
Informatics in Education, 2021, Vol. 20, No. 4, 641–682
© 2021 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2021.28

641

A Necessity-Driven Ride on the Abstraction
Rollercoaster of CS1 Programming

Marco SBARAGLIA
1,3,∗

, Michael LODI
1,2,3

, Simone MARTINI
1,2,3

1Dipartimento di Informatica – Scienza e Ingegneria,
 Alma Mater Studiorum – Università di Bologna, Bologna, Italy
2Inria Sophia Antipolis-Bologna, Valbonne, France
3Laboratorio Nazionale CINI Informatica e Scuola, Italy
e-mail: marco.sbaraglia@unibo.it, michael.lodi@unibo.it, simone.martini@unibo.it

Received: February 2021

Abstract. Introductory programming courses (CS1) are difficult for novices. Inspired by Problem
solving followed by instruction and Productive Failure approaches, we define an original “neces-
sity-driven” learning design. Students are put in an apparently well-known situation, but this time
they miss an essential ingredient (the target concept) to solve the problem. Then, struggling to
solve it, they experience the necessity of that concept. A direct instruction phase follows. Finally,
students return to the problem with the necessary knowledge to solve it. In a typical CS1 learning
path, we recognise a challenging “rollercoaster of abstraction”. We provide examples of learning
sequences designed with our approach to support students when the abstraction changes (both up-
ward and downward) inside the programming language, for example, when a new construct (and
the related syntactical, conceptual, and strategic knowledge) is introduced. Also, we discuss the
benefits of our design in light of Informatics education literature.

Keywords: abstraction, abstraction rollercoaster, necessity, necessity mechanism, necessity learn-
ing design, learning design, CS1 learning design, productive failure, problem solving followed by
instruction, PS-I, P!S-I-PS, CS1.

1. Introduction

Today, most education research agrees that active methodologies – whereby learners
actively explore and construct knowledge – are helpful for learning (Prince, 2004; Free-
man et al., 2014). On the other hand, educators often have to teach specific introduc-
tory or technical concepts that students are unlikely to learn or even discover through
free exploration. Informatics also faces this issue since it is a discipline with many
technical aspects, especially in introductory programming (Guzdial, 2017). As a result,

∗Corresponding author.

M. Sbaraglia, M. Lodi, S. Martini642

in introductory programming courses, a common approach remains directly teaching
language elements, usually followed by their application in programming assignments.
Direct instruction of technical concepts does not seem ideal for novice learners: it may
bore them, also because they may not grasp the significance of the presented concepts
from their perspective (Caspersen, 2018). This can result in low motivation and poor
learning outcomes.

To tackle these challenges, in this paper, we propose a learning design specific to CS1.
With CS1, we indicate “a first course in Informatics,” in which usually students learn ba-
sic programming skills. To stimulate students’ motivation and support their understand-
ing, we suggest fostering “necessity-driven” learning. That is, challenging students with
a problem that makes them “feel the necessity” of something they do not know yet.

Our pedagogical inspiration lies in approaches in which problem solving, as a pre-
paratory activity, precedes instruction (PS-I) since this kind of approach can increase
learners’ motivation and improve understanding (Kapur, 2016; Loibl et al., 2017). Fur-
thermore, we draw on Productive Failure learning design (Kapur and Bielaczyc, 2012),
which shows that failing in the preparatory problem-solving phase is even more effec-
tive for students to learn from the following instruction phase.

We will show an example of how our learning design can be used to support learning
to program in CS1. In order to do this, we propose concrete examples of “necessity-
driven” learning sequences and contextualise them within a CS1 course. Furthermore,
since already in CS1 we recognise that abstraction – a fundamental idea1 of Informat-
ics – heavily comes into play, the examples are precisely set in learning moments when
abstraction changes. These changes can be hard for novices (Curzon et al., 2019, p. 533)
since they require more effort and increase the cognitive load. Both upward and down-
ward movements can be difficult for novices, and, since they determine different learn-
ing scenarios, the direction of the abstraction movement should be considered to develop
effective learning activities with our learning design.

Section 2 reviews relevant literature focusing on CS1, abstraction in programming
languages, Problem-based learning, Productive Failure, and PS-I approaches.

Section 3 presents a learning design for CS1 programming, which we call “Necessity
learning design for CS1 programming” (NLD). Subsection 3.1 describes the “necessity
mechanism”, which is the core element of our learning design. Subsection 3.2 describes
in detail our learning design, its features and its phases.

Section 4 proposes a concrete example of the application of our learning design in
CS1 by using necessity sequences to support learning when abstraction changes (within
the programming language of choice). Subsection 4.1 discusses how the choice of the
learning path (i.e., which contents and their order) determines these movements and
their direction (increase or decrease in abstraction). Subsection 4.2 shows how both di-
rections pose challenges (albeit different) for learners and can lead to different teaching
strategies. Subsection 4.3 proposes a CS1 learning path as an example to show where to
place the necessity sequences we discuss. Subsection 4.4 shows four examples of learn-

1 For a historical and epistemological review and a discussion on the fundamental elements of an “infor-
matical way of thinking”, see Lodi and Martini (2021) and Lodi (2020).

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 643

ing sequences designed with NLD and presents the general structure of the examples as
a tool for designing other necessity sequences.

Finally, section 5 discusses the relevance of our design and its future developments.

2. Literature Review

2.1. CS1 and Learning to Program

Students usually learn their first programming language in CS1 courses, together with
some basic programming skills. For comprehensive reviews on introductory program-
ming, see Robins (2019), Caspersen (2018) and references therein. In this section, we
will draw mainly on those, highlighting some relevant considerations to our work.
Informatics education agrees that learning to program is difficult for many students.
Moreover, there is a “lack of agreement among computing educators on the correct order
in which to teach programming language concepts” (Robins, 2019, p. 351).

While often courses and textbooks mainly focus on – and are organised around –
syntactical knowledge, it has been recognised that learning to program involves acquir-
ing different types of knowledge (Bayman and Mayer, 1988; McGill and Volet, 1997):
syntactic, conceptual, and strategic.

Syntactic knowledge refers to the knowledge of the programming
language syntax.
Conceptual knowledge concerns program dynamics i.e., the knowl-
edge of how programming constructs work and how this determines the
execution of code, what is often referred to as notional machine [...].
Strategic knowledge refers to the ability to apply programming syn-
tactic and conceptual knowledge in order to solve new problems and
achieve intended purposes.

