
Informatics in Education, 2021, Vol. 20, No. 4, 615–639
© 2021 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2021.27

615

Abstraction in Computer Science Education:
An Overview

Claudio MIROLO1, Cruz IZU2, Violetta LONATI3, Emanuele SCAPIN1
1Dept. of Mathematics, Computer Science and Physics, University of Udine, Italy
2The University of Adelaide, Australia
3Dept. of Computer Science, University of Milan, Italy
e-mail: claudio.mirolo@uniud.it, cruz.izu@adelaide.edu.au,
lonati@di.unimi.it, emanuele.scapin@uniud.it

Received: February 2021

Abstract. When we “think like a computer scientist,” we are able to systematically solve problems
in different fields, create software applications that support various needs, and design artefacts that
model complex systems. Abstraction is a soft skill embedded in all those endeavours, being a main
cornerstone of computational thinking. Our overview of abstraction is intended to be not so much
systematic as thought provoking, inviting the reader to (re)think abstraction from different – and
perhaps unusual – perspectives. After presenting a range of its characterisations, we will explore
abstraction from a cognitive point of view. Then we will discuss the role of abstraction in a range
of computer science areas, including whether and how abstraction is taught. Although it is impos-
sible to capture the essence of abstraction in one sentence, one section or a single paper, we hope
our insights into abstraction may help computer science educators to better understand, model and
even dare to teach abstraction skills.

Keywords: computer science education, abstraction, computational thinking, concept develop-
ment.

We all know that the only mental tool by means of which a very finite
piece of reasoning can cover a myriad of cases is called “abstrac-
tion”.

Edsger W. Dijkstra (1972b)

1. Introduction

There has always been broad agreement within the education community that abstrac-
tion skills play a major role in computer science – see e.g. Dijkstra (1972b); Kramer
(2007); Hazzan (2008); Grover and Pea (2018). As observed by Eckerdal et al. (2006),

C. Mirolo et al.616

“[i]f one searches the papers available through the ACM Digital Library [...] using the
keyword ‘abstraction’, 63% of all articles are found.” In this vein, not surprisingly, Jean-
nette Wing claimed that “[t]he most important and high-level thought process in compu-
tational think ing is the abstraction process”, especially in that it “gives us the power to
scale and deal with complexity” (Wing, 2011).

The role of abstraction in our field is indeed very pervasive, making abstraction dif-
ficult to describe in a nutshell. In fact, abstraction is usually referred to in overly general
terms, leading Cetin and Dubinsky to assert that “[a]lthough researchers have accepted
that abstraction is a central concept in computational thinking, they are quick to dis-
agree on the meaning of it” (Cetin and Dubinsky, 2017). We can, however, find some
consensus, as stated by Hazzan (1999) on the fact that “the notion of abstraction can be
examined from various perspectives, that certain types of concepts are more abstract
than others, and that the ability ‘to abstract’ is an important skill.”

The struggle to define abstraction is an issue not only for computer scientists; even
in mathematics, a field built around abstractions, the perception of this mental ability is
far from consolidated, as remarked by Scheiner and Pinto (2016) in a paper discussing
“the contradictions, controversies, and convergences concerning the many images of
ab straction.” A comparison of abstraction’s role in computer science and in mathemat-
ics is discussed in Verhoeff (2011), from an educational standpoint, and in Colburn and
Shute (2007), from a more general philosophical perspective. According to Verhoeff
(2011), al gorithms and models of data structures are abstractions with a clear math-
ematical flavour, whereas the abstractions envisaged to model some specific application
domain can be put on a par with the abstractions found in other sciences, and notably
in physics. On the other hand, Colburn and Shute (2007) argue that the role of abstrac-
tion in computer science may be “fundamentally different” from and richer than that
implied in mathematics.

Since the literature on abstraction is quite extensive, in order for the overview to be
both meaningful and viable we focus its scope on three specific outcomes:

To capture different characterisations of abstraction that are relevant to computer 1.
sci ence educators at any level, including teachers with limited expertise.
To outline examples and contexts for such characterisations in different computer 2.
sci ence areas.
To review and provide pointers to key papers addressing the cognitive and peda-3.
gogical implications of abstraction.

The rest of the paper is organised as follows. Section 2 summarises a range of inter-
esting characterisations of abstraction emerging from different fields. In Section 3 we
will take a cognitive point of view and consider the implications for learning; in partic-
ular, we discuss an important aspect from an educational perspective: the abstraction as
a process vs. abstraction as a product dichotomy analysed in some depth by White and
Mitchel more (1999). Then, the subject of Section 4 is abstraction in computer science.
We will describe how abstraction plays a range of roles in computational thinking,
programming and software development, as well as system modelling. In particular,
we will focus on the ability to deal with different levels of abstraction simultaneously,
a skill of paramount relevance in computer science. In Section 5 we will consider the

Abstraction in Computer Science Education: An Overview 617

issues concerning the teaching and the assessment of abstraction skills. In this respect,
the pedagogical practice is affected by the difficulties to operationalise abstraction in
order to monitor the learn ing outcomes, what led to diverging approaches addressing
abstraction either directly or indirectly. Finally, Section 6 will present conclusions and
future perspectives.

2. Characterisations of Abstraction

Notions of abstraction apply to a broad variety of thought processes. In some way, vir-
tually every useful piece of learning implies some sort of abstraction from contingent
experiences, and it means different things to different educators. This section will re-
view some features from those various perspectives that are commonly associated with
abstrac tion, exemplifying them with tasks and situations that occur in computer science.
We will start from the basic meaning usually assigned to abstraction.

2.1. Basic Definitions of Abstraction

From its Latin roots, abstraction should basically mean “something pulled or drawn
away.” The Oxford English Dictionary describes abstraction in lay terms (definition 3a)
as the “action of considering something in the abstract, independently of its associations
or at tributes; the process of isolating properties or characteristics common to a number
of diverse objects, events, etc., without reference to the peculiar properties of particular
ex amples or instances.”1

White and Mitchelmore (1999) built upon a notion of abstraction as a constructive
process with dual actions of “recognizing similarities and ignoring differences.” This is
reminiscent of Locke’s view of abstraction as a two-sided process, where some features
are retained, whereas some other features are ignored. This simple characterisation reso-
nates with many computer scientists, for example:

“Abstraction is the elimination of the irrelevant and the amplification of the es- ●
sential” (Martin, 2003).
“The abstraction process – deciding what details we need to highlight and what ●
details we can ignore” (Wing, 2008).
“Abstraction is defined by having the ability to determine which aspects are im- ●
portant and which are not” (Rijke et al., 2018).
“Abstraction is the process of simplifying and hiding detail to get at the essence of ●
something of interest” (Curzon et al., 2019).

Extracting similarities. Probably, the most basic meaning of abstraction refers to the
process of recognising common features in different examples, and create or define a
new category that groups all the objects with such features – including hence the exam-

1 https://www.oed.com/view/Entry/766

C. Mirolo et al.618

ples. Note this view matches the Collins’ dictionary entry for abstraction:2 “the process
of formulating generalized ideas or concepts by extracting common qualities from spe-
cific examples.” In other words, non-essential features will present variations, while
core attributes will remain unchanged.

This process, referred to as empirical abstraction by Piaget et al. (1969), plays
a fun damental role in the construction of everyday concepts from the perceptions
of superficial similarities between observed objects or facts. In Cetin and Dubinsky
(2017) this process, revisited in the computational thinking (CT) context, is called
extraction.

Abstraction activities aimed at primary/middle school level often target this perspec-
tive: for example by exploring similarities in nursery rhymes and looking for algorith-
mic (in particular, iterative or recursive) patterns to explain their structure (Di Vano and
Mirolo, 2011). Similarly, this simple abstraction process can support school teachers
to introduce the repeat construct in Logo or Scratch. After learning to draw lines
and ex perimenting with the turtle commands forward and right (by 90 degrees),
children are assigned the task of drawing a square, usually resulting into coding a se-
quence of four pairs of commands forward+right. Then, the pupils are invited to
recognise the re current pattern and to appreciate the usefulness of being able to apply
a repeat (4 times) command. On this basis, the abstraction level could subsequently
be raised even more via parameterisation, a form of abstraction as generalisation, guid-
ing the learners to draw a variety of regular polygons with different numbers and/or
sizes of sides.

This process is also used at higher instructional levels, such as the recognition of
com mon patterns among related problems in the pattern-oriented approach of Muller
and Haberman (2008). We will return briefly on this in Section 5.1.
Ignoring non-essential features. When extracting similarities from examples, as de-
scribed above, other specific features are ignored as non-essential. Several philosophi cal,
mathematical, and scientific views of abstraction give prominence to this elimination of
non-essential features in connection with some specific objectives. This perspective is
particularly important in computer science, as we will discuss in Section 4.

Here we start by just mentioning a couple of illustrative examples. The first one is
an unplugged CT abstraction task addressed to primary students,3 who are asked to read
nouns from a pack of cards and quickly draw sketches for a partner to guess what they
are representing. In doing so they learn that they are ignoring unimportant details and
only including that which is most important.

The second one, the concept of variable, is among the earliest abstractions students
find when learning to program. A variable, together with its associated type, is an abstrac-
tion for a memory location that contains a binary representation. Students see variables
of different types, use them in simple programs and learn to trace their values, without
being concerned with the details of the actual underlying representations – and, as far as
possible, without having to care about the possible related limits.

