
Informatics in Education, 2021, Vol. 20, No. 4, 515–532
© 2021 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2021.23

515

Teaching Software Engineering using
Abstraction through Modeling

Mohsen DORODCHI1, Nasrin DEHBOZORGI2,
Mohammadali FALLAHIAN1, Seyedamin POURIYEH3

1Department of Computer Science, University of North Carolina Charlotte, USA
2Department of Software Engineering and Game Development, Kennesaw State University, USA
3Department Information Technology, Kennesaw State University, USA
e-mail: mohsen.dorodchi@uncc.edu, dnasrin@kennesaw.edu, mfallahi@uncc.edu,
spouriye@kennesaw.edu

Received: February 2021

Abstract. Teaching software engineering (SWE) as a core computer science course (ACM, 2013)
is a challenging task. The challenge lies in the emphasis on what a large-scale software means,
implementing teamwork, and teaching abstraction in software design while simultaneously en-
gaging students into reasonable coding tasks. The abstraction of the system design is perhaps the
most critical and theoretical part of the course and requires early engagement of the students with
the necessary topics followed by implementation of the abstract model consistently. Normally,
students would take such courses in the undergraduate curriculum sequence after data structures
and/or object-oriented design/programming. Therefore, they would be able to learn about sys-
tematic modeling of software as a system. In this work, we address how to facilitate the teaching
of SWE by introducing abstract modeling. Furthermore, functional decomposition is reviewed
as a critical component which in turn, requires understanding of how different tasks are accom-
plished by enterprise software. Combining such pieces with concepts of architecture and design
patterns of software provides foundational knowledge for students to be able to navigate around
enterprise software in the real world.

Keywords: software engineering education, abstraction, modeling.

1. Introduction

The current state of software engineering (SWE) as a discipline has changed over the
course of past 50 years due to many different reasons and it is still different from the
traditional engineering disciplines which are built on solid theoretical foundations.
One of the major concerns about SWE is the lack of agreeable structure within the
discipline (Erdogmus, 2018) which seems to be always very dependent on the back-
ground and experience of the “engineer” who finds a solution to a given problem,

M. Dorodchi et al.516

rather than based on a common structured knowledge agreed upon the community
(Erdogmus, 2018). Experts in the field argue that the roots of such a problem stands
on the inherent multiplicity of dimensions of the real-world problems and the variety
of potential solutions.

In educational domain, software engineering is offered as undergraduate and gradu-
ate level degree as well as a concentration within computer science or engineering.
However, the educational pathway of SWE offers various approaches and models. As
a core knowledge in the field of computing the joint task force of ACM/IEEE CS Cur-
ricula (ACM, 2013) recommended to include SWE as a set of required knowledge units
aligned with the overall computing education into all computing disciplines and many
schools are following this recommendation by practicing it. Yet, due to different fac-
tors indicated earlier, there are different approaches to both the content and offering of
the SWE courses in different levels. An interesting model of teaching based on several
different principles including 1) working on large code bases through open source,
2) modeling, and 3) dynamic project team experience through scaffolded and staged
practices of active learning (Dorodchi, 2019).

In this work, we are expanding beyond a teaching model by offering a harmonized
teaching paradigm in software engineering education, addressing the major myth with
software engineering which believes it is not strongly backed up with theoretic back-
ground. The consensus is that SWE education is mostly focused on practices and is
more dependent on the taste and common practices of the experts offering it. By over-
viewing the theory of computer science on abstraction and how it relates to SWE edu-
cation, we attempt to show that such impressions are not necessarily true. Furthermore,
our review reveals that there have been efforts in SWE field with the roots in the theory
of abstraction. Furthermore, we present a case study around our idea of how to teach
practice-based software engineering with abstraction.

This paper is organized as follows. The following section overviews the theory of
abstraction in computer science followed by modeling and particularly visual model-
ing as it relates to system level design and development. Considering this discussion,
we propose our visual representation of modeling as it relates to abstraction in SWE
education. Design patterns as another abstraction tool for holistic system overview is
presented in section 4 with a case study presenting a sample implementation based on
the idea of this paper. We conclude our paper in the last section.

2. Abstraction in Software Engineering

Abstraction in the field of computer science theory and data structures is a very com-
mon and trivial discussion. However, in practice of software development, and require-
ment engineering, is spite of the efforts by many researchers, abstraction does not seem
to be practiced as the key element of design and development of software. The notion
of abstraction is an essential part of many scientific disciplines and has been integrated
into the education of that discipline from different perspectives. For example, in math-
ematics, the pioneering work of Piaget on notion of reflective abstraction has been

Teaching Software Engineering using Abstraction through Modeling 517

applied to teaching mathematical concepts in different levels to facilitate the cognitive
process (Cetin, 2017).