(Costantini et al., 2020, p. 853, our emphasis)

As recognised by Robins (2019, p. 356), “the teaching of knowledge structures must
be anchored in, and learning may most effectively emerge from, practical experience
and examples.” “This highlights again the need for well-designed example tasks and
the practical opportunities for students to engage with them.” Furthermore, the author
recognises two essential features of programming tasks.

Compiler feedback is “immediate, consistent, and (ideally) informative.” We add ●
that this can allow having impartial and objective feedback from the artefact one
is creating.
The “reinforcement and motivation derived from creating a working program can ●
be very powerful.”

M. Sbaraglia, M. Lodi, S. Martini644

Among the many theories and frameworks used or developed in Informatics educa-
tion, we highlight elements from the cognitive load theory and discuss the Learning
Edge Momentum hypothesis.

Cognitive load theory is a broad theory that describes how much a task loads a stu-
dent’s (working) memory. Often problem solving tasks can put a high load on students.
Extensive research in Informatics education investigates the relationship between learn-
ing to program and cognitive load. Robins (2019) summarises four principles relevant
in our study:

The worked-out-example effect suggests that extraneous load is re-
duced by studying worked examples of problems rather than trying to
solve the problems from scratch, and similarly the completion effect
suggests that load is reduced when the learner starts with partial solu-
tions. Other examples include the guidance-fading effect, stating that
novices need extensive support that can be reduced over time, and the
isolated/interacting elements effect, stating that tasks with high ele-
ment interactivity will be learned more successfully if elements are
first introduced in isolation before being combined.

(Robins, 2019, p. 344, emphasis as in original)

Moreover, according to Caspersen (2018, p. 117), “a good example must effectively
communicate the concept(s) to be taught. There should be no doubt about what exactly
is exemplified. [...] Conceptual knowledge is improved by best examples [...], where
the best example represents an average, central, or prototypical form of a concept. To
minimize cognitive load, an example should exemplify only one new concept (or very
few) at a time.”

Robins (2010) introduced the Learning Edge Momentum (LEM) hypothesis as an
explanation for the fact that while there are many students who fail CS1, there are also
many students who perform exceptionally well. According to Robins, “we learn ‘at the
edges’ of what we already know by adding to existing knowledge. The more that new
information is given a meaningful interpretation, the more effective learning appears
to be” (Robins, 2019, p. 351). The hypothesis is that, given a certain target concept
to be learned, acquisition of the earlier concepts facilitates (i.e., momentum towards
success) acquisition of the later concepts. Similarly, failure to acquire the earlier con-
cepts makes learning difficult (i.e., momentum towards failure). To use an economic
metaphor instead of a physics one, one can think of compound interest, which quickly
increases earnings because it is also calculated on previously earned interests. Robins
(2010) argues that programming is a domain of highly integrated topics with clear and
well-defined edges (like the pieces of a puzzle), and thus the effect will be very strong.
According to the author, a positive momentum should be established from the begin-
ning of CS1: “particular attention should be paid to the careful introduction of concepts
and the systematic development of the connections between them” because “there is no
point in expecting a student to acquire a new layer of complex concepts if the founda-
tion of prerequisite concepts does not exist” (Robins, 2019, p. 360).

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 645

2.2. Abstraction in Informatics and Programming Languages

Informatics makes frequent reference to abstract entities and to activities identified as
abstractions. The literature on Informatics epistemology (Colburn and Shute, 2007;
Turner, 2021) and on programming languages (Gabbrielli and Martini, 2010), identifies
information hiding as the main abstraction objective – layers of abstraction are built in
such a way that layer n uses the functionalities of layer n − 1 to provide functionalities
to the layer n + 1 via an interface which also hides the information needed to implement
them. This helps manage the system complexity and allows for the independence and re-
placeability of a layer without influencing the others. This view applies to programming
languages (e.g., from a high-level language like Java to its bytecode implementation, to
assembly, to the hardware machine), networks (e.g., the ISO/OSI stack), operating sys-
tems, and so forth. According to this view, a given programming language can be seen
as a (specific) abstraction of the underlying physical machine.

It is important to observe that (raw) expressivity has little to do with abstraction. Ma-
chine languages and high-level languages have the same expressivity, being all Turing-
complete, yet we assign to them different abstraction levels, based on the (intentional)
hiding of information that happens when we move from a machine language to a high-
level one (e.g., specific representations of numbers as bit sequences are hidden, or “ab-
stracted away,” when passing from machine to high level).

We should note, though, that it is possible to identify different levels of abstraction
inside a single programming language. Each programming language provides abstrac-
tion mechanisms, which are “the principal instruments available to the designer and pro-
grammer for describing in an accurate, but also simple and suggestive, way the complex-
ity of the problems to be solved” (Gabbrielli and Martini, 2010, p. 165). A foreach
loop on a sequence is an abstraction from the for loop (of that same language), which
would use explicit indexes on that sequence: the foreach hides those very indexes. In
its turn, a for loop is an abstraction from a while loop because the for loop hides
the explicit initialisation and increment of the index variable. In this paper, abstraction is
therefore always connected to specific linguistic mechanisms.

Finally, observe that under this perspective:
More expressive does not mean more abstract. We have already observed that ●
expressivity and abstraction are in general orthogonal concepts. We remark here
that even when expressivity is genuinely expanded, there are cases where there is
no increase in abstraction. If we introduce first the sequence control structure, and
then the selection control structure with the conditional command (if-else),
we increase the expressive power of the language, but we do not have abstraction,
because no information hiding occurs.
More abstract does not always mean more general. In a C-like ● for construct we
may specify almost arbitrary termination conditions and “increment” commands,
and there is no constraint on the possibility of modifying the control variable in
the body of the loop. Such a construct may be seen as the generalisation of Pascal-
like for and while. However, it is not more abstract of them, because no infor-

M. Sbaraglia, M. Lodi, S. Martini646

mation hiding occurs. Conversely, a foreach construct is more abstract and less
general of its while “translation”.