2 Collins English Dictionary at https://www.thefreedictionary.com/Abstractions
3 https://www.barefootcomputing.org/resources/abstraction-unplugged-activity

Abstraction in Computer Science Education: An Overview 619

2.2. The Generative Power of Abstraction

The dual operations of extracting common features and ignoring peripheral details lead
quite naturally to generalisations, a mental process usually connected to abstraction.
Nar rowing down the process of abstraction to generalisation may sound appealing at
first sight, but at a closer scrutiny it results inadequate, all the more so when abstracting
from concepts instead of examples. As a matter of fact, abstraction is also a method to
build new, original mental objects, which are not simply the result of bottom-up general-
isations. As remarked by Ferrari (2003), “interpreting abstraction as just generalization”
overlooks “cognitive and linguistic requirements,” where the “linguistic requirements”
include try ing to attribute meaning to the newly introduced terminology. Thus, in this
sense, abstrac tion should be seen as a powerful, generative and creative process.

This idea can be illustrated by the concept of graph, a data structure that can be used
to represent binary relations over a set of objects. Graphs are used in computer science
to model a variety of situations (e.g., road maps, dynamical systems, social networks, the
World Wide Web, and so on); however, this flexible concept could not just emerge as a
bottom-up generalisation from a range of situations.

Embracing Cetin and Dubinsky’s suggestion, abstraction can then be thought of as
get ting to the essence of a concept, and “making mental constructions to form that es-
sence,” i.e., “a description of the concept that is independent of any context and hence
can apply to the concept in all situations in which it appears” (Cetin and Dubinsky,
2017). This per spective has its roots in Piaget’s reflective abstraction, a higher-level
form of abstraction following the more spontaneous empiricalabstraction. In reflective
abstraction, knowledge is not drawn from some objects’ properties, but mostly from the
individual’s thinking and mental processes (what Piaget calls the “general coordination
of actions”).

We will exemplify this point with a standard program comprehension task. To grasp
what a (previously unknown) program does – i.e., to figure out the algorithm it imple-
ments – a programmer has to build a mental model accounting for the program’s be-
haviour as a whole, which requires the ability to interpret code at different abstraction
lev els (Izu et al., 2019). This process clearly goes beyond understanding each line of
code, or being able to trace the program for specific input data; it typically proceeds
through the identification of beacons (indicators of particular structures or operations)
and chunks (meaningful portions of code). Incidentally, this is a task novice program-
mers often strug gle to cope with, lacking the ability to “see the forest for the trees”
(Lister et al., 2006).

The generative role of abstraction is prominent in the development of scientific con-
cepts, as pointed out by Chambers (1991). While a large amount of practical knowledge
is built upempirically in terms of generalisations, “[s]cientific conceptsand explanations
[...] are not defined by reference to observation [and] do not consist of descriptions of
observ able facts.” Rather, “observation in science is defined by reference to the abstract
scientific concepts, theories, and explanations.” Said otherwise, “abstraction does not
proceed by summarizing observations, but by generating a nonobservational structure
which delib erately does not summarize” (Judith & David Wilier, 1972, cited in Cham-

C. Mirolo et al.620

bers (1991)). Theoretical ideas such as gravitation and electromagnetic waves in phys-
ics, or natural selection in biology were not the outcome of an inductive process result-
ing from the iden tification of recurrent patterns (Chambers, 1991). On the contrary, ideas
like these usually come before and guide the gathering as well as the interpretation of the
observed data (Ohlsson and Lehtinen, 1997).

In short, powerful ideas are usually not the outcome of generalising empirical obser-
vations, but require some unprecedented vision of a creative mind. Chambers’ point
also applies to theoretical models in computer science, such as the “Turing machine”
model of computation, the computational complexity classes, or Shannon’ theory of
information.

3. Abstraction from a Cognitive Point of View

Before we examine the role of abstraction in the computer science field, this section
summarises theoretical studies that appraise abstraction from a cognitive point of view.

3.1. Abstraction as a Product vs. Abstraction as a Process

The need to bring about suitable conditions in order for the students to be able to experi-
ence the process of abstraction has been put forward by several researchers on the learn-
ing of mathematical concepts. In this respect, for instance, Mason (1989) wrote that
“student’s sense of abstract as removed from or divorced from reality (or perhaps, more
accurately, from meaning, since our reality consists in that which we find meaningful)
[...] arises be cause there has been little or no participation in the process of abstrac-
tion [...]. Despite current emphasis on exploration and investigation, many students may
still not experience the shift of abstraction unless they receive explicit assistance.”

Later, White and Mitchelmore (1999) dug a little more deeply into the implications
of process vs. product approaches when introducing new mathematical concepts. They
remarked that most teaching practices introduce abstractions as ready-to-use products, in
a (context-free) abstract-apart way, rather than focusing on the context-situated pro cesses
which could give rise to them and so promoting the learning of what they called abstract-
general concepts. As a result, in their opinion, “concepts and procedures learnt in an abstract-
apart manner are limited because they can only be applied in situations which look suitably
similar to the context-free way in which they were learnt.”

For the sake of clearness, abstraction as a process is perhaps a little more subtle
than it may appear at first. The process should not be merely meant as the ability to
map some thing concrete – e.g., a real building – into some related abstraction – say its
schematic layout. This can be achieved as well after encountering the “building layout”
abstraction, or rather its conventional representation, as a product, once the connec-
tions between items in the concrete object and corresponding artefacts in its abstracted
representation are un derstood. Instead, abstraction as a process means experiencing
abstraction as the result of engaging in a process that leads to realising the need and/or

Abstraction in Computer Science Education: An Overview 621

usefulness of that abstrac tion in order to focus on what is relevant to achieve the task at
hand. And note, in this respect, the decision to leave some details out and include others
is based on our aims while abstracting over some object, not on the object itself. Follow-
ing Wilensky (1991), abstractness “should not be considered as an inherent property of
some object, but of the relation of someone’s mind to the object.” For example, we could
provide a range of schematic layouts for the same building; all of them will reflect the
same walls and corri dor distribution, but depending on our needs or goals, we may want
to capture electrical details (charging points, lights), wall treatments, fixtures, etc.

The distinction between experiencing abstractions as either products or processes
also applies to the basic forms of procedural and data abstractions, so pervasive in
the pro gramming activity. Typically, novice learners struggle to devise neat solutions
based on these forms of abstraction precisely because they were exposed to a number
of examples presented as products, made available by someone else more expert – the
teacher, the textbook’s author – without taking part in a process giving rise to the de-
sign decisions.

Let us also consider the example of a theoretical abstraction in computer science.
The big-O notation is an intrinsically abstract concept that is usually introduced at ter-
tiary level to categorise algorithm performances. A characterisation in terms of big-O
notation is clearly an abstract characterisation as opposed to the more concrete one
consisting in a table of running times obtained empirically by running a program on
a sample set of inputs. A standard way of presenting the big-O notation starts from its
formal definition in terms of the mathematical concepts of bounding constants and
limits, and then proceeds by explaining how it can be used in the analysis of a few
algorithms. With a similar approach, abstraction is introduced as a conceptual product
we are just trying to apply in sample situations, and the burden of grasping its nature
and relevance is left to the learners.

To experience abstraction as a process, on the other hand, students should be guided
through a path starting from what they perceive as concrete at a given learning stage
(code, input data, running some code...) and revealing why that form of abstraction
makes sense in connection with the algorithm properties it is intended to capture. This
may be achieved, for instance, by analysing the trends of rates of running times for
pairs of programs in the same complexity class vs. pairs of programs belonging in dif-
ferent classes.

3.2. Structural vs. Operational Dichotomy

This dichotomy dates back to Piaget’s distinction between “figurative” (structural) and
“operative” modes of thought (Piaget, 1969). Figurative modes account for represent-
ing static aspects of reality, whilst operative modes enable us to make sense of the
dynamic and transformational aspects of reality. The operative mode affects how we
perceive and build mental images of objects from our experience; conversely, the figu-
rative mode provides objects of thought that can be acted upon and transformed under
the operative mode.

C. Mirolo et al.622

Operational and Structural views. In her theoretical framework, Sfard (1991) distin-
guishes between two different modes of conceiving (abstract) mathematical notions:
op erationally (as processes4, algorithms, or actions) or structurally (as objects). For in-
stance, a circle can be seen operationally as the curve obtained by rotating a compass
around a fixed point, or structurally as the locus of points that are equidistant from
a given point.

When building mathematical notions (while learning them, or in their historical
devel opment), the operational conceptions occur before the structural ones, which
Sfard deems more abstract. In her words, seeing an entity “as an object means being ca-
pable of refer ring to it as if it was a real thing [...]. It also means being able to recognize
the idea ‘at a glance’ and to manipulate it as a whole, without going into details. [...]
In contrast, inter preting a notion as a process implies regarding it as a potential rather
than actual entity, which comes into existence upon request in a sequence of actions”
(Sfard, 1991, p. 4).