In software engineering, Wang (Wang, 2007) established a thorough theoretical
basis for SWE in which special attention has been paid to the theory of abstraction.
Referring to the inadequacy of “abstractive and precise description means for soft-
ware architectures and behaviors”, and the “perplexity of labor organization in large
groups and large-scale projects” as the “primary technical deficiencies” for software
engineers, students, and educators (Wang, 2007). After addressing the myths of “there
is no theoretical foundation for software engineering” (Wang, 2007), the perception
of the legendary computer scientists such as Von Neumann and Dijkstra about soft-
ware as a stored programmed logic on computing hardware is discussed. Moreover,
the author proposes a set of structured mathematical foundations through definitions
and theorems to address the two main issues in software engineering: “1) how to
design and implement a software system that one is not able to do by only oneself?
and 2) how to cope with the development of a software system in which one does
not completely know or understand the whole system and parts produced by other
team members?” (Wang, 2007). The author discussed that such issues raise due to the
inherent complexity of large-scale software (Wang, 2007). To address the aforemen-
tioned questions, Wang (2007) starts the theoretical foundations of software engineer-
ing by discussing on the philosophical foundations of software engineering which
tries to connect the abstract world with the physical world through multiple levels
of abstraction. However, for the most part the software as a solution is not always
considered tangible. Based on this foundational viewpoint, a design intensive solu-
tion can be provided to any of the infinite possible problems that software engineering
deals with.

Wang continues the discussion on all aspects of mathematical foundations of SWE,
which similar to philosophical foundations, provides top-level abstraction means. Fol-
lowed by the overview and outlining of computing foundations (e.g., modelling, au-
tomata and finite state machine, etc.), linguistic foundations (e.g., formal language
theory, syntax and semantics of programming languages, etc.), and information science
foundations (e.g., completeness, consistency, exactness, feasibility, verifiability, etc.)
as the major theoretical foundations. Moreover, the interdisciplinary organizational
foundations, and principles and perspective chapters are presented and discussed as
summarized in Table 1.

Table 1
Theoretical foundations aspects of SWE from (Wang, 2007)

Theoretical Foundation # Of Chapters

Basic foundations of SWE (Philosophical, Mathematical, Computing, Linguistic,
Information Science Foundations of SWE)

5

Organizational Foundations of SWE (Engineering, Cognitive Informatics, System
Science, Management Science, Economics, and Sociology Foundations of SWE)

6

Fundamental SWE principles and perspectives 3

M. Dorodchi et al.518

As mentioned before, abstraction in the field of SWE has been discussed mainly
around the topics of requirement analysis and specification (Gacitua, 2010) and design
of the complex software systems (Medvidovic, 1996), (Van der Westhuizen, 2006),
(Rugaber, 2006). An early work by Kiczales (Kiczales, 1991) discusses the paradox of
abstraction in software engineering in hiding details while providing enough details
for developers. The idea of metaobjects is presented to solve this issue in which ab-
straction provides details of implementations. Abstraction for reasoning is discussed
in another early work in (Giunchiglia, 1992). Salzer (Salzer, 2010) discusses the idea
of the Atomic Requirement Specifications (ATRS) as well as the importance of the
notion of abstraction, abstraction level and its hierarchy in SWE in modeling the re-
quirements.

3. Software Modeling

Traditional modeling in software engineering follows the structural designs of pro-
grams around the processes whereas the object-oriented model (or the derivatives of
that such as service-oriented or aspect-oriented) are focusing on the concept of “object”
which includes data, behavior, and actions. In this work, we focus only on the two fun-
damental models of structural analysis and object-oriented design as follows in the next
two subsections with a discussion on a hybrid model to provide different conceptual
views of the system considering different layers of abstraction.

3.1. Structural Analysis and Modeling

One of the main models used in structural analysis and modeling includes Data Flow
Diagram (DFD) with the context diagram as the general model of abstraction. The de-
composition diagram of the DFD’s helps with the identification of the major modules
and the essentials of each module as well as providing an overall view of the system
and the tasks accomplished in each part of the system. Such a model helps in dividing
the big pictures into a set of independent modules which facilitates the development by
reducing the overall complexity. This concept and the role of modeling in developing an
abstract view is depicted in Fig. 1. As shown the modular design through multiple DFDs
allows the system developers to get a holistic view of the system under development.

3.2. Unified Modeling Language (UML)

Unified Modeling Language (UML) has drawn the attention of software engineering
educators and many efforts have been made to facilitate the practical aspects of UML
(Tuparov, 2007). In this section, we review UML in the context of abstraction in system
level design and development. Furthermore, we briefly discuss how the UML diagrams
relate to different layers of abstraction.