We can distinguish between two general classes of abstraction mechanisms in pro-
gramming languages: control and data abstraction.
Control abstraction mechanisms “provides the programmer the ability to hide proce-
dural data” (Gabbrielli and Martini, 2010, p. 165). Simple control abstraction comes
into play early in a programming language learning path, for example, when dealing
with structure control mechanisms like expressions, assignment, conditionals com-
mands or iterative commands. Modern languages provide advanced mechanisms like
procedures and exception handling constructs. For example, when dividing a program
into subprograms (using functions or procedures), a programmer realises a functional
abstraction, separating what the clients of such subprogram need to know to use it (e.g.,
name, parameters, return type) and what they do not need to know (the body, i.e., the
implementation of the function, which could be changed – for example, for efficiency
reasons – without the client knowing it) (Gabbrielli and Martini, 2010).
Data abstraction mechanisms “allow the definition and use of sophisticated data types
without referring to how such types will be implemented” (Gabbrielli and Martini,
2010, p. 165). Programming languages allow a variety of data abstraction mechanisms,
hiding data representation details. These mechanisms range from simple ones, like the
use of names to refer to memory locations, to the predefined language data types (col-
lection of homogeneous, effectively presented values, with a set of operations on them),
to more powerful mechanisms like the possibility to define abstract data types, up to all
the data abstraction mechanisms provided by object-oriented programming.

From an educational perspective, the introduction of a new construct is often a move-
ment across levels of abstractions. When, after a foreach, we unveil the possibility of
an index-based iteration, we move down the abstractions. When we introduce functions,
we provide a way to move up, and the same happens with the constructs for the defini-
tion of new data types. This movement across abstraction levels is a specific issue adding
to the difficulty of learning. Students have to learn a new linguistic construct (or a new
detail which was not previously introduced), its pragmatics when writing a program,
and how this relates to the abstraction levels. Also choosing the correct construct (or the
correct way to use a construct) is related to the abstraction levels. Students are instructed
to prefer a for loop over a while for a sequential and complete scan of a sequence
because the abstraction level of the for loop (the tool) matches the abstraction level of
the “scan” (the problem). This “rollercoaster” over the abstraction levels is the example
we tackle in this paper.

2.3. Problem-Based Learning

Problem-based learning (PBL) was first introduced in the 1960s at McMaster University.
Traditionally, medical students had to memorise much information that they perceived
to be superfluous to medical practice, but they were very involved when they actually

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 647

worked with patients (Barrows, 1996). Therefore, they successfully experimented with
a new methodology in which students are presented with problems (clinical cases) and
have to study autonomously the material needed to understand and (possibly, but not
necessarily) explain them. This methodology has been used in many other fields like
Law, Social sciences, and Engineering2.

According to a recent review (Bawamohiddin and Razali, 2017) on PBL for teaching
programming, the problem is used to initiate and trigger the learning process. Problems
must be ill-structured, real-world situated, complex, open-ended, motivational, unique,
and solvable. Other researchers recognise similar characteristics (see, e.g., Oliveira
et al., 2013; Peng, 2010).

Drawing from medical education, PBL has been often implemented with the so-
called “seven-step method” (adopted by many Informatics educators as well). The steps,
as synthesised by Bawamohiddin and Razali (2017, p. 2036), are:

terms and concept clarification; 1)
problem identification; 2)
brainstorming; 3)
explanatory model sketching; 4)
learning issue formulation; 5)
self-learning; 6)
information synthesising and testing.7)

Steps from 1 to 5 and 7 are conducted in small groups, while step 6 is individual
study time. Usually, the process is quite long: for example, steps 1–5 can take from half
an hour to several hours, step 6 (individual study) can take a week or more, and finally
the last step can take other 2 to 10 hours (e.g., according to the proposals of PBL for
programming, by Nuutila et al. (2008) and Bawamohiddin and Razali (2017)). Teachers
act as facilitators: they guide students by motivating them, helping them understand the
problem and guiding them in establishing the relevant learning objectives. On the other
hand, they usually do not directly teach the target concepts.

PBL has been experimented with in Informatics courses, especially for program-
ming. Reviews of experiences of using PBL show that it proved to be effective for intro-
ductory programming (see, e.g., Bawamohiddin and Razali, 2017; Oliveira et al., 2013;
O’Grady, 2012). In particular, Nuutila et al. (2008) successfully used the seven-step
method in introductory programming courses. They found PBL very useful for replacing
(at least partially) lectures. They respected the original PBL view from medical educa-
tion: the focus is not on solving the problem but on autonomously set learning goals to
acquire the knowledge needed to understand and explain “a case”. Hence, they recognise
that “some aspects of the programming skills require supplementary learning methods”
like “supervised programming exercises [...] to teach the use of programming tools and
effective work practices [... and also, at the end of the course,] a larger programming
project” (Nuutila et al., 2008, p. 64). However, they acknowledge that, because of the

2 For a recent comprehensive handbook, see Moallem et al. (2019).

M. Sbaraglia, M. Lodi, S. Martini648

nature of Informatics and software development, elements traditionally more resembling
“project-based learning”, like focus on solving open-ended, multi-answer problems or
working on complex, real-world tasks, have been integrated by researchers in PBL for
programming. On the other hand, Kay et al. (2000) warns that calling the small and well-
defined exercises used in conventional courses ‘problems’ (as many authors tend to do,
as well as us) is not enough to claim to use PBL.

As we will discuss in subsection 2.4.2, our design is inspired by PS-I approaches such
as Productive Failure, while having its own strong peculiarities (see 3.2.1). According to
Falkner and Sheard (2019), “[w]hile associated in structure with problem-based learning
approaches, productive failure has a specific emphasis on the use of failure as a pivotal
point in the learning process”. While sharing with PBL the essential feature of using an
exercise for which students need to acquire more knowledge to motivate learning, our
proposed learning design (described in Section 3) has significant differences (that will be
clearer in the following). For example, our exercises are small and surgically designed
around a specific target concept; there is no teacher scaffolding because failure is at the
core of the learning design; the target concept is taught later with traditional instruction.

Deek et al. (1998, p. 314) discusses the so-called “alternative method” for CS1, that
is “to introduce the problem in the lecture, engage the students in defining the statement
of the problem, and allow the students to seek possible solutions independent of the
programming language. Once the problem is solved, the language features necessary
to implement the solution are presented. Finally, equipped with both the algorithmic
solution, which the students develop, and the language syntax, the complete solution is
translated into code and is then tested.” This approach (which shows some, but not all,
of the characteristics of PBL) is relevant to us because it shares with our design impor-
tant features (e.g., a late direct instruction phase) of PS-I approaches (see the following
2.4.2). To it, we add the motivational aspect supported by the initial failure. Also, we
do not explicitly distinguish between ‘algorithmic design’ and ‘implementation’ since
the examples we propose are directly linked to language features. However, precisely
because they are focused – as we will see – on the necessity of those constructs, we
argue that our methodology can be helpful to stimulate strategic knowledge rather than
just syntactic knowledge (see 3.2.2).