Operational conceptions are likely to play a significant role in the formation of com-
puting concepts as well, which makes Sfard’s model worth considering here. Take, for
example, the programming concept of iteration: an operational conception of iteration
relates to actually carrying out the repetition of a sequence of given instructions in con-
crete situations; a structural conception, instead, sees iteration more comprehensively
as a programming construct. The latter view is required in order to understand a sen-
tence like “sequencing, selection, and iteration are the building blocks of structured
programming.”

Similarly, the notion of algorithm, which can be defined operationally as a sequence
of steps to be executed to solve a problem, can be conceived structurally as a computa-
tion strategy achieving some desired behavior (e.g., in terms of input-output relation).
The op erational conception is sufficient to trace, i.e., simulate the execution of a given
algorithm, whereas one needs to conceive the notion structurally in order to understand
its properties, such as correctness, termination or computational complexity.
Concept development process. Sfard dissects the process of concept development
into three stages: interiorization, condensation and reification. At the first stage, the
learner gets acquainted with applying some procedures; then, at the intermediate stage,
they start to see a given process as a whole. Eventually, the reification stage marks an
“ontological shift,” i.e., a sudden leap to seeing “something familiar in a totally new
light.” The new entity is now detached from the process that originated it, and it can
become a new basic unit for higher level processes.

A similar perspective is taken by Dubinsky (1991) who builds upon Piaget’s no-
tion of reflective abstraction to investigate the development of advanced mathematical
concepts. His theory – that has also been applied to computational thinking (Cetin and
Dubinsky, 2017) – is referred to as APOS, from the acronym of the four implied men-
tal structures. According to Dubinsky’s theory, a mathematical notion is first under-
stood as action (A), i.e., a transformation involving physical or mental objects that can

4 Sfard’s term “process” is meant here as a synonym of algorithmic procedure, not to be confused with White
and Mitchelmore’s use of the term to refer to the action of developing an abstraction.

Abstraction in Computer Science Education: An Overview 623

be carried out by con crete means. After repeated practice on the same action as well
as reflection on its impli cations, the learner may interiorise the action and become
able to perform it mentally as a process (P). The process may then be encapsulated
into a mental object (O), as the learner realises that the process can be operated on as
a whole. Indeed, what distinguishes an ob ject from a process is precisely this potential
to act on it. Whenever necessary, an object can be de-encapsulated to go back to the
process that originated it. Eventually, a schema (S) emerges when these constructs are
organised and linked into a coherent framework, that can then become a new object
for higher level schemas.

3.3. Multiple Representations Perspective

Duval’s analysis of mathematics cognition provides a complementary perspective of
ab straction. Although Duval (2006) actually makes an explicit use of the term “ab-
stract” only once in his paper, the reference to the abstract nature of mathematical
concepts is implied by asserting that “[m]athematical objects [...] are never accessible
by perception or by instruments [...]. The only way to have access to them and deal
with them is using signs and semiotic representations” – which are usually multifold.
As a consequence, according to Duval, two kinds of transformations play a central
role: treatment and con version. Treatments are essentially algorithmic (in Sfard’s
sense) manipulations within a given semiotic register, while conversions connect dif-
ferent kinds of representations and provide a mapping between them. Conversions are
cognitively quite complex since they presuppose the recognition of the same denoted
object, which must be dissociated from its representation(s). This characterisation
resonates with both the view of abstraction as getting to the essence – e.g. (Cetin and
Dubinsky, 2017) – and Sfard’s idea of abstract entities obtained via reification (Sfard,
1991).

In Duval’s view, the peculiar thinking processes of mathematics require the cogni-
tive coordination of different semiotic representations in order to compensate for the
lack of direct (or instrumental) access to an entity. Since computer science is also
abstract in na ture, it is conceivable that treatments and conversions play a similar role
for the related concepts. In particular, programmers constantly have to do with conver-
sions between dif ferent types of representations of a same ideal model or entity. For
the sake of concrete ness, think e.g. of changing the internal structure of a data abstrac-
tion while keeping the external “contract” semantics unchanged; or think of moving
from flow-charts to textual code (and viceversa) to represent an algorithm.

Mirolo and Di Vano (2013) have drawn from Duval’s valuable insights while
design ing a range of activities to introduce computing ideas in the middle-school.
Following their proposal, students are guided to work with heterogeneous representa-
tions, including unplugged paper and cardboard artefacts, in order to explore both the
(structured) state of the computation and the very idea of algorithmic procedure. Such
“explorations” are precisely meant to develop a more abstract view of the implied
concepts.

C. Mirolo et al.624

3.4. Analogies and Metaphors

Analogies and metaphors can be helpful vehicles for the cognitive assimilation of nov-
el ideas. An inspiring theme arising from science education concerns the exploitation
of analogies to enable an intuitive grasp and eventually trigger the construction of an
ab stract concept. When relevant insight is drawn from analogies between a range of
sources, the cognitive role such “model” sources play is somehow similar to that of
multiple rep resentations. Pedagogical approaches based on similar uses of analogies
have been pro posed, for instance, in order to mitigate possible misconceptions due to
oversimplification of the relationships to the target (Spiro et al., 1989) – and even with
partially understood sources (Kurtz et al., 2001). Moreover, as an additional instantia-
tion of this perspective, Podolefsky and Finkelstein (2007) propose the use of multiple,
layered analogies “as step ping stones toward more deeply structured abstract reasoning”
to scaffold the learning of abstract ideas in physics.

A related concept to analogy is that of metaphor. According to Colburn and Shute
(2008), “an abstraction is created to manage complexity through information hiding, and
a metaphor is used to name the abstraction” (whereas the “information hiding” is to be
described in non-metaphorical terms). This kind of metaphors “expand the ontological
framework of our language for talking about computational processes [and] work their
way into programming languages.” Colburn and Shute identify three main roles of com-
puter science metaphors: (1) a pedagogical role, to facilitate the accommodation and
assimila tion (in Piaget’s terminology) of new abstractions; (2) a design-oriented role, in
particular when designing a friendly interface, evoking a context familiar to the intended
user; and (3) a scientific role, to explain computing concepts.

4. Abstraction in Computer Science

In this section we will consider the role of abstraction in typical computer science tasks,
including the wider scope of computational thinking (CT). We first review what is meant
by abstraction in computational thinking literature, then we illustrate specific abstrac-
tions that are used in the field of programming and software development; finally we
discuss the importance of being able to move between different levels of abstraction.

4.1. Abstraction in Computational Thinking

Since Wing’s seminal paper (Wing, 2006) on computational thinking, a large body of
work has focused on revising and providing an operational definition of computational
thinking, with particular emphasis on K-12 level, in order to help educators to build CT
skills across a range of curriculum’s areas.

The CT literature recognises the role of abstraction in different contexts and for
a va riety of purposes; in particular, when modeling real-world problems into compu-
tational problems and when developing related artefacts. All the facets of abstraction

Abstraction in Computer Science Education: An Overview 625

discussed in Section 2 – abstraction as generalisation, recognising similarities, ignoring
details, and getting to the essence of concepts – play in fact a relevant role in compu-
tational thinking.

In Wing (2006) the term abstraction is linked to devising suitable problem represen-
tations and mastering complex tasks. Later, she sharpened the emphasis on the role of
abstraction by stating that core skills in CT are “defining abstractions, working with
mul tiple layers of abstraction and understanding the relationships among the different
layers. Abstractions are the ‘mental’ tools of computing” (Wing, 2008). In addition, the
“opera tional definition” of CT proposed by ISTE and CSTA includes “representing data
through abstractions, such as models and simulations” as one of the key problem-solving
processes that characterise CT (Barr et al., 2011).

Barr and Stephenson (2011) underlined the importance of recognising abstractions,
of moving between levels of abstraction, of simplifying from the concrete to the general
as solutions are designed and developed. They provide examples of how abstraction in
CT could be embedded in different disciplines, e.g., when identifying essential facts in
a word problem (math) or building a model of a physical entity (physics).

Shute et al. (2017) provided a good summary of how CT has been characterised
in the literature. Six major aspects of CT emerge from their analysis: decomposition,
abstrac tion, algorithm design, debugging, iteration, and generalisation. In particular,
they define abstraction as being able to “extract the essence of a (complex) system,” and
identify three subcategories (Shute et al., 2017, Table 4):

Data collection and analysis: collect the most relevant and important informa-1.
tion from multiple sources and understand the relationships among multilayered
datasets.
Pattern recognition: identify patterns/rules underlying the data/information struc-2.
ture.
Modeling: build models or simulations to represent how a system operates, and/or 3.
how a system will function in the future.

This is probably the more encompassing definition of abstraction in CT. In other
oper ational definitions or frameworks data structures and/or pattern recognition are not
explic itly linked or captured inside abstraction. For example, ISTE5 introduces abstrac-
tion and pattern recognition as separate pillars of CT, together with decomposition and
algorithms.

As reported in Kite et al. (2021), programming (e.g. block-based coding platforms, toy
robotics, game development) is usually the main vehicle for teaching CT. This instruction-
al approach is sometimes referred to as plugged due to its associated hardware resources.
Plugged CT. Many operational definitions of abstraction in CT are linked to program-
ming. For instance, abstraction is paired up with modularisation in the framework pro-
posed by Brennan and Resnick (2012), which is derived from their studies on children’s
activities with Scratch.6 In particular, they characterise the computational practice of

5 https://www.iste.org/areas-of-focus/computational-thinking-in-the-classroom
6 A widespread visual programming environment that the authors describe as a “computational authoring

environment.”

