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Abstract. The new Croatian Informatics curriculum, which introduces computational thinking 
concepts into learning outcomes has been put into practice. A computational thinking assessment 
model reflecting the learning outcomes of the Croatian curriculum was created using an evidence-
centered design approach. The possibility of assessing the computational thinking concepts, ab-
straction, decomposition, and algorithmic thinking, in an actual classroom situation and examples 
of such assessment is increasingly coming to the forefront of computer science educational re-
search. Precisely for that purpose, the research was conducted. Research data are collected through 
the test and questionnaire of 407 pupils (10 middle schools, age 12), analysed by exploratory 
factor analysis and non-parametric tests. Results showed that the presented model was suitable to 
assess the understanding of the concepts of abstraction and algorithmic thinking, independently 
of the previous experience with programming languages and pupil’s gender, while assessment of 
decomposition needs more work and improvement, some recommendations are provided. Also, 
it received positive feedback from pupils and teachers what implicated that such an assessment 
model could help teachers in building a real-time measurement instrument.

Keywords: educational testing, computational thinking, curriculum-based assessment, item anal-
ysis, programming, factor analysis.

1. Introduction

From the autumn of 2018, we have been witnessing the application of a new informat-
ics/computer science (CS) curriculum which is part of a major educational reform in 
the Republic of Croatia. The reform represents a change in the teaching and learning 
process and introduces new concepts, such as computational thinking (CT), into K-12 
computer science education (CSE). The evaluation of CT then becomes a challenge 
in CSE, demanding a systematic approach. Technology is ubiquitous in our lives, and 
regardless of pupils’ future occupations, their age, or the type of technology they use, 
they are increasingly expected to possess some generic CT competencies, such as the 
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ability to solve problems in everyday life, disaggregating complex problems into sim-
pler ones and generalizing solutions; increasingly, these generic competencies will in 
practice be technology mediated. Appropriate pedagogical practices which emphasize 
the constructivist approach to learning and put pupils at the heart of the learning pro-
cess should develop competencies such as independence, self-confidence, responsibil-
ity, and entrepreneurship (Ben-Ari, 1998; Moon, Do, Lee, and Choi, 2020). From this 
perspective, learning experiences should be based on the belief that pupils are best 
taught by helping them participate actively, that they are ready to make great efforts 
and apply their creativity, and that teamwork and collaboration are a powerful motiva-
tion for learning (Leron and Hazzan, 1998; Ambrosio and Almeida, 2014; Dagienė and 
Futschek, 2019).

A fundamental question today is how to respond to such challenges. Leaders in com-
puter science education increasingly emphasize the need to modify existing computer 
science curricula to include the development of specific CT concepts such as abstraction 
and decomposition (Csizmadia, et al., 2015; Yadav, Aman; Stephenson, Chris; Hong, 
Hai, April 2017).

In what follows, an ECD (Evidence-centered design) model for creating quality tasks 
for assessing CT concepts aligned with the new Croatian informatics curriculum will be 
presented. During the spring of 2018, the research was conducted in ten Croatian middle 
schools to examine the appropriateness of using online tool, consisted of tasks created 
according to a given model, in a real class situation. The standard statistical characteris-
tics of the applied tool as well as its ability to really measure the adoption of CT concepts 
(abstraction, algorithmic thinking, decomposition) were examined. As there were dif-
ferent programming languages used in the teaching process, it was important to explore 
how well the applied tool managed to avoid the influence of the specific programming 
language used during the teaching process and put emphasis on the CT concepts instead 
on the syntax of the programming language. 

2. Theoretical Background

2.1. About CT

In research literature, computational thinking, along with mathematics, engineering, 
and reading literacy, is often seen as one of the standard types of literacy for pupils in 
general today (Wing, 2006); it can be understood as “the process of formulating prob-
lems and their solutions, but in ways that solutions are presented in a form that enables 
them to perform effectively with some information processing agent” (Wing, 2010, 
p. 1). The idea of computational thinking reaches back to Papert’s work on Logo pro-
gramming and children’s usage of computers, in which he emphasized the value of pro-
gramming for the development of procedural thinking (Papert, 1980). Papert believed 
that by using technology and programming to create “micro-worlds”, pupils would 
develop skills that they could then transfer to a non-programming context outside of 
the teaching environment. A little later, and to this day, the constructivist approach to 
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teaching became prominent; under this approach, the pupils are expected to create their 
own sustainable constructs of knowledge (Ben-Ari, 1998), and in programming specifi-
cally, this construction is linked to the ability to predict and understand what is going 
on when some computer program is executed.

There is still considerable confusion over definition of computational thinking, and 
a whole series of questions and challenges that need to be addressed. For some, the 
term refers to a universal competence of every child, which together with analytical 
skills serves as the basis for each child’s school learning (Wing, 2006). Some point 
out that computational thinking concepts are used in disciplines other than computer 
science, for example in problem-solving tasks (Bundy, 2007). Denning (2009) dis-
cusses whether computational thinking is exclusive to the field of computer science 
and claims that “CT is one of the key practices of computer science … not unique 
to computing and is not adequate to portray the whole of the field” emphasizing that 
although computational thinking should be consider an important part of computer 
science, computer science is a much broader term. Also, computational thinking has 
its place in some other areas, outside of computer science. Guzdial (2008) consid-
ers computational thinking to be a 21st-century form of literacy that is necessary for 
a whole series of academic fields; using computational thinking concepts like abstrac-
tion, for instance, pupils can learn how to lower complexity by reducing some details 
of the observed phenomena or problem and still preserve the basic meaning (Yadav, 
Stephenson, and Hong, 2017). 

In discussions of computational thinking, it is important to define and describe its 
connection to algorithmic thinking; Denning points out that “computational thinking 
means interpreting the problem as an information process for which we are then trying 
to find an algorithmic solution” (Denning, 2010). To create an operational definition of 
computational thinking, the ISTE (International Society for Technology in Education) 
and CSTA (Computer Science Teachers Association) analysed feedback from about 700 
surveyed computer science teachers and researchers. The result was formulated in an op-
erational definition of computational thinking for K-12 education as a “problem-solving 
process that includes:

Formulating problems in a way that enables us to use a computer and other tools  ●
to help solve them.
Logically organizing and analysing data. ●
Representing data through abstractions such as models and simulations. ●
Automating solutions through algorithmic thinking (a series of ordered steps). ●
Identifying, analysing, and implementing possible solutions with the goal of  ●
achieving the most efficient and effective combination of steps and resources.
Generalizing and transferring the problem-solving process to a variety of prob- ●
lems” (ISTE and CSTA, 2011).

When talking about teaching and learning of computational thinking, perhaps the 
most interesting aspect is the role of programming. Programming knowledge includes 
the ability to read and write in a specific programming language and to think computa-
tionally (Roman-Gonzales, 2014). Computational thinking and programming are not the 
same concepts, but they are strongly related. Programming can help foster computational 
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thinking (Lye and Koh, 2014), but computational thinking can also be applied to differ-
ent types of problems that do not directly involve programming tasks (Wing, 2008). 

It is questionable how much actual programming, if any, is needed to acquire com-
putational thinking. There is no universally accepted answer yet, but practice indicates 
different ways of programming involvement across contexts in learning and teaching of 
computational thinking. Some define computational thinking as a fundamental, ubiqui-
tous problem-solving tool and suggest several activities and projects to address it from 
this perspective (Astrachan, Hambrusch, and Peckham, 2009). Most approaches sug-
gest various ways of incorporating programming into teaching and learning of compu-
tational thinking, from those in which programming is the fundamental computational 
thinking skill to those that integrate computational thinking in and through various 
general education courses.

2.2. CT Evaluation

Since there is still no formal consensus definition of CT, it can be imagined that its evalu-
ation remains even more in question. Mostly, to evaluate CT, it is necessary to find evi-
dence of a deeper understanding of a CT-relevant problem solved by a pupil, that is, to 
find evidence of understanding how the pupil created their coded solution. For example, 
if we consider abstraction, we must find ways to evaluate how pupils apply it in their 
solutions while trying to solve a problem (ISTE and CSTA, 2011). Despite a lack of con-
sensus thus far, a few relatively widespread approaches for evaluating the development 
of CT have emerged. They can serve as a foundation for a general approach. One such 
CT evaluation method combines different methods of collecting feedback: analysing 
project portfolios, analysing interviews, and developing project design scenarios, in pa-
per or digital form (Brennan and Resnick, 2012); it assesses the fluency of computer-
based practices of testing and debugging, experimenting and repetition, abstraction and 
modulation, and reusing and remixing/scaling at three levels: low, medium and high. 
Dorling and Walker studied the practice of teaching CT in the classroom and proposed 
a framework for evaluating the “computing progression pathway”, which recognizes the 
major areas of CS and outlines specific levels of adoption (Dorling and Walker, 2014). 
Dr. Scratch presents an example of automatic online CT evaluation of Scratch proj-
ects, that is, creations made in the Scratch graphical programming environment, which 
can involve music, animation, art, games, and simulations (Moreno-León, Robles, and 
Román-González, 2015). At this point, this online tool is working with Scratch 1.4, 2.0 
i 3.0 files. The system assigns a CT score automatically and detects bad programming 
habits and errors to help learners develop their CT skills (Dr Scratch, 2021).

