
Informatics in Education, 2021, Vol. 20, No. 4, 583–614
© 2021 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2021.26

583

Understanding Students’ Failure to use Functions
as a Tool for Abstraction – An Analysis of
Questionnaire Responses and Lab Assignments
in a CS1 Python Course

Pontus HAGLUND, Filip STRÖMBÄCK, Linda MANNILA
Linköping University, Sweden
e-mail: pontus.haglund@liu.se, filip.stromback@liu.se, linda.mannila@liu.se

Received: February 2021

Abstract. Controlling complexity through the use of abstractions is a critical part of problem
solving in programming. Thus, becoming proficient with procedural and data abstraction through
the use of user-defined functions is important. Properly using functions for abstraction involves
a number of other core concepts, such as parameter passing, scope and references, which are
known to be difficult. Therefore, this paper aims to study students’ proficiency with these core
concepts, and students’ ability to apply procedural and data abstraction to solve problems. We
collected data from two years of an introductory Python course, both from a questionnaire and
from two lab assignments. The data shows that students had difficulties with the core concepts,
and a number of issues solving problems with abstraction. We also investigate the impact of using
a visualization tool when teaching the core concepts.

Keywords: abstraction, core concepts, procedural abstraction, data abstraction, CS1, Python,
functions, prerequisites, parameter passing, scope, references, Python Tutor.

1. Introduction

Controlling complexity is a critical part of problem solving in programming. One im-
portant way of doing this is through abstraction. The key to solving a complex prob-
lem is not writing a complex solution, but rather to solve several simpler problems.
In particular, at the end of a CS1 course a student should have acquired several tools
which can be applied to create abstractions when solving complex problems. One of
these tools is user-defined functions, which can be used to hide complexity through
procedural abstraction and data abstraction. Many of these tools are typically taught in
depth, alongside abstraction, in introductory programming courses. Yet many students

P. Haglund, F. Strömbäck, L. Mannila584

struggle with cre ating and maintaining good abstractions in their code. Perrenet and
Kaasenbrood (2006) present students’ understanding of abstraction as ranging from
the execution level to the problem level, and Statter and Armoni (2020) found that
students need to move between these levels when solving problems. This implies that
students who are not proficient with the execution level, or the core concepts, will
have difficulties with the higher levels. As such, one possible reason for this struggle
is a solid understanding of the tools used for abstraction. For example, it is difficult to
utilize procedural abstraction without under standing how functions, parameter passing,
references, and return values work. Since Ma et al. (2007) pointed out that only 17%
of students hold an appropriate mental model of reference assignments at the end of
a CS1 course, these issues likely have an impact on students’ ability to use abstraction
when solving problems.

In this paper we aim to investigate how well students are able to create and maintain
ab stractions in an introductory programming course in Python, and whether this abil-
ity can be improved by highlighting prerequisite concepts such as parameter passing,
scope and references using Python Tutor. This is achieved by collecting data from two
consecutive years of an introductory Python course in the form of a quiz to assess these
prerequisite skills, and solutions to two lab assignments completed during the course.
From this data we aim to answer the following research questions:

RQ1 How well do students understand function calls, variable scoping and refer-
ences at the end of a CS1 course in Python? Does introducing Python Tutor
have an effect on students’ understanding of these skills?

RQ2 How well are students able to conceive and maintain the abstractions they cre-
ate during a medium-sized lab assignment?

RQ3 How can we detect, and help students detect, problems with their procedural
and data abstraction so that they can improve?

RQ4 Do students voluntarily apply abstraction to other assignments after a lab that
heavily scaffolds the use of abstraction?

The remainder of this paper is structured as follows: Section 2 introduces related
work, Section 3 describes the course from which data was collected in more detail,
Section 4 describes the method used for collecting and analyzing the data, Section 5
presents the results from the data analysis, Section 6 then discusses the results, and
Section 7 concludes the paper.

2. Related Work

In this Section we first introduce abstraction in general, followed by a survey of related
work on how abstraction is taught and the difficulties in teaching abstraction. Finally,
we provide an overview of the importance of fundamental skills, and how these can be
taught and assessed.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 585

2.1. Abstraction

Due to the broad nature of abstraction as a concept, there are many forms abstraction can
take when applied in computing. Liskov and Guttag (2000) highlight three types of ab-
straction: procedural abstraction, data abstraction and iteration abstraction. Procedural
abstraction is the act of using functions or procedures to encapsulate a piece of code that
performs a particular and well-defined task, so that other code can use the procedure
with out having to pay attention to how the task is actually performed. Data abstraction
is an extension of this idea to also include data. Thus, a data abstraction defines some
kind of abstract data type that is associated with a set of operations that are meaningful
to apply to the data. As such, a data abstraction specifies how data is manipulated rather
than its exact representation. Finally, an iteration abstraction provides a way to iterate
through a collection of data without detailed knowledge about how the data is stored.

In this paper we will focus on the first two types of abstraction: procedural abstrac-
tion and data abstraction. In particular, we will deal with procedural abstraction through
the creation of functions in Python, and data abstraction through the creation of abstract
data types (ADTs) as a collection of functions that operate on some data representation
(i.e., not using classes in Python).

There are many who argue for the importance of abstraction in computing. As an ex-
ample, Kramer (2007) likens the ability to create and use abstractions in computing with
everyday objects, such as maps and art, to illustrate the importance of being able to re-
move unnecessary details and focus on what is important. Ginat and Blau (2017) further
extends the idea by pointing out that different levels of abstractions exist and are useful
at different stages of solving a problem. Due to the importance of abstractions in com-
puting, Moström et al. (2008) examined if abstraction should be considered a threshold
concept, but found that while abstraction as a whole is likely not a threshold concept,
par ticular types of abstractions (like procedural abstraction and data abstraction) might
be threshold concepts.

Even though abstractions are indeed important in computing, Steimann (2018) points
out that some abstractions are counter-productive. What is typically referred to as leaky
abstractions are examples of such abstraction. In a leaky abstraction, it is necessary for
the user of the abstraction to be aware of some aspects of its implementation. The author
uses this to point out the importance of learning how certain abstractions are implement-
ed in order to be able to troubleshoot errors related to these leaky abstractions.

2.2. Teaching Abstraction

Perrenet and Kaasenbrood (2006) present students’ understanding of abstraction in four
levels, ranging from what they call the execution level to the problem level. At the first
and lowest level, students understand algorithms as a specific execution, while at the last
and highest level they understand them as a black-box that solves a problem regardless
of their environment. Statter and Armoni (2020) describe students need to move between
these levels when working with algorithms. They further describe that while it is trivial

P. Haglund, F. Strömbäck, L. Mannila586

for an educator to move between these levels (described as wearing different hats), the
same is not true for students. Wing (2006) explains that conceptualizing, which is part of
computational thinking, requires us to be able to think at multiple levels of abstraction.
Hazzan (2008) builds on this saying that awareness of different levels of abstraction is
something we should educate our students in. The author reasons that since abstraction
is a central theme for computer science, it is important that students are aware of the
existence of different abstraction levels and see the benefits of moving between them
consciously.

While many agree abstraction is important, teaching it is not trivial. Hazzan (2008)
writes that teaching abstraction is not without challenges, which Koppelman and van
Dijk (2010) noted is especially true when teaching novices. Hazzan (2008) describes
part of the challenge being the lack of rigid rules for abstraction and not being able to
teach it in relation to a single topic. It is also not enough to just offer mechanisms for
abstraction according to Koppelman and van Dijk (2010). Students should be taught
not only how a function works and affects the flow of the program, but also as a tool to
hide irrele vant details. Abbott and Sun (2008) finds that teaching the use of existing ab-
stractions is easier than teaching what is needed for students to invent new abstractions.
While the authors thinks the recognition of brilliance in abstraction can be taught, teach-
ing students to invent brilliant abstractions is not possible. Likening it to the difference
in recognizing brilliance in a script to being able to write a brilliant script, indicating that
learning to make something is more difficult than learning to recognize it.

Koppelman and van Dijk (2010) recommend three things for teaching abstraction:
start early, teach it consciously and stress the benefits of using it. They do not view
abstraction as something that is either mastered or not, but rather like something that
is learned gradually over time, which is why you should start early. The authors further
write that the teacher should continuously point out where abstraction is used and how
that abstraction differs from other abstractions, thus it is important that the instructor
teaches it consciously. They also write that students experience abstraction as being
complex and not easy to under stand, thus it is important for the instructor to stress the
benefits and illustrate how it makes things easier. Sooriamurthi (2009) suggests an exer-
cise where students develop a calendar as a good way of introducing students to many
important ideas of software development, amongst others abstraction and decomposi-
tion. The goal of the exercise being that stu dents learn to decompose larger problems
into smaller pieces and define what responsi bility each piece needs to have. An approach
that should be mentioned in this context is the Model-First approach to teaching abstrac-
tion. As stated by Bennedsen and Caspersen (2004), abstraction is one important skill
that this approach intends to develop in students.

2.3. Teaching Fundamentals

It is difficult to reason about abstractions without a good understanding of the mecha-
nisms provided by a language to create and maintain these abstractions. For example, in
order to understand a procedural abstraction, it is necessary to have basic knowledge of

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 587

how func tions (or procedures) work in the implementation language. In order to prop-
erly reason about the abstraction, it is also important to understand parameter passing
and return val ues. For data abstractions it is also important to understand the difference
between values and references, and how they behave in the implementation language.

In this way, it is reasonable to talk about these fundamental skills as being prereq-
uisites for abstraction, similarly to how Nelson et al. (2020) examined prerequisites to
course top ics, such as data structures, object oriented programming, and concurrency.
The authors found that many questions fail to assess only course topics, but also assess
prerequisites to some extent. This is likely also true for abstraction according to the
above reasoning. To find the prerequisite skills assessed by a question, Nelson et al. pro-
posed a method for coding questions using a codebook of prerequisite skills presented
in their paper.

Students’ difficulty with learning these fundamental skills have been studied exten-
sively. Qian and Lehman (2017) provides a good overview of these difficulties in their
lit erature review, where they highlight many difficulties in conceptual knowledge and
point out the importance of having a good mental model of the underlying computing
environ ment. Goldman et al. (2008) identified the fundamental concepts that were both
important and difficult according to a group of experts. Examples of these concepts are
parameter scope – use in design, issues of scope – local vs. global and memory model –
references/ pointers, all of which are important when working with abstractions.

Ma et al. (2007) studied how familiar students were with some of these fundamen-
tal skills at the end of a CS1 course, and found that only 17% of students held a viable
mental model of reference assignment. Further research suggests that visualizations can
be used to help students gain a better understanding of these concepts (Ma et al., 2009).
There are numerous such visualization tools for Python, for example Python Tutor (Guo,
2013), which we will use in this paper, and UUhistle (Sorva and Sirkiä, 2010).

3. Description of the Course

In this paper, we examine the performance of a group of computer science students dur-
ing their introductory programming course in Python. This course is given during the
first half of the students’ first semester. Before and during the course, students are given
a brief introduction to basic UNIX tools, and towards the end of the course, students
build a simple web application as a project. Aside from these two other tasks, the Python
course has the students’ full attention.