C. Mirolo et al.626

“ab straction and modularisation” in terms of “building something large by putting to-
gether collections of smaller parts.” This practice is observed both in the initial work of
conceptualising the problem and in its implementation, structured into individual parts.

Abstraction provides the last letter for the acronym VELA, the label of a project
aimed at enhancing the understanding of programming concepts in K-12 (Grover et al.,
2019) – the other letters standing for Variables, Expressions, and Looping. In the con-
text of this project, abstraction is defined as “the process of giving a name to a specific
collection of details as a way of referencing its purpose without quoting or enumerating
its detail.” More generally, in their learning goals, abstraction is associated with the
identification of patterns, the use of variables to represent data, and the use of multiple
representations.
Unplugged CT. Computational thinking provides a multifaceted perspective to ap-
proach complex and open-ended problems, which can also be applied to everyday activi-
ties, either plugged or unplugged.

The tasks in the Bebras Challenge7 are popular sources for unplugged CT activities.
An ITICSE Working Group in 2015 analysed the scope of Bebras tasks in relation to CT
concepts; their operational definition of abstraction for such tasks covered: (1) problems
that ask for the creation of a formula, (2) the distillation of broader ideas out of narrower
concepts, (3) finding rules that apply to a given problem, (4) finding a pattern to model
some behavior, and (5) identifying essential facts about a structure or problem to verify
correct answers (Barendsen et al., 2015, Table 4).

Additionally, abstraction plays a central role for a variety of unplugged CT activities
in different knowledge fields. In Peel et al. (2019), for example, secondary honors biol-
ogy students learned CT principles and engaged in the design of unplugged algorithmic
explanations to describe natural selection for three organisms. After revising each algo-
rithm, they were able to generalise across contexts and produce a generic natural selec-
tion algorithm. This is an interesting example of unplugged computational modelling.
Computational abstractions. Independently of working in a plugged or unplugged
con text, the creation of computational abstractions can be seen as a computational prob-
lem-solving practice. As remarked by Weintrop et al. (2016), “creating an abstraction
requires the ability to conceptualize and then represent an idea or a process in more
general terms” by focusing on the important aspects and leaving less relevant features
on the background.

A key aspect differentiates CT from other disciplines using abstraction: the “es-
sence of Computational Thinking lies in the creation of ‘logical artifacts’ that exter-
nalize and reify human ideas in a form that can be interpreted and ‘run’ on comput-
ers” (Hoppe and Werneburg, 2019). Said otherwise, the abstractions devised to model
real-world problems materialise and become real in programs, in that they will live
on whenever the program is running – typically with concrete effects on the real lives
of their users – without the mediation of minds, which instead is usually required for
abstract ideas to exist.

7 https://www.bebras.org/ – Annual online competition, started in Lithuania in 2004 and spread all
over the world, whose aim is to encourage school students’ interest in Informatics and CT

Abstraction in Computer Science Education: An Overview 627

4.2. Specific Abstractions in Programming and Software Development

When creating programs, and computational artefacts in general, programmers can refer
to a repertoire of computational abstractions and use them as constructive tools, or “con-
crete abstractions” (as dubbed in Hailperin et al. (1999)). In this section we summarise
the most common and relevant of such concrete abstractions.
Programming languages and paradigms. Programming languages provide different
kinds of abstractions, mostly according to the application domains they are designed for,
and can be classified for their level of abstraction. Low-level languages, as assembly,
are close to machine languages (whose instructions are expressed only by binary digits
and are understood directly by the machines) and provide little or no abstraction from
the de tails about how the machine works. High-level languages instead are designed to
be easily understood by humans, and indeed they require to be translated into executable
programs in order to be run by machines.

Similarly, programming paradigms resonate the computational models they are
based upon and can be analyzed according to the abstractions they provide. Indeed the
expres sive power of all programming languages8 and paradigms is the same, what differ-
entiates them is the easiness of accessing, using, or building different abstractions. For
example, structured programming allows to organise the data flows using three basics
constructs (sequence, selection, and iteration) and to structure programs with separate
modules as functions or procedures, while object-oriented programming supports fur-
ther abstractions as encapsulation, polymorphism, inheritance.
Generalisation and parameterisation. Generalising and decontextualising play
a mean ingful role in writing programs, so that they can work on a range of different in-
puts and contexts. Variables are one of the first tools novices learn to use in order to rep-
resent a general category of possible values; the complexity of considering many cases
is reduced by replacing multiple similar specific entities with a single abstract one.

Additionally, a program unit may be generalised in order to extend its application to
different situations; the identity of data is abstracted away by replacing it by parameters
with the aim of generalising functions or modules so that they can be applied in differ ent
contexts. This scope extension called abstraction by parameterisation by Liskov and
Guttag (2001); Liskov et al. (1977).
Procedural and data abstraction. When calling functions in programs we are inter-
ested in what the function does and not in the details on how it is implemented; this is
what is meant by the expression “procedural” (or functional) abstraction. The user of the
function does not have access to the details about the algorithms that accomplishes the
function: those details are ignored as non-essential, and abstracted away; instead the user
can trust the accuracy of the results and has only to know the signature of the function
(a convention that describes how to call it).

A similar separation of concerns is relevant for data as well as program modules.
Data abstraction refers to the separation between how data can be accessed, used, and

8 provided that they are Turing complete.

C. Mirolo et al.628

changed and how data is represented. Abstract data types are designed according to this
principle: the external interface encapsulates the operations that can be performed on the
data, and the implementation defines how data are handled internally.

Procedural and data abstraction allow to reuse modules in different contexts and
to change their implementation without affecting the calling module. In the design-
by- contract terminology this idea is referred to as abstraction by specification (Liskov
and Guttag, 2001; Liskov et al., 1977). In order to address the primary need of manag-
ing com plexity in large programs, the implementation details are abstracted away by
decoupling the program units. Procedural and data abstraction occur together in the
object-oriented paradigm, where both data and its associated operations are abstracted
into objects.
Information hiding and abstraction layers. In procedural and data abstraction, the
user is unaware of the details about the function implementation or the internal represen-
tation of data. However, in contrast to other disciplines, this information is just hidden,
rather than ignored, since it must be preserved and used at other levels of the same pro-
gram (Colburn and Shute, 2007). The concept of notional machine (Du Boulay, 1986) is
representative of this idea of hidden abstraction. Notional machines are indeed abstract
models that provide a context for understanding the program behavior without the need
to be aware of the machinery of several layers of hardware and software. Programmers
do much (if not all) of their work at the notional machine abstraction level.

This information hiding concept is pervasive in computer science. In complex sys-
tems, such as an operating system or a network server, functionalities are broken into
multiple layers, so that each layer implements some functionality or service that is pro-
vided to the layers above. The higher layers do not need to know any of the details of
the implemen tations in the lower layers, which are hidden to them. They only need to
know how to ask for that service. However, although details are hidden, they are relied
upon, and dealt with in different layers.

4.3. Moving through Different Abstraction Levels

Many scholars have highlighted the importance, in computer science, of being able to
move over different levels of abstraction:

“[T]he arrangement of various layers, corresponding to different levels of abstrac- ●
tion, is an attractive vehicle for program composition” (Dijkstra, 1972a);
“[T]he essence of computer science is an ability to understand many levels of ab- ●
straction simultaneously” (Knuth, 2003);
“Thinking like a computer scientist [...] requires thinking at multiple levels of ab- ●
straction” (Wing, 2006);
“The abstractions of computer science [...] are constantly changing, requiring ●
multi ple, multilayered abstractions of interaction patterns” (Colburn and Shute,
2007).

The latter regarded this ability as very peculiar to the field, and this is particularly
manifest in algorithm and program design.

Abstraction in Computer Science Education: An Overview 629

Building on Sfard’s work, a first distinction is done by Haberman et al. (2005) who
argue that “an algorithm can be viewed as an operational process entity (embodying
a ‘how’ view), as well as an object entity that embodies an input/output relationship
(and a ‘what’ view).” Perrenet et al. (2005) deepen this approach by defining four
abstract levels for the concept of algorithm; the resulting hierarchy (later known in
the literature as PGK hierarchy) is shown in Table 1. Waite et al. (2018) situated this
hierarchy in K-5 settings by renaming the levels and associating to each of them the
question it pertains.

It is also worth mentioning here Hazzan’s “reducing abstraction” framework (Haz-
zan, 1999). It was proposed at first in relation with the learning of algebra concepts, but
subse quently it has also been applied to computer science (Hazzan, 2003; Sakhnini and
Hazzan, 2008). Within this framework, a learner’s abstraction process is explained in
connection with students’ tendency to reason at lower levels of abstraction than expect-
ed while trying to cope cognitively with new concepts they are learning. Hazzan (1999)
argues that the “reducing abstraction” framework is consistent with the most common
perspectives on abstraction levels, namely: in terms of the quality of the relationships
between the learner and the object of thought (Wilensky, 1991), in terms of the transi-
tion from operational to structural abstractions (Dubinsky, 1991; Sfard, 1991), and in
terms of the degree of complexity of the concept.