Another interesting approach to CT evaluation applicable in formative and sum-
mative evaluation is the Bebras challenge. It is an international initiative promoting 
computational thinking in pupils of all ages, performed at school using computers or 
mobile devices, integrated into regular classes, or in the form of a special competition. 
Bebras tasks are puzzling stories that incorporate a puzzle or task relying on some key 
CT concept, designed to promote computational thinking in pupils of all ages. There is 
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certainly evidence that Bebras tasks are an effective tool in promoting problem-solving 
and computer thinking concepts (Dagienė and Stupurienė, 2016; Araujo, Santos and 
Andrade, 2017; Curran, 2019). However, evaluating computational thinking through 
Bebras tasks is demanding (Dagienė and Stupurienė, 2016), and it is debatable whether 
CT concepts can be effectively evaluated using Bebras challenges tasks (Araujo et al., 
2017), especially since various aspects of developing good Bebras tasks still lack ad-
equate research. 

Today, it is possible to find several other published computer-based or paper-pencil 
CT tests usable in different contexts; however, effectiveness of those approaches is still 
being investigated (Werner, Denner, and Campe, 2012; Román-González, 2015). An 
interesting approach to CT assessment combines tasks from specific CT assessment 
(CTt) and Bebras challenge assessments (Wiebe, et al., 2019). By combining the two 
assessments, a subset of tasks was selected to create a promising assessment that could 
be applicable in a reasonable time, but also be suitable for pupils with no previous 
programming experience. The results showed that the use of this instrument in pre- and 
post-testing can reveal the effectiveness of such assessment. Also, the instrument can 
collect quality information on the development of pupils’ computational thinking dur-
ing the teaching process. The authors emphasize the need for further research on the 
issue of validity and further work on the selection of an appropriate subset of tasks 
(Wiebe, et al., 2019). 

The research presented in this paper was strongly influenced by the ECD approach 
to assessment. Evidence-centered assessment design is an approach to constructing 
educational assessments in terms of evidentiary arguments (Almond, Steinberg, and 
Mislevy, 2002; Mislevy, Almond, and Lukas, 2003; Mislevy and Haertel, 2006; Bubica 
and Boljat, 2018; Grover, 2020). It focuses on the evidence of competencies as a foun-
dation for the construction of excellent assessment tasks. ECD could be described with 
layers: Domain Analysis, Modelling, Conceptual Assessment Framework, Assessment 
Implementation and Delivery, which incorporate actions like analysing assessment do-
main, selection and administration of the tasks, interaction with pupils to present or 
capture work products, evaluation of the responses from the task and accumulation of 
the evidence across them. This approach highlights knowledge and skills complexity 
and other features and behaviours that should be valued, such as basic ICT knowledge, 
possible working products (written/digital product or a spoken answer in which pupils 
might produce evidence) and observations, and variable features connected to assess-
ment (Mislevy and Riconscente, 2005). The creation of assessment that can better re-
flect and measure what is happening in the classroom and getting results of assessments 
that are heavily supported by evidentiary arguments are highlighted as possible advan-
tages of this approach (Hendrickson, Ewing, Kaliski, and Huff, 2013). 

The work conducted within the PACT (Principled Assessment of Computational 
Thinking) project, also incorporated evidence-centered design (ECD) to represent gen-
eral CS practice through design patterns, especially to create a structured description 
of the domain (in which learning is occurring), evidence (for use in a task), and argu-
ment (that emerges from the evidence). Such patterns should emphasize application and 
review of design skills while solving computational problems, rather than evaluating 
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the knowledge of the concepts necessary to apply such skills. The SRI International 
Education group through the PACT project proposed application modes for every layer 
to create a comprehensive practice of CT assessment (Bienkowski, Snow, and Rutstein 
2015). They presented design patterns for major computational thinking practices and 
developed templates for assessment task development for computational thinking prac-
tices in the context of ECS (Exploring Computer Science). 

The principled assessment design methodology as well as ECD was also applied in 
the “VELA assessment” (Grover, 2020), where an instrument was developed to measure 
the adoption of introductory programming concepts (grades 6 to 8). Assessment design 
patterns as well as the measurement instrument have been created to measure the un-
derstanding of concepts such as variables, expressions, loops, conditions, and abstrac-
tions. These concepts represent the basic concepts of most introductory programming 
courses, regardless of the applied programming language or environment. Besides these 
concepts, the VELA assessment also included tasks with Scratch script which, in addi-
tion to the concepts mentioned above, were used to assess the understanding of concepts 
such as events. Supporting rubrics and design patterns have been developed that can 
also serve other teachers as good templates for developing their own assessments and 
ensure broad use of the instrument. Creating quality assessments is extremely important 
for pupils and teachers. Well planned assessment and quality teachers’ feedback can 
improve the acquisition of competencies and enables pupils to gauge their own progress 
(Pellegrino, 2020). 

Recognizing the importance of computational thinking and its introduction in K-12 
education, CS teachers are faced with the challenge of incorporating these concepts into 
their teaching in primary and secondary school (Csizmadia et al., 2015). There is an in-
creasing awareness of the fact that teacher-training programs should include discussions 
of computational thinking and provide recommendations and examples of best practices 
for incorporating CT concepts into the teaching process (Yadav, Stephenson, and Hong, 
2017). There is a need for better cooperation between teacher educators and computer 
science teachers to enhance the education of CS teachers in this regard (Yadav, Gretter, 
and Good, 2017).

2.3. Research Questions

In this work, the results of the conducted research regarding created model of CT assess-
ment will be presented and discussed. Specific research questions regarding CT concepts 
(algorithmic thinking, abstraction, and decomposition) were:

Is the proposed CT assessment independent from specific programming language  ●
and approach?
Is the proposed CT assessment suitable for measuring computational thinking  ●
concepts, abstraction, algorithmic thinking, and decomposition?
Is the proposed CT assessment tool better aligned with the Croatian informatics  ●
curriculum than the selected tasks of the Bebras challenge and is it thus more suit-
able for use in educational practice in the Republic of Croatia?
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3. Methods

3.1. Informatics Education in Croatia

The teaching of Informatics in primary education in the Republic of Croatia has been 
present since 1990, in the form of an elective subject for pupils from fifth to eighth grade. 
In secondary schools, informatics was introduced ten years earlier in the form of a regu-
lar subject through one, two, three or four years of schooling, depending on the type of 
secondary school. In some secondary schools, the subject is called Computer Science. 

It must be emphasized that with the development of new technologies and thus an 
increasing number of applications that support the use of technology in everyday life, 
informatics/computer science teaching has increasingly become a service for learning 
about information and communication technology, while basic, often demanding con-
tent such as programming lose the battle with easily accessible, less demanding, and 
often more fun content such as text processing, editing pictures and videos, making 
presentations, etc. Those Informatics/CS curriculums were defined by specific content 
that should be included in teaching, which, due to rapid IT progress, makes it very fast 
outdated and inadequate background for teachers to organize and plan their work. Even 
so, all earlier versions of the Informatics/CS curriculum included, in various forms, the 
content of programming. 

In March 2018, the Croatian Ministry of Education published a new CS curriculum 
for K-12 education (Ministry of Education, 2018). The curriculum was a hopeful pros-
pect for CS teachers, since most of them felt restrained by the old, outdated curriculum. 
It was created according to learning outcomes instead of prescribed content, enabling 
the realization of learning and teaching directed at each individual pupil and the devel-
opment of their potential. For example, instead of teaching pupils how to shape specific 
document features in Microsoft Word, such as header, number of pages, styles, etc., 
a learning outcome associated with a realistic task is released, such as creating digital 
content on a given topic, without defining the application to be used. Thus, the focus 
shifts from content to learning outcomes that are realized with specially designed activi-
ties. This approach provides flexibility and freedom to teachers in designing the learning 
and teaching process. 

Moreover, this Informatics/CS curriculum finally incorporated computational think-
ing as an important part of informatics education in general in the Republic of Croatia. 
The role of CT and programming in the curriculum includes involving pupils in logical 
thinking, modelling, abstracting, and problem-solving, under the principle that solid ICT 
(Information-communication technology) education, based on computational thinking 
and creativity, should prepare pupils for understanding the changes in the world around 
us (Brođanac et al., 2016). 

As mentioned earlier, although programming was included in all earlier versions of 
informatics curriculum, the situation in on-site schooling showed diversity in content 
being thought, programming languages being used and even in the duration of teach-
ing programming. In addition to these differences, the common thing was that while 
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teaching programming content, great emphasis was on the application of appropriate 
programming language commands, and less on problem-solving skills, data handling, 
modelling, abstraction, and similar difficult-to-measure concepts such are computational 
thinking concepts. 