2.4. Activities and Difficulties that Prepare for Instruction

In educational research, a growing body of literature argues that it is better not to start
learning a concept from direct instruction.

For example, in A Time For Telling, Schwartz and Bransford (1998) describe a
method in which undergraduate students analyse contrasting cases to develop prior
knowledge that primes them to learn from direct instruction. Contrasting cases are
presented side-by-side and consist of small sets of data, examples, or strategies. They
recognise that “[n]oticing the distinctions between contrasting cases creates a ‘time
for telling’; [that is] learners are prepared to be told the significance of the distinctions
they have discovered.” Ultimately, they show that engaging in “analyzing contrasting

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 649

cases [representing a target concept] provided students with the differentiated knowl-
edge structures necessary to understand a subsequent explanation at a deep level [on
that concept].”

In teaching statistics to advanced students, Schwartz and Martin (2004) provide
further evidence to support their method (i.e., Invention) to prepare students before
instruction. They demonstrated the efficacy of invention activities preceding direct in-
struction, despite such activities failing to produce canonical understandings and solu-
tions during the invention phase.

Furthermore, Bjork and Bjork (2011, p. 57) – discussing the results of several psy-
chology studies in which they took part between 1975 and 2009, together with what
they learned from their teaching experience (also as teacher-researchers) – affirm the
following.

Conditions of learning that make performance improve rapidly often
fail to support long-term retention and transfer, whereas conditions
that create challenges and slow the rate of apparent learning often
optimize long-term retention and transfer.

They use the expression desirable difficulties to describe those challenging conditions
that are “desirable because they trigger encoding and retrieval processes that support
learning, comprehension, and remembering.” Among these difficulties, Bjork and Bjork
(2011) recognise the generation effect, that is “the long-term benefit of generating an an-
swer, solution, or procedure versus being presented that answer, solution, or procedure”.

About learners experiencing difficulties in preparatory activities, various forms of
failure in activities preceding instruction are more and more investigated in educational
research as a drive for better learning outcomes.

For example, VanLehn et al. (2003) conducted a study to help developers of intel-
ligent tutoring systems understand which tutors’ activities lead to success, confronting
problem-solving episodes where tutoring does and does not result in learning a physics
principle. They found that learning was infrequent when students did not reach an im-
passe (i.e., “when a student gets stuck, detects an error, or does an action correctly but
expresses uncertainty about it”) in problem-solving situations despite the tutor explic-
itly explaining the target concept. Conversely, “when students reach an impasse, they
discover that they need to learn something, so they may adopt a learning orientation”,
making explanations more effective. Therefore, instructors should encourage impasses
and delay instructional structure (e.g., feedback, questions, or explanations) until learn-
ers reach some form of failure and are consequently unable to proceed.

2.4.1. Productive Failure
Kapur and Bielaczyc (2012) leap forward in combining these two significant trends
emerging from research – i.e., preparatory activities before instruction and failure as a
drive to better prepare for learning – and propose the Productive Failure (PF) learning
design. In the last ten years, Productive Failure has generated a considerable amount
of research, much of which seems to confirm its effectiveness (Kapur, 2016; Sinha and
Kapur, 2019).

M. Sbaraglia, M. Lodi, S. Martini650

PF integrates four interdependent mechanisms: “(a) activation and differentiation of
prior knowledge in relation to the targeted concepts, (b) attention to critical conceptual
features of the targeted concepts, (c) explanation and elaboration of these features, and
(d) organization and assembly of the critical conceptual features into the targeted con-
cepts” (Kapur and Bielaczyc, 2012).

PF learning design develops in two phases. The generation and exploration phase –
when students engage in complex problem solving and generate multiple representations
and solution methods (RSMs), followed by the consolidation phase – when teachers or-
ganise and assemble relevant students’ RSMs into canonical RSMs. Three core design
principles guide PF in order to embody the cited four interdependent mechanisms.

Create problem-solving contexts that involve working on complex 1.
problems that challenge but do not frustrate, rely on prior mathemati-
cal resources, and admit multiple RSMs (mechanisms a and b);
Provide opportunities for explanation and elaboration (mechanisms b 2.
and c); and
Provide opportunities to compare and contrast the affordances and 3.
constraints of failed or suboptimal RSMs and the assembly of canoni-
cal RSMs (mechanisms b–d).

(Kapur and Bielaczyc, 2012, p. 49)

These core principles translate into many specific principles to guide the implemen-
tation of the two phases. We briefly report only those relevant to our work, all related to
the problem-solving phase. “Designing the activity: ‘sweet-spot’ calibration of complex
problems” involves challenging but not frustrating students. “Complexity of the prob-
lems” requires complex problems’ scenarios allowing multiple RSMs. “Prior mathemat-
ical resources of students” states that the problem complexity also depends on students
prior knowledge, around which problems must then be built.

2.4.2. PS-I Approaches
In a broader perspective, Loibl et al. (2017) made a comprehensive attempt to sum-
marise the features that define approaches in which preparing activities precede instruc-
tion, terming them PS-I. They consider Productive Failure and Invention as emblematic
examples of PS-I approaches.

PS-I approaches involve an initial problem-solving phase in which learners are asked
to develop solutions to a given problem. Then, the canonical solution and related target
concepts are introduced in the following formal instruction phase. PS-I aims to most
effectively combine these two core learning activities (i.e., problem solving and formal
instruction) while preserving their strengths and limiting their disadvantages.

PS-I is different from other instructional methods with prior instruction because it
demands learners to engage in problem solving before receiving the target knowledge.
At the same time, the explicit instruction phase sets PS-I apart from other inductive
methods – e.g., discovery learning (Loibl and Rummel, 2014) and PBL (see 2.3), where
different forms of support guide learners to discover the target knowledge. In PS-I, by
contrast, problem solving is not designed to acquire the target knowledge since that is

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 651

what the instruction phase is dedicated to. The originality of this approach lies not in
its constitutive elements, i.e., inductive problem solving and explicit instruction, but in
combining them in a specific order.

In the problem-solving phase, students face a problem that requires applying the
knowledge they have yet to learn. For example, in Glogger-Frey et al. (2015), practice
teachers received learning diaries excerpts and faced the problem of inventing criteria to
evaluate the use of learning strategies in them. The targeted evaluation criteria for learn-
ing diaries were introduced and discussed later during the following instruction phase.