Teaching Software Engineering using Abstraction through Modeling 519

3.2.1. Brief Explanation of UML Diagrams
UML diagrams represent two aspects of a system as shown in Fig. 2, the structural and
the behavioral. Structural diagrams refer to the static system’s features being modelled
on different abstraction levels and represent the essential components of the system.
The structural diagrams include class, object, component, package diagrams, compos-

Fig. 1. Using structural analysis with DFD to visualize the entire system model.

Fig. 2. Different types of UML diagrams.

M. Dorodchi et al.520

ite structure, and the deployment. The class diagram represents the conceptual object-
oriented model of the software system, including classes, attributes, methods, and the
static relationships amongst classes whereas an object diagram is an instance of a class
diagram and describes data structures at a particular instance. The component diagram
breaks larger components of a system down into smaller components and illustrates the
relationship between those components, and the package diagram shows dependencies
between different packages in a software system. The composite structure diagram is
generally used in modeling a system to represent how objects are composed at runtime,
and the deployment diagram helps to model deploying of an Object-Oriented software
system on the actual machines (Booch, 2017).

On the other hand, the behavioral or interaction diagrams focus on how the system’s
behavior changes and the objects interact while the system is running. There are four
main types of diagrams in this category. The use case diagram models how users inter-
act with the system and shows how a system provides users’ needs. The actual use cases
are normally modelled separately via textual models such as casual or fully dressed
use cases. An activity diagram illustrates how system components work simultane-
ously and in parallel to help with visualizing workflow of actions taken in use cases.
In object-oriented approaches, we are using state machine diagrams for a class to show
the lifecycle of an object. State diagrams are mostly used to describe the behavior of
an object across several use cases. Lastly, the interaction diagram includes four types
of diagrams, namely sequence diagram, communication diagram, timing diagram, and
interaction overview diagram. Interaction diagrams describe the behavior of several
objects in a single use case and show a sequence of activities for those objects (Booch,
2017). It is worth noting that there have been efforts in promoting modeling and partic-
ularly UML, by the open-source community to help with the design practice (Aldaeej,
2016) as well as for educational purposes (Dorodchi, 2019).

3.2.2. Layers of Abstraction for Each of the UML Diagrams
The level of abstraction of each of the UML diagrams represent the details level of the
system. We have derived these levels based on the literature and known practices as
shown in Fig. 3. In pure object-oriented programming one can use all these diagrams
based on the provided levels of abstraction and flow of data from one object to another.
Furthermore, we will discuss in the next section the hybrid design models based on
levels of abstraction for the more complex enterprise systems. We propose using tradi-
tional structured modeling such as DFD, ERD, and so forth to help with a more thor-
ough understanding of current enterprise systems built based on different programming
paradigms, languages, and supporting technologies.

Object-oriented analysis and design method applies object-orientated concepts to
analyze and design a software system using visual modeling in the development life
cycle. In this approach, the use case diagram is the system-level unit for defining re-
quirements (Stumpf, 2006) and describes the system’s overall flow of events. That is
an abstract model of the system from the user’s perspective. Such a model can be eas-
ily communicated with the stakeholders, managers, and software developers. The use

Teaching Software Engineering using Abstraction through Modeling 521

case diagram objects are utilized to create class diagrams as the building blocks of the
software (Rumbaugh, 2010).

As the next level of abstraction, the activity diagram depicts how the activities of
the particular use cases are navigated in a special order to perform the actual task and
provide the required service. At the lowest layer of abstraction, the sequence diagram
illustrates the order of the actual methods being called when a message is sent from the
system user (Stumpf, 2006). Furthermore, the state diagram is to provide the dynamics
of the behavior of the system through its methods (Rumbaugh, 2010).

Fig. 3 depicts all the above discussions. As shown, the developers start from abstract
models all the way to more detailed models of the system and eventually the real soft-
ware can be built and deployed.

4. Design Patterns in Software Engineering Education

Design patterns as a model of abstraction has been around in the fields of architec-
ture (Alexander, 1977), education (Maher, 2020, Dorodchi, 2020), and SWE (Wedyan,
2020). Software engineering discipline has certain dimensions that are very important
both for students in the educational domain and for the professionals practicing in the
field. These include familiarity with key skills in software development, understand-
ing major components of the enterprise systems, and interpersonal skills to work in
high-stake teams.

In this section, we overview the applicating of design patterns in different disci-
plines and discuss how modeling abstraction by design patterns can help with software
engineering education from two perspectives, one from educational standpoint to ad-
dress the teamwork and the second to teach SWE architectural concepts to smoothen

Fig. 3. Levels of abstraction of UML diagram helping with Object-Oriented Analysis and Design.

M. Dorodchi et al.522

the implementation process for the students. These perspectives are discussed in detail
in the following subsections.

Design patterns provide solutions to the common recurring problems that software
developers face in developing high-quality software systems (Wedyan, 2020). Design
patterns and pattern languages originated from Alexander et al. in the field of architec-
ture in 1977 (Alexander, 1977). Alexander et al.’s intention was to democratize town
planning by proposing a set of conceptual frameworks that could be applied by ordinary
people in buildings and architecture (Dehbozorgi, 2017).