The course focuses on problem solving using imperative programming in Python. No
previous programming experience is required, but the majority of students have some
previous experience. Lectures introduce general programming structures and techniques
while lab assignments aim to develop and test the students’ grasp of these techniques and
structures. The labs are typically conducted in pairs using pair programming. The stu-
dents have access to TAs during most days. The TAs can aid students in solving the labs
and grasping the techniques. There are also lessons given by the course leader which
are optional and specifically targets students without previous programming experience.

P. Haglund, F. Strömbäck, L. Mannila588

Dojos are another optional learning opportunity during the course, and are offered at
three occasions. The majority of students choose to attend the dojos but as expected
a smaller quantity choose to attend the lessons.

In order to achieve a passing grade or better in the course students need to com-
plete two parts. The first part requires the students to complete the lab assignments. The
second part is an exam. The first part consists of 7 assignments, focusing on different
concepts:

Basic IO and data types. 1.
Control structures. 2.
Introduction to functions and parameter transfer. 3.
Introduction to abstract data types. 4.
Abstract data types and procedural decomposition. 5.
Higher order functions. 6.
Algorithms and files. 7.

The solutions studied in this paper are gathered from labs number 5 and 7. Once
a student or pair of students feel that they have solved a lab, a TA will inspect the so-
lution and verbally quiz the students on their solution and their understanding of the
concepts. If the solution and answers are adequate, the students are considered to have
passed that assignment.

The exam is given in a controlled computer environment at the university. The stu-
dents are given five problems to choose from and are required to solve at least two for
a passing grade. During this exam the students have access to a Python programming
book, the official Python documentation, as well as a single double sided page (A4) of
notes. The exam is five hours long. Once a student has solved a problem they submit
it to course staff. Within 15 minutes they receive a response indicating if the problem
is solved in an adequate way. If not, the student is told in what way their solution is
inadequate, and has the opportunity to fix their solution and try again. As long as the
student makes meaningful strides towards an adequate solution with each attempt there
is no limit to the number of attempts, except for the practical limit imposed by time
constraints.

4. Method

We collected data from two consecutive years of the course, which we refer to as years 1
and 2. The main difference between the two years is that Python Tutor was introduced in
the second year in order to better illustrate functions, parameters, scope, and references
to students. The visualization tool was used to illustrate programs during lectures and
as part of an assignment. The first demonstration occurred prior to assignment 3 in the
course, a few weeks before assignment 5 started. This demonstration centered around
why different data types are seemingly treated differently during parameter transfer to
functions, specifically why lists passed as parameters to function can have side effects
outside the function while some other types of data do not.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 589

Assignment 3 contained a small mandatory task that had to be completed before
start ing work on the rest of that assignment. During this task the students had to create 4
small programs that replicated a visualization from Python Tutor. The illustrations were:
1) cre ate a list and have two variables reference that same list, 2) create a list and have
two variables reference two distinct but identical lists by using copy, 3) calling a func-
tion with a list modifying the list outside of the function by use of reference, and finally
4) calling a function with a list as a parameter and using copy to avoid modifying the list
outside of the function. Their solutions were then to be presented to and discussed with
a TA at their earliest convenience, though they were allowed to proceed working on the
rest of the assignment in the interim. Python Tutor was also used to illustrate recursive
function calls during a lecture, this demonstration was after assignment 5 but before as-
signment 7 in the course.

An additional difference is that student interactions were limited during the second
year due to the ongoing pandemic. Normally students work in pairs on the same com-
puter, but due to the pandemic they had to collaborate in other ways. The suggested way
was to use screen-sharing to let both students in the pair see the contents of the screen
without having to be physically close to each other. As the students were still allowed
to be physically present in the same room, they could, however, talk to each other as
normal anyway.

Two types of data were collected during these two years: answers to a quiz and the
solutions to the lab assignments. We examine these in more detail below.

4.1. The Quiz

The students were given a quiz as a preparation for the final exam. The quiz consists
of 9 questions. Each question presents the student with a piece of code and asks the
student to trace the code in order to find the value of one to three variables as indi-
cated. The quiz was implemented as a web page that students access through either
their phone or through their laptop. The web page asks for the type and value of
each of the variables, and performs basic validation of data input by students. For
example, it verifies that lists contain integers and are well-formatted. The questions
are then automatically graded when all questions are answered, and students can see
their score as well as the correct answer to all questions. The code for all questions on
the quiz are shown in Table 1. From the table, we can see that the first four questions
mainly covered control structures and appending elements to lists, and that the latter
five questions introduce functions and explore scope, parameters, and references as
implemented in Python.

Students were given the quiz during the second half of the final two-hour lecture
in the course. At that time, students received an e-mail containing the link to the quiz,
and were asked to complete the quiz individually during the remainder of the lecture.
They were also asked not to execute any of the code while completing the quiz. Paper
copies were also available for students who were for some reason unable to complete
the online version of the quiz.

P. Haglund, F. Strömbäck, L. Mannila590

In order to arrive at an answer to RQ1 (how well students understand function
calls, variable scoping, and references, and if using Python Tutor improves students’
understand ing), it is necessary to connect students’ answer to the questions to the skills
assessed by each question. The first step of this process was to find which skills are as-
sessed by each question. As shown by Table 1, most of the questions ask for the value
of more than one variable, and in most cases these variables highlight different areas of
the concepts in volved. For example, in 7 it is possible to realize that the value of b is 10

Table 1
The nine questions in the quiz, including the answers to each question. Each question is
followed by the following prompt: “What is the value of the variables after executing the
code below?”

Question 1 Question 2 Question 3

a = [1, 2, 3]
b = 0
for i in a:
 b = b + i

What is b here?

a = [4, 2, 8, 1]
b = 0
for i in a:
 if i > 3:
 b = b + i

What is b here?

a = 0
b = []
while a < 5:
 b.append(a)
 a = a + 1

What are a
and b here?

Answer:
b = 6

Answer:
b = 12

Answer:
a = 5, b = [0, 1, 2, 3, 4]

Question 4 Question 5 Question 6
a = [2, 4]
b = []
for i in a:
 c = 0
 d = 0
 while c < i:
 c = c + 1
 d = d + c
 b.append(d)

What is b here?

def f1(a, b, c):
 a = a + 5
 b.append(2)
 c = [1, 2]

a = 1
b = [1]
c = [1]
f1(a, b, c)

What are a, b
and c here?

def f1(a, b):
 a[’v’] = 4
 b = {’v’: 3}

d = {’v’: 1}
e = {’v’: 2}
f1(d, e)
a = d[’v’]
b = e[’v’]

What are a
and b here?

Answer:
b = [3, 10]

Answer:
a = 1, b = [1, 2], c = [1]

Answer:
a = 4, b = 2

Question 7 Question 8 Question 9

b = 10

def f2(a):
 b = 20
 return a + b

c = f2(b)

What are a, b
and c here?

def f3(l):
 l.append(5)
def f4(m):
 m.append(7)
a = []
b = []
c = a
f3(a)
f3(b)
f4(a)

What are a, b
and c here?

def f5(b):
 b = b + 3
 return b

a = 1
b = 2
c = f5(a)

What are a, b
and c here?

Answer:
a is undefined, b = 10, c = 30

Answer:
a = [5, 7], b = [5], c = [5, 7]

Answer:
a = 1, b = 2, c = 4

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 591

by realizing that the assignment inside f2 creates a new variable in a separate scope,
but fail to compute the value of c due to a lacking understanding of parameter passing
for example. Because of this, we treat all questions that involve more than one variable
as a multi-part question during the analysis.

Since all skills involved in this quiz are skills that are typically considered to be pre-
requisites for other courses, we used the method proposed by Nelson et al. (2020) to find
which skills are assessed by each part of each question in the quiz. First, two researchers
in dependently coded the skills assessed by all parts using the codebook proposed by
Nelson et al. (2020). Since the codebook did not contain any skills corresponding to
dictionaries, we added such a skill when coding the questions. After both researchers
independently coded the questions, they met and discussed their coding until an agree-
ment was reached.

These skills can then be used to connect students’ skills to their responses on the quiz
using a statistical model. In the model, we describe each student in terms of their profi-
ciency (0 ≤ pi ≤ 1) with the skills that are assessed by the quiz. Using these skills, we
then model the probability of the student answering a particular part correctly as the sum
of the skills assessed by that particular part, scaled to the range [0, 1]. Assuming that cj
is 1 if the student answered correctly, and 0 if the student answered incorrectly, we can
summarize the model as:

Understanding Students’ Failure to use Functions as a Tool for Abstraction 9

using a statistical model. In the model, we describe each student in terms of their profi-
ciency (0  pi  1) with the skills that are assessed by the quiz. Using these skills, we
then model the probability of the student answering a particular part correctly as the sum
of the skills assessed by that particular part, scaled to the range [0, 1]. Assuming that cj
is 1 if the student answered correctly, and 0 if the student answered incorrectly, we can
summarize the model as:

cj ∼ Bernouli


n

i=1

pisij

 n
i=1

sij



Where s is a matrix where sij = 1 iff part j in the quiz assesses the skill i, and n is the
number of skills. In order to be able to compare skills between the two years studied in
this paper, and to get statistically significant results, we modify the model to encompass
the skills for an entire year. We do this by assuming that piy (y ∈ {1, 2}) is the average
skill for year y, and that cjxy is the correctness of student x in year y’s answer to part j.
Using these variables, we can write the model for comparing the two years as follows:

cjxy ∼ Bernouli


n

i=1

piysij

 n
i=1

sij



We then approximate this model as a generalized linear model (Nelder and Wedder-
burn, 1972) with a logistic link function to find the values piy and test the pairs of hy-
pothesesH0 : pi1 = pi2 vs.H1 : pi1 = pi2 for all i to find differences between the years.
We also investigate whether there were any significant difference between success rates
on any of the question parts between the two years using a similar logistic model, which
models the probability of successfully answering each question as a separate variable.

4.2. Lab Assignments

In this section we present the examined lab assignments, lab 5 and 7, in further detail, as
well as what data was collected from the two years.

4.2.1. Sokoban
In this assignment, the fifth assignment of the course, students are asked to implement the
game Sokoban. In the game, a worker is able to move in a grid with the goal of pushing
crates into specified locations. The worker is constrained by walls at certain locations in
the grid. The assignment emphasizes the need for abstraction (which is covered in the
course prior to the lab) and provides a few requirements that encourage students to think
about their abstractions. The lab is presented to the student in four parts in order to scaffold
the process. The first part strongly emphasizes creating an ADT to represent the board.
The second part encourages them to load a board from a text representation of the board
stored in a file (see Fig. 1). The third part is implementing collision detection and the forth

Where s is a matrix where sij = 1 if part j in the quiz assesses the skill i, and n
is the number of skills. In order to be able to compare skills between the two years
studied in this paper, and to get statistically significant results, we modify the model to
encompass the skills for an entire year. We do this by assuming that piy (y ∈ {1, 2})

is the average skill for year y, and that cjxy is the correctness of student x in year y’s
answer to part j. Using these variables, we can write the model for comparing the two
years as follows:

Understanding Students’ Failure to use Functions as a Tool for Abstraction 9

using a statistical model. In the model, we describe each student in terms of their profi-
ciency (0  pi  1) with the skills that are assessed by the quiz. Using these skills, we
then model the probability of the student answering a particular part correctly as the sum
of the skills assessed by that particular part, scaled to the range [0, 1]. Assuming that cj
is 1 if the student answered correctly, and 0 if the student answered incorrectly, we can
summarize the model as:

cj ∼ Bernouli


n

i=1

pisij

 n
i=1

sij



Where s is a matrix where sij = 1 iff part j in the quiz assesses the skill i, and n is the
number of skills. In order to be able to compare skills between the two years studied in
this paper, and to get statistically significant results, we modify the model to encompass
the skills for an entire year. We do this by assuming that piy (y ∈ {1, 2}) is the average
skill for year y, and that cjxy is the correctness of student x in year y’s answer to part j.
Using these variables, we can write the model for comparing the two years as follows:

cjxy ∼ Bernouli


n

i=1

piysij

 n
i=1

sij



We then approximate this model as a generalized linear model (Nelder and Wedder-
burn, 1972) with a logistic link function to find the values piy and test the pairs of hy-
pothesesH0 : pi1 = pi2 vs.H1 : pi1 = pi2 for all i to find differences between the years.
We also investigate whether there were any significant difference between success rates
on any of the question parts between the two years using a similar logistic model, which
models the probability of successfully answering each question as a separate variable.

