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Abstract. The notion of algorithm may be perceived in different levels of abstraction. In the 
lower levels it is an operational set of instructions. In higher levels it may be viewed as an object 
with properties, solving a problem with characteristics. Novices mostly relate to the lower levels. 
Yet, higher levels are very relevant for them as well. We unfold the importance of higher level 
abstractions for novices, by demonstrating the role of declarative observations of algorithmic 
problems, and the benefit of developing awareness of such observations in algorithmic problem 
solving. This is shown in a two-stage study, which first reveals the unfortunate lack of declarative 
observations, and then displays comparative results of experimental and control groups, which 
stems from different awareness and competence with declarative observations.
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1. Introduction

Consider the following algorithmic problem: “Given a long list of N different integers, 
output the largest drop in the list, which is the maximal difference between two (not nec-
essarily adjacent) integers such that the larger is to the left of the smaller.” For example, 
the largest drop in the list  3  0  4  7  2  1  5  is 6, due to the difference between the 7 and 
the 1. A simple problem for programming beginners? Not quite.

How do computer science (CS) novices approach this problem? In our experience, 
many novices offer erroneous, or inefficient cumbersome solutions to this problem. 
Some decide that the left-end of the largest drop must be the max list value (a hasty 
erroneous conjecture); others seek for each list integer its largest drop (an inefficient 
computation); and some invoke unnecessary subroutines for seeking “local maxima” 
and “local minima”. Observant novices see that: The left-end of the largest drop is 
larger than all the values to its left, and the right-end is smaller than all the value to its 
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right. This observation yields a simple on-the-fly solution (which repeatedly updates 
the max so far, and examines its differences from the next input values).

The latter observation expresses abstraction. It “captures” core entities on which to 
focus. And, it is declarative, in the sense that it expresses a declarative characteristic of 
the posed problem which is not tied to a particular computation scheme. One may capi-
talize on this characteristic in devising a suitable operational solution. The incorrect and 
inefficient solutions express various implementations of “direct translation” (Hegarty 
et al., 19995) of the problem text into naïve operational schemes, without “lifting” the 
point of view and extracting the essence.

The different problem solutions exemplify the gap between more and less ab-
stract perspectives of an algorithmic problem. The declarative observation encapsu-
lates a perception related to the problem-level of Perrenet et al.’s (2005) model of 
abstraction of the concept of algorithm (see next section). The other solutions express 
a perception of the program-level of the model, which focuses on the implementation 
of an operational computation. Knuth (in Hartmanis, 1994), Wing (2006) and others 
advocate thinking at both high and low abstraction levels. Yet, this is not necessarily 
what happens with novices, as exemplified above. In this paper we illuminate the lack 
of appropriate abstraction, and examine the outcome of an intervention aimed at ad-
dressing this deficiency.

In our experience, declarative observations are not the natural entities sought by al-
gorithmic problem solvers. Algorithms (or computer programs) are operational – they 
are composed of schemes of “to do” statements. It may just be natural to go for the 
“how” of the computation rather than the underlying “that” of the problem. (A wider 
“how/that” perspective is in Ryle’s (1946) “knowing how and knowing that”.) But 
then, abstraction is avoided, and the underlying problem perspective may be missing. 
In order to address this difficulty, awareness of the importance of the higher problem 
level should be elaborated. This level encompasses the facet of declarative observa-
tions (among additional things). The skill of reaching such observations is cognitive. 
The awareness of their importance in one’s problem solving process is metacogni-
tive.

A recent study by Seth et al. (2016) argues for awareness of the fundamental role 
of the process of problem solving. Additional studies advocate the incorporation of 
metacognition in learning (e.g., Mani and Mazumder (2013)) and the awareness of 
one’s location in her problem solving process (e.g., Loska et al., 2016; Prather et al., 
2019). These studies address the various stages of the problem solving process (e.g., 
Bloom’s (1956) stages, and Polya’s (1945) phases). We underline a specific element of 
the problem solving process – the element of seeking the “that” of the posed problem 
before advancing to the “how” of its solution.

In what follows, we display a two-stage study of: 1. Illumination of the lack of 
a “that” phase among novices; and 2. Elaboration on its awareness. In the first stage, 
a first problem solving questionnaire was posed to an experimental group for examin-
ing (possibly missing) capitalizations on declarative observations. In the second stage, 
an intervention underlined and exemplified the role of declarative characteristics, and 
an additional questionnaire was posed to the experimental group. This questionnaire 
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was also posed to a control group who studied the same materials but without underlin-
ing declarative characteristics.