Later in the mid-1990s Gamma et al. (Gamma, 1995) proposed applying the concept
of design patterns in the field of object-oriented software development (Wedyan, 2020).
They proposed the gang of four (GoF) patterns which includes a set of 23 patterns in
three categories of structural, creational, and behavioral patterns (Wedyan, 2020). The
creational patterns break down into five patterns that address problems related to the
creation of objects. The structural category includes seven patterns that provide the re-
lationship between objects and the behavioral category consists of eleven patterns that
help in designing how the objects interact with each other. Application of design patterns
in software engineering has multiple advantages such as better decision making, en-
hancing communication of design decisions among developers, improving the software
reusability, and as a result saving development cost, in addition to satisfying the non-
functional requirements of the software systems (Wedyan, 2020).

Similar to the concept of design patterns in SWE that offer generic repeatable solu-
tions to the known problems, pedagogical design patterns formalize successful prac-
tices that can address recurring problems that educators face in the educational setting
(Dehbozorgi, 2018). Pedagogical design patterns do not provide absolute and finalized
solution, however, they present tested and proven paradigms that can be implemented
in educational settings in different ways (Dehbozorgi, 2018). This is well-aligned with
the original definition of design patterns which states, a design pattern “… describes the
core of the solution to the problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice” (Alexander, 1977).

Pedagogical design patterns address diverse problems that instructors face in both
lecture-based and active learning settings in different formats (Dehbozorgi, 2018). Most
of the existing patterns are rooted in the original format of Alexander’s pattern that in-
cludes ‘problem’ and ‘solution’ as the main components (Dehbozorgi, 2018). In a more
recent study, the authors proposed an object-based pattern model which has different
attributes to address problems specifically in collaborative student-centered learning.
The multiple attributes of this pattern model allow capturing diverse dimensions of
teamwork in software engineering classes (Dehbozorgi, 2018–2017). This model has
four main constructs of ‘pattern name’, ‘meta-data, ‘pattern core’, and ‘implementation’
(Dehbozorgi, 2018). The pattern core components include problem, solution, rationale,
and pitfall. The solution is extended to the second level set of attributes that capture di-
verse variations of teamwork such as team formation, team size, duration of teamwork,
etc. (Dehbozorgi, 2018).

In the next subsection, we propose using the developed object-based pattern model
to implement and scaffold teamwork in SWE classes.

Teaching Software Engineering using Abstraction through Modeling 523

4.1. Pedagogical Design Patterns for Software Engineering Education

Design patterns for teaching have been used to offer models of teaching to instructors.
The idea is to help instructors practicing active learning address problems they face
in their teaching in such settings (Maher, 2020). Collaborative learning and high-stake
project teams are always of the major interests of educators and there are challenges
of implementing such teamwork in classrooms. In software engineering education, the
project teams need to be addressed thoroughly and utilized throughout the course. One
major issue has always been the fact that students do not collaborate or communicate
very efficiently.

In this study, we propose a set of teamwork patterns as abstractions to scaffold col-
laboration in SWE courses. These patterns are divided into three groups of pre-class,
in-class, and post-class patterns. Although each pattern is at a certain level of abstraction
that can be implemented individually, they can be applied in parallel or sequentially as
well. The patterns of each category are presented in Fig. 4.

Fig. 4 lists the pre-class and in-class teamwork patterns which are based on the pat-
terns in (Maher, 2020). In particular, the “Teamwork Deliverables” pattern is presented
in Table 2. The pre-class patterns are mainly applicable to the intro-level SWE classes
in which students need to learn the key skills of software development before applying
them in their team projects.

The in-class patterns can be applied at any course level depending on the importance
of teamwork into students’ evaluation. For example, the low-stake teams better suit the
introductory level classes (CS1) in which the emphasize is on peer learning, practicing
teamwork, and developing interpersonal skills amongst students. Such teams do not gen-
erate a collective major output as a product of the course, however, since social construc-
tion of knowledge is the key purpose of these teams, students practice how to socialize,
collaborate, and learn. After students pass the beginners phase the mid-stake-teams can
be applied in which there are some team artifacts that are considered in the team evalu-
ation. Finally, we have the high-stake-teams pattern that is most applicable in capstone
classes where students work together to produce a final artifact.

Fig. 4. The Teamwork Patterns (Dehbozorgi, 2020).

M. Dorodchi et al.524

The post-class patterns are mostly applicable to the higher-level courses in which
students work together outside class setting to either finish a development phase (sprint)
or work on the deliverables and presentations of the project to the instructor or the in-
dustrial partners. Furthermore, we consider and adopt an additional pattern that provides
a generic solution for assessing teamwork. This pattern is named “Teamwork Grade As-
signment” (Maher, 2020).