4.2. Lab Assignments

In this section we present the examined lab assignments, lab 5 and 7, in further detail, as
well as what data was collected from the two years.

4.2.1. Sokoban
In this assignment, the fifth assignment of the course, students are asked to implement the
game Sokoban. In the game, a worker is able to move in a grid with the goal of pushing
crates into specified locations. The worker is constrained by walls at certain locations in
the grid. The assignment emphasizes the need for abstraction (which is covered in the
course prior to the lab) and provides a few requirements that encourage students to think
about their abstractions. The lab is presented to the student in four parts in order to scaffold
the process. The first part strongly emphasizes creating an ADT to represent the board.
The second part encourages them to load a board from a text representation of the board
stored in a file (see Fig. 1). The third part is implementing collision detection and the forth

We then approximate this model as a generalized linear model (Nelder and Wedder-
burn, 1972) with a logistic link function to find the values piy and test the pairs of
hy potheses H0 : pi1 = pi2 vs. H1 : pi1 ≠ pi2 for all i to find differences between
the years. We also investigate whether there were any significant difference between
success rates on any of the question parts between the two years using a similar logis-
tic model, which models the probability of successfully answering each question as a
separate variable.

P. Haglund, F. Strömbäck, L. Mannila592

4.2. Lab Assignments

In this Section we present the examined lab assignments, lab 5 and 7, in further detail, as
well as what data was collected from the two years.

4.2.1. Sokoban
In this assignment, the fifth assignment of the course, students are asked to implement
the game Sokoban. In the game, a worker is able to move in a grid with the goal of push-
ing crates into specified locations. The worker is constrained by walls at certain locations
in the grid. The assignment emphasizes the need for abstraction (which is covered in
the course prior to the lab) and provides a few requirements that encourage students to
think about their abstractions. The lab is presented to the student in four parts in order to
scaffold the process. The first part strongly emphasizes creating an ADT to represent the
board. The second part encourages them to load a board from a text representation of the
board stored in a file (see Fig. 1). The third part is implementing collision detection and
the forth is putting together a complete game, including menus, player input and so on.
After each part students are encouraged to discuss their thinking with a TA.

In the scope of this course, ADTs are implemented using only functions and built in
data types in Python. Classes are not part of the course. As such the students are them-
selves responsible for not violating the interfaces they create.

Aside from the rules of the game and the format of the input data, the assignment is
fairly open-ended, but with guidance available on a daily basis from TAs. Aside from
a few requirements, there is a lot of room to solve the lab as you see fit, including how
you represent the board. The requirements are as follows:

Your solution should contain a function ● player_can_move that determines
whether the player character (the worker) can make a particular move. Either in
a direction or to a given square on the board.
Your solution should contain a function ● crate_can_move that determines
whether a crate can be moved. Either in a direction or to a particular square on
the board.

10 P. Haglund et al.

is putting together a complete game, including menus, player input and so on. After each
part students are encouraged to discuss their thinking with a TA.

In the scope of this course, ADTs are implemented using only functions and built in
data types in Python. Classes are not part of the course. As such the students are themselves
responsible for not violating the interfaces they create.

############
#.. # ###
#.. # o o #
#.. #o#### #
#.. @ ## #
#.. # # o ##
##o o

o o o o
#
############

Symbol Meaning

@ Worker
o Box
Wall
. Storage space

(space) Floor
* Box on storage space
+ Worker on storage space

Fig. 1. Example of a map (left) as it appears in a text file with sample maps given to students, and the meaning
of each symbol (right). Even though not explicitly required, this is also how all submissions output the board
during gameplay.

Aside from the rules of the game and the format of the input data, the assignment is
fairly open-ended, but with guidance available on a daily basis from TAs. Aside from a
few requirements, there is a lot of room to solve the lab as you see fit, including how you
represent the board. The requirements are as follows:

• Your solution should contain a function player_can_move that determines
whether the player character (the worker) can make a particular move. Either in
a direction or to a given square on the board.

• Your solution should contain a function crate_can_move that determines
whether a crate can be moved. Either in a direction or to a particular square on
the board.

• Your solution should contain a function for displaying the board.
• Your solution should contain a function for loading a board from a text file.
• You are not allowed to store space characters in your representation of the board.

The last requirement is in place to prevent students from storing the board as a 2D-
matrix using built-in types. By preventing students from storing any representation of
the floor, many manipulation of the data structure that circumvents the interface becomes
cumbersome enough to make it easy for students to see that a proper interface is necessary
and useful. The creation and use of an ADT to represent the board is heavily emphasized
during the lecture leading up to the lab and in interactions with TAs.

From each of the submitted solutions to this labwe extracted the following information:

Fig. 1. Example of a map (left) as it appears in a text file with sample maps given to students,
and the meaning of each symbol (right). Even though not explicitly required, this is also how
all submissions output the board during gameplay.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 593

Your solution should contain a function for displaying the board. ●
Your solution should contain a function for loading a board from a text file. ●
You are not allowed to store space characters in your representation of the board. ●

The last requirement is in place to prevent students from storing the board as a 2D-
matrix using built-in types. By preventing students from storing any representation of
the floor, many manipulation of the data structure that circumvents the interface be-
comes cumbersome enough to make it easy for students to see that a proper interface is
necessary and useful. The creation and use of an ADT to represent the board is heavily
emphasized during the lecture leading up to the lab and in interactions with TAs.

From each of the submitted solutions to this lab we extracted the following informa-
tion:

What ADTs were present in the code. We identified ● board (the game board), thing
(common ADT representing worker, box, wall, storage space, and floor), and level
(one or more boards in a representation suitable to store on a file).
Information about functions. For each function: how long is it, and which ADTs ●
are it a part of (i.e., which abstractions does it break).
Are the following aspects of the logic implemented as a free function, or do they ●
belong to a particular ADT?

Displaying the menu. ○
Drawing the screen. ○
Processing input. ○
Determining if a move selected by the player is legal. ○
Performing the actual movement. ○
Checking if the game has ended. ○

Where does the implementation decide how a specific square should be dis- ●
played?

4.2.2. Copyright
In this assignment, the seventh assignment of the course, students are asked to im-
plement a small utility that replaces all text between BEGIN COPYRIGHT and END
COPYRIGHT in a source file with the contents of another text file that contains the de-
sired text. The program should either operate on one or more individual files, or on an
entire directory. This choice in functionality should be controlled by passing command
line arguments to the program. It should also be able to rename files if the user desires
to do so, which is also controlled by command line arguments. Aside from specifying
the functionality and the command line parameters, the assignment does not specify
any particular requirements to guide the implementation in one way or another, but
as this assignment is after the Sokoban assignment, students should have the tools to
apply abstraction to simplify the problem. Guidance from TAs is still available during
most days.

As this problem does not contain any ADTs per se, we focus on abstracting the func-
tionality using functions that can be called multiple times. For each of the submissions,

P. Haglund, F. Strömbäck, L. Mannila594

we examine in which functions each of the following high-level steps are performed, as
well as if the functionality was duplicated:

Read and process the command line arguments. 1.
Find the files to process (if a directory was given). 2.
Read the file with the copyright text. 3.
Read the file(s) that will be modified. 4.
Modify the file contents. 5.
Write the file(s) back to disk. 6.
Rename the file (if desired). 7.

For each solution, we assigned each function a number based on the order in which
they were declared in the source file, and recorded the function (or functions in some
cases) where each step was implemented. Any code in the global scope was treated as
if it was inside a function with the number zero. Solutions where all code was placed in
a single main function with no parameters was treated as if it was located in the global
scope. In order to be able to compare different solutions, we normalized the recorded
numbers by re-labeling functions based on the order in which they appear in the list of
high-level steps. For example, one solution might be recorded as 0-2-0-1-1-1-0,
meaning that step 1 is in the global scope, step 2 is in the second declared function,
and so on. This becomes a-b-a-c-c-c-a after normalization. The letter a is used
for the first function that appears in the sequence, b for the second, and so on. We
call this form a solution’s signature. This preserves data about what functionality was
implemented in the same function but allows easy comparison of solutions, since the
solutions 0-2-0-1-1-1-0 and 0-3-0-2-2-2-0 both become a-b-a-c-c-a
after normalization.

For each submission, we also recorded three high-level properties related to abstrac-
tion: whether any global variables were used, whether there was a function that modified
a single file, and whether or not the file with the copyright text was read more than once
if multiple files were processed. We treated any variables that were used to carry data
be tween functions outside of parameters or return values as global variables. Since it is
not relevant to talk about global variables in solutions where all code is in the global
scope (whether inside a main function or not), these were handled as a special case in
terms of global variables. Ideally, a student would create one function that is responsible
for updat ing the copyright information in a single file, only read the copyright data once,
and does not use global variables.

5. Results

In this section, we present the results of the empirical analysis in this paper. First, we
present the results to the quiz, and then the results from analyzing the solutions to the
lab assignments.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 595

5.1. The Quiz

A total of 59 answers to the quiz were collected across the two years, 34 from year 1
and 25 from year 2. In Fig. 2, we present the amount of correct answers to each part
of each question in the quiz. From this overview, we can see that more than 50% of
students in both years answered incorrectly on parts 4b, 5a, 5c, 6b and 8c. We can also
see that year 2 performed slightly worse overall compared to year 1, but only 3b and 6b
were significant on a 95% level. On parts 6a, 7a and 7b students in year 2 did, however,
perform slightly better than students in year 1, even though this difference is not statisti-
cally significant.

The results from coding each part of the questions in the quiz are shown in Fig. 3.
From this, we can see that the quiz assesses 12 skills in total, and that the skills simple
statements, assignments, tracing and operators are assessed by all parts. Using this
infor mation, we can find the combination of skills assessed in the five difficult parts in
Fig. 3. For part 4b, we can see that it assesses the same skills as parts 1b and 2b (which
also as sesses conditionals), which means that its structure (nested loops) is likely the
reason for this difficulty. Parts 5a and 5c both asses functions: parameters, functions:
scoping and values and references in addition to the common skills. Since students
performed better on part 5b, where the variable was altered in the function, this points
towards difficulties in either functions: parameters or values and references. We see
the same situation in part 6b, where the variable is not changed by the function, just
like in part 6a. Finally, we can see that part 8c is the only part of question 8 that as-
sesses values and references, which once again points to issues with this category. This
reflects the observations of Ma et al. (2007), who also pointed out students’ difficulties
with references.