The next section presents the background on abstraction for this study. Section 3 
displays the methodology of the two stages. Section 4 displays the results of the first 
stage. Section 5 displays the results of the second stage. Section 6 shows statistical 
analyses of within subjects (of the experimental group) and between subjects (of the 
experimental and control groups). The final section discusses the findings, and advo-
cates the essential role of declarative observations in developing algorithmic thinking 
already in early CS studies.

2. Background 

Abstraction is fundamental in mathematics and computer science. It is underlined and 
advocated by primary computer scientists from the very beginning. Dijkstra (1972) re-
gards abstraction as “one of the most vital activities of a competent programmer”, in 
arguing the significance of generalizing a variety of recognized cases. Aho and Ulman 
(1972) regard computer science as the “science of abstraction”, in which one of the core 
elements is modelling and representation. Knuth argues that natural computer scientists 
can move between levels of abstraction, seeing things ‘in the large’ and ‘in the small’ (in 
Hartmanis, 1994). Task forces for designing CS curricula repeatedly indicate abstraction 
as a fundamental CS notion (e.g., Denning et al., 1988).

Fundamental design elements, including top down design, abstract data types (e.g., 
Dale and Walker, 1996), and design patterns (e.g., Gamma et al., 1994) are inherently 
based on abstraction. They involve modelling, modularization, and zooming in and out 
upon examining and representing computational building blocks. Wing (2006) under-
lines these aspects of abstraction together with the characteristic of thinking at multiple 
levels of abstraction. Statter and Armoni (2016) offer the perspective of “changing the 
resolution”, in the sense of finding the right degree of resolution for a problem solver. 
They also offer the point of view of “ignoring the how and focusing on the what”, in the 
sense of using black boxes for which one does not need to know how an inner computa-
tion is conducted. 

Statter and Armoni examined the teaching of abstract thinking to novices by devel-
oping verbal descriptions and quality documentation before writing programs. The basis 
for their analysis was Perrenet, Groot, and Kaasebrood’s (PGK) four levels of abstrac-
tion of the concept of algorithm (2005):

 1. The execution level, where an algorithm is interpreted as a specific run on spe-
cific input, in a specific concrete machine.
 2. The program level, where an algorithm is an operational (“how”) entity, de-
scribed by a code of a specific programming language.
 3. The object level, where an algorithm is viewed as an object, not associated with 
a particular language. The algorithm’s properties such as invariance characteris-
tics, termination, and complexity measures are examined.
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 4. The problem level, where an algorithm is viewed as a black box, solving a prob-
lem. The focus is on the problem features, including its solvability and intrinsic 
complexity, such as the lower bound for any of its algorithmic solutions.

We illustrate these levels in brief with the following algorithmic task: “Given a list 
of N weights of students, determine whether they form a homogenous group; where 
a homogeneous group is one in which the weight difference between every two students 
does not exceed 5 kg.” Level-1 of the hierarchy involves a solution for a particular input 
example. Level-2 includes an algorithm for the general case. It may be efficient or inef-
ficient. An inefficient solution may compare the weights of every two students. Level-3 
may relate to the complexity measures of the level-2 solutions (viewed as objects); e.g., 
O(N²) in the case of the inefficient solution. Level-4 may involve, for example, the low-
est time bound for any solution of the problem. We argue that this level may also involve 
an insightful declarative observation of the problem, such as: “A group is homogenous if 
and only if the difference between its max and its min does not exceed 5”. (This observa-
tion yields a simple, elegant, and efficient O(N) solution.)

Quiet a few of Statter and Armoni’s students demonstrated the program level (lev-
el-2) in the activities. Previous, as well as later studies repeatedly show that significant 
number of novices remain in the program level (e.g., Haberman, 2004; Haberman et al., 
2005; Ginat and Blau, 2017). In addition, studies of both introductory courses and more 
senior courses show that students refrain from using black boxes, and refrain from re-
ferring to them as “atomic” objects, even though the utilization of black boxes may 
considerably simplify the computation (e.g., Haberman and Ben-David Kolikant, 2001; 
Armoni et al., 2006).