According to Alexander (Dehbozorgi, 2018), patterns get more values when their
relationship is presented in the given domain which is called the pattern language. To
show the dependencies or sequence of adopting the patterns we use concept map which
represent our pattern language to adopt, adapt, and scaffold the teamwork in software
engineering classes. Fig. 5 depicts the developed pattern language.

As discussed, design patterns can provide abstract solutions to the problems of im-
plementing teamwork in software engineering classes. It is worth noting that, while
these patterns provide cues to instructors to implement teamwork efficiently based on
the best practices, they do not prescribe explicit design decisions and the educators have
total freedom to apply them in a way that best fits their class settings. In the following
subsection, we discuss adopting design patterns to deliver the architectural concepts to
the students in the field of software engineering.

4.2. Is there a Suitable Design Pattern to Teach?

As noted in the pedagogical design patterns section, the work of Alexander (Alex-
ander, 1977) has been the motivation for pattern development to support reuse of

Table 2
Teamwork Deliverable Pattern

Teamwork Deliverables

Metadata

Pattern Focus Learning/content delivery
Problem category Collaboration/Performance
Implementation Outside class

Pattern Core

Problem The class time doesn’t allow students to finish scrums, the project deliverables and the
presentation in the high-stake teams.

Solution Provide clear instructions on what students need to prepare after class in the teams (this can
include the roles assigned to the team members). Introduce some collaboration platforms
that they can communicate with. Have a consistent plan for peer evaluation of team members
for their collaboration outside class.

Rationale Students have clear understanding of what is expected from them to do within a certain time
frame. This helps students learn how to manage their time and plan properly to finish their
assigned task in a disciplined manner.

Pitfall Students may not take the teamwork outside class as seriously as in-class and validating the
peer evaluation can be a challenge for the instructor.

Teaching Software Engineering using Abstraction through Modeling 525

knowledge, insights, components and providing domain-specific vocabularies to fa-
cilitate communication in project teams and to help organizing expert knowledge into
a standardized format. Software patterns are also useful for pedagogical purposes
and can help in understanding and evaluating existing software systems. Conceptual-
izing the big picture of system development requires experience and therefore, it is
not a straightforward process for students. To achieve the holistic view of a system,
design patterns seem to be a good candidate in addition to the modeling. However,
there have been arguments against the usage of patterns due to its negative impact. In
a study by Budgen, seven different patterns were studied, and it was concluded that
design patterns can generate unwanted effects (Budgen, 2013). Inexperienced soft-
ware developers may face challenges in applying patterns whereas experienced ones
find it very effective.

We argue that these problems lie in the abstraction level of design patterns and
lack of proper transitions between design layers to match the learners background and
readiness to deal with the practical implementations of the patterns in real world. The
complexity and speed of technology and development methodologies is another chal-
lenge for proper scaffolding of the general patterns.

Considering the above argument, we present a case study based on scaffolding the
Model-View-Controller pattern (Reenskaug, 2003) to show how it can be adjusted and
adapted to diverse environments and technologies. Similar efforts have been done such
as the work in (Cortez, 2015) discussing how the extended MVC into virtual model-
view-controller (Virtual MVC) simplifies the development of service-oriented archi-
tecture (SOA). In another work by Curry and Grace, inspired by the challenges in the
design of the ubiquitous and pervasive computing systems, the idea of flexible system
infrastructures as self-management system based on the extension of MVC is discussed
(Curry, 2008). The proposed system can adapt to operational requirements and environ-
mental conditions dynamic challenges.

Fig. 5. Teamwork Patterns Concept Map.

M. Dorodchi et al.526

Moreover, we believe that proper selection and application of design patterns help
learners understand the big picture of developing software systems and realize how dif-
ferent components of the enterprise systems are related and interact with each other.

4.3. Model-View-Controller (MVC)

MVC was introduced by Trygve Reenskaug in 1978 to address, according to (Re-
enskaug, 2003) the “user’s mental model of the relevant information space”. In this
way, the user was indeed able to further inspect and edit the design. Furthermore, it was
extended to include current day to day challenges in iterative design and development
(Reenskaug, 2003). Later, several different researchers and engineers implemented
MVC in different contexts. For example, a group implemented MVC for the Smalltalk
programming language in 1987 and eventually MVC was accepted as a general design
concept in 1988. Nowadays, the MVC pattern is widely used in modern web applica-
tion development.