5.1.1. Comparing Skills
Based on the coding presented above, we model each year’s proficiency with these 12
skills using a statistical model as outlined in Section 4.1. Since some skills, namely simple
statements, assignments, tracing and operators, always appear together they were merged
into a single abstract skill as the model would not be able to tell them apart anyway. Fur-

12 P. Haglund et al.

main function with no parameters was treated as if it was located in the global scope.
In order to be able to compare different solutions, we normalized the recorded numbers
by re-labeling functions based on the order in which they appear in the list of high-level
steps. For example, one solution might be recorded as 0-2-0-1-1-1-0, meaning that
step 1 is in the global scope, step 2 is in the second declared function, and so on. This
becomes a-b-a-c-c-c-a after normalization. The letter a is used for the first function
that appears in the sequence, b for the second, and so on. We call this form a solution’s
signature. This preserves data about what functionality was implemented in the same
function but allows easy comparison of solutions, since the solutions 0-2-0-1-1-1-0
and 0-3-0-2-2-2-0 both become a-b-a-c-c-a after normalization.

For each submission, we also recorded three high-level properties related to abstrac-
tion: whether any global variables were used, whether there was a function that modified
a single file, and whether or not the file with the copyright text was read more than once
if multiple files were processed. We treated any variables that were used to carry data be-
tween functions outside of parameters or return values as global variables. Since it is not
relevant to talk about global variables in solutions where all code is in the global scope
(whether inside a main function or not), these were handled as a special case in terms of
global variables. Ideally, a student would create one function that is responsible for updat-
ing the copyright information in a single file, only read the copyright data once, and does
not use global variables.

5. Results

In this section, we present the results of the empirical analysis in this paper. First, we
present the results to the quiz, and then the results from analyzing the solutions to the lab
assignments.

5.1. The Quiz

A total of 59 answers to the quiz were collected across the two years, 34 from year 1 and
25 from year 2. In Fig. 2, we present the amount of correct answers to each part of each

1b 2b 3a 3b* 4b 5a 5b 5c 6a 6b* 7a 7b 7c 8a 8b 8c 9a 9b 9c
0%

20%

40%

60%

80%

100%

Pe
rc
en

ta
ge

of
co

rr
ec

ta
ns

w
er
s

Year 1
Year 2

Fig. 2. Overview of the answers from the quiz. Answers marked as “I don’t know” are excluded. Parts with a
significant difference (on a 95% level) are marked with an asterisk.

Fig. 2 Overview of the answers from the quiz. Answers marked as “I don’t know” are ex-
cluded. Parts with a significant difference (on a 95% level) are marked with an asterisk.

P. Haglund, F. Strömbäck, L. Mannila596

thermore, since this merged skill appears in all questions, it can also be interpreted as
the overall skill level for each year. After fitting the model to the data, we performed 12
t-tests, comparing the performance of each skill between year 1 and year 2. This resulted
in 3 skills with significant differences (i.e., p < 0.05). Note that due to the nonlinearity of
the model, it is not necessarily relevant to quantify the size of the differences.

The proficiency with the merged skill (● simple statements, assignments, tracing
and op erators) decreased significantly from year 1 to year 2 (p = 0.0438). This is
not surpris ing, since one interpretation of this skill is the overall proficiency level
of the years, and the overall results, presented in Fig. 2, decreased from year 1 to
year 2.
The proficiency with ● functions: scoping increased from year 1 to year 2 (p =

0.0393). This is consistent with the increased amount of correct answers for parts
7a and 7b, even if these increases were not significant on their own.
The proficiency with the skill ● indirection also increased from year 1 to year 2 (p =

0.0271). This is not as clearly visible in Fig. 2.

Understanding Students’ Failure to use Functions as a Tool for Abstraction 13

Table 2
Skills assessed by each part of each question in the quiz.

Part ar
ra
y
ite

ra
tio

n

ar
ra
ys

as
sig

nm
en

ts

co
nd

iti
on

al
s

di
ct
io
na

rie
s

fu
nc

tio
ns

:p
ar
am

et
er
s

fu
nc

tio
ns

:r
et
ur
n

fu
nc

tio
ns

:r
et
ur
n
va

lu
es

fu
nc

tio
ns

:s
co

pi
ng

in
di
re
ct
io
n

lo
op

co
ns
tru

ct
s

op
er
at
or
s

sim
pl
e
sta

te
m
en

ts

tra
ci
ng

va
lu
es

an
d
re
fe
re
nc

es

1b       

2b        

3a     

3b      

4b       

5a       

5b       

5c        

6a        

6b       

7a     

7b     

7c      

8a       

8b       

8c        

9a       

9b     

9c      

question in the quiz. From this overview, we can see that more than 50% of students in
both years answered incorrectly on parts 4b, 5a, 5c, 6b and 8c. We can also see that year 2
performed slightly worse overall compared to year 1, but only 3b and 6b were significant
on a 95% level. On parts 6a, 7a and 7b students in year 2 did, however, perform slightly
better than students in year 1, even though this difference is not statistically significant.

The results from coding each part of the questions in the quiz are shown in Table 2.
From this, we can see that the quiz assesses 12 skills in total, and that the skills simple
statements, assignments, tracing and operators are assessed by all parts. Using this infor-
mation, we can find the combination of skills assessed in the five difficult parts in Table 2.
For part 4b, we can see that it assesses the same skills as parts 1b and 2b (which also as-
sesses conditionals), which means that its structure (nested loops) is likely the reason for
this difficulty. Parts 5a and 5c both asses functions: parameters, functions: scoping and
values and references in addition to the common skills. Since students performed better
on part 5b, where the variable was altered in the function, this points towards difficulties

Fig. 3. Skills assessed by each part of each question in the quiz.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 597

5.2. Lab Assignments

In this Section we present the results from the analysis of the lab assignments. To pre-
serve the anonymity of the participants, we have anonymized all code examples present-
ed in this section. This was done by altering some lexical aspects of the source code, for
ex ample replacing function-and variable names with synonymous ones, and re-ordering
if-statements. Care was taken to preserve the semantics and intent of the original code,
in order to not affect the results presented below.

5.2.1. Sokoban
In total 36 submissions were analyzed, 21 from year 1 and 15 from year 2. Table 2 shows
where the display symbol for each square was determined in the program. We found
three possible locations of the logic to determine the display symbol for a particular
square. They are as follows:

The choice of how the worker looks is not dependent on the chosen representation 1.
of a worker in the board ADT.
The choice of how the worker looks is somewhat dependent on the chosen 2.
representa tion of the worker in the ADT. The student(s) stores one symbol to rep-
resent the worker in the ADT and when displaying the board translates that sym-
bol directly to another.
The choice of how the worker looks is dependent on the chosen representation of 3.
the worker in the ADT. When displaying a square on the board the students prints
the symbol for the worker stored in the ADT.

Most students use option 3, which is the worst option since these submission shows
no awareness (or ability to see the benefit of) separating what is displayed and what is
stored. The majority of the submissions store symbols that have a direct connection to
the look of a square when displayed. 5 out of 36 submissions have no dependency be-
tween the internal representation of a square on the board and what is displayed to the
player. Of the other submissions the majority stores the symbol that will be displayed
directly in the ADT. The submissions from year 2 have a larger part of the submissions
directly store the symbol to be displayed in the ADT. Using an option other than 1, cre-
ates several problems that students need to deal with in other parts of their solution. In
this game it is important that the player can distinguish between a worker that is sitting
on a square that contains a storage space and one that is not. The same is true for boxes.
When this connection between what is stored and what is displayed exists the students

Table 2
The location of the code responsible for deciding the appearance of each square.

Location Total Year 1 Year 2

1: Independent of board 5 14% 3 14% 2 13%
2: Other symbols in board 8 22% 7 33% 1 7%
3: Same symbols in board 23 64% 11 53% 12 80%

P. Haglund, F. Strömbäck, L. Mannila598

have to constantly check if the symbol stored needs to be altered when moving the
worker and/or box, which we can see in Listing 1. These cases are as follows:

From a storage square to another storage square. 1.
From a storage square to a floor square. 2.
From a floor square to a storage square. 3.
From a floor square to another floor square. 4.

Fig. 4 shows where students have implemented different functionality in their pro-
gram. Specifically it shows which ADTs encapsulation is broken by the functionality.

16 P. Haglund et al.

0% 20% 40% 60% 80% 100%

menu, year 1
menu, year 2

draw, year 1
draw, year 2

input, year 1
input, year 2

can move, year 1
can move, year 2

move, year 1
move, year 2

end, year 1
end, year 2

21

9

21

19

14

9

15

7

15

10

7

8

1

1

1

2

1

1

1

1

11

1

6

12

8

2

6

6

Board
Board and Thing

Thing
Free

Fig. 3. Overview of which ADT(s) the function implementing each of the six parts of the assignment belong to
(i.e., which ADT each of them violate). The x-axis represent percentage of solutions, so that the two years can
be compared even though they had different number of solutions. The numbers inside the bars are the number
of solutions, not percentages.

if the symbol stored needs to be altered when moving the worker and/or box, which we
can see in Listing 1. These cases are as follows:

1. From a storage square to another storage square
2. From a storage square to a floor square
3. From a floor square to a storage square
4. From a floor square to another floor square

Figure 3 shows where students have implemented different functionality in their pro-
gram. Specifically it shows which ADTs encapsulation is broken by the functionality. No
submissions break the encapsulation of the ADTs when handling the menu and player
input. Most submissions from year 1 and year 2 break the encapsulation when drawing
the board, with year 1 doing it to a slightly larger extent. Most students do not break the
encapsulation when determining if a move is legal or not, though year 2 break the encap-
sulation to a greater extent. A larger portion of submissions break the encapsulation when
moving the character than when determining if the character can move, again year 2 does
this to a greater extent than year 1. When figuring out if the game is over, most students
in year 2 manage to do this without breaking the encapsulation but not in year 1.

Table 4
Number of solutions that introduce particular ADTs in each year.

ADTs Total Year 1 Year 2

Only Board 20 56% 12 57% 8 53%
Board & Thing 15 42% 8 38% 7 47%
Board & Thing & Level 1 2% 1 5% 0 0%

Fig. 4. Overview of which ADT(s) the function implementing each of the six parts of the as-
signment belong to (i.e., which ADT each of them violate). The x-axis represent percentage
of solutions, so that the two years can be compared even though they had different number of
solutions. The numbers inside the bars are the number of solutions, not percentages.

def move_worker(board, direction):
 # ...
 if worker_status == ’worker_on_storage’:
 if oject_at_to_pos == ’storage_location’:
 board[pos_after_move] = ’worker_on_storage’ # 1
 else:
 board[pos_after_move] = ’worker_on_floor’ # 2
 board[pos_before_move] = ’storage_space’
 else:
 if oject_at_to_pos == ’storage_location’:
 board[pos_after_move] = ’worker_on_storage’ # 3
 del board[pos_before_move]
 else:
 move_object(board, direction, pos_before_move) # 4
 # ...