A simple, concrete example of swapping between abstraction levels can occur
when completing a task to draw an image on the computer screen. At the design stage,
numbers and arithmetic operations are thought of at an abstract level, mathematically.
However, when debugging the program code we may need to lower the abstraction
to their rep resentation properties in order to make sense of oddities in the visualised
drawings that could be explained, e.g., by arithmetic overflow while computing pixel
coordinates.

5. Abstraction in the Computer Science Classroom

Although we have presented relevant characterisations of abstraction, it is still far from
clear how an abstraction-oriented perspective could become part of the pedagogical
prac tice. Already in the late 1990s, as a revision of the spreading object-first orienta-

Table 1
PGK Hierarchy levels from Perrenet et al. (2005) and their mapping

to K-5 settings according to Waite et al. (2018).

PGK Level Definition K-5 name K-5 question

Problem Algorithm perceived as a problem solving strategy problem “What is needed”
Object
(algorithm)

Algorithm understood independently of any specific
implementation

design “What it should do”

Program Algorithmic grasp of the program code “How it is done”
Execution Focus on individual runs with specific inputs running the code “What it does”

C. Mirolo et al.630

tion, Ma chanick (1998) endorsed an abstraction-first instructional approach where the
implemen tation of abstract data types is delayed as much as possible in order to stress
an abstract view of the models.

Kramer remarked that abstraction per se is not the subject of any computing course,
but that all computing courses “rely on or utilize abstraction to explain, model, spec-
ify, reason or solve problems,” so confirming that “abstraction is an essential aspect
of computing, but that it must be taught indirectly through other topics” (Kramer,
2007, p. 41). In line with Kramer’s remark, Hazzan (2008) discussed abstraction as
a soft idea, “that can be neither rigidly nor formally defined, nor is it possible to guide
students as to its precise application.” And although “it is not a trivial matter,” like
other soft ideas, abstraction should be taught in a computer science curriculum. Then,
a small number of educators have provided guidelines to teach abstraction at different
instruction levels. Hence, this section briefly explores their approaches to foster and
assess abstraction skills.

5.1. Teaching to Trigger Abstraction in Computer Science

Often instructors aim to develop students’ abstraction skills indirectly, by devising par-
ticular learning trajectories that are supposed to foster higher-level thinking and require
students to use abstraction to succeed. In a program development project, for example,
they could assign refactoring tasks in which learners are asked to look for recurrent pat-
terns of code and to re-organise the code by introducing meaningful procedural and/or
data abstractions with the purpose of making the whole program easier to read, debug
and modify. In the following paragraphs we will outline a selection of representative
ap proaches to (an implicit) abstraction-oriented instruction.
Pattern-oriented instruction. This approach has the aim of improving students’
compe tencies in algorithmic problem solving (Muller and Haberman, 2008). An algo-
rithm is in deed seen by these authors as a combination of plan patterns in Soloway’s
sense (Soloway, 1986), resulting via sequencing, nesting or merging plans from a reper-
tory of basic algo rithmic patterns specifically designed for pedagogical purposes.

In Muller and Haberman’s scenario, abstraction plays a crucial role in pattern recog-
nition, chunking, and problem structure identification. Their approach relies on having
an appropriate pattern repository, as well as on presenting carefully selected problems
of gradually increasing difficulty; teachers should then discuss and compare different
solu tions to a given problem in terms of pattern composition. Additional guidelines for
pattern-oriented instruction include: (1) patterns should be abstracted from related ex-
amples or by generalising a simpler problem, (2) patterns should be revisited in differ-
ent contexts, in order to make the identification of common problem features easier, and
(3) similari ties, differences, and also possible misuses of patterns should be considered.
According to Muller and Haberman, comparative studies appear to show that novices
exposed to this approach develop enhanced problem solving abilities.
Multiple representations perspective. Dealing with multiple representations of
a given phenomenon can play a key role in the development of abstract concepts. Ac-

Abstraction in Computer Science Education: An Overview 631

cording to Ainsworth (2008), in particular, in order “to construct a deeper understanding
of a do main,” if the learners “fail to relate representations, then processes like abstrac-
tion cannot occur. Moreover, although learners find it difficult to relate different forms
of representa tions, if the representations are too similar, then abstraction is also unlikely
to occur.” She then recommends that teachers should foster abstraction over multiple
representations “by providing focused help and support on how to relate representations
and giving learners sufficient time to master this process.”

In this respect, Gautam et al. (2020) have recently proposed an interesting interdis-
ciplinary approach to integrate science (namely, chemistry) and computational thinking
in the curriculum. While abstraction is usually “presented as hierarchical” in terms
of (i) extracting important features and ignoring unimportant ones, and (ii) finding
commonal ities across contexts, in their standpoint “abstraction in science” as well as in
computing “requires students to move laterally across different representations of the
concepts or ac tions.” In the reported study, the micro-level process of photosynthesis
was modeled by a code snippet, and by discussing commonalities and differences be-
tween, e.g., a white board and the code representation of the implied chemical reaction,
“the instructor pushed students towards higher-level abstract thinking.” Moreover, they
suggest to allow for fric tion emerging when the students explore different representa-
tions, in that it encourages to consider alternative views and “negotiate the elements
with one another.” According to the authors, this approach “created meaningful ac-
counts of science phenomenon and the science provided access to how computation
embeds ideas.”
Exploration of artefacts. A more recent pedagogical trend in programming educa-
tion attempts to trigger abstraction through activities inspired by the use-modify-create
frame work. The idea is that the understanding of artefacts such as programs would
gradually progress through three major stages, corresponding to (i) exploration via pas-
sive use (as a consumer), (ii) experimentation of the internal machinery by modifying
some features, and finally (iii) creation of new, original artefacts to achieve specific
goals. While dis cussing the use-modify-create approach, Lee et al. (2014) observe that
abstraction, as well as other computational thinking abilities, are “not explicitly taught
but rather [de velop] through one’s impetus to create;” nevertheless, in this progression
the abilities to modify and, later, to create imply the enhancement of learner’s abstrac-
tion skills.

5.2. Teaching the Role of Abstraction in Computer Science

In contrast to the previous approaches, fewer educators have proposed ways to make
ab straction more explicit. Koppelman and van Dijk (2010), for example, reported on
students struggling to use procedural abstraction and recommended to teach abstraction
early and consciously. What they meant is that instructors should point out where ab-
straction is used and call it by its name. They should also stress its benefits by compar-
ing solutions with and without procedural abstraction and seeing the former are easier
to understand. Nicholson et al. (2009) attempted to lay “the basis of a curriculum of

C. Mirolo et al.632

abstraction” by delineating fourteen sub-skills involved in working with abstractions.
In order to engage students’ in using abstraction, they proposed the creation of ‘sce-
narios’ that facilitate experimenting with abstractions and allow to get prompt feedback
on them. They emphasised the im portance of a critical examination of potential uses as
well as misuses of programming abstractions in connection with the intended purpose
and the different target contexts. Both studies suggested guidelines but did not test them
in the classroom. Two explicit ap proaches that have been put into practice are briefly
presented next. For more insights on these contributions the reader is however referred
to the cited papers.
Abstraction awareness. Böttcher et al. (2016) introduce abstraction explicitly with
the goal of fostering “awareness of what abstraction is, and why it is a necessary skill,”
while making “the cognitive process of abstraction transparent” to the learners. Their
interven tion consisted on three stages: (1) Testing sessions using abstract tasks, “to
make students aware of their lack in abstract thinking,” (2) Practice sessions finding
commonalities and categorising items from everyday’s life, to develop their compe-
tence, and (3) a 90 minute lecture that modelled in a collaborative manner the abstract-
to-concrete thinking while developing an algorithm, to “deepen the conscious compe-
tence” of abstraction.
Abstraction in introductory programming. Armoni and colleagues have developed
and explored the potentials of a more comprehensive framework to teach abstraction in
com puter science explicitly to novices at secondary and tertiary level (Armoni, 2013;
Statter and Armoni, 2016). Their approach is based on the PGK hierarchy proposed by
Perrenet et al. (2005), consisting of four abstraction levels presented in Table 1. Armoni
(2013) pointed out that students should be made aware of any change of abstraction
level. More specifically, when solving a problem students should become able to appre-
ciate the differ ences between abstraction levels, to consciously and freely move between
different levels, and to decide the appropriate level to achieve a given (sub)task. To pur-
sue these learn ing objectives, which pertain to the abstraction-as-process perspective,
Armoni and col leagues suggest a few instructional guidelines, in particular:

Proceed from higher to lower abstraction levels ● , working at the lower levels only
when concreteness is required.
Use language cues ● as an aid to recognise the intended level (e.g., restrict refer-
ences to specific programming constructs to the two lower levels).
Be persistent and precise ● about consistently and clearly distinguishing among
levels.
Be explicit and reflective ● , encouraging students to look back at their own pro-
cesses.