In the new Croatian curriculum, learning outcomes were developed according to 
several documents, but mostly the Croatian National Educational Standards (Ministry 
of Education, 2006), CSTA Computer Science Standards (CSTA, 2016), and CS cur-
riculum (Ministry of Education, 2018). The National Educational Standards define the 
way in which computer science is involved in Croatian primary, secondary, and higher 
education. The CS Curriculum and CSTA Computer Science Standards define CS learn-
ing outcomes for each degree of adoption or acquisition of the skills at each educational 
level. Learning outcomes are expressed in detail within the Bloom taxonomy (Anderson, 
Krathwohl, and Bloom, 2001) at different adoption levels: satisfactory, good, very good, 
and exceptional (Ministry of Education, 2018; Brođanac, et al., 2016). 

The curriculum is still briefly and insufficiently in use to assess its quality and evalu-
ate the success of its application. Nevertheless, a survey conducted among informat-
ics/computer science teachers at the very beginning of the new curriculum application 
revealed some interesting information and indicated areas that need to be further re-
searched and supported (Table 1). 

Among 817 teachers (72% primary teachers, 28% secondary teachers) who partici-
pated in the survey, the vast majority confirmed that they teach programming in their 
work although most of them consider it to be very demanding content for pupils. Most 
teachers confirmed that they were already familiar with the concept of computational 
thinking and that they use it in their work. 

Still, the analysis of terms which they mostly connected with the term of computa-
tional thinking (Fig. 1) showed that in their work there was higher emphasis on develop-
ing programming skills than adopting computational thinking concepts like abstraction 
or decomposition. 

Furthermore, in the discussions on the definition, concepts, teaching approaches and 
evaluation of computational thinking, evaluation stood out as a topic that teachers know 
the least and needed better support (43%) (Ministry of Education, 2018). These results 
point to the fact that there is still some dilemma and some misunderstanding among 
teachers about the very concept of computational thinking and that in the years to come 
it will be better shown how successfully the new curriculum has responded to the chal-
lenges that informatics teachers face daily. 

Table 1
Teachers’ opinions: What is CT? (Ministry of Education, 2018)

Teachers’ basic opinions about CT N = 817

I teach programming as a regular part of curriculum. 91%
I think programming is demanding content for pupils. 82%
I am familiar with the meaning of computational thinking. 93%
I already involved computational thinking in my teaching process. 91%
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The creation of new informatics/computer science curriculum was part of a com-
prehensive educational reform which, in addition to the development of new subjects’ 
curricula, also developed cross-curricular topics that connect topics of universal human 
values and competencies for life in the 21st century. In this way, these topics are daily 
present in a special way in the educational work of the entire educational vertical. One 
of the cross-curricula topics was the Use of Information and Communication technology 
which included efficient, appropriate, timely, responsible, and creative use of informa-
tion and communication technology in all subjects, areas and at all levels of education. 
Quality application of the ICT cross-curricula topic in the years to come could free in-
formatics education from the main role in the development of digital literacy and enable 
greater concentration on topics such as computational thinking. 

3.2. Model of CT Assessment – Croatian ECD Model

The proposal for a computational thinking assessment approach presented in the next 
paragraphs uses ECD as an orientation towards multiple activities necessary to create 
useful documentation: domain analysis, domain modelling, construction of a framework 
(pupil model, task model, evidence, and measurement model of evidence), and assess-
ment implementation and delivery. Unlike the SRI PACT strategy, which assess com-
putational thinking using an interdisciplinary STEM approach, this model is aligned 
with the Croatian Informatics’/CS curriculum and proposes a method of assessment that 
is applicable in the real classroom environment. Furthermore, while some assessment 
approaches rely on the programming language or environment used during teaching 
process, e.g. Scratch programming environment (Grover, 2020), this model advocates 
independence of the programming language and offers the development of tasks that 
are equally appropriate / understandable to pupils who have met different programming 
languages e.g. Scratch and Python. Such an approach is desirable because the new Infor-
matics’/CS Curriculum doesn’t define programming language or environment to be used 
in teaching process, so in real educational practice teachers use different languages like 
Scratch, Python, Logo, C, Kodu (Microsoft Research, 2009). 

 

Fig. 1. Terms mostly connected with CT (Ministry of Education, 2018).
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3.2.1. Domain Analysis and Modelling
The basic goal of the domain analysis under the ECD approach is to find and explore all 
relevant materials concerning target learning outcomes as defined in the new Croatian 
CS curriculum. These learning outcomes were the basis for the assessment process of 
computational thinking and programming domain learning in pupils aged 11–12 (5th–6th 
grade) which will be looked at in this research (see Table 2).

In the ECD approach, domain modelling is the process meant to identify elements 
that describe the domain under assessment and is represented through five categories: 
fundamental and additional knowledge, skills and features, possible working products, 
variable features, and possible observations. Is it necessary to conduct computational 
thinking assessment using some programming tool or environment, or can it be done ge-
nerically and abstractly? The question of the connection between computational think-
ing and programming must be defined in relation to the specific context of the assess-
ment. There are different approaches to incorporating programming into the processes 
of teaching and resulting computational thinking assessment. We differentiate these ap-
proaches according to the role that programming and computational thinking fulfil in 
the course curriculum (Astrachan et al., 2009). In this research, computational thinking 
assessment was achieved through an approach independent of a particular programming 
tool or environment, which served for assessing the adopted learning outcomes in real 
classroom situations in middle school education. Independence of assessment tool of 

Table 2
CT and programming learning outcomes for pupils aged 11–12 (5th–6th grade)  

(Ministry of Education, 2018)
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B.5.1. 1 use a programming language to design programs using input and output values and 
repetition
The pupil states how to 
run the software (prog-
ramming) tool, recog-
nizes the parts of the 
interface and blocks 
(commands) of the 
software tool that can 
execute an instruction. 
Composes a simple set 
of instructions using 
blocks / commands.

The pupil recognizes the 
basic segments of program 
development: input – pro-
cessing – output. He builds 
a simple set of instruc-
tions that represent a solu-
tion to a problem using 
input and output values 
and assignment statement. 

The pupil, with the 
help of the teacher, de-
velops a solution to a 
problem using an ite-
ration structure with 
the determined number 
of iterations

The pupil independently 
develops a solution to 
the problem using an 
iteration structure with 
the determined number 
of iterations.

B.5.2. create an algorithm for solving simple tasks, check the validity of the algorithm, detect and 
correct mistakes.
The pupil describes the 
concept of an algorithm 
and recognizes the 
basic steps for solving 
a problem.

The pupil analyses the 
problem and devises and 
shows the steps to solve 
the given problem (gra-
phically, orally or by 
text).

The pupil critically 
checks the correctness 
of his algorithm using 
default input values.

The pupil re-examines 
and rearranges his algo-
rithm until the algorithm 
represents an exact so-
lution to the given prob-
lem.

Continued on next page
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the programming languages used in education must ensure that pupils who have learned 
a particular programming language will not therefore achieve better results in this as-
sessment. More precisely, the independence of the programming tool or environment 
enables wider application of the assessment tool and highlights computational thinking 
concepts rather than the syntax of a given programming tool or environmental affor-
dances/constraints. 

Although, such a tool could be used with pupils that have no programming back-
ground, it is primarily intended to fairly assess pupils’ CT competencies independent of 
the programming language. Is it necessary to require the independence of the assessment 
tool of the programming language? Isn’t it natural to expect that the basic programming 
skills should be independent of the programming language itself? Research related to 
working with novice programmers has shown that novices often approach programming 
‘line by line’ instead of using meaningful programming structures. They have difficul-
ties in various issues related to the construction of algorithms or computational solutions 
because, although they know the syntax and semantics of individual commands, they 

Table 2 – continued from previous page

Satisfactory level Good level Very good level Excellent level
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B.6.1. design, [code-] trace, and adjust programs which contain selection and conditional 
repetition structures; anticipate the behaviour of simple algorithms which can be displayed in the 
form of a diagram, words of natural language, or a programming language
The pupil creates track 
and rearranges programs 
that contain branching 
and conditional iteration 
structures and predicts 
the behaviour of simple 
algorithms that can be 
represented by a diagram, 
spoken language or 
programming language

The pupil independently 
or with the help of the 
teacher analyses the given 
problem and suggests 
which algorithmic solu-
tion. He presents the solu-
tion of the problem in 
spoken language words, 
diagrams, or commands of 
the programming language, 
and independently plans 
and arranges a series of 
instructions as a solution 
to the problem by applying 
algorithmic structures of 
sequence and branching.

The pupil independent-
ly proposes a program/ 
algorithm as a solution 
to the problem, pre-
dicts the behaviour 
of the algorithm and 
checks the correctness 
of the algorithm by 
monitoring its behavi-
our or by executing the 
program with given 
examples. On his own 
or with the help of a 
teacher, he puts toge-
ther a series of inst-
ructions for solving a 
problem using condi-
tional repetition.