Listing 1. Abbreviated example of problems arising from the connection between what is
stored and what is displayed. When moving the worker there are 4 different branches of an
if-statement that needs to exist to account for different combination. This example fits in the
“Other symbols in board” category of Table 2. It also violates the board ADT.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 599

No submissions break the encapsulation of the ADTs when handling the menu and
player input. Most submissions from year 1 and year 2 break the encapsulation when
drawing the board, with year 1 doing it to a slightly larger extent. Most students do not
break the encapsulation when determining if a move is legal or not, though year 2 break
the encap sulation to a greater extent. A larger portion of submissions break the encap-
sulation when moving the character than when determining if the character can move,
again year 2 does this to a greater extent than year 1. When figuring out if the game is
over, most students in year 2 manage to do this without breaking the encapsulation but
not in year 1.

Table 3 shows that the majority of the total submissions and the majority of submis-
sions from each year only used one ADT, which was board. A larger part of student
sub missions from year 2 also introduced an ADT to represent each thing on the board.
Upon analyzing the solutions only one solution actually treated thing as a distinct ADT
in rela tion to board. The ADT established for thing was mostly either not utilized in the
solution, or had its interface violated by board. The same solution that treated thing as
a separate ADT also introduced a third ADT to handle loading of levels.

Fig. 5a shows that a large part of user defined functions in submissions were very
short, only one or two lines in length. The length of a function represents the number
of lines in the body of the function, excluding empty lines and comments. In both year
1 and 2 functions consisting of only 1 line of code were the most prominent. When
compared to Fig. 5b we can see that the majority of all smaller function (6 lines or less)
are part of ADTs. In total 879 functions were used by students over all of the submis-
sions. The average length of these functions were 8.7 lines of code and the median

Table 3
Number of solutions that introduce particular ADTs in each year.

ADTs Total Year 1 Year 2

Only Board 20 56% 12 57% 8 53%
Board & Thing 15 42% 8 38% 7 47%
Board & Thing & Level 1 2% 1 5% 0 0%

Understanding Students’ Failure to use Functions as a Tool for Abstraction 17

0 10 20 30
0

10

20

30

40

50

Function size (lines)

N
um

be
ro

fo
cc

ur
re
nc

es

Total
Year 1
Year 2

(a) Size of functions not part of an ADT.

0 10 20 30
0

50

100

150

Function size (lines)

N
um

be
ro

fo
cc

ur
re
nc

es

Total
Year 1
Year 2

(b) Size of functions part of an ADT.

Fig. 4. Size of functions in the Sokoban assignment.

Table 4 shows that the majority of the total submissions and the majority of submis-
sions from each year only used one ADT, which was board. A larger part of student sub-
missions from year 2 also introduced an ADT to represent each thing on the board. Upon
analyzing the solutions only one solution actually treated thing as a distinct ADT in rela-
tion to board. The ADT established for thingwas mostly either not utilized in the solution,
or had its interface violated by board. The same solution that treated thing as a separate
ADT also introduced a third ADT to handle loading of levels.

Figure 4a shows that a large part of user defined functions in submissions were very
short, only one or two lines in length. The length of a function represents the number of
lines in the body of the function, excluding empty lines and comments. In both year 1 and
2 functions consisting of only 1 line of code were the most prominent. When compared
to Figure 4b we can see that the majority of all smaller function (6 lines or less) are part
of ADTs. In total 879 functions were used by students over all of the submissions. The
average length of these functions were 8.7 lines of code and the median length was 5.0.
Of the 879 functions 524 were part of an ADT. The ADT functions were 6.3 lines in
average length and 4.0 in median length. Amongst the 355 functions that were not part of
an ADT the average length was 12.4 and the median length was 10.0. All these averages
and medians have been rounded to 1 decimal point. Functions that were part of the ADT
were in the majority and were shorter on average with fewer outliers of extreme length.
Though the longest functions submitted (306 lines) was a part of an ADT.

5.2.2. Violating an Interface by Accident
When students violate the ADT’s interface they often do so without cause. This is often
due to not having created the necessary functions in the ADT, though sometimes the nec-
essary functions actually exist but are not used. As we can see in Listings 1 and 2 the
interface is violated since functions of the underlying container are called from a function
that should be outside the ADT. This example illustrates both the lack of necessary func-
tions and not using existing functions. Specifically, the submission in Listing 2 contains
the needed functions to make the insertions of things in the board but lacks the needed
function(s) to remove existing things. The functions created that manages insertion is used
in other places in the code.

Fig. 5. Size of functions in the Sokoban assignment.

P. Haglund, F. Strömbäck, L. Mannila600

length was 5.0. Of the 879 functions 524 were part of an ADT. The ADT functions
were 6.3 lines in average length and 4.0 in median length. Amongst the 355 functions
that were not part of an ADT the average length was 12.4 and the median length was
10.0. All these averages and medians have been rounded to 1 decimal point. Functions
that were part of the ADT were in the majority and were shorter on average with fewer
outliers of extreme length. Though the longest functions submitted (306 lines) was a
part of an ADT.

5.2.2. Violating an Interface by Accident
When students violate the ADT’s interface they often do so without cause. This is of-
ten due to not having created the necessary functions in the ADT, though sometimes
the nec essary functions actually exist but are not used. As we can see in Listing 1 and
Listing 2 the interface is violated since functions of the underlying container are called
from a function that should be outside the ADT. This example illustrates both the lack
of necessary func tions and not using existing functions. Specifically, the submission in
Listing 2 contains the needed functions to make the insertions of things in the board
but lacks the needed function(s) to remove existing things. The functions created that
manages insertion is used in other places in the code.

5.2.3. Indications of Code Duplication
The longest submitted function was 306 lines long (counting only the body of the func-
tion and not counting empty lines or comments) and originating from year 2 of the
submis sions. It is a function responsible for moving the worker and aptly named move_
worker. It requires the direction in which to move the worker, represented by a char-
acter (w, a, s, or d) for up, left, down, and right. It also requires a board which is an ab-
stract data type. The extreme length of the function occurs because of code duplication.

Only two lines, of which one is an empty return statement on the last line, out of 306
are executed on all code paths, regardless of the direction of the movement as we can see
in Listing 3. The remaining 300 lines (discounting the if-statement itself) of the function
is really 75 lines repeated 4 times, once for each direction with magic numbers altered ,
as we can see in Listing 4.

def move_thing(board, xcord, ycord, direction):
 thing = get_object(board, xcord, ycord)
 # ...
 character = next_thing(board, xcord, ycord, direction)
 if thing == ’+’:
 board.append([xcord, ycord, ’.’])
 if character == ’+’:
 board.remove([xcord + 1, ycord, ’.’])
 board.remove([xcord, ycord, thing])
 board.append([xcord + 1, ycord, character])
 # ...

Listing 2. Example of needless ADT violations. Functions exist for handling the insertions
but are not used, and functions for deletion could easily be added.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 601

This way of solving the problem is found in multiple levels of the solution to moving
the worker. In Listing 4, we can see 1 of the 8 branches of an if-statement that moves
a worker if the worker has to push a box. One branch exists for each combination of cir-
cumstances that can exist and another 4 branches exists for moving the worker if there is
no box involved. This does not include the checks done to determine if the move is legal
at all, which further adds complexity. These 12 cases (and several more that are trivial in
nature) are repeated for each direction with slight differences in the numbers or operators
used in the function calls. During execution of this function there are 64 different paths
that can be taken. While this function is an outlier amongst the submissions in size for
a single function, similar ways of solving the problem of moving the worker in 4 direc-
tions are not uncommon.

As we can see in Listing 5 another solution instead created 4 functions, one for
mov ing the worker in each direction. The difference between each of these functions
is again only magic numbers used to move the worker accordingly. This solution uses
59 lines per function to handle moving the worker, a total of 236 lines. In this example
13 branches of if-statements exists for each direction, totaling 52 branches to move the
player in all 4 directions. As in the previous example, each possible scenario that can
occur for each direction is presented as a separate branch. One can also note that both
Listing 3 and Listing 4 are violating the ADT.

def move_worker(board, direction):
 xcord, zcord, ycord = locate_player(board)
 if direction == ’w’:
 # move character up
 elif direction == ’a’:
 # move character left
 elif direction == ’d’:
 # move character right
 elif direction == ’s’:
 # move character down
 return

Listing 3. Abbreviated example of a submitted function to move the worker. The unabbrevi-
ated version contains 306 lines of code.

def move_worker(board, direction):
 # ...
 if square == ’.’ and box == ’o’ and worker == ’@’:
 board[xcord-2].remove((ycord, ’.’))
 board[xcord-1].remove((ycord, ’o’))
 move(board, ’storage box’, xcord-2, ycord)
 coord = board[xcord].pop(zcord)
 board[xcord-1].append(coord)
 # ...

Listing 4. Example of one of the branches on an if-statement inside the function in Listing 3
designed to move the worker. It illustrates the operators and magic numbers used for one of
the directions.

P. Haglund, F. Strömbäck, L. Mannila602

Looking at all submitted functions in descending order of length, every function that
was longer than 32 lines of code had obvious issues with at least procedural abstraction.
The functions either operated on too many levels of abstraction, had code duplication
or had more than one responsibility. The longest function that had no obvious issues
with abstraction, which was 32 lines long, was a function dedicated to loading the game
board. This involves doing something special for each symbol in the text-file, which
results in longer functions with many cases. Its hard to avoid having one branch for each
symbol with the tools available to the students at this stage. The longest function that did
not load the board and had no obvious errors was 24 lines long.

5.2.4. ADT Interface
It was previously mentioned that the functions containing only 1 line were the most com-
mon among the submissions. These functions are part of the ADTs and are used to per-
form actions for which the underlying containers happen to have matching functionality.
An example is adding something to the list in the board ADT, as shown in Listing 6.

These ADT-functions serve to preserve the interface of the ADT and in this particu-
lar example whenever a crate needs to be added to the board it is done through the use
of this function. This also extends to many of the functions submitted that contained 2
lines, as shown in Listing 7.

Many of the short functions submitted that are part of the ADT are similar to these,
often just calling a single member function of the underlying container in the ADT. The
existence of functions such as these do not, however, mean that students use them. It is

def move_north(board):
 # ...
 if not player_can_move(board, x, y-1):
 # ...
 elif get_object(board, x, y-1) == ’.’:
 # ...
 elif get_object(board, x, y-1) == ’o’:
 # ...
 # ...

Listing 5. Example of a function specialized to move the worker up. Note the use of opera-
tors and magic numbers that is again present.

def new_crate(board, x, y):
 board.append([y, x, ’o’])

Listing 6. Example of a one line function serving as a simple interface to the ADT.

def make_board():
 b = []
 return b

Listing 7. Example of a two line function serving as part of the ADT interface.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 603

fairly common that students in spite of creating a fairly robust ADT interface simply cir-
cumvent it, and use built-in functionality of the underlying container types instead.

5.2.5. Copyright
In total, we analyzed the solutions from 38 student pairs to the copyright problem. Out
of these, 22 were from year 1 and 15 from year 2. As mentioned in Section 4.2.2, we
examined two aspects of the solutions: where each of the seven high-level steps were
located, and the three high-level properties.

Fig. 6 contains an overview of the number of functions that were used to imple ment
the seven high-level steps presented in Section 4.2.2. In a few cases we found small
utility functions that did not fit into any of the seven steps (e.g., basic string manipula-
tion). As these functions did not fit into any of the categories, they were not recorded
and are therefore not included in Fig. 6. From this overview, we can observe two trends.
First and foremost, around half of the solutions (54% in year 1 and 60% in year 2) used
at most one function to solve the problem, even though several previous assignments
focused heavily on abstraction. Secondly, more solutions from year 2 did not use any
functions at all compared to year 1. Regarding duplication, we found four solutions with
duplicated functionality in total. One in year 1 and three in year 2.