Loibl et al. (2017) recognise two main variants of the problem-solving phase. One
is that of Productive Failure approaches (Kapur and Bielaczyc, 2012; Loibl and Rum-
mel, 2014), which require presenting data in a rich story that does not highlight the deep
features of the topic and for which the solution cannot be intuitively guessed. The other
variant is that of Invention approaches (Schwartz and Martin, 2004; Glogger-Frey et al.,
2015), in which contrasting cases serve to give students the relevant information.

They also distinguish two main variants in the implementation of the instruction phase.
In Invention-like approaches, the canonical solution is presented without referring back to
student solutions. In contrast, in PF-like approaches, the teacher starts from the students’
solutions and uses them to explain the relevant elements of the canonical solution.

The efficacy of delayed instruction over instruction-first approaches has been shown
across diverse learning domains and student populations by a substantial body of re-
search (Loibl et al., 2017; Kapur, 2016). Such efficacy lies particularly in three cogni-
tive mechanisms that need to be activated in learners during the problem-solving phase:
prior knowledge activation, awareness of their knowledge gaps, and recognition of deep
features of the problem (Loibl et al., 2017).

In the last few years, given the consistent results supporting PS-I, research has in-
vestigated whether it is possible to increase this learning design’s effectiveness further,
examining different PS-I approaches. One of the leading research questions is whether
the problem-solving phase should be scaffolded or not. According to Sinha and Kapur
(2021), problem solving could be designed to nudge learners towards the canonical solu-
tion (i.e., success-driven scaffolding), towards sub-optimal solutions (i.e., failure-driven
scaffolding), or to let learners experience failure without any form of scaffolding (in the
problem-solving phase), resembling a straightforward Productive Failure design.

3. Necessity Learning Design

In the light of the reviewed literature, we propose a learning design to support the
learning of programming in CS1, which we call “Necessity learning design for CS1
programming” (NLD). The core element of our design – which sits in the domain of
PS-I approaches – is the necessity mechanism. What we call necessity mechanism is an
original learning mechanism with various sources of inspiration (see 3.1) that shapes
the learning experience to support motivation, engagement and understanding, by put-
ting students in a situation that can stimulate in them the necessity of the concept that
will be introduced afterwards.

M. Sbaraglia, M. Lodi, S. Martini652

In the following subsection, we analyse the necessity mechanism. Then, in subsec-
tion 3.2, we detail and discuss how we leverage this mechanism in our Necessity learn-
ing design for CS1 programming.

3.1. Necessity Mechanism

The necessity mechanism consists of assigning students a carefully designed problem.
The problem is built so that, from the one hand, students feel like they can solve it with
the knowledge they already have. On the other hand, however, necessity problems are
actually constructed to be unsolvable except with a particular concept (to which we refer
to as the target concept, following PF and PS-I literature) not yet taught, making learners
experience the need for it. When learners realise that, “surprisingly”, they cannot solve
the problem, it is the time for telling. That is when the feeling of strong necessity – gen-
erated by failing to solve the problem (or by struggling to find sub-optimal solutions) –
can be leveraged to introduce the target concept.

For example, after students have learned the two main forms of definite iteration
(i.e., sequential scanning (foreach loop) and loop with explicit but automatic index
handling (for loop)) and after they have applied them to solve problems, a new prob-
lem requiring indefinite iteration is proposed. This new problem might be to count how
many pseudorandom integers between 1 and 1000 a program generates before getting
the number 42 (see necessity example 2). The problem is posed similarly to those faced
when learning definite iteration so as to inspire confidence in students that they can
solve it with the loops they have learned so far. However, since they cannot meet the
problem request – at least not easily nor optimally (e.g., they might use the for loop
with a very large number of repetitions), students will hopefully feel a necessity (even
an abstract one) of a construct that allows repeating until something occurs, rather than
repeating a given number of times. The desirable difficulty of “having to resolve the
interference among the different things under study [i.e., the interference between what
worked for the previous known problems and what is not enough now] forces learners
to notice similarities and differences among them, resulting in the encoding of higher-
order representations, which then foster both retention and transfer” (Bjork and Bjork,
2011, p. 61) of the later instruction phase.

In designing necessity problems, we follow some of the PF principles on problem
solving to “[c]reate problem-solving contexts that involve working on [...] problems
that challenge but do not frustrate, [and] rely on prior [... students’] resources” (Kapur
and Bielaczyc, 2012), in order to activate two of the cognitive mechanisms reported
in subsection 2.4.2 (i.e., prior knowledge activation and attention to the target concept
critical features).

To find the PF “sweet-spot calibration” of problems, we design them to be as simi-
lar as possible (i.e., using almost the same words, phrasings, scenarios, and requests)
to the previous well-known problems students faced developing mastery of the previ-
ous target concept. Carrying on with the example, the last problem before the necessity

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 653

problem (see example 2) might be to count how many times a program that generates
100 (or any fixed number of) pseudo-random integers between 1 and 1000 produces
the number 42.

Most importantly, necessity problems are solved precisely by applying the new target
concept, that is, the smallest possible addition to students’ prior knowledge3. In other
words – following the PF principle of relying on learners’ prior resources – a necessity
problem must be finely tuned to students’ knowledge so that they can fully understand
its request, identify its significant features, and devise strategies for solving it. How-
ever, none of these strategies will lead to the canonical solution as it requires the target
concept to be developed. According to Bjork and Bjork (2011) on the generation effect,
problems “can potentiate the effectiveness of subsequent study opportunities even under
conditions that insure learners will be incorrect”.

3.2. Necessity Learning Design for CS1 Programming

In this section, starting from the necessity mechanism (which we envision usable more
generally in science education), we propose a learning design specific to CS1, the Neces-
sity learning design (NLD).

3.2.1. P!S-I-PS Necessity Sequence
Assuming the rationale of PS-I approaches (Loibl et al., 2017), both to sustain moti-
vation and because novices generally struggle to understand the significance of new
concepts when introduced by direct instruction – instead of planning to use the target
concept “in the student’s next assignment”4, we create a “meaningful example” (i.e., the
necessity problem), where the target concept is needed immediately before the instruc-
tion phase.

NLD is greatly inspired by unscaffolded PS-I approaches, which resemble straight-
forward PF (Sinha and Kapur, 2021), drawing on the idea that problem solving best
prepares learners for the instruction phase.