The pupil independently 
creates a program / 
algorithm as a solution to 
a problem that includes 
a series of instructions 
(commands) using all 
algorithmic structures, 
provides appropriate 
input (test) examples 
and critically checks 
the correctness of the 
solution and rearranges 
its solution if necessary.

B.6.2. explore and solve more complex problems by dividing them into smaller subproblems
The pupil describes the 
problem and recognizes 
some steps/parts in 
solving the problem

The pupil, with the help 
of the teacher, develops 
a plan for solving 
problems and recognizes 
sub-problems in it, minor 
problems that he has 
already encountered, or 
problems that he knows 
how to solve.

The pupil analyses the 
possibility of includ-
ing the solution of sub-
problems in the solut-
ion of a more complex 
problem, analyses and 
suggests possible cha-
nges / adjustments to 
the solution of sub-
problems.

The pupil independently 
finds and creates a so-
lution to a complex 
problem with the help 
of subproblems and cri-
tically evaluates and re-
arranges the solution if 
necessary.
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do not know how to combine them into valid algorithms or computational solutions 
(Fincher, 1999). Due to all the above, when assessing programming, teachers usually put 
more emphasis on the application of commands or certain algorithmic structures in the 
selected programming language. When assessing computational thinking, it is crucial to 
make a qualitative departure from the assessment of programming skills, and to put in 
the foreground the assessment of problem-solving methods, data management, applica-
tion of abstraction, etc.

Under the ECD approach, we had to explore and define activities such as applying 
algorithmic structures of sequence and iteration in a computational solution, operating 
with input and output values in computational solutions, etc. Further, we had to recog-
nize what additional knowledge and features had to be considered (manipulating files/
folders, searching the internet, downloading files, signing in/signing out), as well as 
variable features (computational solution difficulty level, presentation of computational 
solution, whether the pupil has come up with a solution, evaluated the solution, or com-
pared multiple solutions, etc). As per the ECD model the proposed assessment frame-
work can serve as a reference to assist assessment designers in designing and validating 
their task models. Every assessment designer should validate their work with questions 
regarding assessment instrument relevance, specificity, and scalability and questions re-
lated to item statistics and item complexity. 

This domain analysis identified key documents and recognized computational think-
ing as the fundamental approach that develops ability to solve problems and ability to 
program: 

“…The emphasis is on the process of creation of the application, from 
the initial idea to the final product, and not exclusively on the adoption 
of the syntax and semantics of the programming language. Activities 
and contents of outcomes from the Computational thinking and pro-
gramming domain develop innovation, creativity and entrepreneur-
ship and provide valuable knowledge that can be incorporated into 
future professional life.” (Ministry of Education, 2018)

Modelling of the assessment domain represents the foundations for the development 
of a future assessment tool and describes its main features (Table 3). 

In what follows, we will present this assessment framework with information about 
the evidence, pupil, and task models, observable characteristics, measurement models, 
and test specifications.

3.2.2. Assessment Framework 
Pupil model
Although programming was a part of the informatics curriculum in Croatian middle 
schools, there were differences in the programming languages used in the teaching pro-
cess as well as in the length of the teaching of programming content. 

This research was conducted in 2018 (March/April) when Informatics was an elec-
tive subject for pupils from the fifth to the eighth class of middle school. Informatics 
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has become an obligatory subject for fifth and sixth-grade pupils with the beginning of 
the following school year (2018/2019) with the application of the new informatics cur-
riculum. 

The result showed that in the everyday process of learning programming pupils were 
engaged in programming tasks, mostly in Scratch, Python or Logo, with diversity in the 
length of teaching those content, from 12 to 25 hours (of 70 per school year) (Table 4). 

As there were differences in concepts included in the teaching process it was im-
portant to offer an assessment model that will be appropriate for teachers regardless of 
which programming language, they use in the teaching process. An assessment’s inde-
pendence should emphasize computational thinking concepts rather than the ability to 
work with a specific tool or environment. For that reason, this research was conducted 
among pupils who already, to some extent, learned programming with different pro-
gramming languages, mostly Python, Logo, and Scratch. 

Table 3
Modelling of the assessment domain

Basic knowledge, skills, 
and characteristics

Understanding that a computational solution can be designed for multiple purposes.
Ability to create solutions by combining smaller parts that lead to solving the initial 
(bigger, more complex) problem. 
Ability to subsequently edit the design of a computational solution.
Ability to encode a complete solution.
Ability to use algorithmic structures (sequence, branching and repetition) in the 
solution.

Additional knowledge, 
skills, and characteris-
tics

Knowledge of a particular programming language (not required).
Ability to login to the web pages with personal user data (login with an AAI 
account).
Basic web browsing skills (opening a default web page, basic navigation within 
a given web site).

Possible working 
products

Computational solution.
Comparison of multiple computational solutions or strategies.
Description or explanation of the computational solution.
Predicting the results of executing a computational solution.

Characteristic features Presentation of a computational solution with graphical representations and an 
algorithmic solution written in a language like a spoken language that resembles 
a pseudocode in structure.
Each evaluation task has a common context, i.e., a puzzle that develops from the initial 
to the final task according to the principle from the easiest to the most difficult).
In each evaluation task, the main character of the puzzle encounters a problem that 
needs to be solved to successfully pass through the maze. Tasks describe, check, 
correct existing and create new ways of navigating the maze.

Variable features Computational solution levels.
Representation of a computational solution.
Did the pupil come up with a solution, did he evaluate the solution, or compare 
computational solutions?

Possible observations The degree to which a computational solution addresses a problem.
The level of complexity of the computational solution.
Correctness of the computational solution.
Appropriateness of using algorithmic structures in the solution.
The degree to which the debugging process finds and / or corrects errors.
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Task model
In the process of developing an assessment framework, identifying possible working 
products (artifacts) and observations is very important. Doing so should answer some 
basic questions regarding assessment, such as:

Should pupils’ working product be computational solutions, comparison of mul- ●
tiple solutions, or even description/explanation of existing solutions?
Should we consider problem complexity or computational solution correctness  ●
and effectiveness?
Should we look for appropriate use of algorithmic structures in the solution? ●
Should we observe the degree to which the solution addresses the problem and/or  ●
the degree to which the pupil finds and corrects the errors?

Answers to these questions depend on the pupil’s age, learning outcomes included 
in the assessment, the assessment domain and purpose, and the real classroom situation 
in which the assessment is applied; in turn, these answers provide the basis for the cre-
ation of future assessment tasks. In this research, pupil assessment tasks were created 
for novice programmers, that is, pupils who studied programming for a total of 12 to 40 
hours over two years. During this period, they got acquainted with the basic (low-level) 
programming content (algorithmic structures, working with input / output, basic code 
tracking skills, editing and creating an algorithmic solution). It can also be seen from the 
previous section that not all pupils were familiar with the same teaching content. 

To help improve pupil motivation and ability to understand the task, each task repre-
sents a puzzle where the pupil helps a main character solve a problem (Lee and Ko, 2011). 
Puzzles are meant to assess one or more computational thinking concepts concealed in 
the puzzles and selected and aligned with the expected learning outcomes (see Table 2) 
and domain modelling (Table 3). CT practice and concepts which express abstraction, 
algorithmic thinking, and decomposition used in this research are presented in Fig. 2. 
This classification describes the way in which abstraction, algorithmic thinking, and 
decomposition are used in assessment. It represents authors’ personal view influenced by 
the requirements of the Croatian informatics curriculum (Ministry of Education, 2018), 

Table 4
Concepts included in teaching process

Concepts included in teaching process 
(12–25/70 hours per year)

Pupils 
involved

Simple branching and working with output values 80.61%
Drawing commands in turtle graphics 78.18%
Loops with a defined number of repetitions 70.91%
Algorithm 71.21%
Complex branching and working with input values 56.67%
Editing a block diagram of an algorithm 42.12%
Got acquainted with the concept of nested branching 34.85%
Concept of subprogram 28.79%
Conditional repetition loops 23.33%
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authors’ attitudes and experience as well as other relevant literature (Bienkowski, Snow, 
Rutstein, and Grover, 2015, December; Brennan and Resnick, 2012; ISTE and CSTA, 
2011; Grover, 2020). This classification is the basis for creating design patterns (Table 5) 
and the structure of the assessment tool (Table 6). 

This assessment model aims to create an approach which will create enough space 
to evaluate computational thinking concepts per se. All the tasks of the measuring in-
strument are interconnected by a common context: the same story, in which the main 
character, Maja, tries to find a flower in the Action Labyrinth. The assessment tool is 
implemented in the form of an online test (10 questions/tasks) in which the option to re-
turn to previously solved tasks is turned off to prevent finding the solution to the current 
task in any of the following tasks. Tasks are arranged by difficulty, from easiest to most 
difficult while maintaining the same context, throughout the assessment tool. The types 
of questions used in the assessment tool were:

Multiple choice questions: mostly used for identification of fundamental miscon- ●
ceptions or an unsustainable mental model (misunderstanding of a variable as 
a changeable value, misunderstanding how an algorithmic structure works (for 
example if/if..else../if…elif..), misunderstanding how a iteration structure works, 
misinterpretation of a given logical expression,….). 
Short answer questions. ●
Essay question used to gather pupils’ algorithmic solutions: mostly for upgrading  ●
the given algorithmic solution or creating new algorithmic solution (part of the 
solution). 

