4$%!4$0%&!:6!D*%+40)101=!'!1*(:%5!)&!@0+04)5+7!E%!$'+!'!.0+4!)&!'..!4$%!
@0+04)5+!01!4$%!)52%5!01!3$0;$!4$%6!@0+04%2!4$%!5))(!304$!4$%!20'()127!!
E%!'+<+!%';$!9%5+)1!4$%!+'(%!D*%+40)1F!,E'@%!6)*!+%%1!'!=5%%1!)5!'!:.*%!20'()12G!!
H@%56!@0+04)5!30..!'1+3%5!45*4$&*..6!%A;%94!4$%!4$0%&I!3$)!30..!+'6!$%!+'3!'!=5%%1!20'()127!
!
B1+9%;4)5!-C@'5!3'14+!4)!014%55)='4%!'+!&%3!9%)9.%!'+!9)++0:.%I!:*4!$%!3'14+!4)!&012!4$%!4$0%&7!B+!04!
1%;%++'56!4$'4!$%!014%55)='4%+!'..!@0+04)5+G!B&!1)4I!$)3!('16G!
!
!"#$%&'()&!"#!$%"&'"#()"*)+),-).$#,/0."123#4("*)5,!$"4(!66)78)9:&;#/4(#/78"<7'&,=!#/4!">6?=@/!.)"

!
!
!
,-*.('/0&'12"&
!

8!;$%++!<10=$4!0+!':.%!4)!()@%!.0<%!4$0+F!
! >!+9';%+!&)53'52!'12!J!+02%3'6+I!)5!
! J!+9';%!&)53'52!'12!>!+9';%+!+02%3'6+7!
!
8!+01=.%!;$%++!<10=$4!0+!+*99)+%2!4)!K*(9!)1!'!+('..!
;5)++L+$'9%2!:)'52I!+%%!&0=*5%7!
M)*!(*+4!&012!'!+%D*%1;%!)&!()@%+!4$'4!+4'54+!&5)(!
+D*'5%!J!'12!&010+$%+!'='01!01!+D*'5%!J7!
N'<%!+*5%!4$%!<10=$4!@0+04+!%@%56!+D*'5%!%A';4.6!
)1;%7!
!

!
!"#$%&'(&*A&=@3#!#/&7!6"B(/7%/78C"D3EE6/78"#&3,$C"B()"F7/8(#G$"B&3,"D3EE6)H&
A,)!#)."5?"D!36"A3,E&7I"J3))7"K!,?"L7/+),$/#?"&'"M&7.&7"-/#("$3@@&,#"',&="#()"K!?&,"&'"M&7.&7&
'&,"B)!4(/78"M&7.&7"A&=@3#/78C"(##@CNN#)!4(/786&7.&74&=@3#/78O&,8+&
!
!
31&'2"-*-.&4)+'5&
!
#5'&&0;!K'(!01!'!;046O!B4!0+!0(9)++0:.%!4)!4*51!.%&4!01!+*;$!'!45'&&0;!
2%1+0467!!
-%'@%5!P.)50+!0+!$*55601=!*9!$)(%!:6!;'5!&5)(!4$%!$)4%.!$%!3)5<+7!
B1!4$%!90;4*5%!4)!4$%!50=$4I!4$%!+45%%4+!'5%!5%95%+%14%2!:6!4$%!
:5)31!.01%+7!#$%!1*(:%5+!0120;'4%!4$%!45'@%.!2*5'40)1!&)5!%';$!
+45%%4!01!(01*4%+7!
P.)50+!*+%+!$0+!QRS!1'@0='40)1!4)!&012!4$%!+$)54%+4!3'6!$)(%!01!
(01*4%+7!!
E)3!.)1=!30..!04!4'<%!'4!.%'+4!4)!=)!&5)(!4$%!$)4%.!4)!$0+!$)(%!
3$%1!04!0+!1)4!9)++0:.%!4)!4*51!.%&4G!

J. Nijenhuis-Voogt et al.568

! "!