On the other hand, NLD deviates from PF in how it introduces the target concept
after problem solving, specifically by differing in the goal and implementation of the
instruction phase. In the instruction phase of PF, the teacher introduces the target concept
to the students (building on their RSMs5) and uses it to construct the canonical solution
to the very same problem of the previous phase. By contrast, the instruction phase of
NLD simply introduces the target concept and explains it in general without applying
it to solve the problem, just showing its use in simple examples. After the instruction
phase, NLD requires students to come back to the problem (whose goal was to make

3 As already recogised by Shneiderman (1977, p. 195), “[a]t each step the new material [...] should be a mini-
mal addition to previous knowledge, should be related to previous knowledge, should be immediately shown
in relevant, meaningful examples and should be utilized in the student’s next assignment.”

4 See again the quote in footnote 3.
5 Representations and Solution Methods, see 2.4.1.

M. Sbaraglia, M. Lodi, S. Martini654

them experience the necessity of the target concept, see 3.1) that is precisely structured
to be solved using the target concept just presented.

Inspired from the notation adopted by Sinha and Kapur (2019), we could describe
our learning design as a P!S-I-PS approach. P!S emphasises that necessity problems
are unsolvable (!S) before the instruction phase. The trailing PS indicates a second
problem-solving phase, in which students return to the same problem after the instruc-
tion phase.

P!S. The problem posed in the P!S phase diverges from the PF in the “complexity of
the problem” design principle. PF designs problems to be complex and information-rich
(providing even unnecessary data) so that it is natural and inevitable for students to gen-
erate multiple RSMs. That is because of the key role of students’ RSMs in the “consoli-
dation phase”, in which PF builds direct instruction on “organizing and assembling the
relevant student-generated RSMs into canonical RSMs” (Kapur and Bielaczyc, 2012).
While programming problems also admit various RSMs (always sub-optimal without
the target concept, as discussed later in 3.2.3), the Necessity learning design does not
rely on the students’ RSMs to introduce the target concept, nor does it build the canoni-
cal solution together with students in the instruction phase.

Among the reasons for this different sequence is the nature of problems faced in
learning programming. The solution to a programming problem is a program, and a
program is an interactive object. The student who develops a program can immediately
check whether or not her solution can be executed. A non-executable program is a first
obvious indication of an error. On the other hand, if a program is executable, there are
often many possibilities for the student to verify whether it works correctly. In other
words, the student’s program is an interactive solution attempt, which returns informa-
tion helpful for solving the problem. This unique characteristic of programming prob-
lems constitutes a source of motivation for students to experience first-hand the use of
the target concept to solve the necessity problem.

Furthermore, a specific consideration can be made for CS1 programming. Since it
involves introductory and mostly technical knowledge, there is inevitably less room for
various RSMs and for debating on them. On the one hand, confronting and discussing
different solution strategies (before instruction but also after the second PS phase) is
undoubtedly valuable. However, on the other hand, the actual learning trigger of our
learning design is not the discussion about students’ RSMs but the feeling of necessity
introduced by the necessity problem.

While it would be unnatural (because of the introductory and mostly technical knowl-
edge) to design CS1 complex problems with multiple RSMs, we focus on developing
meaningful but minimal problems that are “surgically” precise with respect to the target
concept. Necessity problems for CS1 programming are built on students’ prior knowl-
edge but in such a way as to be solved only with the target concept, as if the problem
were an encrypted message and the target concept the key.

I. As anticipated, in the instruction phase of PF (and, more generally, of PS-I) learn-
ing design, the teacher illustrates the target concept and then applies it to solve the
problem. In our scenario, providing the solution would waste a precious learning po-

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 655

tential, that is, the feeling of necessity (generated by the necessity mechanism, see 3.1)
students have experienced in the P!S phase. The optimal strategy formulated by Van-
Lehn et al. (2003), whereby instructors, after students reached an impasse (P!S phase),
“prompt them to find the right step [...], and [...] provide an explanation only if they
have tried and failed to provide their own”, supports the choice of not revealing the
solution already in the instruction phase (if we equate ‘providing an explanation’ with
‘writing a program’).

PS. In addition, all the reasoning students did in trying to solve the problem before
knowing the target concept can be valuable not only to understand the concept’s signifi-
cance but also to realise how to apply it to solve the problem. Indeed, applying a concept
is a further and more challenging step than simply understanding it. From a learning pro-
gramming perspective, understanding a concept corresponds mainly to the conceptual
level, knowing how to apply it to the strategic level.
See table (Fig. 1) for a summary comparison of NLD with Productive Failure. A necessity-driven ride on the abstraction rollercoaster of CS1 programming 15

Table 1
Comparison between Productive Failure (unscaffolded PS-I) and Necessity learning design (P!S-I-PS)

Productive Failure (PF) Necessity learning design (NLD)

PS P!S
Problem built on students’ prior knowledge

Problem sweet-spot calibration: challenging but not frustrating
Problem: complex, information-rich and ill

structured (what-if scenarios)
Problem: simple, well structured, very similar to

those the students are already used to
Problem stimulates multiple RSMs Problem surgically designed to stimulate the

necessity of the target concept
No teacher scaffolding

Students discuss to confront different RSMs RSMs are programs, tinkerable objects (self
assessment and trial & error)

Students present their work and compare (guided
by teachers) affordances and constraints of failed or
suboptimal RSMs to assemble the canonical RSM

–

I
Teachers introduce the target concept in the context

of the problem and solve it
Teachers introduce the target concept without
referring to the problem (showing the solution
would waste the “necessity learning potential”)

Students practice on well-structured problems on
the target concept

–

Teachers formally introduce the concept and explain it through simple examples
Students practice on isomorphic problems –

– PS
– Students immediately apply a concept (strategic

knwl) after learning it (conceptual knwl) in a
meaningful and well-known context (P!S problem)

The characteristic of NLD to focus on crucial learning moments does not undermine
its more general scope nor its usefulness. Indeed, precisely because NLD immediately
stimulates the use of the target concept in a problem-solving context—in which it is “the
right thing to use”—NLD aims to be an ideal starting point for developing especially the
strategic knowledge for that concept.

3.2.3. Hard vs. Soft necessity
The necessity of a programming concept (and the related construct) can be considered
from two different perspectives.