Modelling the assessment area also describes the design patterns that will be used in 
the assessment (Table 5). Design patterns contain all or only some constructs (knowl-
edge, skills, practice) that we want to assess and can be used as evidence (knowledge, 
practice) or serve as a basis for making evidence. Patterns can also be used as activities 
or tasks that aim to encourage the demonstration of certain competencies. They are 
general enough that they can direct assessment regardless of how it is implemented 
(computer assessment, traditional paper-pencil assessment, simulation assessment, 
game assessment, etc.). 

 

• Understanding the problem 
• Identifying key features (constraints) 

of the problem 
• Working with logic 

• Thinking on a different level of 
abstraction 

• Working with variables and output 

Abstraction 

• Analyzing and tracking algorithm 
• Working with sequencing, branching, 

iteration 
• Predicting algorithm behavior 

• Implementing branching structures 
• Editing and upgrading algorithmic 

solution 
• Creating new solutions based on the 

familiar problem 

Algorithmic 
thinking 

• Disaggregating problems to less 
complex already familiar problems 

• Creating new solutions based on the 
familiar problem 

Decomposition 

Fig. 2. Practices and concepts: abstraction, algorithmic thinking, and decomposition,  
respectively used in the assessment.
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Table 6 presents the assessment tool structure with the target and underlying CT 
concepts and practice included in each task. First column represents the order of tasks 
in the tool and second column type of the question used. Third column shows the 
target and underlying CT concepts used in a particular task of the tool. It is almost 
impossible to consider that when solving a task represented by an algorithmic solu-
tion, we don’t expect the analysis and tracking of the algorithm in action. However, 
just as in mathematics, for example, when evaluating the solution of a linear equation 
with an unknown, we also rely on the skill of computing with basic mathematical 
operations, so when assessing computational thinking we will have to recognize the 
concepts and practices of computational thinking that are primarily assessed by the 
chosen task (target CT concepts and practices) as well as which concepts and practices 
are present in the background in the same task (underling CT concepts and skills). 
Those CT concepts and practices are chosen according to the descriptions of abstrac-
tion, algorithmic thinking and decomposition (Fig. 2), and design patterns of the task 
model (Table 5). Last column describes each task with design patterns used in the task 
(target and underlying). 

 Feedback for multiple choice and short answer questions was formulated automati-
cally, while essay questions were manually evaluated by the researcher and an indepen-
dent teacher specialist. One of the most important phases in developing a task model 
is an analysis of the evidence of the existence of CT concepts which we are looking 
for in pupils’ solutions. Here, prior to each assessment, the teacher must think about 
the intended outcome of the assessment that they plan to develop, and which concepts, 

Table 5
Design patterns used in the assessment tool

Concept Design patterns

Abstraction (A1) describe the basic features of the problem
(A2) identify the limitations of the given problem
(A3) evaluate logical expressions
(A4) use logical operators
(A5) create a logical expression for a given condition (problem)
(A6) distinguish between constant and variable quantities in the algorithm/solution
(A7) apply a variable in the algorithm to monitor the variable characteristics of the problem 
(A8) define and/or monitor the change in the value of the variable in the algorithm/solution

Algorithmic 
thinking

(AL1) monitor and predict the execution of an algorithm solution that does not contain loops
(AL2) predict the execution of an algorithmic solution containing loops
(AL3) recognize/identify the basic feature of the loop (repetition) and how to stop the loop
(AL4) identify/identify parts of the algorithm that contain decisions
(AL5) recognize/describe/distinguish how a simple and complex branching structure works
(AL6) create a new algorithm
(AL7) upgrade the algorithm due to an observed error or fulfilment of a given problem 

requirement

Decomposition (D1) Identify parts of a given problem that are easier to solve, or we already know the solution 
to that part

(D2) distinguish the sub-units of the algorithmic solution
(D3) present the subprogram as the sub-whole of the algorithmic solution
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skills, and practices are relevant to that chosen outcome. In this process, the expected 
evidence of the pupil’s partial or complete knowledge to be included in the model will 
be recognized. 

Through one task example, we will demonstrate our process of discovery of evi-
dence of pupils’ knowledge and present our assessment of that evidence. It is important 
to emphasize that every well-planned assessment could reveal the existence of nonvalid 
pupil mental models (mental representations of the observed concept that contain some 

Table 6
Structure of the measurement tool

Task 
number

Type of 
question

Concepts: Abstraction (A); Algorithmic thinking (AL_T); 
Decomposition (D)

Design patterns
Included in the task

Target CT Underlying CT Target/Underlying

Task 1 Short 
answer 
question

Understanding the problem 
(A)

Analysing and tracking algorithm 
(AL_T)
Working with sequencing, branch-
ing, iteration (AL_T)

A1+A3
(AL2+AL3+AL4)*

Task 2 Multiple 
choice 
question

Identifying key features 
(constraints) of the problem 
(A)

Predicting algorithm behaviour 
(AL_T)

A2+A3
(AL2+AL3)*

Task 3 Essay 
question

Working with logic (A) Implementing branching structu-
res (AL_T)

A3+A5
(AL2+AL3+AL4+
AL5+AL7)*

Task 4 Multiple 
choice 
question

Thinking on a different level 
of abstraction (A)

Understanding the problem (A) A1+A2
(AL2+AL3+AL4)*

Task 5 Multiple 
choice 
question

Working with branching 
(AL_T)

Analysing and tracking algorithm 
(AL_T)

AL4+AL5
(AL1)*

Task 6 Multiple 
choice 
question

Predicting program 
behaviour (AL_T)

Analysing and tracking algorithm 
(AL_T)

AL2
(AL3)*

Task 7 Essay 
question

Editing and upgrading algo-
rithmic solution (AL_T)
Understanding of the prob-
lem (A)

Analysing and tracking algorithm 
(AL_T)
Working with variables and output 
(A)

A2+AL7
(A6+A7+AL2+
AL3)*

Task 8 Multiple 
choice 
question

Disaggregating problems to 
less complex already familiar 
problems (D)

Analysing and tracking algorithm 
(AL_T)

D1
(AL2)*

Task 9 Essay 
question

Creating new solutions based 
on the familiar problem 
(AL_T, D)

Thinking on a different level of 
abstraction (A)
Working with variables and output 
(A)

D3
(A1+A3+A7)*

Task 10 Short 
answer 
question

Predicting program behavi-
our (AL_T)
Working with variables and 
output (A)

Analysing and tracking algorithm 
(AL_T) A2+A8+AL2

(AL3)*
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error or misconception that makes it difficult or impossible to upgrade the mental model 
and build/upgrade new knowledge about the observed concept). Such information is of 
great importance for the teacher as well as the pupil. For the teacher, it points out the 
topics in their teaching to which they should give greater emphasis in the future. For 
the pupil, it points to the problems in their understanding, and to which concepts they 
possess but need to change and correct in further work. Fig. 3 represents one task from 
the assessment tool, which will be used to demonstrate the gathering of evidence and 
measurement model.
Model of evidence and measurement
Design and application of high-quality assessment is very demanding and time con-
suming. In the ECD approach teachers themselves create assumptions or hypotheses 
about the pupils’ knowledge that will demonstrated through assessment. Algorithmic 
solutions are always difficult to evaluate. In the process of creating a model of evi-
dence, it is crucial to explore all possible evidence of a pupil’s knowledge without 
losing sight of the different ways in which it could be expressed within the context and 
the requirements of the task itself. Also, a coherent and precisely formulated model of 
evidence is a prerequisite for drawing valid conclusions regarding results (Kane, 2013). 
Table 7 presents evidence of different ways pupils’ learning could be expressed while 
solving the task from Fig. 3.

 The evidence varies from a situation where the pupil does not even try to do any-
thing through several partial solutions and finally to a fully correct solution. The scoring 

 

Fig. 3. Task example (Task 7).
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or measurement model is presented in the same table. While creating an evidence model, 
it is very important to focus on evidence of knowledge connected to the task; thus, we 
avoid evaluation of any displayed knowledge in the task solution that does not have any 
link to the task itself.