The concept of the MVC pattern creates the foundation for several recent develop-
ment frameworks such as Laravel (Rajput, 2020), Spring (“Spring Web MVC”, n.d.),
and similar ones. Development frameworks are built to provide necessary tools and
supporting libraries to hide some of the development complexities. The MVC asks de-
velopers to split a system into three main parts: The Model, the View, and the Controller.
The model represents the entities or objects that are used to store application data. The
view layer, on the other hand, is visually modeling the gateway to the system by users
to make it easy to understand how the ‘model information’ is accessible and interacted
with. Finally, the controller includes the main logic of the system and is placed between
the model and view layers to facilitate communications and interactions between them.
In addition, the controller plays a vital role in performing all the logic in the applications
to ensure it is worked properly and is applied to execute the actions we can perform
inside our system. In short, the MVC pattern makes building an application easier by
separating these three layers.

When we construct an application using MVC paradigm, the dependencies between
layers which create many issues during the development are isolated and reduced. Fur-
thermore, it is easier to maintain a system built in MVC pattern and is notably scalable
and expandable (due to reusable components) to the needs. In addition, all the tasks
of the different system layers are clear and transparent to different developers. Fig. 6
depicts the MVC design pattern as an architecture diagram and shows how these layers
are interacting with each other. The user through the view can notify the system what
information is needed to be updated and the controller performs the task and updates
the model. During the information retrieval, the model would notify the controller to
provide the information to the user through the view. This is a very transparent model
of an application.

We argue that MVC provides the right level of abstraction to be used for teaching and
learning as it is built to visually model a complex system. Higher levels of abstraction of
design patterns are not very usable by learners and practitioners as indicated in (Budgen,

Teaching Software Engineering using Abstraction through Modeling 527

2013), however, a suitable pattern such as MVC with proper choice of technology can
help the learners significantly as discussed in the next subsection.

4.3.1. Case Study of Transforming Design Pattern to Practice
As a case study we are going to represent an open-source framework which is specifi-
cally built for MVC-based web application development called Laravel. Web applica-
tions are built widely as internal and external special purpose enterprise software and
evaluated by two major quality factors of stability and scalability. The two major threat
to these factors are unstructured codes and architecture. Moreover, a project team needs
to decide on assigning developer roles based on the enterprise application architecture
and the developers’ expertise. For example, frontend and backend developers need to
understand the overall design clearly to be able to follow and guarantee the system’s
integrity and particularly the business rules (Pop, 2013). There are several frameworks
that tackle this issue for system designers by offering the built-in design pattern and
architecture.

One of the well-known web development frameworks is Laravel which follows
MVC based architectural pattern and is fully object-oriented. Laravel allows system
designers to model their system based on the built-in pattern. As a result, developers
can create full-featured enterprise software based on the best practices and a built-in
design pattern.

Fig. 7 illustrates a Laravel project structure. For each layer of the MVC pattern, there
is a directory in the project as highlighted. Code development as well as teaching and
learning of it follows the theory in an abstract form with a clear mapping to the actual
code development in a smooth and straightforward way.

The design and implementation processes can be easily merged using such concepts.
For instance, Fig. 8 represents a simple class diagram that a system designer can model

Fig. 6. MVC Architecture Diagram.

M. Dorodchi et al.528

after setting up a Laravel project. Laravel framework gives software system designers a
logical and analytical insight to build integrated and robust modeling.

Furthermore, MVC frameworks enable the software system designer to focus on
modeling without taking time to implement patterns and practices as it complies with
the agile software development process. Fig. 9 shows the implementation of the MVC
pattern in Laravel software architecture.

Fig. 7. Laravel MVC project structure.

Fig. 8. Class diagram for implementing MVC pattern in Laravel.

Teaching Software Engineering using Abstraction through Modeling 529

Therefore, by engaging a modern framework such as Laravel, developers are rein-
forced to follow an abstract pattern such as MVC. The underlying robust tools integrated
into the framework facilitates the reinforcement process to provide a truly ideal model
for large enterprise application design (Rajput, 2020).

5. Conclusion

Abstraction as a fundamental notion in software engineering is presented in this work
emphasizing on hierarchical representation to simultaneously hide and reveal the com-
plexity of current information systems. This process facilitates the communication about
the system within the development team and with the stakeholders.

In this study, we applied the concept of abstraction by discussing on modeling and
adapting the notion of design patterns. Modeling provides the step-by-step approach in
gaining the holistic view of a system while understanding what needs to be done. Based
on abstraction, modeling techniques need to be used in a hierarchical order to help the
learns. Hybrid modeling techniques such as structural and object-oriented can help with
a multidimensional view of the system.

Moreover, we adapt the concept of design patterns to software engineering educa-
tion in providing scaffolded models for collaboration and teamwork practices. We dem-
onstrated examples of how to adopt and adapt object-based design patterns for such
purposes.

And finally, we demonstrated how the practical knowledge of architectural patterns
such as MVC are essential to help learns understand system development. Some tradi-
tional patterns in the field of software architecture have broader context and lack details
for implementation which makes the application of architectural patterns difficult for

Fig. 9. Laravel framework architecture diagram.