From the programming languages perspective, there is only one truly hard necessity—
that of the brute-force ability to program a specific function. It shows up only when the
(subset of the) language in use is not Turing complete. If we allow only (true) definite iter-
ation, then, for example, we cannot write programs that may loop forever for certain input
values. However, modern languages are all Turing complete (at least in their “standard
model” (Martini, 2020) where arbitrary resources are allowed). After all, besides the abil-
ity to memorise data of potentially unbounded size, only selection and indefinite iteration

Fig. 1. Comparison between Productive Failure (unscaffolded PS-I)
and Necessity learning design (P!S-I-PS)

M. Sbaraglia, M. Lodi, S. Martini656

3.2.2. Learning between Necessity Sequences
Necessity learning design (NLD) does not aim to structure all phases of a CS1 program-
ming learning path. In other words, the sequence (i.e., P!S-I-PS) of necessity activities is
not sufficient in itself for students to fully develop the syntactic, conceptual and strategic
knowledge of the related target concept. For this to happen, it is essential that, after ev-
ery occurrence of a necessity sequence, students are exposed to significant examples of
the related target concept and other problem-solving situations6 and have enough time
to develop mastery. More generally, educators should adopt all the best practices that
Informatics education research suggests to fully develop the three levels (i.e., syntactic,
conceptual and strategic) of knowledge.

The characteristic of NLD to focus on crucial learning moments does not undermine
its more general scope nor its usefulness. Indeed, precisely because NLD immediately
stimulates the use of the target concept in a problem-solving context – in which it is “the
right thing to use” – NLD aims to be an ideal starting point for developing especially the
strategic knowledge for that concept.

3.2.3. Hard vs. Soft Necessity
The necessity of a programming concept (and the related construct) can be considered
from two different perspectives.

From the programming languages perspective, there is only one truly hard neces-
sity – that of the brute-force ability to program a specific function. It shows up only
when the (subset of the) language in use is not Turing complete. If we allow only (true)
definite iteration, then, for example, we cannot write programs that may loop forever
for certain input values. However, modern languages are all Turing complete (at least in
their “standard model” (Martini, 2020) where arbitrary resources are allowed). After all,
besides the ability to memorise data of potentially unbounded size, only selection and
indefinite iteration (or recursion) are needed for Turing completeness.

On the other hand, Turing completeness does not tell all the story. The brute-force
ability to program any computable function usually passes through an unnatural cod-
ing of data and processes. Lists, for instance, are not needed for such completeness.
We may always encode a generic list of integers [x 0, x 1, x 2] with a single integer
2x 0 ∗ 3x 1 ∗ 5x 2 (Gödelization) and implement all list operations through prime factor
decomposition. However, this possibility is irrelevant in a CS1 programming learning
context.

Therefore, we better consider an educational perspective and identify an “educa-
tional” hardness of necessity, which shows up exactly when the available programming
tools express the new concept (i.e., the target concept) only through unnatural or too
complex coding. As a matter of fact, it is unlikely for CS1 students to be able to produce
such advanced – yet unnatural and complex – solutions at the point where they are in
the programming learning path. This educational perspective is bound to the chosen
programming language and the order of topics in the learning pathway.

6 Recall that the problems students tackle in this phase are similar to the necessity problem of the next
sequence, see 3.1.

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 657

Therefore, an educationally hard necessity of a target concept appears when stu-
dents, drawing only on what has been taught in the course so far – hence without the
target concept, can produce only sub-optimal solutions to a given problem. Most of
the time, using in a “standard way”7 the constructs learned until that moment, students
will also be able to produce partial solutions, i.e., solutions that do not solve the prob-
lem in all possible cases. However, recall that – apart from the exceptional cases of a
Turing-incomplete language (subsets) – complete solutions (i.e., solutions that work
for all cases) are always technically available, although through more or less fancy
hacks. Nevertheless, as said, it is very unlikely (though not impossible) that a stu-
dent could circumvent an educationally hard necessity problem. For example, students
might “force” a definite loop construct they know to express an indefinite iteration, e.g.,
in Python, using a for loop over a list and increasing the list length in the repetition
body8. Solutions like this would be a sign of great mastery of the concepts preceding
that moment of necessity. In these (rare) cases, teachers should make these students rea-
lise that such solutions, though workable and clever, are nonetheless sub-optimal hacks
(often inelegant, inefficient, unnecessarily complicated) and prone to create issues as
the complexity of tasks increases. Students who are able to circumvent a hard necessity
problem are also likely to be receptive to such clarifications.

By contrast, in cases of educationally soft necessity, sub-optimal solutions formu-
lated without the target concept can, quite easily, solve the problem completely relying
on students’ previous standard knowledge. In such cases, it is not unlikely that students
will be able to circumvent a soft necessity problem since they could “blindly” use what
they already know. For example, with reference to the turtle geometry sequence (see
example 1), drawing a polygon of 20 sides can be done by blindly replicating the same
code 20 times. In general, in soft necessity cases, sub-optimal solutions may be fully
functional. However, they are always one or more of the following: less compact (e.g.,
because of repeated code) – and therefore less maintainable and more prone to errors,
less modular (e.g., not using functions, not adopting OOP), less clear (e.g., intricate
solutions), and also possibly less efficient (i.e., more computationally costly in time,
space or both).

From the educators’ perspective, being aware of whether the necessity is education-
ally hard or soft helps design the related necessity problem. If it is soft, the necessity
problem should be structured in such a way that circumventing it by blindly using prior
knowledge is as difficult as possible. Conversely, if it is hard, the necessity problem
should require exactly what is (educationally) impossible to do without the target con-
cept. To sum up, the goal is always to stimulate the necessity of the target concept, with-
out which it must be (almost) impossible (i.e., educationally hard necessity) or hindered
(i.e., educationally soft necessity) to devise a complete solution.

To clarify in a concrete context, we refer to a scenario where the problem is to input
a list of students’ names and randomly choose the first to take the oral exam.

7 The canonical usages of a construct, as taught to students.
8 Typically, in most modern languages, constructs designed for definite iteration (e.g., for, foreach) can be

forced to express indefinite iteration, sometimes in more natural ways (e.g., in C), sometimes in unorthodox
and inelegant ways (such as the Python example just mentioned).

M. Sbaraglia, M. Lodi, S. Martini658

If the number of students is known... 1.
... and it is very small. No a) necessity is stimulated since it should be fairly
simple for CS1 learners to use separate variables to input the names, extract a
random number, and use a simple selection (with few elseif branches) to
print the corresponding student.
... and it is long. It is still conceptually easy to solve the problem with unrelated b)
variables and a (long) selection with many elseif branches. However, the
solution code is long, repetitive, and errors are likely to be made. Even though
it is possible to solve the problem completely, writing such a solution is prone
to errors and could be frustrating. This scenario can stimulate in students a soft
necessity of some type of collection with index access (like arrays).

If the number of students is unknown. An 2. educationally hard necessity is stimu-
lated. Students can produce an incomplete solution assuming a large maximum
number of students, leading back to the solution of the previous point. Of course,
this solution would be highly suboptimal. In this case, we talk about an education-
ally hard necessity (this time, of some type of dynamically extendable collection
with index access, like Python lists) because students have no “standard”9 way to
produce a complete solution, i.e., to memorise an arbitrary, unknown number of
students with only simple variables.