!"##$%&'()*(+)'$%'+$%)'
!
#$%!&'(!)*!+,&'-(!$.!&''&*-)*-!&!-'$%/!$.!/($/0(!)*!1,(!+$''(+1!$'2('!34!
1,(!*%53('!$*!)*2)6)2%&078!8,)'189!:,(!)*)1)&0!$'2(')*-!)8;!
! ! <!=!>!?!@!A!B!"!C!
!
#$%!D)00!&''&*-(!)*2)6)2%&08!%8)*-!1,(!.00D)*-!1(+,*)E%(;!
F$$G!&1!1D$!+$*8(+%1)6(!/($/0(!&1!&!1)5(H!81&'1)*-!.'$5!1,(!0(.19!
I.!1,(!/('8$*!$*!1,(!0(.1!,&8!&!*%53('!D,)+,!)8!0&'-('!1,&*!1,&1!$.!1,(!
/('8$*!$*!1,(!')-,1H!8D)1+,!1,(!/$8)1)$*8!$.!1,$8(!1D$!/($/0(J!$1,('D)8(H!
0(&6(!1,(5!)*!1,(!$'2('!1,(4!&'(!)*!
K$6(!1$!1,(!')-,1!$*(!/$8)1)$*H!8$!1,&1!4$%!&'(!+$5/&')*-!$*(!*(D!/('8$*!D)1,!$*(!$.!1,(!/($/0(!
L%81!+$5/&'(2H!&*2!'(/(&1!1,(!&3$6(!+$5/&')8$*!&*2!/$1(*1)&0!8D&/9!
M(/(&1!81(/!=!%*1)0!4$%!,&6(!+$5(!1$!1,(!(*2!$.!1,(!0)819!
!
N$D!$.1(*!2$!4$%!,&6(!1$!-$!1,'$%-,!1,(!0)81!%*1)0!1,(!0)81!)8!)*!1,(!$'2('!B!>!=!"!A!C!<!@!?O!
!
!
!
!"#$%&'()"
!
P(&6('!Q0!)8!&!/$815&*9!N(!2(0)6('8!0(11('8!&*2!/&'+(08!2')6)*-!
,)8!+&'!1,'$%-,!2)..('(*1!6)00&-(89!
N(!,&8!&!5&/!D)1,!&00!1,(!'$&28!3(1D((*!1,(!6)00&-(8H!8((!1,(!
.)-%'(!1$!1,(!')-,19!
!
I8!)1!/$88)30(!1$!2(0)6('!&00!0(11('8!&*2!/&'+(08!/&88)*-!(&+,!'$&2!
$*04!$*+(O!I*!D,)+,!6)00&-(!8,$%02!1,(!3(&6('!81&'1!,)8!1')/!&*2!)*!
D,)+,!6)00&-(!8,$%02!,(!.)*)8,O!
!
!
!
!
,$-)'.)'#/)'0/1%&)2'
!
P(&6('!R*1,$*4!3$%-,1!&!-'(&1!S%'$/(&*!$&G!D$$2!/0&*G!.$'!,)8!0%*+,9!:,(!/0&*G!+$818!<?!3(&60&'8!
&*2!,(!$*04!,&8!$*(!BTT!3(&60&'8!*$1(9!:,(!8(00('!,&8!1$!-)6(!,)5!3&+G!1,(!+,&*-(H!3%1!$*04!,&8!1,(!
.00D)*-!+$)*8!2(*$5)*&1)$*!U,(!,&8!&*!%*0)5)1(2!*%53('!$.!(&+,!+$)*V;!

!
B"!P(&60&'!
?!P(&60&'!
=!P(&60&'!
B!P(&60&'!!

!
N$D!5&*4!+$)*8!D)00!R*1,$*4!'(+()6(!3&+GH!&1!0(&81O!
'

! "!

!"##$%&'()*(+)'$%'+$%)'
!
#$%!&'(!)*!+,&'-(!$.!&''&*-)*-!&!-'$%/!$.!/($/0(!)*!1,(!+$''(+1!$'2('!34!
1,(!*%53('!$*!)*2)6)2%&078!8,)'189!:,(!)*)1)&0!$'2(')*-!)8;!
! ! <!=!>!?!@!A!B!"!C!
!
#$%!D)00!&''&*-(!)*2)6)2%&08!%8)*-!1,(!.00D)*-!1(+,*)E%(;!
F$$G!&1!1D$!+$*8(+%1)6(!/($/0(!&1!&!1)5(H!81&'1)*-!.'$5!1,(!0(.19!
I.!1,(!/('8$*!$*!1,(!0(.1!,&8!&!*%53('!D,)+,!)8!0&'-('!1,&*!1,&1!$.!1,(!
/('8$*!$*!1,(!')-,1H!8D)1+,!1,(!/$8)1)$*8!$.!1,$8(!1D$!/($/0(J!$1,('D)8(H!
0(&6(!1,(5!)*!1,(!$'2('!1,(4!&'(!)*!
K$6(!1$!1,(!')-,1!$*(!/$8)1)$*H!8$!1,&1!4$%!&'(!+$5/&')*-!$*(!*(D!/('8$*!D)1,!$*(!$.!1,(!/($/0(!
L%81!+$5/&'(2H!&*2!'(/(&1!1,(!&3$6(!+$5/&')8$*!&*2!/$1(*1)&0!8D&/9!
M(/(&1!81(/!=!%*1)0!4$%!,&6(!+$5(!1$!1,(!(*2!$.!1,(!0)819!
!
N$D!$.1(*!2$!4$%!,&6(!1$!-$!1,'$%-,!1,(!0)81!%*1)0!1,(!0)81!)8!)*!1,(!$'2('!B!>!=!"!A!C!<!@!?O!
!
!
!
!"#$%&'()"
!
P(&6('!Q0!)8!&!/$815&*9!N(!2(0)6('8!0(11('8!&*2!/&'+(08!2')6)*-!
,)8!+&'!1,'$%-,!2)..('(*1!6)00&-(89!
N(!,&8!&!5&/!D)1,!&00!1,(!'$&28!3(1D((*!1,(!6)00&-(8H!8((!1,(!
.)-%'(!1$!1,(!')-,19!
!
I8!)1!/$88)30(!1$!2(0)6('!&00!0(11('8!&*2!/&'+(08!/&88)*-!(&+,!'$&2!
$*04!$*+(O!I*!D,)+,!6)00&-(!8,$%02!1,(!3(&6('!81&'1!,)8!1')/!&*2!)*!
D,)+,!6)00&-(!8,$%02!,(!.)*)8,O!
!
!
!
!
,$-)'.)'#/)'0/1%&)2'
!
P(&6('!R*1,$*4!3$%-,1!&!-'(&1!S%'$/(&*!$&G!D$$2!/0&*G!.$'!,)8!0%*+,9!:,(!/0&*G!+$818!<?!3(&60&'8!
&*2!,(!$*04!,&8!$*(!BTT!3(&60&'8!*$1(9!:,(!8(00('!,&8!1$!-)6(!,)5!3&+G!1,(!+,&*-(H!3%1!$*04!,&8!1,(!
.00D)*-!+$)*8!2(*$5)*&1)$*!U,(!,&8!&*!%*0)5)1(2!*%53('!$.!(&+,!+$)*V;!