By examining the solution signatures (i.e., how functionality was distributed be-
tween functions), we found that 48% of solutions (or 18 solutions) only appeared once.
Out of the remaining 52% of solutions (19 solutions), the most common one (27% or
10 solutions) was to implement all seven steps in the global scope, not using functions.
The second most common solution (10% or 4 solutions) was to implement reading and
processing of the command line arguments in the global scope and call a single function
that performed the remainder of the work. The remaining solutions (15% or 6 solutions)
appeared twice. One of these was to extract the last three steps into an additional func-
tion, another was to also locate the logic for finding the relevant files in the global scope
alongside han dling of command line arguments, and the last one was to split handling of
command line arguments between code in the global scope and inside the function that
does all the work.

Understanding Students’ Failure to use Functions as a Tool for Abstraction 21

0 1 2 3 4
0%

20%

40%

60%

3

9

5

3
2

7

2

4

2

0

Number of functions used

Pe
rc
en

ta
ge

of
so

lu
tio

ns

Year 1
Year 2

Fig. 5. Total number of functions used to implement the 7 high-level steps of the assignment. The height of each
bar is determined by the percentage of solutions that year, so that the two years may be compared even though
they had different number of solutions. Numbers above bars indicate number of solutions.

most one function to solve the problem, even though several previous assignments focused
heavily on abstraction. Secondly, more solutions from year 2 did not use any functions at
all compared to year 1. Regarding duplication, we found four solutions with duplicated
functionality in total. One in year 1 and three in year 2.

By examining the solution signatures (i.e., how functionality was distributed between
functions), we found that 48% of solutions (or 18 solutions) only appeared once. Out of the
remaining 52% of solutions (19 solutions), the most common one (27% or 10 solutions)
was to implement all seven steps in the global scope, not using functions. The second
most common solution (10% or 4 solutions) was to implement reading and processing of
the command line arguments in the global scope and call a single function that performed
the remainder of the work. The remaining solutions (15% or 6 solutions) appeared twice.
One of these was to extract the last three steps into an additional function, another was
to also locate the logic for finding the relevant files in the global scope alongside han-
dling of command line arguments, and the last one was to split handling of command line
arguments between code in the global scope and inside the function that does all the work.

gFr -fR gFR GFr GFR gfr gfR
0%

20%

40%

60%

8

3
4

3

1 1 1

3

7

2

0
1 1

0

Pe
rc
en

ta
ge

of
so

lu
tio

ns

Year 1
Year 2

Fig. 6. High-level properties measured. In the labels, we use G = global variables (or - if no functions were
used), F = function for processing a single file, R = reading the template file only once. Uppercase letters mean
that property was observed, lowercase mean that property was not observed. Height of bars are relative to the
percentage of solutions in that year, so that the two years may be compared even though they had different number
of solutions. Numbers above the bars are the number of solutions.

Finally, by examining the three high-level properties for the solutions, we can gain
some additional insights into the solutions. These are presented in Fig. 6. From there,

Fig. 6. Total number of functions used to implement the 7 high-level steps of the assignment.
The height of each bar is determined by the percentage of solutions that year, so that the two
years may be compared even though they had different number of solutions. Numbers above
bars indicate number of solutions.

P. Haglund, F. Strömbäck, L. Mannila604

Finally, by examining the three high-level properties for the solutions, we can gain
some additional insights into the solutions. These are presented in Fig. 7. From there,
we can see that 16 out of 37 solutions (43%) read the template file multiple times (all
labels with a lowercase r). However, this seems to be an unintended side-effect of
using functions for abstraction, as all solutions not using functions (label -fR) only
read the template file once. We can also see that the ideal solution, gFR (no globals,
a function for processing a single file, and only reading the template file once) was less
common than reading the file multiple times (label gFr), and not using functions at all
(label -fR).

Aside from the difference in the two years we have seen previously, that students in
year 2 did not use any functions at all to a larger extent than year 1, there are only two
major differences between the two years. First, the number of solutions labeled gFr
(a good solution, but reading the template multiple times) decreased, as did GFr (as pre-
viously, but using global variables). It is difficult to determine if these difference were
due to more students opting to not use functions for abstraction in their solutions, or if
this was due to a better awareness of these issues in the second year.

6. Discussion

In this Section we will discuss the results presented in the previous section. We start
by discussing the validity and implications of the results from the quiz, which gives
an idea of the students’ knowledge of the prerequisites for abstraction. After that, we
will discuss how the results from the solutions to the two lab assignments can be in-
terpreted and applied in the future. Finally, we will present possible extensions of our
analysis that we leave as future work.

An overarching trend from the results is that students in year 1 performed slightly
better than students in year 2 in cases where a difference was visible (e.g., on the quiz).
This difference could mean that introducing Python Tutor, as previously described, de-

Understanding Students’ Failure to use Functions as a Tool for Abstraction 21

0 1 2 3 4
0%

20%

40%

60%

3

9

5

3
2

7

2

4

2

0

Number of functions used

Pe
rc
en

ta
ge

of
so

lu
tio

ns

Year 1
Year 2

Fig. 5. Total number of functions used to implement the 7 high-level steps of the assignment. The height of each
bar is determined by the percentage of solutions that year, so that the two years may be compared even though
they had different number of solutions. Numbers above bars indicate number of solutions.

most one function to solve the problem, even though several previous assignments focused
heavily on abstraction. Secondly, more solutions from year 2 did not use any functions at
all compared to year 1. Regarding duplication, we found four solutions with duplicated
functionality in total. One in year 1 and three in year 2.

By examining the solution signatures (i.e., how functionality was distributed between
functions), we found that 48% of solutions (or 18 solutions) only appeared once. Out of the
remaining 52% of solutions (19 solutions), the most common one (27% or 10 solutions)
was to implement all seven steps in the global scope, not using functions. The second
most common solution (10% or 4 solutions) was to implement reading and processing of
the command line arguments in the global scope and call a single function that performed
the remainder of the work. The remaining solutions (15% or 6 solutions) appeared twice.
One of these was to extract the last three steps into an additional function, another was
to also locate the logic for finding the relevant files in the global scope alongside han-
dling of command line arguments, and the last one was to split handling of command line
arguments between code in the global scope and inside the function that does all the work.

gFr -fR gFR GFr GFR gfr gfR
0%

20%

40%

60%

8

3
4

3

1 1 1

3

7

2

0
1 1

0

Pe
rc
en

ta
ge

of
so

lu
tio

ns

Year 1
Year 2

Fig. 6. High-level properties measured. In the labels, we use G = global variables (or - if no functions were
used), F = function for processing a single file, R = reading the template file only once. Uppercase letters mean
that property was observed, lowercase mean that property was not observed. Height of bars are relative to the
percentage of solutions in that year, so that the two years may be compared even though they had different number
of solutions. Numbers above the bars are the number of solutions.

Finally, by examining the three high-level properties for the solutions, we can gain
some additional insights into the solutions. These are presented in Fig. 6. From there,

Fig. 7. High-level properties measured. In the labels, we use G = global variables (or -if no
functions were used), F = function for processing a single file, R = reading the template file
only once. Uppercase letters mean that property was observed, lowercase mean that property
was not observed. Height of bars are relative to the percentage of solutions in that year, so
that the two years may be compared even though they had different number of solutions.
Numbers above the bars are the number of solutions.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 605

creased students’ skills. Since the quiz showed a significant improvement for some of
the skills, we believe that these differences are either due to 1) natural variation in prior
education and experience in the students between the years, or 2) the reduction of stu-
dent interactions due to the ongoing pandemic. Typically, students spend most of their
day in a computer lab dedicated to this group of students, and they are thus always close
to peers with which they can discuss any issues that arise even when TAs are not avail-
able. Based on our prior experience with this program, and as noted by Laal and Ghodsi
(2012) among others, we believe that this interaction is very valuable for students learn-
ing. Therefore, reducing these valuable interactions may very well have an impact on
students’ learning.

It should also be noted that the data was collected from one student group at one
uni versity. As such any generalizations based upon these results needs to be consid-
ered in that context and may not be applicable to other student groups, universities, or
countries.

6.1. The Quiz

Even though each question in the quiz was designed to assess only a small number
of skills that were previously identified as problematic, most of them failed to isolate
individual skills as shown by the coding of the questions in Fig. 3 in Section 5.1. Even
though the answers indicated that values and references and functions: parameters are
difficult con cepts, it is difficult to reliably assess all skills in isolation. For example, to
assess whether the student knows values and references, it is necessary to manipulate
some data, which in turn involves other skills. It is possible to address this problem by
assessing the more basic skills individually in other questions. Doing this for all skills
increases the length of the quiz, which in turn increases the time and effort required by
students to complete the quiz. Furthermore, the initial questions may be experienced as
too easy and therefore not relevant to students, which may decrease students’ motivation
to produce the correct answer and continue with the quiz.

It is, however, possible to avoid these problems by ensuring that the skills assessed
in the questions do not fully overlap and then compute the proficiencies from the results
by using a statistical model as presented in Section 4.1. This way, questions can be kept
at a similar difficulty level, and the number of questions can be kept low, while retaining
the ability to observe students’ proficiency with individual skills. In this paper, we use
the model to find the overall proficiency levels for two years to see whether introducing
a lab using Python Tutor improved students’ understanding of skills related to functions.
Even though the students’ overall score on the quiz decreased from year 1 to year 2,
the model showed an increase in indirection and scoping, which are two of the skills
the assignment with Python Tutor was intended to cover. Based on this observation, we
believe this is a viable approach, at least when applied on groups of students.

There are, however, some considerations that need to be addressed. First and fore-
most, the model assumes that all skills assessed by one part are equally important to
whether or not a student answers correctly. This is likely true for some of the questions.

P. Haglund, F. Strömbäck, L. Mannila606

For example, it is likely equally important to understand values and references and
functions: parameters to answer 8c correctly. In other cases, especially when compar-
ing questions to each other, it is likely that the same skill has a different impact for the
outcome of different questions. This could be addressed by allowing other numbers
than 1 and 0 when describing which skills are assessed by a question. As these are typi-
cally not known beforehand, this means that such a model would no longer be linear,
and would contain more parameters, meaning that more data would be needed to find
these parameters. Another approach would be to divide skills in the codebook into
sub-skills that highlight different areas of the same concept. Then it is possible for the
model to assign different proficiencies for declaring an array and reading from an array,
for example.

Even though we used the model to examine the proficiencies of two different years in
this paper, it is possible to apply the model to individual students to provide individual
and automated formative feedback to students taking the quiz. In this case, a model
could be fitted to a single student, and the lowest proficiencies could be suggested as
areas for further self-study. If used in such a system, the fact that the model assumes
that each skill has an equal impact for the outcome will likely become more apparent.
Thus, questions would have to be designed so that the involved skills are indeed roughly
equally important, or a model with more fine-tuned weights would be needed.