5.3. Assessing Abstraction Skills in Computer Science

“Are abstraction skills assessable at all?” This question has been raised by Hazzan and
Kramer (2016), who have asked a group of experts in computer science and software
engineering to rate the appropriateness of a range of patterns intended to test students’

Abstraction in Computer Science Education: An Overview 633

abstraction ability. What emerged from their investigation is a ‘surprising’ disagreement
among experts as to the suitability of each proposed type of test, partially compensated
by some agreement on requiring students’ to create themselves abstractions, rather than
simply analyse system representations in terms of abstraction. At the core of this ques-
tion lies, in fact, the need to operationalise the assessment of abstraction skills, an issue
that has not been extensively investigated; we will briefly present a range of attempts.
Abstraction in learning taxonomies. We should start by observing that the learning
tax onomies of most widespread use in computing education define a scale of increasing
ab straction levels. Such a connection is made explicit in the very name “extended ab-
stract” of the topmost SOLO9 category (Biggs and Collis, 1982), but it is also implied by
the formal generalisation stage of the Piaget-inspired framework, applied in (Bennedsen
and Caspersen, 2006), or by the higher analysis, synthesis and evaluation degrees of
Bloom’s taxonomy (Anderson et al., 2001).

However, we should be mindful that similar instruments measure general thinking
ca pabilities, not specifically tailored for the computing field. An interesting review of
learn ing taxonomies, leading to a specific adaptation for computer science, can be found
in Fuller et al. (2007). Moreover, while pointing out that a major source of difficulty
to as sess abstraction, especially in computer science, can be ascribed to its “inherently
context bound nature,” Philpott et al. (2009) distinguish between ‘quantitative’ (multi-
structural or below) vs. ‘qualitative’ (relational) SOLO categories, to be interpreted in
terms of Sfard’s process/object duality (Sfard, 1991), and suggest to use this distinction
to design reliable tools to measure abstraction levels in computer science education.
Abstraction in cognitive development. To investigate the impact of abstraction abili-
ties on performance in computer science tasks, Bennedsen and Caspersen (2008) op-
erationalised abstraction in terms of stages of cognitive development, as elaborated by
Adey and Shayer (1994), and used a validated test, namely, an adaptation by Adey and
Shayer of Piaget’s pendulum-test. More specifically, that model identifies eight cogni-
tive development stages: pre-operational, early concrete, mid concrete, late concrete,
concrete generalisation, early formal, mature formal, formal generalisation.

Hill et al. (2008) devised a three-scale instrument to assess abstraction skills in terms
of conceptual, formal and descriptive abstraction. Conceptual abstraction amounts to
being able to “see the forest” (Lister et al., 2006), i.e. to being oriented toward the big
picture when solving a problem. Formal abstraction refers to the ability to reason with
the aid of symbols, i.e. to master the relationships between a formal system and the
problem domain. Descriptive abstraction refers to the ability to analyse and identify core
parts, similarities and differences between problems.
Abstraction in novice programmers. Statter and Armoni (2020) have reviewed
a number of methods used by researchers in the attempt to measure the abstraction level
exhibited by students while trying to achieve computing tasks.10 Their purpose was to
devise an appro priate assessment instrument for a study they were planning to carry out,

9 SOLO is an acronym standing for Structure of Observable Learning Outcome.
10 We refer the interested reader to the review section in Statter and Armoni (2020) for a broader view on the

assessment of abstraction.

C. Mirolo et al.634

and eventually they decided to focus “on a few characteristics of the solution process,
which indicate the use of abstraction” (Statter and Armoni, 2016).

A range of operational features can be directly related to the already mentioned
PGK hierarchy (see again Table 1) such as distinguishing between abstraction levels,
recognis ing the level currently in use or moving freely and smoothly between abstrac-
tion levels. Additionally, some “corroborative,” indirect evidence of abstraction abili-
ties may come from other complementary indicators such as offering explanations that
justify a solution or identifying initialisation (setup) units within programs.
Abstraction skills and transfer. It is worthwhile to conclude this part with a couple of
notes about learning transfer. Far transfer is indeed a clear indication of abstract think-
ing, and evidence of its occurrence could then be used to assess the achievement of
abstraction skills. In Salomon and Perkins’ words, “[h]igh-road transfer occurs by in-
tentional mindful abstraction of something from one context and application in a new
context” (Salomon and Perkins, 1989)11. This task, however, is not a straightforward one
either. In spite of recur ring optimistic claims that learning to program has the potential to
enhance the learners’ general problem-solving skills, it is unclear to what extent the abili-
ties acquired through programming can actually transfer to other domains (Pea and Kur-
land, 1984; Salomon and Perkins, 1989). And according to Guzdial (2015), “there has not
been a study since Wing’s 2006 paper that has successfully demonstrated that students in
a computer science class transferred knowledge from that class into their daily lives.”

Ginat et al. (2011), on the other hand, have analysed learning transfer among differ-
ent tasks, all within the field of computer science. To this aim, they have characterised
students’ difficulties in terms of five transfer aspects, namely: recognition, abstraction,
mapping, embedment, and flexibility. There, abstraction is meant as the ability to envis-
age a general problem-solving pattern, by establishing connections from an analogue
(recog nition) to the current task (mapping), the latter aspect involving flexibility, to adapt
the source pattern, and possibly embedment, to combine more elements to each other.
Then, the way they measured transfer is by examining students’ solutions to specifically
designed tasks, whose features are described in detail in the cited paper.

6. Conclusions

I will not solve the problems posed by abstraction, and certainly not
the problem of teaching abstraction. But I would like to put it more
prominently on the agenda.

Tom Verhoeff (2011)

Defining abstraction in computer science is challenging as it permeates a variety of tasks
including programming, analysing data, creating applications, building large computa-
tional models. Faced with such an herculean task, we could not do justice to the many
studies that have tackled each abstraction perspective in depth, but we hope this over-

11 Italic was added by the authors.

Abstraction in Computer Science Education: An Overview 635

view will provide pointers to the interested readers to further investigate the process of
abstrac tion in their own areas of interest.

We have covered abstraction from diverse angles: its basic definition provides an en-
try point for primary students to grasp computational thinking; the awareness of the role
of multiple abstraction levels will help secondary and tertiary students when learning to
program; its potential to tackle complex systems, one level at a time, will support soft-
ware engineers and computational scientists to model real-time problems. We have also
seen that abstraction, generalisation and pattern recognition are often twined together in
many activities. Moreover, whenever possible we have provided examples of concrete
experi ences that can be offered as learning opportunities for the students.

In conclusion, we hope this overview will encourage the readers, researchers or
edu cators at any instructional level, to make further progress in the teaching of – and
for – abstraction. This can be achieved by introducing and dealing with abstraction more
explic itly, emphasising regularly its role, power and benefits, and providing formal or
informal feedback on students’ progress towards mastering abstraction.

References

Adey, P., Shayer, D.M. (1994). Really Raising Standards. Cognitive Intervention and Academic Achievement.
Routledge, London, UK. 9780415101455.

Ainsworth, S. (2008). The Educational Value of Multiple-Representations when Learning Complex Scientific
Concepts. In: Gilbert, J.K., Reiner, M., Nakhleh, M. (Eds.), Visualization: Theory and Practice in Science
Education. Springer Netherlands, Dordrecht, pp. 191–208. 978-1-4020-5267-5.
https://doi.org/10.1007/978-1-4020-5267-5_9

Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R., Pintrich, P.R., Raths, D.J.,
Wittrock, M.C. (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Tax-
onomy of Educational Objectives. ISBN: 080131903X.

Armoni, M. (2013). On teaching abstraction in computer science to novices. Journal of Computers in Mathe-
matics and Science Teaching, 32(3), 265–284.

Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C., Sentance, S., Settle, A., Stupurienun-
defined, G. (2015). Concepts in K-9 Computer Science Education. In: Proceedings of the 2015 ITiCSE on
Working Group Reports. ITICSE-WGR ’15. Association for Computing Machinery, New York, NY, USA,
pp. 85–116. 9781450341462. https://doi.org/10.1145/2858796.2858800

Barr, D.C., Harrison, J., Conery, L. (2011). Computational Thinking: A Digital Age Skill for Everyone. Learn-
ing and Leading with Technology, 38, 20–23.

Barr, V., Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the
role of the computer science education community? ACM Inroads, 2.
https://doi.org/10.1145/ 1929887.1929905

Bennedsen, J., Caspersen, M.E. (2006). Abstraction Ability as an Indicator of Success for Learning Object-
Oriented Programming? SIGCSE Bull., 38(2), 39–43. https://doi.org/10.1145/1138403.1138430

Bennedsen, J., Caspersen, M.E. (2008). Abstraction ability as an indicator of success for learning computing
science? In: ICER ’08: Proceeding of the Fourth International Workshop on Computing Education Re-
search. ACM, New York, NY, USA, pp. 15–26. 978-1-60558-216-0.
https://doi.org/10.1145/1404520.1404523

Biggs, J., Collis, K.F. (1982). Evaluating the Quality of Learning: the SOLO Taxonomy. Academic Press, New
York, USA. 978-0-12-097552-5. https://doi.org/10.1016/C2013-0-10375-3

Böttcher, A., Schlierkamp, K., Thurner, V., Zehetmeier, D. (2016). Teaching Abstraction. In: Proceedings of
the 2nd International Conference on Higher Education Advances, HEAd ’16. Editorial Universitat Politèc-
nica de València, València, Spain, pp. 357–364. https://doi.org/10.4995/HEAd16.2016.2770

Brennan, K., Resnick, M. (2012). New Frameworks for Studying and Assessing the Development of Computa-
tional Thinking. In: Proceedings of the 2012 Annual Meeting of the American Educational Research