Ginat and Blau (2017) examined their findings through slightly different lenses, pri-
marily related to the object of thought and the process-object duality. They adopted the 
first two of the following three interpretations of abstraction levels, displayed by Hazzan 
(2002), who borrowed it from the domain of mathematics education:

Abstraction level as the I. quality of the relationships between the object of 
thought and the thinking person.
Abstraction level as a reflection of the II. process-object duality (of first perceiving 
a term, or a concept by its computation process, and later (at a higher level) by its 
encapsulation into an object).
Abstraction level as the III. degree of complexity of the concept of thought.

The first interpretation relates, in algorithmics, to familiarity with design patterns 
(e.g., summation, max computation, searching schemes), as well as awareness of cor-
rectness, efficiency, and modularity. The second interpretation relates to the duality 
between the operational level and the conceptual, declarative level. The former is 
necessary for a solution implementation, and tied to level-2 of the PGK hierarchy, 
expressing the “how” of the computation. The latter is tied to level-3 of the hierarchy, 
viewing an algorithm as an object. It is also tied to level-4, through (“that”) problem 
characteristics.

In what follows, we examine and analyze novices’ algorithmic solutions and per-
ceptions in light of both the PGK hierarchy and the interpretations I and II above, of 
abstraction levels.
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3. Methodology

The study included two stages, and involved an experimental group of 29 participants 
and a control group of 31 participants. The participants of the experimental group solved 
an initial questionnaire of 3 algorithmic tasks, and then solved a second questionnaire of 
3 tasks after intervention, in which declarative, “that” observations were underlined. The 
participants of the control group solved only the second questionnaire, after ordinary 
teaching of the same amount of time, in which the emphasis was on operative, “how” 
code-designs. We examined statistically both within-group and between-groups find-
ings, and interviewed some of the participants.

Both groups of participants participated in an elective algorithmic problem solving 
course in our university. The groups studied the course in consecutive years, first the 
experimental group and then the control group. The course involved algorithmic tasks 
and some related mathematical tasks; and focused on elements of algorithmic and math-
ematical thinking. Apart from algorithmic aspects, the course involved cognitive and 
metacognitive notions, including abstraction, the use of heuristics, monitoring of one’s 
problem solving process, awareness of underlying beliefs, and more. The course objec-
tive was to practice and comprehend problem solving, with participants who are already 
acquainted with the basics of CS and Math.

The students in the course had completed at least three semesters of CS/Math studies, 
including CS1 and CS2. The algorithmic tasks in the course involved sequence process-
ing, mathematical games, and additional combinatorial computations. Since our focus 
was on problem solving, we only expected familiarity with 1D/2D arrays, elementary 
design patterns such as counting, searching and sorting, and the notions of correctness, 
efficiency, and modularity. Efficiency was discussed with respect to both time and space, 
with “soft” relation to the complexity measures of O(N) and O(N²). The discrete math-
ematics needed was basic. All the tasks in the course were shortly stated (several lines) 
but usually non-immediate, in terms of the process of obtaining a sound solution. They 
involved hidden patterns, which were short to phrase, but sometimes challenging to 
recognize.

In the beginning of the course in both years of the study, the students were asked to 
solve a 75 min questionnaire, with 3 rather elementary algorithmic/programming tasks, 
in order to evaluate their initial knowledge and skills. The tasks involved devising algo-
rithms for: counting the number of appearances of the second-max in a list, a variation 
of binary search, and a variation of bubble-sort. The average grade of the experimental 
group was 72 (out of 100), and that of the control group was 75.

In the second week of the first year, the questionnaire of stage-1 of the study was 
posed to the experimental group. In the following two classes, we solved the question-
naire with the experimental group students, while underlying the notion of declarative 
observations. We elaborated on the “that” perspective, and demonstrated and practiced 
this perspective in both class and homework assignments. Two weeks later we posed the 
stage-2 questionnaire.

The two-week intervention described above involved a few short guidelines.
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After understanding a posed problem, examine diverse I/O cases, and try to ex- ●
tract characteristics of the problem. The characteristics should be of the problem, 
and not of solutions.
Observations should be phrased in a  ● declarative manner, not in an operational 
one. Yet, they should be relevant for operational considerations and their justifi-
cations.

The intervention involved a set of worked out examples, that were carefully cho-
sen, based on the approach of learning from examples (e.g., Zhu and Simon, 1987; Chi 
and Basok, 1989). They were of different levels of challenge. In addition, different 
examples involved different features, so that the examples offered width in terms of 
diverse problem characteristics.  The questionnaire tasks of stage-1 were among the 
examples. These tasks involved sequence processing that required capitalization on 
patterns. One involved a reverse perspective; another involved “tag” recognition; and 
a third, more challenging, involved value collection with corresponding “memoriza-
tion”.