When creating a task and planning its assessment, it is important to determine which 
educational outcomes should be included in the task, and, accordingly, which evidence 
of pupil knowledge should be recognized and assessed. Table 7 presents such evidence, 
identifying for each type of evidence the recognized problem in the pupil’s understand-
ing or mental model. For example, let us consider a task where Maja can move through 
the labyrinth according to a predefined movement rule defined by the Labyrinth Action 
and the Walk Action. The pupil needs to upgrade the existing solution so that the total 
number of steps that Maja makes can be recorded. If the pupil makes no change in the 
initial (presented) solution, they probably do not know where or how to make the expect-
ed changes to the program. That is, this seems to be a case of complete incomprehension 
or misunderstanding of the problems and thus obviously a problem with algorithmic 
thinking ability with this particular task and set of rules. Further, if the pupil did make 
a change in the number of steps, defining it as a constant value rather than changing 
the number of steps with the help of a variable that at some point increments by one, 
it was assumed that the pupil did not recognize variables as the abstract concept which 
could track Maja’s movement through the labyrinth (indicating problems in working 
with variables, or abstraction generally). Nevertheless, in such a case, the pupil obvi-
ously understood that some change regarding movement through the labyrinth had to be 
made (partial understanding of the problem).

Next table (Table 8) demonstrates mental models recognized from pupils’ answers. 
This task proved to be one the most difficult for pupils (difficulty index 89.74), but with 
great strength to distinguish those who have adopted very well the observed concepts 
from those who expressed difficulties in understanding the problem, algorithmic think-
ing skills, and working with variables (discriminant index 0.41).

Table 7
Task evidence and measurement example (task 7)

Evidence Detected pupils’ problems Score

No change was made in the Action Walk•	 No understanding of the problem, •	
problems in algorithmic thinking

0

There was some change made in the Action •	 Walk which 
included change in the number of steps (go 4 steps, go 3 
steps…), but the change didn’t include counting the total 
number of steps made while walking

Problems in working with variables •	
(abstraction), partial understanding of 
the problem

0

Incrementing the counter by 1 was done, but in the •	
wrong place in the algorithm (for example in the Action 
Labyrinth)

Problems in algorithmic thinking (code •	
tracing), partial understanding of the 
problem

1

Incrementing the counter by 1 was done, but not in all the •	
necessary places in the algorithm (for example only while 
going right or while going up)

Partial understanding of the problem, •	
problems in algorithmic thinking (code 
tracing)

2

Correct and necessary changes for incrementing the counter •	
were made in all expected places in the algorithm.

No problem detected•	 3
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This kind of analysis of evidence helps us in the creation of an evidence model for 
similar tasks. We could create several task examples where it is necessary to create im-
provements in character movement, adding some new possibilities like skipping steps, 
rotating, and so on. While analysing pupils’ answers, it is crucial to know in which 
computational concepts we can expect to find appropriate evidence of acquisition of 
target concepts. For example, one task’s goal could be to reveal the pupil’s algorithmic 
thinking level by comparing two computational solutions or by creating a standalone 
computational solution in detail. Another task’s goal could be to look for the pupil’s 
ability to analyse and understand the problem or to decompose it into less complex parts. 
Both tasks are trying to find out whether the pupil is familiar with and can manipulate 
different levels of abstraction.

3.3. Assessment Implementation/Delivery

In our model, as noted, the background of each task is a problem situation involving 
Maja’s search for a flower in the labyrinth. Task context must be preserved throughout 
the assessment to facilitate understanding, and easier tasks come at the beginning of 
the tool. To facilitate understanding of the moving instructions all algorithmic solutions 
used in the tasks must be written in a language very similar to a spoken language with 
the structure that resembles a pseudo language. In addition, the solution to a given task, 
or part of it, may be incorporated into later tasks. For that reason, the model excludes the 
possibility of returning to previously solved tasks for reconsideration or re-solving, as 
the solutions of earlier tasks are incorporated into later tasks (Fig. 4).

This model of assessment was first tested in exploratory research during the 2016/2017 
school year with an online assessment adapted for the Python programming language. 
Further, pilot research was conducted during the 2017/2018 school year, in which imple-
mentation of this CT assessment model was enabled by using online testing within the 
Loomen LMS (Learning Management System). Pupils’ access to Loomen is based on 

 

Table 8
Mental models recognized by analysis of pupils’ solutions – task 7

Mental model Number of pupils

The pupil does not know where or how to upgrade the program. 284 80.7%

The pupil does not recognize the variables as values by which the movement of the 
Maya through the labyrinth can be traced, He understands that some change needs to 
be made in addition to the movement itself.

The pupil recognizes the need to use the variable to track Maya’s movement through 
the labyrinth but does not recognize the appropriate place in the program for such 
a change.

  40 11.4%

The pupil recognizes the need to use the variable and successfully applies it in some 
of the expected places.

  11   3.1%

The pupil successfully applies the variables in a specific problem.   17   4.8%
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their unique user data, provided to every middle and secondary pupil in the Republic of 
Croatia, so that the authenticity of the research participants’ data was preserved. Thus, 
Loomen was also used in the main study. Pupils were invited to join the assessment 
through an email invitation from their CS teacher, who agreed to participate.

Since the study material was in accordance with the current CS Curriculum in Croa-
tia, it is in line with the requirements of “in situ” research, so no special consent from 
participants was necessary.

4. Results

4.1. Statistical Characteristics of the Assessment

Basic features of this assessment model were initially tested through introductory re-
search, as noted, with a measuring instrument adapted to the Python programming lan-
guage. The promising results of this initial assessment encouraged the creation of the 
new tool- and environment-independent assessment model and a valid CT assessment 
model based on the ECD approach (Bubica and Boljat, 2018).

Research using the final version of the assessment tool (March/June 2018) was con-
ducted among 407 pupils from ten middle schools in eight cities. After analysis of the 
assessment results, 27 pupils who submitted no solutions were excluded from the re-
search. In addition, 28 pupils were excluded as they spent less than 10 minutes finish-
ing their assessment and most of the tasks were unanswered. It was assumed that these 
pupils did not take the assessment seriously as they did not submit their solutions at all 
or they completed the assessment in less than ten minutes, which wasn’t even enough 
for the first reading and understanding of assessment tasks. Thus, the analysed results 
refer to 352 pupils (193 males, 159 female). Research data concerning basic test sta-
tistics such as difficulty and discrimination index were explored. This assessment tool 
showed a satisfactory degree of internal reliability (α = 0.630). In terms of Cohen, Man-
ion and Morrison (Cohen et al., 2000) in general seven tasks had acceptable difficulty 

Fig. 4. Delivery of assessment tool.
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(33.00–67.00), one task was probably too easy (28.12) and three tasks seemed to be very 
difficult (85.72–93.90) (see Table 9).

The initial assumption of this research is that this assessment tool should highlight 
three basic concepts: algorithmic thinking, abstraction, and decomposition. The degree 
of task intercorrelation was explored in order to find out whether there was a way to group 
these tasks by the relationships among them, based on some common term in the back-
ground. The main characteristics of the research, the number of respondents (N = 352) 
and the number of tasks (10), met the basic prerequisites of factor analysis (35:1 > 30:1) 
(Hair, Black, and Babin, 2014). Factor analysis was applied to detect possible interrela-
tionships between tasks (Cohen et al., 2000), using the Kaiser-Meyer-Olkin measure of 
sampling adequacy parameter (0.756 > 0.5) and Bartlett’s test of sphericity (p ≤ 0.001). 
The results showed that tasks were sufficiently related (determinant = .406 > 0.00001, 
p ≤ 0.001) but not excessively interdependent (intercorrelation < 0.8).

Overall, values for eight tasks mostly satisfied the criterion of good task association 
(that is, ~0.2–~0.8, p < 0.05). Two tasks (task 4, task 10) showed a greater correlation 
with other tasks than most tasks did, but at an insufficiently significant level (p > 0.05). 
It should also be noted that these tasks had the lowest index of discrimination (< 0.16).

Results of the factor analysis confirmed the initial assumption of three components 
in which assessment tasks could be grouped what will be addressed further in the discus-
sion section.

To reinforce the reliability of the evaluation tool, an additional grader was introduced 
for essay assignments, which were not evaluated automatically. The additional grader 
was an experienced teacher, who independently evaluated essay tasks (task 3, task 7, 
task 9) according to the presented model of evidence and measurement. Comparison of 
the researchers’ and the additional grader’s grading showed a very high degree of match-
ing in all three tasks (task 3: 96%; task 7: 97%; task 9: 97%).

4.2. Influence of Some Factors (Gender, Academic Achievement,  
Programming Experience) on Assessment Results

It has been researched whether there is a correlation of factors such as gender, math 
and general academic achievement with the success in this assessment given that such 

 

Table 9
Test statistics regarding difficulty and discrimination index

Task Difficulty index Discrimination index Task Difficulty index Discrimination index

1 59.42 0.32 6 57.10 0.29
2 28.12* 0.29 7 89.74** 0.41
3 44.03 0.38 8 51.19 0.36
4 59.42 0.11 9 85.72** 0.45
5 46.68 0.27 10 93.90** 0.16

* probably very easy task; ** probably very difficult task 
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factors have shown correlation with success in programming in some studies (Wilson 
and Shrock, 2001; Bubica and Boljat, Predictors of Nvices Programmers’ Performance, 
2014). Pupils’ data concerning their general academic and math achievement showed 
that this research sample did not represent a normal distribution, so a nonparametric test 
was used to explore correlations among data (one-sample Kolmogorov-Smirnov test 
p = .001). Results regarding general academic achievement showed very strong positive 
correlation with math achievement (Spearman’s r = 0.803, p ≤ 0.001). Factors like math 
and general academic achievement had medium positive correlations with achievement 
on this CT assessment (Spearman’s r = 0.425, r = 0.429, p ≤ 0.001). 