!
B"!P(&60&'!
?!P(&60&'!
=!P(&60&'!
B!P(&60&'!!

!
N$D!5&*4!+$)*8!D)00!R*1,$*4!'(+()6(!3&+GH!&1!0(&81O!
'

! "!

!"##$%&'()*(+)'$%'+$%)'
!
#$%!&'(!)*!+,&'-(!$.!&''&*-)*-!&!-'$%/!$.!/($/0(!)*!1,(!+$''(+1!$'2('!34!
1,(!*%53('!$*!)*2)6)2%&078!8,)'189!:,(!)*)1)&0!$'2(')*-!)8;!
! ! <!=!>!?!@!A!B!"!C!
!
#$%!D)00!&''&*-(!)*2)6)2%&08!%8)*-!1,(!.00D)*-!1(+,*)E%(;!
F$$G!&1!1D$!+$*8(+%1)6(!/($/0(!&1!&!1)5(H!81&'1)*-!.'$5!1,(!0(.19!
I.!1,(!/('8$*!$*!1,(!0(.1!,&8!&!*%53('!D,)+,!)8!0&'-('!1,&*!1,&1!$.!1,(!
/('8$*!$*!1,(!')-,1H!8D)1+,!1,(!/$8)1)$*8!$.!1,$8(!1D$!/($/0(J!$1,('D)8(H!
0(&6(!1,(5!)*!1,(!$'2('!1,(4!&'(!)*!
K$6(!1$!1,(!')-,1!$*(!/$8)1)$*H!8$!1,&1!4$%!&'(!+$5/&')*-!$*(!*(D!/('8$*!D)1,!$*(!$.!1,(!/($/0(!
L%81!+$5/&'(2H!&*2!'(/(&1!1,(!&3$6(!+$5/&')8$*!&*2!/$1(*1)&0!8D&/9!
M(/(&1!81(/!=!%*1)0!4$%!,&6(!+$5(!1$!1,(!(*2!$.!1,(!0)819!
!
N$D!$.1(*!2$!4$%!,&6(!1$!-$!1,'$%-,!1,(!0)81!%*1)0!1,(!0)81!)8!)*!1,(!$'2('!B!>!=!"!A!C!<!@!?O!
!
!
!
!"#$%&'()"
!
P(&6('!Q0!)8!&!/$815&*9!N(!2(0)6('8!0(11('8!&*2!/&'+(08!2')6)*-!
,)8!+&'!1,'$%-,!2)..('(*1!6)00&-(89!
N(!,&8!&!5&/!D)1,!&00!1,(!'$&28!3(1D((*!1,(!6)00&-(8H!8((!1,(!
.)-%'(!1$!1,(!')-,19!
!
I8!)1!/$88)30(!1$!2(0)6('!&00!0(11('8!&*2!/&'+(08!/&88)*-!(&+,!'$&2!
$*04!$*+(O!I*!D,)+,!6)00&-(!8,$%02!1,(!3(&6('!81&'1!,)8!1')/!&*2!)*!
D,)+,!6)00&-(!8,$%02!,(!.)*)8,O!
!
!
!
!
,$-)'.)'#/)'0/1%&)2'
!
P(&6('!R*1,$*4!3$%-,1!&!-'(&1!S%'$/(&*!$&G!D$$2!/0&*G!.$'!,)8!0%*+,9!:,(!/0&*G!+$818!<?!3(&60&'8!
&*2!,(!$*04!,&8!$*(!BTT!3(&60&'8!*$1(9!:,(!8(00('!,&8!1$!-)6(!,)5!3&+G!1,(!+,&*-(H!3%1!$*04!,&8!1,(!
.00D)*-!+$)*8!2(*$5)*&1)$*!U,(!,&8!&*!%*0)5)1(2!*%53('!$.!(&+,!+$)*V;!

!
B"!P(&60&'!
?!P(&60&'!
=!P(&60&'!
B!P(&60&'!!

!
N$D!5&*4!+$)*8!D)00!R*1,$*4!'(+()6(!3&+GH!&1!0(&81O!
'