Accurate phrasing of observations was challenging to many students. In addition, 
sometimes observations were not very meaningful. Nevertheless, experience in seek-
ing, recognizing, and phrasing was gained. And awareness of the relevant role of the 
“that” perspective was developed.

In the following year, we taught three classes to the control group, with the same 
task materials. The notion of declarative observations was not mentioned. Rather, class 
discussions about algorithmic solutions were conducted in a way that we regard as 
common, of examining mostly operational solution ideas offered by the students. The 
class discussions mostly involved an operational “how” language. These students were 
also given corresponding homework assignments. After three weeks into the course we 
posed to these control group students the stage-2 questionnaire.

Both groups of students cooperated with the described activities, and really enjoyed 
them. The challenges in the posed tasks rose interest and involvement. Students in both 
groups were enthusiastic, discussed the solutions among themselves, and appreciated 
elegant, concise, and simple observations.

The participants’ solutions in the two stages were collected and analyzed, both 
quantitatively and qualitatively. 

For stage-1, we summarized for each of the 3 tasks the number of the solutions that 
capitalized on “that” patterns (of declarative observations) and those that did not. We 
also extracted features of less desired ”how” solutions that did not capitalize on “that” 
patterns.

For stage-2, we conducted two comparative statistical calculations, using the 
Generalized Estimating Equation (GEE) procedure (Hardin and Hilbe, 2013), to assess 
rates of success of the intervention, of within-group and between-groups. The former 
involved pre-intervention and post-intervention data of the experimental group, and 
the latter involved post-intervention data of the experimental group and data of the 
control group. The data in each case was binary, in the sense of capitalization, or no-
capitalization on “that” patterns in the participants’ solutions.
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4. Findings of Stage-1

This section displays our findings and analysis of the experimental group solutions to 
the pre-intervention questionnaire, of 3 algorithmic problems (tasks). We mentioned fea-
tures of these tasks in the previous section. Each task is displayed with its solutions and 
some students’ sayings in interviews following their solutions. Then, we summarize the 
statistics of the student responses to the tasks, with respect to their demonstration of 
abstraction through capitalization on declarative observations. 

The 29 students of this group were given 90 minutes for solving the tasks. They were 
allowed to provide their solutions either in pseudo-code, or in a programming language 
of their convenience. They were requested to pay attention to correctness and efficiency, 
and briefly write the ideas underlying their solutions. Four students, who demonstrated 
different levels of competence were interviewed about their solutions.

4.1. a-b Substrings

The first task was the following.
T1. a-b substrings. Given a string of N characters from the abc, output the number 
of substrings that start with an a and end with a b. Counted substrings may overlap. 
Example: In the string  cdbaagbabbgbab  the number of a-b substrings is 15. (No-
tice that each of the first (left) two a’s appears in 5 a-b substrings.)
There were no erroneous solutions. Yet, the amount of inefficient solutions was large. 

More than half (18) of the solutions counted the number of substrings in a brute-force 
manner, by going back-and-forth over the given string, counting separately for each a 
the number of b’s that appear to its right. Those who offered this solution conducted 
a “direct translation” of the task specification into a naïve operational solution, and ex-
pressed level-2 of the PGK hierarchy. In a following interview, one of the students – P15 
(participant #15) – was very explicit:

“I do not see a different way to solve the task, as I need to count for 
each a the number of b’s that follow it. This is very clear from the task 
specification.”

The remaining 11 students capitalized on the following:
Each b “closes” a number of a-b substrings which is equal to the number of a’s that 
precede it.
This declarative observation expresses a reversed point of view, different from the 

natural “forward” one. The declarative perspective relates to the 4-th PGK level, as it 
specifies a task characteristic. An on-the-fly solution of counting a’s and increasing the 
counter of a-b substrings each time a b is met offers a considerable improvement of 
the naïve solution offered by P15, both time-wise and space-wise (no need to keep the 
input in memory).
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4.2. Increasing Sub-sequences