One of the important features of an assessment is to determine whether there are dif-
ferences between the results on the given assessment achieved by the boys and girls. The 
research results showed that there was no correlation between the variables pupil’s gen-
der and their success in CT assessment (Spearman’s ρ = -0.051, p = 0.337 > 0.05). Such 
a result is consistent with existing research (Authors, 2014; Pillay and Jugoo, 2005) and 
speaks in favour of the claim that the created assessment tool might be equally suitable 
for boys or girls. At the time when there is a significant debate about the lack of women 
in informatics and their lack of interest in STEM in general, it is important to find ways 
to increase girls’ interest in informatics during education, for example, at least by cre-
ating equal learning environments in both, teaching and assessment process (Writers, 
2021). 

Further analysis was done to explore the (in)sensitivity of the proposed CT tool 
regarding previous programming language knowledge. A normality test of pupils’ as-
sessment results showed that there was not a normal distribution of data (Kolmogorov-
Smirnov, skewness = 0.388, kurtosis = -0.041, p ≤ 0.001), so nonparametric methods 
were used. Given that some of the pupils had their first programming encounter through 
the Scratch graphical programming environment and continued their work in Python or 
Logo, we examined the difference between the results with respondents placed in one 
of four groups depending on the programming language or combination of the program-
ming languages they used while learning CT concepts (Table 10). The Kruskal-Wallis 
method showed that there was no significant difference between the scores achieved by 
pupils depending on the programming language or combination used. 

This is consistent with the results of earlier research, and it also confirmed the initial 
criteria that the tool is independent of the observed programming languages (Allert, 
2004; Byrne and Lyons, 2001; Pillay and Jugoo, 2005). Further grouping of data investi-
gated the impact of learning an individual programming language on the pupils’ success. 

 

Table 10
Difference between the scores depending on the programming languages used (Kruskal-Wallis)

Grouping of pupils according to the 
programming language learned

“first Scratch 
then Python”

“first Scratch then 
Logo,”

“only Logo” “only Python”

mean rank 176.42 203.21 171.35 175.14

χ2(2) = 2.458,
p = 0.483
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The results showed no statistically significant difference between Scratch (Mann-Whit-
ney 7581.500, p = 0.240), Logo (Mann-Whitney 14692, p = 0.788), and Python (Mann-
Whitney 14692, p = 0.788) groups meaning that it is not expected that pupils who have 
learned particular programming language will therefore achieve better or worse 
results in this assessment.

4.3. Construct Validity of the Assessment Tool:  
Comparison to the Selected Set of Bebras Challenge Tasks

In previous sections, the correlation between the learning outcomes of the new CS Croa-
tian curriculum and CT assessment was described. Given that the Bebras challenge was 
already present in schools in the Republic of Croatia, it was appropriate to determine 
if there was correlation between the two CT assessments and if possible, determine 
which of the two assessments is better aligned with the subject curriculum. In this way, 
the construct validity of the developed assessment tool was also examined. In a Bebras 
task there is the same main character, a beaver (dabar in Croatian), who is trying to 
solve a different presented problem/puzzle in a different context (story) each time. Every 
year, computer science education specialists prepare and distribute tasks for the Bebras 
challenge, keeping in mind that each task must contain CT appropriate to the pupils’ 
age. In Croatia, the Bebras initiative was conducted as an online competition (15 ques-
tions) through the Loomen LMS (November 2016) distributed in middle and secondary 
schools (N = 1892). Table 11 compares the results of the observed assessments. As the 
observed concepts had to be aligned with the CS curriculum, an appropriate subset of 
Bebras challenge tasks which most closely coincided with the proposed CT assessment 
and Croatian CS curriculum was selected and the relationship between the two assess-
ments was explored. 

 The Bebras challenge assessment consisted of fifteen tasks but only six of them were 
in line with the selected learning outcomes involved in this assessment (see Table 2). 
Concepts/skills such as decomposition, working with different levels of abstraction, 
creating new algorithmic solutions, and upgrading existing algorithmic solutions were 
not included in Bebras evaluation tasks. The selected Bebras challenge tasks showed 
moderate correlation with CT assessment (r = 0.495, p = 0.001), which speaks in favor 

Table 11
Basic statistical features of Bebras and CT evaluations for the pupil samples

Bebras 
assessment

CT 
assessment

Results of pupils who participated 
in both assessments
Bebras CT

Pupil sample N = 1892 N = 358 N = 49 N = 49
Reliability (Cronbach’s alpha) α = 0,48 α = 0,63 α = 0,325 α = 0,722

Correlation (Spearman’s r) 0,495 
(p = 0.01)



Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 449

of the construct validity of the proposed CT assessment. Low values of the reliability 
coefficient (N = 1892, α = 0.48; N = 49, α = 0.325) indicated that the selected set of Be-
bras challenge tasks cannot be considered a reliable way of assessing CT concepts. Still, 
for more serious conclusions regarding the assessment of computational thinking with 
Bebras challenge tasks and their connection with the created assessment tool, research 
should be conducted on a larger subset of Bebras challenge tasks from several years as 
well as with greater sample of pupils involved. 

5. Discussion

The main goal of this research was to assess acquisition of concepts of computational 
thinking: abstraction, algorithmic thinking, and decomposition, among pupils in middle 
school. According to the developed assessment model, based on the ECD approach, 
the appropriate tasks of the assessment tool were created. The assessment tasks were 
also aligned with the 6th-grade learning outcomes of the new informatics curriculum. 
Basic assessment statistics considering task structure and context (Table 11) showed that 
analysing and understanding algorithms, anticipating algorithm behaviour, and upgrad-
ing existing algorithms or creating completely new algorithms represented the greatest 
challenge for pupils. Further, those tasks, including concepts of algorithmic thinking 
and decomposition, also showed the highest degree of discrimination, that is, the great 
power of separating successful from less successful pupils, which is very important in 
any assessment. 

Factor analysis was conducted to explore the possibility that the assessment tool 
could measure acquisition of CT concepts: abstraction, algorithmic thinking, and de-
composition; the strength of the correlation of each task with each factor indicated by 
factor analysis was investigated. The obtained results were in accordance with the pro-
posed model of the assessment tool (Table 6), which distinguishes target and underlying 
CT knowledge and practice. The results of factor analysis clearly distinguished fac-
tors from one another based on which type of practice and knowledge of algorithmic 
thinking prevailed (editing and upgrading algorithmic solutions, creating new solutions 
based on a familiar problem, predicting program behaviour). Target CT knowledge and 
practice correlated to these factors were grouped according to factor loadings (stronger, 
moderate, weaker), where according to sample size, factor loadings equal to or greater 
than 0.3 are considered significant (Hair et al., 2014) (see Table 12). 

According to the results of the factor analysis, the strongest connection with the first 
factor showed skills of algorithmic thinking, but also decomposition. The less power-
ful yet still significant correlation to the first factor demonstrated some skills that are 
related to abstraction (working with variables and output, understanding the problem, 
identifying key features of the problem). The correlation with the second factor showed 
skills and knowledge that are related to abstraction (understanding the problem, work-
ing with logic); the smaller but still significant correlation to the second factor showed 
the relevance of the skill of working with branching structure (algorithmic thinking). 
Although the factor analysis pointed out the existence of a third factor, due to the insuf-
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ficient number of tasks related to this factor (task 4), it is not appropriate to consider 
it a separate factor in this analysis. The ungrouped task (task 4) highlighted skills of 
working with branching structures (simple and complex). This is a surprising result, 
since these skills could be expected to have a strong connection with the first factor, in 
which the skills and knowledge related to algorithmic thinking prevail. Since this task 
(task 4) already showed extremely bad discrimination, it is questionable how much the 
results influenced the odd deployment of the highlighted skill – working with branching 
structures – given the prominent effects of the factors. The third CT concept consid-
ered, decomposition, was not highlighted as an individual factor in this analysis, but 
we can nevertheless strongly associate it with the concept of algorithmic thinking and 
the concept of abstraction. One reason could be the fact that decomposition was high-
lighted by only two of the total ten questions; another could be that a basic premise for 
successfully solving these two tasks (disaggregating problems to less complex already 
familiar problems) was that the pupil had to be skilled with certain algorithmic think-
ing abilities (creating new solutions based on familiar problems, editing and upgrading 
algorithmic solutions) as well as with skills and knowledge connected to abstraction 
(understanding of the problem, thinking at different levels of abstraction, working with 
variables). Given the above results, we can conclude that the concepts of algorithmic 
thinking and abstraction were clearly highlighted in this assessment, while the concept 
of decomposition was not clearly recognized as a separate factor. 