M. Dorodchi et al.530

students. To address this challenge, a pattern in the right level of abstraction with a cor-
responding matching technology could offer more depth and breadth based on the con-
text of the problem beyond specific issues for example in object-oriented programming.
As an example, a web development framework such as Laravel can help students learn
design and implementation using MVC patterns.

In conclusion, students in SWE courses usually demonstrate some difficulties with
a thorough understanding of the big picture of the system and its challenging for them
to implement the systems. By using the modeling, teamwork, proper patterns and cor-
responding technologies, students can get hands on experience in system development
while appreciating the theory of abstraction.

References

ACM. (2013). The Joint Task Force on Computing Curricula Association for Computing Machinery (ACM)
IEEE Computer Society. Computer Science Curricula 2013, Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science.

Aldaeej, A., Badreddin, O. (2016). Towards promoting design and UML modeling practices in the open source
community. In: 2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), pp. 722–724.

Alexander, C. (1977). A Pattern Language: Towns, Buildings, Construction. Oxford University Press.
Booch, G., Rumbaugh, J., Jacobson, I. (2005). The Unified Modeling Language User Guide, 2nd edition (July

12, 2017). Addison-Wesley.
Budgen, D. (2013). Design Patterns: Magic or Myth? IEEE Software.
Cetin, I., Dubinsky, E. (2017). Reflective abstraction in computational thinking. The Journal of Mathematical

Behavior, Volume 47, 70–80. https://doi.org/10.1016/j.jmathb.2017.06.004
Cortez, R., Vazhenin, A. (2015). Virtual Model – View-Controller Design Pattern: Extended MVC for Service-

Oriented Architecture. IEEJ Transactions on Electrical and Electronic Engineering. IEEJ Trans 2015, 10,
411–422. Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/tee.22101

Curry, E., Grace, P., (2008). Flexible self-management using the model-view-controller pattern. IEEE Soft-
ware, 25(3), 84–90. DOI: 10.1109/MS.2008.60.

Dehbozorgi, N., MacNeil, S., Maher, M.L., & Dorodchi, M. (2018, October). A comparison of lecture-based
and active learning design patterns in CS education. In: 2018 IEEE Frontiers in Education Conference
(FIE). IEEE, pp. 1–8.

Dehbozorgi, N. (2017, August). Active learning design patterns for CS education. In: Proceedings of the 2017
ACM Conference on International Computing Education Research, pp. 291–292.

Dorodchi, M., Al-Hossami, E., Nagahisarchoghaei, M., Diwadkar, RS., Benedict, A. (2019). Teaching an Un-
dergraduate Software Engineering Course using Active Learning and Open Source Projects. In: 2019 IEEE
Frontiers in Education Conference (FIE), pp. 1–5. DOI: 10.1109/FIE43999.2019.9028517.

Dorodchi, M.M., Dehbozorgi, N., Benedict, A., Al-Hossami, E., Benedict, A. (2020). Scaffolding a team-based
active learning course to engage students: A multidimensional approach. 2020 ASEE Annual Conference
Content Access. ASEE, Virtual.

Dorodchi, M., Powell, L., Dehbozorgi, N., & Benedict, A. (2020) Strategies to Incorporate Active Learning
Practice in Introductory Courses. Chapter 2: Design patterns for active learning. In: Keith-Le, J. A. & Mor-
gan, M. P. (Eds.) (2020). Faculty experiences in active learning: A collection of strategies for implementing
active learning across disciplines. UNC Press.

Erdogmus, H., Medvidovic´, N., Paulisch, F. (2018). 50 Years of Software Engineering. IEEE Software, 20–24.
Gacitua, R., Sawyer, P., Gervasi, V. (2010). On the effectiveness of abstraction identification in requirements

engineering. In: 18th IEEE International Requirements Engineering Conference, pp. 5–14, DOI: 10.1109/
RE.2010.12.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., & Patterns, D. (1995). Elements of Reusable Object-Oriented
Software Design Patterns. Massachusetts: Addison-Wesley Publishing Company.

Giunchiglia, F., Walsh, T. (1992). A theory of abstraction, Artificial Intelligence, 57(2–3), 323–389.
DOI: 10.1016/0004-3702(92)90021-O.

Teaching Software Engineering using Abstraction through Modeling 531

Kiczales, G. (1991). Towards a new model of abstraction in the engineering of software. In: Proceedings 1991
International Workshop on Object Orientation in Operating Systems.

Maher, ML., Dehbozorgi, N., Dorodchi, M., MacNeil, S. (2020) Chapter 10: Design patterns for active learn-
ing. In: Keith-Le, J. A. & Morgan, M. P. (Eds.) (2020). Faculty Experiences in Active Learning: A Collec-
tion of Strategies for Implementing Active Learning across Disciplines. UNC Press.