6.2. Sokoban

The overarching goal of the Sokoban lab is to give students the opportunity to work
with abstraction in a larger project. In part through working with data abstraction and
in part through working with procedural abstraction as described by Moström et al.
(2008). While both these concepts are introduced and practiced in two previous labs,
it is at a much smaller scale, and with more robust descriptions. In a really good solu-
tion a student man ages to create an ADT for one or more parts of the lab, manages to
delimit the responsibil ities of that ADT, creates an adequate interface, and respects that
interface throughout the solution. While some students manage to accomplish this goal,
others do not, and there are different indications of this in the results as we will discuss
below.

Based on the data from the Sokoban lab, we can see that only a small portion of
stu dents arrive at a desirable way of deciding were the look of each square of the board
should be computed. The most desirable way of doing it is having no dependence be-
tween the representation used in the board ADT and how it is displayed. The least desir-
able way is storing the actual symbol that is going to be displayed in the ADT, making
the look of the board when displayed entirely dependent on the internal representation
of the ADT. This indicates a failure to separate the internal representation of the ADT
and what is displayed. Instead of viewing the board as a container storing, for example
walls at certain coordi nates, the majority of students view the board as a list (or dic-
tionary) storing characters at coordinates. The display of the board and the internal
representation have no need to be connected to one another. Only 5 out of 36 submis-

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 607

sions use the most desirable solution and 23 out of 36 use the least desirable one. We
interpret this as the majority of the stu dents not realizing that these should not be or do
not need to be dependent on one another. Alternatively, if the students realize this, they
fail to see the value of not having them be dependent on one another. Since the first part
of the lab is creating an ADT to represent the game board, it is reasonable to conclude
that most students are unable to come up with an abstract representation of the board
that does not include all these symbols. The students probably reason that they need to
store the symbols that will be printed at a later stage somewhere. Therefore, they fail
to remove the unnecessary parts of the abstraction, which is presented as an important
part of creating good abstractions by Kramer (2007).

Even though the students are allowed to introduce more ADTs in their solution,
very few students do so. A few students do introduce a separate ADT to represent
individual elements on the board (walls, boxes, etc.) which we call thing. However,
in all cases except one where thing is introduced, the abstraction is violated in at least
the board ADT. There was also one solution that included an ADT to aid with the
loading of levels and that ADT was also used correctly. The introduction and use of
a board ADT is heavily emphasized in both the description of the task and in interac-
tions with course staff, which explains why it is present in all solutions. The lack of
distinction between thing and board may also indicate that it is harder to differentiate
between two ADTs than between what is and is not part of an ADT at all. This can be
viewed through the lens of different levels of abstraction, as described by Perrenet
and Kaasenbrood (2006), where understanding the difference between one ADT and
another requires the student to move between different abstraction levels (i.e., wear-
ing different hats). In other, words the student needs to be able to delimit what is part
of a specific ADT, and what is not. They also need to respect that delimitation. The
challenge of not violating the interface of an ADT is however not trivial even if there
is only a single ADT as discussed below. Students are proficient in handling existing
abstractions in Python and all solutions include some kind of container that exists
in the Python standard library. While interactions with these containers is handled
through the interface provided, it seems challenging for students to develop and use
their own interface for their own ADTs. This could be an example of how it is easier
to recognize and use abstractions than it is to create ones own, as written about by
Abbott and Sun (2008).

When looking at the functions inside and outside of the ADT, we can see that all
students manage to separate the handling of menu and player input from the ADT. This
is to be expected since they do not really have any need to interact with the function-
ality of the ADT. Most students do break the encapsulation when drawing the board,
indicating that drawing the board is considered a part of the board ADT or that it is
a convenient way of solving the issue. The latter is also supported by the way students
represent the look of each square on the board. Most students store the actual symbol to
be displayed in their ADT. It seems to be hard for students to understand when a func-
tion violates an ADT and when it does not, which could indicate a problem in mov-
ing between different levels of abstraction, as laid out by Statter and Armoni (2020);
Perrenet and Kaasenbrood (2006). It is also worth noting, that drawing the board is

P. Haglund, F. Strömbäck, L. Mannila608

introduced earlier as a problem to be solved in the lab than any of the game rules. Many
introduce the functionality of displaying the board at the same time as they are creating
the board ADT to see if their ADT is functioning correctly.

While the argument can be made that drawing the board is functionality that should
be part of the ADT, determining if the worker can make a certain move, performing
a move and determining if the game is over are all components of the program that
should be solved without violating the ADT. As the results show, it is however com-
mon for students to violate the ADT to some degree when moving the character and
determining when the game is over. It is unlikely that a solution violates the ADT when
determining if a certain move is legal. The reason for this may be that a fairly strict
description of this functionality is provided in the lab. This delimitation of functional-
ity may allow students to focus on the higher levels of abstraction when writing the
function. It is also worthwhile noting, that determining the legality of a move and if the
game is over only requires reading from the ADT, while the component responsible for
moving the worker also has to make changes to the ADT. It may also be easier to make
the mistake of conceptually confusing the movement of the worker with moving an
arbitrary piece on the game board from one square to another. The latter being a natural
part of the ADT while the former is not.

Functions that are outliers in length are problematic and shows a lack of under-
standing when working with abstraction. As we can see in Listing 5, the longest func-
tions found amongst the submissions duplicate a lot of code. This duplication is in-
dicative of a few things: 1) poor delimitations of the responsibility of the function,
leading to a function that does too many things, 2) instead of finding the general case
each possible circumstance is explored individually, which leads to enumeration of
all cases, and 3) not breaking the problem down into small enough parts, which stems
from not finding a more detailed abstraction. Each of the very long functions have
poor readability and a large number of paths the program can take. As we can see,
not applying proper abstraction to solving the problem leads to a complex solution to
a complex problem.

Simple pseudo code for solving the movement of the worker could be: 1) determine
legality of move, 2) remove the worker from its current square, and finally 3) insert the
worker at the new square. Even then, the question of whether the move is legal should
probably be answered before the move function is called. In other words, students that
write very long functions are not able to create good abstractions when solving the lab.
Even if they follow some of the rules of abstraction, such as creating a function that has
a clear purpose, in this case moving the worker in a given direction.

It is interesting that in all analyzed solutions, functions that were longer than 32
lines all had obvious problems with abstraction; mixed abstraction levels, code duplica-
tion, ADT violations or problems delimiting the responsibility of the function, or a mix
of them all. With that being said, this should not be interpreted as if functions shorter
than that were all good. A finer granularity of these estimates could probably be arrived
at if one analyzed different parts of the solution individually. Anecdotally, it would
seem like functions solving certain problems can be bigger than others without having
obvious abstraction issues.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 609

6.3. Copyright

Based on the analysis of the solutions to the copyright lab, we can see that many stu-
dents did not use functions to create abstractions when implementing their solutions.
We saw that 57% of solutions (21 of 37 solutions) used zero or one functions when
implementing their solution. About half of these implemented their solutions entirely in
the global scope, indicating that they did not feel the need for any further abstractions.
The remainder of these solutions did separate the handling of command line arguments
from the logic of the program, which is definitely a step in the right direction, but did
not feel the need to create any further abstractions in the remaining logic. This lack
of abstraction was quite apparent even though this lab assignment was done within
a couple of weeks of the Sokoban assignment, which heavily emphasized procedural
abstraction. This likely means that students did not see the effort of creating abstrac-
tions to be worthwhile in this assignment, either because they did not see any major
benefits from the previous assignment, because they felt this assignment was simple
enough, or a combination of the two.

Another interesting observation is that many of the solutions that introduced a func-
tion to process individual files did read the template file multiple times, while solutions
that did not only read the file once. This observation highlights some of the dangers of
abstractions, as pointed out by Steimann (2018). In this case, students likely failed to see
that the comparatively expensive operation of reading the template file only needed to
be done once when introducing the abstraction.

The two categorizations of solutions used to analyze this assignment provides
interest ing insights into the solutions. In this case, the analysis of the three high-level
properties provided information that was easier to interpret than the normalized signa-
tures of where the work was performed. This is likely due to the fact that the signature
shows more de tails of the solutions. Therefore, it is necessary to have a larger data set
than we had access to in order to unveil more detailed trends in solutions other than
the two most common ones. Otherwise, the only thing we can tell from the signatures
is what kinds of solutions are present, not how common they are. This is why the less
detailed analysis proved more useful. Since it had fewer degrees of freedom, it is better
at illustrating some overarching trends, even without large quantities of data.

One shortcoming of the analysis that is worth pointing out is that any small func-
tions that only implemented a small part of the final solution were not included in the
signatures, and thereby not in our measure of the number of functions used. Having
these kind of functions show that students have realized that some operation was com-
mon or difficult to implement and thus abstracted the functionality using a function.
This was, however, fairly uncommon in the solutions in this data set, so it does not
have a major impact on the data presented in Section 5.2.5. One could also argue that
this type of abstraction is different from that of examining the problem to be solved,
breaking it into high-level pieces, and structuring the program accordingly. One could
also argue that not having functions does not imply that no effort was made regard-
ing abstractions. Since we did not see much duplicated functionality in the solutions,

P. Haglund, F. Strömbäck, L. Mannila610

students have likely identified at least some of the high-level steps and found ways to
write code that is general enough to handle all cases, even though this was not put in
individual functions.

6.4. Future Work

In this paper, the statistical model used to map quiz answers to skills was only used to
estimate the proficiency of an entire year. It would, however, be possible to use the same
model on a single student to estimate that student’s skills, and thus give automated feed-
back regarding what topics that student might benefit from reviewing. In this case, it is
likely important to take into account the different difficulties of the questions, and the
fact that some questions require a deeper understanding of a concept than others. Ex-
ploring this would, however, require a larger data set, and potentially also interviews to
validate the model on an individual level, or connecting the performance on the quiz to
performance in the course overall, or indeed performance in future courses. It might also
be necessary to revise some of the questions to better pinpoint particular skills.

One interesting observation from analyzing solutions of the Sokoban assignment was
that functions with more than 32 lines of code all had obvious abstraction issues. Since
this is easy for automated tools to measure, it can be used to give automatic feedback to
students during the labs. Cursory findings indicate that this length varies based on the
problem solved by the function (e.g., reading the map from a file, moving the worker,
etc.). As such, it would be interesting to examine this relation in closer detail for a wider
vari ety of problems. It would also be valuable to explore the possibility of giving auto-
matic feedback regarding violations of an ADT, since many students seem to struggle
with re alizing these violations. This is, however, more difficult to do automatically, es-
pecially in a dynamically typed language like Python.

Even though it might be difficult to incorporate all findings of this paper into tools
for automated feedback, these findings are still useful. While the analysis done in this
paper is not feasible to perform on all submitted solutions in a course, the analysis
reveal where problems occur so that future TAs can be instructed to spot potential
problems earlier, and give students better feedback earlier. This reduces both frustra-
tion from students, as they do not have to re-do large parts of the assignment, and the
time needed for feedback once TAs review the students’ code, as it is more likely to
be correct and well-abstracted. These insights might also be used to develop targeted
code-review tasks where students review each other’s code. A similar analysis of other,
related, problems may thus be performed for other, similar, problems in order to find
how similar issues surface there.

Finally, since the quiz was submitted anonymously, we were not able to correlate in-
dividual students’ skills to their ability to work with abstractions in the lab assignments.
Furthermore, since students’ performance with the lab assignments were similar between
the two years, we were unable to draw any definitive conclusions in this regard. A follow-
up study where it is possible to follow individual students would probably provide deeper
insights in this matter, and would therefore be an interesting next step to this paper.