The second task involved counting of a different nature.
T2. Increasing sub-sequences. Given a long list of N different integers represent-
ing heights of a ridge, output the number of slopes that ascend from left to right 
(a slope involves 2 or more integers, starts from a lowest, bottom point and ends 
in a top).
Example: In the list 9 1 3 5 2 0 8 6 there are two such slopes – 1 3 5 and 0 8. 
(We do not regard the sub-lists 1 3 and 3 5 as relevant slopes, since the first does not 
reach the top, and the second does start from a lowest point.)
We were somewhat surprised to see that almost half (14) of the students “went over 

the list and collected slopes”, mostly by invoking a sub-routine that follows each slope 
from bottom to top. Their algorithmic solutions were cumbersome and error-prone, due 
to inaccurate recognitions of bottoms and tops. In a following interview, one of these 
students (P23) said the following:

“When I start processing a sub-sequence, I follow it until it ends; 
then, I prepare for the next sub-sequence. It is convenient to use a 
subroutine to collect sub-sequences.”

Another student (P16) indicated some challenges she faced in her solution process:

 “I had some difficulties in handling very short sub-sequences, of 
length 2, as they end right after they begin. In addition, I was not 
sure how to proceed in descending slopes, again, especially if they 
are very short.”

These students talked in operational “how” terms. They focused on the “natural” 
entities in the task specification – complete slopes, and did not realize that it is inap-
propriate here to focus on complete entities. Student P23 used a sub-routine, as kind 
of a black box, that in a sense expressed “pseudo abstraction”. Although his solution 
was modular, it was not insightful. The sub-routine only complicated matters. These 
students’ operational solutions relate to level-2 of the PGK hierarchy.

Some (3) students provided solutions that were difficult to understand. The rest (12) 
of the students were more observant and capitalized on the observation that:

The number of ascending slopes equals the number of beginnings of such slopes.
And a beginning has a V-shape form of three integers – larger-smaller-larger.
These observations are declarative, describing “that” characteristics of the task. 

As such, they relate to the 4-th level of the PGK hierarchy. A simple, elegant, on-the-
fly solution derives from these observations, based on seeking V shapes. The term 
(and drawing) “V shape” was used by P5 – one of the interviewed students. Four of 
the 12 students wrote descriptions that explicitly mention their declarative observa-
tions.
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4.3. Permutation Collection

The third task was harder than the first two.
T3. Permutation collection. Given a permutation of 1..N, whose integers should 
be collected one-by-one, according to their values, output the number of times in 
which there will be a need to move to the left during the “collection process”, which 
will start in the left end.
Example: For the permutation  4  5  1  3  6  2  the output should be 2, as first 1 and 
2 will be collected, then the collection process will return left to collect the 3, and 
then return left to collect the 4, from which it will proceed right, and collect the 5 
and 6.
We received many inefficient, or erroneous solutions. About a third (11) of the stu-

dents just simulated the collection process, and counted the number of moves to the 
left. About the same amount of students (12) tried to extract characteristics from the 
“shape” of the given permutation, but got it wrong. Many conjectured that the number 
of unordered adjacencies yields the output. For example, in the task statement, there are 
2 unordered adjacencies – 5 1 and 6 2. But, if we change the order of 1 and 3, we add 
an unordered adjacency without changing the necessary output. Some noticed the latter, 
and offered erroneous patches. In a sense, they turned to “pseudo that” observations, 
that were unsound (Ginat, 2007). One of these students (P16) justified her rationale 
with unfounded arguments.

The more observant (6) students capitalized on a sound observation that yielded 
a single read of the input from left to right, with a simple auxiliary memory.

An indication of an already read-value v implies that: a later read of the value v-1 
means a return to the left of the collection process.
The operational implementation of the above observation requires an array A, of 

N binary cells, for keeping the indications of the observation. An elegant solution fol-
lows. For the example, in the task statement, the initial values of A will be: 0 0 0 0 0 0; 
after reading the input 4, A will become: 0 0 0 1 0 0; after reading the input 5 and 1, A 
will be: 1 0 0 1 1 0; and upon reading the input 3, A will be updated accordingly (a 1 
will be put in its 3-rd bit), and the counter of the number of returns-to-the-left will be 
incremented by 1, due to the 1 already appearing in the 4-th bit. The correctness of the 
above idea may be justified by an invariant property that relates to the meaning of the 0 
and 1 values and their locations in A.

The students who displayed this solution did not phrase the above observation, but 
did recognize it, and expressed levels 3 and 4 of the PGK hierarchy, with relation to the 
task characteristics and the array utilization. 