 

Table 12
Grouping tasks according to factor analysis results

Factor loading Factor 1: Abstraction Factor 2: Algorithmic thinking Ungrouped task*

Stronger factor 
loading (> 0.62)

Editing and upgrading •	
algorithmic solution 
(Algorithmic thinking, task 7)
Creating new solutions based •	
on the familiar problem 
(Algorithmic thinking, 
decomposition, task 9)
Understanding the problem •	
(Abstraction, task 7)

Understanding of the problem •	
(Abstraction, task 1)
Working with logic •	
(Abstraction, task 3)

Working with •	
branching structure 
(Algorithmic 
thinking, task 4) 

Moderate 
factor loading 
(0.52 <…< 0.62)

Predicting program behaviour •	
(Algorithmic thinking, task 6)
Disaggregating problems to •	
less complex already familiar 
problems (Decomposition, 
task 8)
Working with variables and •	
output (Abstraction, task 10)
Understanding the problem •	
(Abstraction, task 7)

Working with a branching •	
structure
(Algorithmic thinking, task 5)

Lower factor 
loading 
(0.3<…<0.52)

Identifying key features •	
(constraints) of the problem 
(Abstraction, task 2)

* ungrouped task because of insufficient number of tasks within factor
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One of the goals of this research was to investigate and establish the assessment 
tool’s independence of the programming language used by the pupils. Considering that 
several different programming languages are included in the teaching process in Croatia, 
it is of utmost importance that the created model be compatible with all these languages. 
When creating test tasks, it was understood that the way of writing should avoid mak-
ing task language and images dependent on the specific syntax and structure of some 
programming language. At the same time, the task had to be intuitive and to not distract 
pupils’ attention from solving the problem. Since research participants were familiar 
with different programming languages, results which indicated no significant difference 
in the scores achieved by pupils regardless of the programming languages they had 
learned were of great importance. These results are consistent with the relevant research 
(Bubica and Boljat, 2014; Pillay and Jugoo, 2005). The fact that the tasks were written 
in a language that is very similar to the spoken language of the pupils certainly made it 
easier to understand the tasks better. Further, since the tool is intended for real teaching 
practice, it is very important that gender was not highlighted as a factor that can signifi-
cantly affect this CT assessment. The achieved results are in line with previous relevant 
research (Bubica and Boljat, 2014; Wilson and Shrock, 2001).

In further quality analysis of the created CT assessment, it is important to consider 
the question of its reliability (how dependably or consistently a test measures a charac-
teristic). As mentioned earlier this assessment tool showed a satisfactory degree of in-
ternal reliability (α = 0.630). It is generally accepted that values of reliability coefficient 
(Cronbach’s alpha) between 0.7 and 0.6 are considered acceptable (Cohen, Manion, and 
Morrison, 2007; Nunnally, 1978; Pallant, 2005; Pallant, 2011) and above 0.6 (Taber, 
2017) barely acceptable (satisfactory). The higher the observed coefficient is, the more 
likely it is that the same results will be repeated when re-applying the assessment tool. 
The value of the Cronbach’s alpha coefficient depends on the number of tasks in the 
given instrument; a low value, for example 0.5, is not uncommon for instruments up to 
10 tasks. In such situations, it is common to analyse the corrected correlations among 
test tasks; for two tasks in the present study (task 4, r = 0.104; task 10, r = 0.150), it can 
be concluded that they do not measure the same thing as the rest of the instrument, as 
their correlation values deviate from the optimal values among the (other) tasks (Briggs 
and Cheek, 1986). Further, if these tasks were removed from the instrument, the value of 
the Cronbach alpha coefficient respectively would not change at all (task 10) or would 
increase slightly (task 4). As one of these items (task 4) showed extremely poor discrimi-
nation value (0.1052), removal or significant improvement of it should be a serious con-
sideration. Also, adding more tasks to the assessment, for example addressing the con-
cept of decomposition, should be considered, since more tasks improve test reliability.

Finally, the possible difficulties or weaknesses of the proposed model should certain-
ly be pointed out. In the modelling phase, design patterns were presented as the founda-
tion for the development of each assessment task. The patterns are the result of personal 
authors’ attitudes / thoughts / experiences as well of analysis of relevant literature. In 
further work, greater emphasis will be placed on the study of the presented patterns and 
their possible upgrading and refinement. The most demanding and sensitive part of the 
model is certainly recognizing and separating targeted and underlying CT concepts and 
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skills while creating a task due to their big interconnections. This could make the process 
of creating tasks for teachers quite difficult and challenging. 

Furthermore, the assessment model suggests its online application. This could be 
considered as an advantage of the model because it offers an easy approach and appli-
cation of assessment. At the same time, an online assessment excludes the possibility 
of returning to previously solved tasks for reconciliation and resolving. This limitation 
makes it impossible to easily transfer the online assessment tasks to a paper-pencil form 
of assessment which could be considered its disadvantage.

 6. Future work

In the presented work, the emphasis was on summative assessment. Further work will 
mainly focus on the analysis of other data that were collected during the research like 
feedback from the teachers and pupils. The possibility of applying the described assess-
ment model for formative purposes will be explored, primarily by analysing collected 
evidence of pupil knowledge. This assessment used evidence of pupil’s knowledge, 
which was identified through their responses and associated them with mental models 
of the observed CT concept. For that reason, it is possible to conduct a deeper analysis 
of mental models adopted by pupils as well as of difficulties that need more emphasis in 
further learning. The concept abstraction will be analysed through the way pupils deal 
with different levels of abstraction (understanding the problem), also in how pupils use 
variables and logical values; the concept algorithmic thinking will be analysed through 
pupils’ ability to track and analyse algorithmic solutions and well as through their ability 
to apply different kinds of branching structures. Formative assessment of the CT con-
cepts will be presented in the form of a tree-scale rubric (need much work, partially suc-
cessful, successful). Such formative feedback seeks to point out pupils’ most common 
mistakes and difficulties – information of great importance for teachers when planning 
instruction as well as for pupils when provided as timely feedback during the learning 
process. 

Collected qualitative data regarding the clarity of the questions, the presentation and 
structure of the tool, and other matters that emerge will be explored.

In addition to the already mentioned activities, there will be certainly more work in 
the future on improving the domain modelling, especially regarding design patterns as 
they represent important part of the proposed assessment model. 

7. Conclusions

The beginning of educational reform in the Republic of Croatia started a process of 
creating new subject curricula and applying new teaching strategies and evaluations. 
The new K-12 CS curriculum, taking a learning outcome-based approach, emphasizes 
the importance of knowing concepts such as programming, algorithms, and data struc-
tures and introduces the development of computational thinking with the primary goal 
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of encouraging pupils’ creativity instead of only teaching them how to use information 
and communication technology. Introducing computational thinking in subject curricula 
entails the introduction of new teaching methods and materials and presents teachers 
with the challenge of evaluating the outcomes. There is still not enough research on CT 
evaluation to provide teachers with enough support in the field. Due to the increasing 
emphasis on formative evaluation in everyday teaching practice, it is especially im-
portant to explore the potential of assessment tools to be applied in different forms of 
assessment (such as assessment for learning or assessment as learning), for example by 
identifying valid and invalid mental models of observed concepts.

This study offers a model of CT assessment consistent with the new Croatian K-12 CS 
curriculum. To answer the research questions, the research tried to find out how suitable 
the proposed ECD model of CT assessment is for educational practice. Due to the diversi-
ty of programming languages used in Croatian schools, it is extremely important that the 
success that pupils achieve in this assessment not be dependent on the programming lan-
guage through which they have learned basic CT concepts. Our approach is independent 
of programming language (already present in school) and equally appropriate for boys 
and girls. The presented CT assessment model showed an acceptable reliability index; 
the coincidence of the results of grading by the researcher and the additional independent 
grader speaks for the reliability of the tool and ease of the use in the classroom. 

To investigate the construct validity of the proposed tool, the results for the selected 
set of pupils were compared with their success on the Bebras challenge tasks. Although 
the proposed assessment instrument showed better characteristics (coefficient of reli-
ability, consistency with the outcomes of the Croatian CS curriculum, interconnection of 
tool tasks, etc.) than assessing CT with selected set of Bebras challenge tasks; for more 
reliable conclusions research with a larger pupil sample should be conducted. Further-
more, such a result may also have been influenced by the choice of Bebras challenge 
tasks that were applied in the Republic of Croatia in that period. Some other tasks that 
did not reach the pupils at all might discover some other interrelationship of the two 
observed types of tasks.

The results of this research showed that although creating an ECD approach assess-
ment is a time consuming and demanding job, it allows us to create assessments that are 
strongly related to the subject curriculum and offer evidence argument for difficult-to-
measure concepts.
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APPENDIX I
Created CT assessment tool 

Task 1

Task 2
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Task 5
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Task 8
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