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 611

7. Conclusion

In this paper we examined students’ ability to create and maintain abstractions in the lab
assignments of an introductory Python course. We also examined if introducing an as-
signment involving visualizing parameter passing, scope, and references in Python Tutor
helped students’ understanding of these concepts, and had any impact on their ability to
work with abstractions.

We collected solutions from two of the seven lab assignments in two years of the
course, and found that most students do not create more ADTs than the minimum re-
quired by the assignments. We also found that amongst the minority that does introduce
more ADTs, almost all have problems with differentiating between multiple ADTs. In
this case, students who introduced an additional ADT for a thing inside the board seldom
man aged to keep the two separate, and often did not use the created interface when read-
ing or writing to things inside the board.

We also found that students have difficulties with differentiating between either 1)
func tions that are a part of the ADT (and may thus manipulate the internal representa-
tion) from those not a part of the ADT (and may thus only use the interface), or 2) that
they have diffi culties understanding the difference between manipulating the internal
representation and using the interface. We also found that all functions longer than 32
lines had some kind of abstraction issues. Finally, we found that many students did not
voluntarily introduce their own abstractions in a later assignment which did not explic-
itly focus on abstraction.

We studied the effect of introducing Python Tutor in two ways. First through a quiz
that contained questions about parameter passing, scope, and references. Even though
the overall results were lower in the second year, a statistical analysis showed a signifi-
cant increase in students’ proficiency with scoping and references. We also examined
differences in the lab assignments between the two years, but did not find any big
differences, perhaps since the second year was weaker overall. Therefore, we can not
conclude that using Python Tutor on its own has any noticeable affect on students’ abil-
ity to work with abstractions, but since it seems to improve some prerequisite skills it
may very well be one important part of many others that help students improve their
abstraction skills.

To conclude, we answer the research questions posed in the introduction:
RQ1 Overall, students understand function calls, variable scoping and references

well with the exception of parameter passing. Using Python Tutor to visualize
these con cept did provide a significant improvement in students understanding
of scope and references, even though the second year was weaker overall. The
difference was not, however, extreme which implies that the intervention is not
a silver bullet.

RQ2 Some students are able to create and maintain the abstractions they create,
but most fail to do so. We also found that a majority of the students do not
introduce more data abstractions than those required by the assignment, and
those that do rarely manage to keep the multiple abstractions separate. The

P. Haglund, F. Strömbäck, L. Mannila612

reluctance to introduce new abstractions was also seen in many solutions with
code duplication. Adding some procedural ab straction to these solutions (in
particular parameterization and generalization) would have greatly reduced the
total amount of code. Finally, we found that certain early choices about the ab-
straction makes it more difficult to maintain the abstractions later (e.g., whether
the look of a square is decided independent of the board or not).

RQ3 Our analysis indicates that function length can serve as an indicator of func-
tions that break abstractions. This could for example be used by students as
an indication of when to seek guidance from a TA. Course staff could also use
long functions as a starting point for finding abstraction-related issues. The
analysis also suggests that the functions for moving the worker and checking
if the game is over often violate ADTs without needing to do so, and are thus
also good starting points for course staff. Finally, we found that only 5 out
of 36 students determine the look of a square independent of the data stored
in the board ADT, which makes the implementation more cumbersome. This
could be addressed in the assignment, or frequently by TAs, to spare the stu-
dents much trouble. All of these issues can also be used by teaching staff
at the end of a lab to highlight alternative solutions that makes solving the
problem easier.

RQ4 Students do not in general voluntarily apply abstraction to a later assignment
in the course (the Copyright assignment), even after an assignment that heavily
emphasized abstraction (the Sokoban assignment). This is similar to what we
saw in the Sokoban assignment, where students rarely introduced more abstrac-
tions than what was speci fied in the assignment, even though it would benefit
the students. Better highlighting the benefits of abstraction in a previous lab, as
suggested above, might improve the situation.

References

Abbott, R., Sun, C. (2008). Abstraction Abstracted. In: Proceedings of the 2nd International Workshop on The
Role of Abstraction in Software Engineering. ROA ’08. Association for Computing Machinery, New York,
NY, USA, pp. 23–30. 9781605580289. https://doi.org/10.1145/1370164.1370171

Bennedsen, J., Caspersen, M.E. (2004). Programming in Context: A Model-First Approach to CS1. SIGCSE
Bull., 36(1), 477–481. https://doi.org/10.1145/1028174.971461

Ginat, D., Blau, Y. (2017). Multiple Levels of Abstraction in Algorithmic Problem Solving. In: Proceedings of
the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’17. Association
for Computing Machinery, New York, NY, USA, pp. 237–242. 9781450346986.
https://doi.org/10.1145/3017680.3017801

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M.C., Zilles, C. (2008). Identifying
Im portant and Difficult Concepts in Introductory Computing Courses Using a Delphi Process. In: Proceed-
ings of the 39th SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’08. ACM, New
York, NY, USA, pp. 256–260. 978-1-59593-799-5. https://doi.org/10.1145/1352135.1352226

Guo, P.J. (2013). Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education. In:
Proceeding of the 44th ACM Technical Symposium on Computer Science Education. SIGCSE ’13. Associa-
tion for Computing Machinery, New York, NY, USA, pp. 579–584. 9781450318686.
https://doi.org/10.1145/2445196.2445368

Understanding Students’ Failure to use Functions as a Tool for Abstraction ... 613

Hazzan, O. (2008). Reflections on Teaching Abstraction and Other Soft Ideas. SIGCSE Bull., 40(2), 40–43.
https://doi.org/10.1145/1383602.1383631

Koppelman, H., van Dijk, B. (2010). Teaching Abstraction in Introductory Courses. In: Proceedings of the
Fifteenth Annual Conference on Innovation and Technology in Computer Science Education. ITiCSE ’10.
Association for Computing Machinery, New York, NY, USA, pp. 174–178. 9781605588209.
https://doi.org/10.1145/1822090.1822140

Kramer, J. (2007). Is Abstraction the Key to Computing? Commun. ACM, 50(4), 36–42.
https://doi.org/10.1145/1232743.1232745

Laal, M., Ghodsi, S.M. (2012). Benefits of collaborative learning. Procedia -Social and Behavioral Sciences,
31, 486–490. https://doi.org/10.1016/j.sbspro.2011.12.091

Liskov, B., Guttag, J. (2000). Program Development in JAVA: abstraction, specification, and object-oriented
design. Addison-Wesley, Boston, USA.

Ma, L., Ferguson, J., Roper, M., Wood, M. (2007). Investigating the Viability of Mental Models Held by
Novice Programmers. In: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education. SIGCSE ’07. ACM, New York, NY, USA, pp. 499–503. 1-59593-361-1.
https://doi.org/10.1145/ 1227310.1227481

Ma, L., Ferguson, J., Roper, M., Ross, I., Wood, M. (2009). Improving the Mental Models Held by Novice
Programmers Using Cognitive Conflict and Jeliot Visualisations. In: Proceedings of the 14th Annual ACM
SIGCSE Conference on Innovation and Technology in Computer Science Education. ITiCSE ’09. ACM,
New York, NY, USA, pp. 166–170. 978-1-60558-381-5.
https://doi.org/10.1145/1562877. 1562931

Moström, J.E., Boustedt, J., Eckerdal, A., McCartney, R., Sanders, K., Thomas, L., Zander, C. (2008). Con-
crete Examples of Abstraction as Manifested in Students’ Transformative Experiences. In: Proceedings of
the Fourth International Workshop on Computing Education Research. ICER ’08. Association for Comput-
ing Machinery, New York, NY, USA, pp. 125–136. 9781605582160.
https://doi.org/10.1145/1404520.1404533

Nelder, J.A., Wedderburn, R.W.M. (1972). Generalized Linear Models. Journal of the Royal Statistical Soci-
ety. Series A (General), 135(3), 370–384. https://doi.org/10.2307/2344614

Nelson, G.L., Strömbäck, F., Korhonen, A., Begum, M., Blamey, B., Jin, K.H., Lonati, V., MacKellar, B.,
Monga, M. (2020). Differentiated Assessments for Advanced Courses That Reveal Issues with Prerequisite
Skills: A Design Investigation. In: Proceedings of the Working Group Reports on Innovation and Technol-
ogy in Computer Science Education. ITiCSE-WGR ’20. Association for Computing Machinery, New York,
NY, USA, pp. 75–129. 9781450382939. https://doi.org/10.1145/3437800.3439204

Perrenet, J., Kaasenbrood, E. (2006). Levels of Abstraction in Students’ Understanding of the Concept of Al-
gorithm: The Qualitative Perspective. SIGCSE Bull., 38(3), 270–274.
https://doi.org/10.1145/1140123.1140196

Qian, Y., Lehman, J. (2017). Students’ Misconceptions and Other Difficulties in Introductory Programming: A
Literature Review. ACM Trans. Comput. Educ., 18(1). https://doi.org/10.1145/3077618

Sooriamurthi, R. (2009). Introducing Abstraction and Decomposition to Novice Programmers. SIGCSE Bull.,
41(3), 196–200. https://doi.org/10.1145/1595496.1562939

Sorva, J., Sirkiä, T. (2010). UUhistle: A Software Tool for Visual Program Simulation. In: Proceedings of the
10th Koli Calling International Conference on Computing Education Research. Koli Calling ’10. Associa-
tion for Computing Machinery, New York, NY, USA, pp. 49–54. 9781450305204.
https://doi.org/10.1145/1930464.1930471

Statter, D., Armoni, M. (2020). Teaching Abstraction in Computer Science to 7th Grade Students. ACM Trans.
Comput. Educ., 20(1). https://doi.org/10.1145/3372143

Steimann, F. (2018). Fatal Abstraction. In: Proceedings of the 2018 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software. Onward! 2018. Associa-
tion for Computing Machinery, New York, NY, USA, pp. 125–130. 9781450360319.
https://doi.org/10.1145/3276954.3276966

Wing, J.M. (2006). Computational Thinking. Commun. ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

P. Haglund, F. Strömbäck, L. Mannila614

P. Haglund is a PhD student and a lecturer in the Department of Computer and Infor-
mation Science at Linköping University, Sweden. He has been teaching computer science
at the university since 2018, primarily working with courses in introductory imperative
programming, object oriented programming and language design for computer science
majors. His interest in research is focused around the learning of computer science in in-
troductory courses and how to investigate challenges arising during these courses. Since
2018 he has also worked with the Swedish National Agency for Education, developing
several courses and materials in conjunction with an effort to introduce K-12 students to
programming. His efforts here have primarily been focused on teaching programming
to teachers.

F. Strömbäck is a PhD student and a lecturer in the Department of Computer and Infor-
mation Science at Linköping University, Sweden. He has been teaching computer sci-
ence since 2012, primarily teaching courses on concurrency, operating systems, as well
as data structures and algorithms. He started his PhD studies in 2018, and his main
research inter est is teaching and learning concurrency. As a part of this work, he has also
studied pre requisites to learning concurrency, for example by co-chairing an ITiCSE
working group on prerequisite skills.

L. Mannila is a researcher in computer science education at Linköping University, Swe-
den. Her research interests include questions related to computational thinking, digital
competence and programming at K-9 level, both from a student, teacher and organiza-
tional perspective.