Table 1 summarizes the solutions statistics of stage-1 tasks T1–T3. (In T2, three 
participants were excluded from the statistics, due to a vague solution.) We initially 
regarded T3 harder than T1 and T2. This will also be the case in the 3 tasks of the next 
stage – stage-2.
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5. Findings of Stage-2

This section displays our findings and analysis of the experimental group solutions and 
the control group solutions of the post-intervention questionnaire, of 3 algorithmic tasks 
(named T4, T5, T6). We regarded both questionnaire difficulty levels similar (including 
T6 harder than T4, T5, similarly to T3 vs T1, T2). We display each task followed by its 
solutions, and mention some written student comments on their solutions.

The 29 experimental-group students and the 31 control-group students were given 90 
minutes for solving the 3 tasks. They were allowed to provide their solutions in pseudo-
code or a programming language, and were requested to pay attention to correctness 
and efficiency, and briefly write the ideas underlying their solutions. Six students of the 
experimental group were interviewed about their view of the intervention experience 
and its outcome.

5.1. c-c-c Substrings

The first task involved string processing, somewhat different from that of stage-1.
T4. c-c-c substrings. Given a string of N characters from the abc, output the num-
ber of substrings that start with a c, end with a c, and between them there is exactly 
one (more) c.
Example: In the string  cdbccacbacacab there are 4 such substrings. The leftmost 
of them is cdbcc, and the rightmost is cbacac.
Many students of the control group started writing a solution right after reading the 

problem, and 17 of them offered a brute-force solution, with no insight into the prob-
lem. The experimental group students spent more time trying to analyze the problem, 
but not all of them came up with the relevant observation – 11 of them also offered the 
brute-force solution. The rest of the students in both groups noticed the following ob-
servation:

The number of c-c-c substrings equals the number of c’s in the string minus 2.
These observant students realized that every c in the string, apart from the last two, 

starts exactly one c-c-c substring, since a c-c-c substring includes exactly 3 c’s. This 
declarative observation relates to level-4 of the PGK hierarchy of abstraction, while the 
brute-force solution expresses only level-2.

Table 1
Statistics of the experimental group in stage-1

Demonstrated Abstraction

T1. a-b substrings 37.9%
T2. Increasing sub-sequences 46.2%
T3. Permutation collection 20.7%
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5.2. Permutation Sorting

The second task involved special sorting.
T5. Permutation sorting. Given a permutation of the N integers 1..N, kept in an ar-
ray A, sort the permutation into a decreasing order of values, so that it will be or-
dered in the form:  N  (N − 1)  (N − 2)  ..  2  1.
One should pay attention to efficiency here, and not hastily invoke some familiar 

scheme. Hasty tendency may lead to an inefficient solution. Some of the students in 
both groups – 12 in the control group 8 in the experimental group – employed a stan-
dard sorting scheme, usually Selection Sort, in which: N is searched and put in the left 
end, then N − 1 is searched and put next to it, and so on. This solution does not capital-
ize on the special problem characteristic that the values kept in A are a permutation of 
1..N. An efficient solution capitalizes on this characteristic, and relates values to loca-
tions, based on the following observation:

The leftmost value in A that is not yet in its final destination may be put directly there 
by swapping it with the value that occupies its destination. (Notice that the final des-
tination of value i is N − i + 1.)
The rest of the students realized this declarative observation, and implemented 

a corresponding operational solution: the leftmost value in A will be swapped with the 
value that occupies its location; then, the new value in the leftmost location of A will be 
handled similarly, and so on, until N will “arrive” to the leftmost location of A; at this 
point the computation will proceed in the same way with the second-from-left location 
in A; and so on. Six students of the experimental group wrote an explanation of their 
algorithm behavior with invariants equal or similar to the one below:

Swaps will be performed without searching. After k swaps, at least k of the values 
will be in their final destination in A.
The upper observation expresses the 4-th level of the PGK hierarchy, as it relates 

to a “that” characteristic of the task. The invariant observation expresses the 3-rd level 
of the hierarchy, as it captures the underlying property of the elegant computation de-
scribed above.

5.3. Interleaved 0-1

The last task is harder than the previous two, and requires a different observation that 
relates to locations of values.