C. Mirolo et al.636

Associ ation. AERA 2012.
Cetin, I., Dubinsky, E. (2017). Reflective abstraction in computational thinking. The Journal of Mathematical

Behavior, 47, 70–80. https://doi.org/10.1016/j.jmathb.2017.06.004
Chambers, J.H. (1991). The Difference Between the Abstract Concepts of Science and the General Concepts of

Empirical Educational Research. The Journal of Educational Thought (JET), 25(1), 41–49.
https://doi.org/10.2307/23767703

Colburn, T., Shute, G. (2007). Abstraction in Computer Science. Minds Mach., 17(2), 169–184.
https://doi.org/10.1007/s11023-007-9061-7

Colburn, T.R., Shute, G.M. (2008). Metaphor in computer science. Journal of Applied Logic, 6(4), 526–533.
https://doi.org/10.1016/j.jal.2008.09.005

Curzon, P., Bell, T., Waite, J., Dorling, M. (2019). Computational Thinking. In: Fincher, S.A., Robins, A.V.
(Eds.), The Cambridge Handbook of Computing Education Research. Cambridge Handbooks in Psychol-
ogy. Cambridge University Press, Cambridge, pp. 513–546. Chap. 17.
https://doi.org/10.1017/9781108654555.018

Di Vano, D., Mirolo, C. (2011). “Computer Science and Nursery Rhymes”: A Learning Path for the Middle
School. In: Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer
Science Education. ITiCSE ’11. ACM, New York, NY, USA, pp. 238–242. 978-1-4503-0697-3.
https://doi.org/10.1145/1999747.1999815

Dijkstra, E.W. (1972a). Notes on Structured Programming. In: Hoare, C.A.R. (Ed.), Structured Programming.
Academic Press Ltd., London, UK. 0122005503.

Dijkstra, E.W. (1972b). The Humble Programmer. Commun. ACM, 15(10), 859–866.
https://doi.org/10.1145/355604.361591

Du Boulay, B. (1986). Some Difficulties of Learning to Program. Journal of Educational Computing Research,
2, 57–73.

Dubinsky, E. (1991). Reflective Abstraction in Advanced Mathematical Thinking. In: Tall, D. (Ed.), Ad vanced
Mathematical Thinking. Springer Netherlands, Dordrecht, pp. 95–126. 978-0-306-47203-9.
https://doi.org/10.1007/0-306-47203-1_7

Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Math ematics. Educa-
tional Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z

Eckerdal, A., McCartney, R., Moström, J.E., Ratcliffe, M., Sanders, K., Zander, C. (2006). Putting threshold
concepts into context in computer science education. In: Proceedings of the 11th Annual SIGCSE Confer-
ence on Innovation and Technology in Computer Science Education. ITICSE ’06. ACM, New York, NY,
USA, pp. 103–107. 1-59593-055-8. https://doi.org/10.1145/1140124.1140154

Ferrari, P.L. (2003). Abstraction in Mathematics. Philosophical Transactions: Biological Sciences, 358(1435),
1225–1230. http://www.jstor.org/stable/3558214

Fuller, U., Johnson, C.G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova, J., Lahtinen, E., Lew-
is, T.L., Thompson, D.M., Riedesel, C., Thompson, E. (2007). Developing a Computer Science-specific
Learn ing Taxonomy. In: Working Group Reports on ITiCSE on Innovation and Technology in Computer
Science Education. ITiCSE-WGR ’07. ACM, New York, NY, USA, pp. 152–170.
https://doi.org/10.1145/1345443.1345438

Gautam, A., Bortz, W., Tatar, D. (2020). Abstraction Through Multiple Representations in an Integrated Com-
putational Thinking Environment. In: Proceedings of the 51st ACM Technical Symposium on Computer
Sci ence Education. SIGCSE ’20. Association for Computing Machinery, New York, NY, USA, pp. 393–
399. 9781450367936. https://doi.org/10.1145/3328778.3366892

Ginat, D., Shifroni, E., Menashe, E. (2011). Transfer, Cognitive Load, and Program Design Difficulties. In:
Kalaš, I., Mittermeir, R.T. (Eds.), Informatics in Schools. Contributing to 21st Century Education. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 165–176. 978-3-642-24722-4.
https://doi.org/10.1007/978-3-642-24722-4_15

Grover, S., Pea, R. (2018). Computational Thinking: A Competency Whose Time Has Come. In: Sentance, S.,
Barendsen, E., Carsten, S. (Eds.), Computer Science Education: Perspectives on Teaching and Learning in
School. Bloomsbury Academic, London, UK, pp. 19–38.

Grover, S., Jackiw, N., Lundh, P. (2019). Concepts before coding: non-programming interactives to advance
learning of introductory programming concepts in middle school. Computer Science Education, 29(2-3),
106–135. https://doi.org/10.1080/08993408.2019.1568955

Guzdial, M. (2015). Learner-Centered Design of Computing Education: Research on Computing for Every-
one. Synthesis Lectures on Human-Centered Informatics. Morgan & Claypool Publishers, Williston, USA.
https://doi.org/10.2200/S00684ED1V01Y201511HCI033

Haberman, B., Averbuch, H., Ginat, D. (2005). Is It Really an Algorithm: The Need for Explicit Discourse.

Abstraction in Computer Science Education: An Overview 637

In: Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Sci-
ence Ed ucation. ITiCSE ’05. Association for Computing Machinery, New York, NY, USA, pp. 74–78.
1595930248. https://doi.org/10.1145/1067445.1067469

Hailperin, M., Kaiser, B., Knight, K. (1999). Concrete Abstractions. Brooks/Cole, Pacific Grove, CA.
http://www.gustavus.edu/+max/concrete-abstractions.html

Hazzan, O. (1999). Reducing Abstraction Level When Learning Abstract Algebra Concepts. Educational Stud-
ies in Mathematics, 40(1), 71–90. http://www.jstor.org/stable/3483306

Hazzan, O. (2003). How Students Attempt to Reduce Abstraction in the Learning of Mathematics and in the
Learning of Computer Science. Computer Science Education, 13(2), 95–122.
https://doi.org/10.1076/csed.13.2.95.14202

Hazzan, O. (2008). Reflections on Teaching Abstraction and Other Soft Ideas. SIGCSE Bull., 40(2), 40–43.
https://doi.org/10.1145/1383602.1383631

Hazzan, O., Kramer, J. (2016). Assessing Abstraction Skills. Commun. ACM, 59(12), 43–45.
https://doi.org/10.1145/2926712

Hill, J.H., Houle, B.J., Merritt, S.M., Stix, A. (2008). Applying Abstraction to Master Complexity. In: Pro-
ceedings of the 2nd International Workshop on The Role of Abstraction in Software Engineering. ROA ’08.
Association for Computing Machinery, New York, NY, USA, pp. 15–21. 9781605580289.
https://doi.org/10.1145/1370164.1370169

Hoppe, H., Werneburg, S. (2019). Computational Thinking – More Than a Variant of Scientific Inquiry!, pp.
13–30. + supplement. 978-981-13-6528-7. https://doi.org/10.1007/978-981-13-6528-7_2

Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., Lonati, V.,
Mirolo, C., et al. (2019). Fostering Program Comprehension in Novice Programmers -Learning Activi-
ties and Learning Trajectories. In: Proc. of the Working Group Reports on Innovation and Technology in
Computer Science Education. ITiCSE-WGR ’19. ACM, New York, NY, USA, pp. 27–52. 9781450368957.
https://doi.org/10.1145/3344429.3372501

Kite, V., Park, S., Wiebe, E. (2021). The Code-Centric Nature of Computational Thinking Education:
A Review of Trends and Issues in Computational Thinking Education Research. SAGE Open, 11(2),
21582440211016418. https://doi.org/10.1177/21582440211016418

Knuth, D.E. (2003). Bottom-up Education. In: Proceedings of the 8th Annual Conference on Innovation and
Technology in Computer Science Education. ITiCSE ’03. Association for Computing Machinery, New
York, NY, USA, p. 2. 1581136722. https://doi.org/10.1145/961511.961514

Koppelman, H., van Dijk, B. (2010). Teaching Abstraction in Introductory Courses. In: Proceedings of the
Fifteenth Annual Conference on Innovation and Technology in Computer Science Education. ITiCSE ’10.
Association for Computing Machinery, New York, NY, USA, pp. 174–178. 9781605588209.
https://doi.org/10.1145/1822090.1822140

Kramer, J. (2007). Is abstraction the key to computing? Commun. ACM, 50, 36–42.
https://doi.org/10.1145/1232743.1232745

Kurtz, K., Miao, C., Gentner, D. (2001). Learning by Analogical Bootstrapping. Journal of the Learning Sci-
ences, 10, 417–446.

Lee, I., Martin, F., Apone, K. (2014). Integrating Computational Thinking Across the K–8 Curriculum. ACM
Inroads, 5(4), 64–71. https://doi.org/10.1145/2684721.2684736

Liskov, B., Guttag, J. (2001). Program Development in Java. Addison-Wesley (Pearson Education), Upper
Sad dle River, NJ. 978-0768684964.