Medvidovic, N., Taylor, RN., Whitehead Jr., EJ. (1996). Formal modeling of software architectures at multiple
levels of abstraction. ejw, 714, 824–2776.

Medvidovic, N., Rosenblum, DS., Redmiles, DF., Robbins, JE. (2002). Modeling software architectures in the
Unified Modeling Language. ACM Trans. Softw. Eng. Methodol. 11(1) (January 2002), 2–57.
https://doi.org/10.1145/504087.504088

Pop, D-P., Altar, A. (2013). Designing an MVC Model for Rapid Web Application Development. 24th DAAAM
International Symposium on Intelligent Manufacturing and Automation, 2013.

Rajput, S. (2020, December 14). What are the reasons to choose Laravel MVC for web development? OSF
preprint. https://doi.org/10.31219/osf.io/fgq3z

Reenskaug, T. (2003). The Model-View-Controller (MVC) Its Past and Present.
Rugaber, S. (2006). Cataloging design abstractions. In: Proceedings of the 2006 international workshop on

Role of abstraction in software engineering (ROA ‘06). Association for Computing Machinery, New York,
NY, USA, 11–18. https://doi.org/10.1145/1137620.1137624

Rumbaugh, J., Jacobson, I., Booch, G. (2010). The Unified Modeling Language Reference Manual, Addison-
Wesley Professional; 2nd edition.

Salzer, H. (2010). Abstraction level hierarchy: The model and its significance for software engineering. In:
IEEE International Conference on Software Science, Technology & Engineering, SwSTE 2010, Herzlia,
Israel, June 15–16, 2010. DOI: 10.1109/SwSTE.2010.11.

Spring Web MVC, (n.d.) Retrieved from https://docs.spring.io/spring-framework/docs/ cur-

rentreference/html/web.html#mvc on 10/30/2021, Version 5.3.12. Last updated 2021-10-21
05:44:20 UTC.

Stumpf, RV., Teague, LC. (2006). teaching object-oriented systems analysis and design with UML. January
2006, Information Systems Education Journal.

Tuparov, G., Peneva, J., Asenova, P., Stanislav, I. (2007). Upskilling to object-oriented software development
with UML. In: Proceedings of the 2007 International Conference on Computer Systems and Technolo-
gies (CompSysTech ‘07). Association for Computing Machinery, New York, NY, USA, Article 70, 1–2.
https://doi.org/10.1145/1330598.1330673

Van der Westhuizen, C., Chen, P-H., Van der Hoek, A. (2006). Emerging design: new roles and uses for ab-
straction. In: Proceedings of 2006 international workshop on Role of abstraction in software engineering
(ROA ‘06). Association for Computing Machinery, New York, NY, USA, 23–28.
https://doi.org/10.1145/1137620.1137626

Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P. (2006). Modeling Software with Finite State Machines:
A Practical Approach. Auerbach Publications; 1st edition (May 15, 2006).

Wang, Y. (2007). Software Engineering Foundations: A Software Science Perspective, CRC Press.
Wedyan, F., Abufakher, S. (2020). Impact of design patterns on software quality: A systematic literature re-

view. IET Software, 14(1), 1–17.

M. Dorodchi is a full teaching professor of computer science at the University of North
Carolina Charlotte. His research interests are in data and predictive analytics/visual-
ization, with a focus on applications of analytics in academia and students’ success.
In addition, he has been extensively working on evidence-based teaching innovation,
computer science education research, software engineering education, educational tool
development, and K12 outreach curriculum development and broadening participation
in computing. His research has been supported by a number of NSF grant project as well
as State of North Carolina and local industries.

M. Dorodchi et al.532

N. Dehbozorgi is an Assistant Professor of Software Engineering at Kennesaw State
University, Marietta, GA. She earned her Ph.D. in Computer Science from the Universi-
ty of North Carolina Charlotte in 2020. She has worked in industry for several years as a
software engineer, product engineer, and project manager. The scope of her research lies
at the intersection of core computer science research (AI, NLP, and ML) and computing
education research particularly in learning analytics and collaborative learning.

M. Fallahian is pursuing his Ph.D. in Computer Science at the University of North
Carolina Charlotte. He has been working as a senior software engineer and software
architect for over ten years. His research interest lies in machine learning, software en-
gineering, big data, and database performance optimization. In addition, he has col-
laborated actively with researchers in designing software patterns and architecture on
applied machine learning projects.

S. Pouriyeh is an Assistant Professor of Information Technology at Kennesaw State
University, GA, USA. He received an M.Sc. in Information Technology Engineering
from Shiraz University, and his Ph.D. in Computer Science from the University of Geor-
gia in 2009 and 2018 respectively. His primary research interests span Federated Ma-
chine Learning, Blockchain, and Cyber Security.