T6. Interleaved 0-1. Given a list of 2N digits – N  0’s and N 1’s, arbitrarily ordered – 
output the minimal number of swaps between two digits that yield the interleaved 
list:  0 1 0 1 .. 0 1. A single swap may be performed between two digits that may or 
may not be adjacent. Note that only the number of swaps is required (and not the 
actual swaps).
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Example: For the string  1 1 0 1 1 0 0 0  two swaps are required (for example, a swap 
between the first 1 and the last 0, and a swap between the 5-th and the 6-th digits).
This problem is more challenging than the previous one. Some of the students felt 

initially at loss. Their tendency was to “break” sub-sequences of equal digits, by swap-
ping between 1’s in a sequence of 1’s and 0’s in a sequence of 0’s. More than two thirds 
(22) of the students of the control group offered solutions that are based on counting 
sub-sequences of 0’s and 1’s. Some of these solutions also related to lengths of these 
sub-sequences. Slightly less than half (14) of the students of the experimental group 
also followed this direction. Unfortunately, this direction involves heuristic conjectures 
that lead to erroneous solutions. As in the third task of stage-1 (T3), they turned to 
pseudo “that” observations, that were unsound.

The difficulty with the above solutions is that they are based on relative locations 
of adjacent values, while the key characteristic here is based on absolute locations. The 
following two observations relate to this characteristic:

All the 0’s should be in odd locations, and all the 1’s – in even locations.
If a 1 initially occupies a location of a 0, then there must be a 0 that occupies the 
location of this 1; and vice versa.
One swap may concurrently put in place 0 and 1 that are initially not in place.  

Thus, the total number of needed swaps equals the total number of 1’s that are initially 
in odd locations. The above assertions imply minimality, as a single swap cannot 
“take care” of more than two digits at a time. A simple operational implementation 
follows.

The remaining students in both groups (9 of the control group and 15 of the ex-
perimental group) noticed and wrote the first observation above. A few in each group 
did not turn to the second observation, and offered cumbersome solutions. Still, these 
students reached sound declarative observations of a “that” nature, and related to ab-
stractions of level 4 of the PGK hierarchy.

6. Within Group and Between Groups Comparisons

We conducted comparisons to assess success of the intervention – comparisons within 
the experimental group, and comparisons between the experimental and the control 
groups. We first display percentage comparisons in Tables 2 and 3 below, and then 
display Table 4 with results of statistical calculations. Finally, we display sayings of the 
experimental group students about their learning.

We remind the reader that the within group comparison refers only to the experi-
mental group, who attended the stage-1, T1–T3 questionnaire and then attended the 
stage-2, T4–T6 questionnaire after intervention. The between groups comparison refers 
to both groups, who attended the T4–T6 questionnaire, after studying the same learning 
materials in different ways for the same amount of time.

In order to assess rates of success, we analyzed the above data using the General 
Estimating Equation (GEE) procedure, which allows to relate to the binary outcomes 
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(abstract/non-abstract) of the student solutions of the tasks (Hardin and Hilbe 2013). 
Table 4 displays the analysis results.

Table 4 displays sizes of four different effects – time effect, group effect, problem 
effect, and interaction effect. Effect sizes are qualitative measures of the magnitude of 
the experimental effect. Each effect is displayed with a Wald value and a p value. The 
Wald value relates to a measure of magnitude, and the p value indicates its “solidity”. 
The lower the p value, the more solid is the effect. 

The time effect above measures the improvement within the experimental group, 
between the pre intervention and the post intervention; the group effect above measures 
the achievement difference between the two groups in their responses to the T4–T6 
questionnaire; the problem effect above measures the challenge-gap for the groups be-
tween the first two tasks and the third one; and the interaction effect measures the mu-
tual influence between the time and problem effects of the first (top) comparison, and 
between the group and problem effects of the (bottom) second comparison.

Table 2 and Table 4 show that the intervention yielded a significant progress in the 
demonstration of abstraction by the experimental group students. This is particularly 

Table 2
Experimental group demonstration of abstraction in the tasks of both stages.

Pre-intervention Abstraction Post-intervention Abstraction

T1 of stage-1:   37.9% T4 of stage-2:   62.1%
T2 of stage-1:   46.2% T5 of stage-2:   72.4%
T3 of stage-1:   20.7% T6 of stage-2:   51.7%

Table 3
Demonstration of abstraction of both groups in the tasks of stage-2.