Liskov, B., Snyder, A., Atkinson, R., Schaffert, C. (1977). Abstraction Mechanisms in CLU. Commun. ACM,
20(8), 564–576. https://doi.org/10.1145/359763.359789

Lister, R., Simon, B., Thompson, E., Whalley, J.L., Prasad, C. (2006). Not Seeing the Forest for the Trees:
Novice Programmers and the SOLO Taxonomy. In: Proceedings of the 11th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education. ITICSE ’06. ACM, New York, NY, USA,
pp. 118–122. 1-59593-055-8. https://doi.org/10.1145/1140124.1140157

Machanick, P. (1998). The Abstraction-First Approach to Data Abstraction and Algorithms. Computers & Edu-
cation, 31(2), 135–150. https://doi.org/10.1016/S0360-1315(97)00064-X

Martin, R.C. (2003). Agile Software Development: Principles, Patterns, and Practices. Prentice Hall, Upper
Sad dle River, USA. 978-0-13-597444-5.

Mason, J. (1989). Mathematical abstraction as the result of a delicate shift of attention. Learn. Math., 9(2),
2–8.

Mirolo, C., Di Vano, D. (2013). “Welcome to Nimrod” to Learn CS Ideas in the Middle School. In: Proceed-
ings of the 8th Workshop in Primary and Secondary Computing Education. WiPSCE ’13. ACM, New York,
NY, USA, pp. 61–70. 978-1-4503-2455-7. https://doi.org/10.1145/2532748.2532756

C. Mirolo et al.638

Muller, O., Haberman, B. (2008). Supporting abstraction processes in problem solving through pattern-orient-
ed instruction. Computer Science Education, 18(3), 187–212.
https://doi.org/10.1080/08993400802332548

Nicholson, K., Good, J., Howland, K. (2009). Concrete Thoughts on Abstraction. In: Proc. of the 21th Annual
Workshop of the Psychology of Programming Interest Group (PPIG), pp. 1–10. http://www.ppig.org

Ohlsson, S., Lehtinen, E. (1997). Abstraction and the acquisition of complex ideas. International Journal of
Educational Research, 27(1), 37–48. https://doi.org/10.1016/S0883-0355(97)88442-X

Pea, R.D., Kurland, D.M. (1984). On the cognitive effects of learning computer programming. New Ideas in
Psychology, 2(2), 137–168. https://doi.org/10.1016/0732-118X(84)90018-7

Peel, A., Sadler, T.D., Friedrichsen, P. (2019). Learning natural selection through computational thinking: Un-
plugged design of algorithmic explanations. Journal of Research in Science Teaching, 56(7), 983–1007.
https://doi.org/10.1002/tea.21545

Perrenet, J., Groote, J., Kaasenbrood, E. (2005). Exploring students’ understanding of the concept of algo-
rithm: levels of abstraction. In: Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. ITiCSE ’05: Vol. 37. Association for Computing Machinery,
New York, NY, USA, pp. 64–68. 1595930248. https://doi.org/10.1145/1151954.1067467

Philpott, A., Clear, T., Whalley, J. (2009). Understanding student performance on an algorithm simulation task:
implications for guided learning. In: SIGCSE ’09: Proceedings of the 40th ACM Technical Symposium on
Computer Science Education. ACM, New York, NY, USA, pp. 408–412. 978-1-60558-183-5.
https://doi.org/10.1145/1508865.1509012

Piaget, J. (1969). Psychologie et Pédagogie. Bibliothèque Médiations: Vol. 59. Gonthiers & Denoël, Paris,
France. 2282300599.

Piaget, J., Inhelder, B., Inhelder, B., Kagan, J., Weaver, H. (1969). Psychology Of The Child. The Psychology
of the Child. Basic Books, New York, USA. 978-0465095001.

Podolefsky, N.S., Finkelstein, N.D. (2007). Analogical scaffolding and the learning of abstract ideas in phys-
ics: An example from electromagnetic waves. Phys. Rev. ST Phys. Educ. Res., 3, 010109.
https://doi.org/10.1103/PhysRevSTPER.3.010109

Rijke, W.J., Bollen, L., Eysink, T.H., Tolboom, J.L. (2018). Computational thinking in primary school: An
ex amination of abstraction and decomposition in different age groups. Informatics in Education, 17(1),
77–92.

Sakhnini, V., Hazzan, O. (2008). Reducing Abstraction in High School Computer Science Education: The Case
of Definition, Implementation, and Use of Abstract Data Types. J. Educ. Resour. Comput., 8(2), 5–1513.
https://doi.org/10.1145/1362787.1362789

Salomon, G., Perkins, D.N. (1989). Rocky Roads to Transfer: Rethinking Mechanism of a Ne glected Phenom-
enon. Educational Psychologist, 24(2), 113–142. https://doi.org/10.1207/s15326985ep2402_1

Scheiner, T., Pinto, M.M.F. (2016). Images of abstraction in mathematics education: contradictions, controver-
sies, and convergences. In: Csíkos, C., Rausch, A., Szitányi, J. (Eds.), Proceedings of the 40th Conference
of the International Group for the Psychology of Mathematics Education -PME (Vol. 4), pp. 155–162.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as dif-
ferent sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.
https://doi.org/10.1007/BF00302715

Shute, V.J., Sun, C., Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research
Re view, 22, 142–158. https://doi.org//10.1016/j.edurev.2017.09.003

Soloway, E. (1986). Learning to Program = Learning to Construct Mechanisms and Explanations. Commun.
ACM, 29(9), 850–858. https://doi.org/10.1145/6592.6594

Spiro, R.J., Feltovich, P.J., Coulson, R.L., Anderson, D.K. (1989). Multiple analogies for complex concepts:
antidotes for analogy-induced misconception in advanced knowledge acquisition. In: Vosniadou, S., Or-
tony, A. (Eds.), Similarity and Analogical Reasoning. Cambridge University Press, Cambridge, UK, pp.
498–531. https://doi.org/10.1017/CBO9780511529863.023

Statter, D., Armoni, M. (2016). Teaching Abstract Thinking in Introduction to Computer Science for 7th Grad-
ers. In: Proceedings of the 11th Workshop in Primary and Secondary Computing Education. WiPSCE’16.
ACM, New York, NY, USA, pp. 80–83. https://doi.org/10.1145/2978249.2978261

Statter, D., Armoni, M. (2020). Teaching Abstraction in Computer Science to 7th

Grade Students. ACM Trans.

Comput. Educ., 20(1). https://doi.org/10.1145/3372143
Verhoeff, T. (2011). On Abstraction and Informatics. In: Kalaš, I., Mittermeir, R.T. (Eds.), Informaticsin-

Schools. Contributing to 21st Century Education: 5th International Conference on Informatics in Schools:
Situation, Evolution and Perspectives, ISSEP 2011, Bratislava, Slovakia, October 26-29, 2011. Proceed-
ings, pp. 1–12. 978-80-89186-90-7. https://doi.org/www.issep2011.org

Abstraction in Computer Science Education: An Overview 639

Waite, J.L., Curzon, P., Marsh, W., Sentance, S., Hadwen-Bennett, A. (2018). Abstraction in action: K-5 teach-
ers’ uses of levels of abstraction, particularly the design level, in teaching programming. International
Jour nal of Computer Science Education in Schools, 2(1), 14–40.
https://doi.org/10.21585/ijcses.v2i1.23

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., Wilensky, U. (2016). Defining Compu-
tational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology,
25(1), 127–147. 1573-1839. https://doi.org/10.1007/s10956-015-9581-5

White, P., Mitchelmore, M. (1999). Learning mathematics: A New Look at Generalisation and Abstraction.
In: AARE Annual Conference. AARE ’99. Australian Association for Research in Education, deakin, ACT,
Australia, pp. 1–12.

Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for mathematical educa-
tion. In: Harel, I., Papert, S. (Eds.), Constructionism. Ablex Publishing Corporation, Norwood, NJ, pp.
193–203.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the
Royal Society, 366, 3717–3725. A / Math Phys Eng Sci.
https://doi.org/10.1098/rsta.2008.0118

Wing, J.M. (2011). Computational Thinking: What and Why? The Link Magazine.

C. Mirolo is assistant professor in Computer Science at the University of Udine, where
he currently teaches introductory programming, computational geometry and computer
science education. He has also been responsible for the professional development pro-
grammes for high-school computer science teachers. His research interests include the
learning of programming and the role of computational thinking in general primary and
secondary education.

C. Izu is lecturer in Computer Science at the University of Adelaide. She has a degree
in Computer Science and PhD in Computer Architecture. Cruz has been active in the
area of Computer Science Education in the last 6 years, exploring computational think-
ing, and how to teach programming skills, problem solving and code comprehension to
undergrad uate students.

V. Lonati is assistant professor in Computer Science at the University of Milan. Degree
in mathematics and PhD in computer science, her research interests include introduc-
tory programming learning, computing education at K-12 level, constructivist strategies
in computing education, professional development for teachers. She is member of the
Sci entific Committee of the Italian Bebras Challenge and former member of the Inter-
national Bebras Board.

E. Scapin is an experienced Computer Science teacher at the I.T.T. “G. Chilesotti” in
Thiene (VI). Currently, he is pursuing a PhD programme at the University of Udine, with
a research project in Computer Science Education. His main topic of interest concerns
task-related models to improve the learning of programming, and more specifically it-
eration, at the upper secondary instruction level.