Control Group Abstraction Experimental Group Abstraction

T4. c-c-c substrings 45.2% 62.1%
T5. Permutation sorting 61.3% 72.4%
T6. Interleaved 0–1 29.0% 51.7%

Table 4
GEE results for time, group, problem, and interaction effects

Type of Comparison Tested Effects

Pre vs. Post Intervention Time Effect:
Wald = 29.96, p <. 001

Problem Effect:
Wald=9.19, p=.010

Interaction Effect:
Wald = 2.67, p = .263

Experimental vs. Control Group Effect:
Wald = 3.04, p = .081

Problem Effect:
Wald = 11.86, p = .003

Interaction Effect:
Wald = 0.53, p = .796

Note. Wald refers to the Wald’s χ2 test for significant effect
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noticeable in the time effect of Table 4. Improvement between the stages was shown 
in all three tasks of the questionnaire, and especially in the third task, that was harder 
than the other two in both questionnaires. Table 3 and Table 4 show better performance 
in stage 2 of the experimental group compared to the control group. The group effect in 
Table 4 is not as solid as the time effect in the table, but still is significant. The problem 
effects in Table 4 reflect consistency in the difference between the third, harder task in 
each stage and the first two tasks. The interaction effects show very limited influence 
between the problem effects and the time effect and group effect, and enhance the valid-
ity of the analysis. 

We interviewed six students of the experimental group on their feelings about the 
intervention. Some particular sayings were:

“I liked the idea of examining the problem first, and not a right-away 
algorithm.”

“I would like to practice more. This was fun! Can you give us some 
more problems to solve? I felt that this experience made me a better 
problem solver.”

 “It was difficult for me to phrase declarative observations. But al-
though I struggled, and not succeeded much, I enjoyed it. The obser-
vations catch the essence. I like that.”

“I tried to find analogies to studied examples. I did not find exact ones, 
but still borrowed some ideas that helped me choose a direction.”

“I did not succeed in all the three tasks (of the second questionnaire), 
but I still felt that being aware of problem characteristics helped me 
in the solution process.”

All in all, our impression was that seeking declarative observations and phrasing 
them were not easy to some of the experimental group students. But, many enjoyed the 
challenge, and their awareness of examining the problem carefully, in a very particular 
way of seeking observations yielded progress; not only in their competence, but in their 
view of the problem solving process.

7. Discussion

The study displayed here illustrate the important role of declarative observations already 
in early algorithmic thinking. The posed problems in both stages of the study were short 
and required basic computational structures and design patterns. Yet, their solutions 
demonstrated that operational implementation is insufficient even at the early stages of 
novice programming. One should be well acquainted with coding, but must also develop 
awareness and competence in problem solving abstraction. Such abstraction should not 
only involve top down design and modelling (which is practiced to some extent), but 
also concise extraction of problem characteristic.
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We showed in our examination of student solutions the tendency of novices to brute-
force and direct translation of problem specifications into coding, without capitaliza-
tion on problem characteristics. The key to the suitable solutions was concise observa-
tions of various kinds. Sometimes they involved recognition of simple input features 
on which to focus (e.g., V shapes), sometimes they involved a reverse perspective, 
and sometimes they involved particular attention to value locations. The observations 
were declarative. They were based on I/O features of the given problems. They did not 
specify a way of computation, but only problem characteristics on which operational 
implementations may capitalize. The declarative phrasing expressed the abstract level 
which they encapsulated.

We related declarative observations to levels 3 and 4 (the object level and the prob-
lem level) of the PGK hierarchy of abstraction. These declarative observations widen, 
in a sense, the range of elements originally indicated for these levels (such as com-
plexity measures, solvability, and problem equivalence). They illuminate patterns on 
which operational implementations may capitalize, and justifications may be based 
upon. Although we did not require justifications of solutions here, one could see the 
potential of using such observations (e.g., observations of the last problem, for arguing 
minimality).

The findings illuminate novice tendencies to “go for the how” at the beginning of 
the process of algorithmic problem solving, with very limited metacognitive awareness 
of their solution processes. Cognitive competence was limited as well. We displayed 
an intervention for raising both awareness and competence. The intervention involved 
emphasis of declarative observations, and underlining of the “that” perspective during 
the problem solving process.

The statistical findings of stage-2 of the study and the student sayings demonstrate 
the assets of the intervention. These students developed abstraction competence follow-
ing their elaborated awareness of the relevant role of the “that” perspective. They also 
seemed to enjoy the process of which they became aware. It is our belief that tutors 
should encourage activities like the ones displayed in the intervention (including the 
questionnaires’ tasks) in developing their students’ awareness and competence in the 
problem solving process.
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