To summarise, the hardness (and the effectiveness) of any necessity sequence is de-
termined by the chosen language and the specific order of the topics in the learning path.
For this reason, information in each of the presented necessity examples always includes
“What students already know” and, when relevant, a warning on other concepts students
should not know yet.

4. A use of NDL in the CS1 Abstraction Rollercoaster

In the previous section, we presented and described NLD. In this section, we present a
possible application of NLD in some moments that we consider crucial in a CS1 course,
that is, those in which the level of abstraction changes in relation to the constructs of the
chosen language (see 2.2).

After discussing these movements of abstraction (4.1) and the relevance of their
direction (4.2), we present a possible learning path for CS1 (4.3). Finally, we show four
necessity examples (4.4) within that learning path, also detailing the general structure of
the examples.

4.1. Abstraction Movements in CS1 Programming

The history of programming languages, from low level to high level, clearly shows an
abstraction process, with the introduction of more abstract constructs (for the notion of

9 However, see the above discussion on how to simulate a list with a single integer variable.

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 659

type, see Martini (2016a,b)), or with the creation of more abstract languages, sometimes
maintaining low-level functionalities (even when not strictly necessary for expressive-
ness), other times sacrificing them for cleanness.

The creation of these abstractions in programming languages is a complex process,
driven both by experiment and semantics. In Visser (2015), we find a discussion about
this abstraction creation process. First, a programming pattern – a “recipe” for solving
a re-occurring problem, which the programmer applies manually in any instance (e.g.,
calling and returning sequences in assembly language using the return stack) – is identi-
fied. Then, a linguistic abstraction – a construct providing a “black-box” for that pattern
(e.g., functions and their parameter passing mechanisms) – is devised and created. The
essential point is that a “good” abstraction, once created, gets autonomous life because
it captures an important concept of software development.

Professionals have welcomed this movement upward the abstraction ladder – be-
cause it enables them to express more and more complex computations in a simple,
evocative, concise way – and resort to lower-level constructs (or languages) only when
necessary (e.g., for efficiency’s sake).

By taking an expert perspective, it could be tempting to always take the same direc-
tion (usually called a bottom-up approach (Caspersen, 2018, p. 113)) and follow an
ascendant abstraction path when teaching programming to students. That is, starting
from lower-level constructs so that, when a higher-level construct (abstracting the for-
mer ones) is introduced, students can fully understand its underlying details. However,
as already noted by Shneiderman (1977) – and in line with the studies on cognitive load
theory (see 2.1) – students “would be overwhelmed if the general form were presented
first, [while they] can absorb complex forms in a step by step process”, therefore “[n]on-
essentials must be stripped away so as to provide students with a minimum useful subset
of the language which can be expanded gradually.” Indeed, a small subset of abstract
constructs (e.g., print, if, foreach loop) is enough to produce early functioning and
meaningful programs (e.g., given a sequence of strings representing the XML code of a
social network posts, print out only those mentioning your name), and thus sustain mo-
tivation in novice learners (Caspersen, 2018, p. 113). Furthermore, some studies show
that implicit looping is more natural for novices than explicit looping (Guzdial, 2008),
hinting at the possibility to teach more abstract constructs before the less abstract ones
(i.e., focusing more on “what” than on “how”, following Statter and Armoni (2020)).

Hence, in some cases, it is possibile for educational purposes to take the abstrac-
tion ladder downward, in the opposite direction of the one followed to introduce more
abstracts constructs in programming languages. For example, instead of going upward
from using the while loop for definite iterations (i.e., by manually handling an index/
counter), to the for loop with explicit but automatically handled index, up to the fo-
reach loop with implicit (and hidden) index handling, we can take the opposite route
by starting to teach the more abstract loop (i.e., the foreach loop) and going down
from there. Of course, CS1 students will soon face situations in which the most abstract
construct is not sufficient anymore (or it is less elegant, simple, efficient). When this
happens, students can feel the necessity (see 3.1) of “opening the black box” to have a
less abstract but more powerful mechanism.

M. Sbaraglia, M. Lodi, S. Martini660

On the other hand, during a CS1 course, adding more constructs often raises the
abstraction level. For example, in our proposal this happens when introducing a dic-
tionary-like data type (i.e., a mapping between two finite collections of arbitrary types).
Since it helps solve problems handled before with parallel arrays (one containing the
indexes and one the values), introducing dictionaries can be seen as an increase (com-
pared to using parallel arrays) in data abstraction.

We observe that the order in which concepts are introduced determines the direc-
tion of the movement of abstraction. In the previous example on loops (i.e., moving
down towards the less abstract while loop), the abstraction movement would be
upward if the general form (i.e., while) were presented before the more abstract one
(i.e., foreach).

As mentioned in 2.1, there is no agreement in the literature on what is the best topic
order to follow in CS1. Consequently, we observe that CS1 courses go both up and
down in abstraction. Also, introducing the same concepts in different courses may cor-
respond to opposite directions in the abstraction movement due to different choices on
the topic order.

Hence, considering the multiple changes of abstraction level across the abstraction
mechanisms of any programming language for CS1, we recognise what we call a roller-
coaster of abstraction.

In 4.3, we present a complete CS1 learning path and discuss the abstraction move-
ments (and their directions) within it and also the possibility of alternative paths (and
thus different abstraction movements and directions).

4.2. Abstraction Ups and Downs: Different and Difficult

As anticipated at the end of 2.2, movements between levels of abstraction pose specific
learning challenges.

Moving downward the abstraction ladder is not easy because novices have a hard
time dealing with many details (see 2.1 on cognitive load). A drop in the level of abstrac-
tion requires students to consider additional information, determines a less simple way
to do things but allows for more sophisticated computations. A metaphor that speaks
well of this difficulty is the car transmission. It is intuitive to understand how a person
who has learned to drive automatic cars finds it difficult to drive a manual car because it
requires knowing and manoeuvring more details.

However, moving upward the abstraction ladder seems, more surprisingly, not easy
either. A study conducted by Alexandron et al. (2012, p. 157) on live sequence charts

[...] showed that some [students] felt that the high abstraction level
does not give them enough control, though the goals of their program
were achieved without getting into lower level details. [...] This sub-
jective feeling is strongly related to [...] students’ previous program-
ming experience. Since the students were used to working on lower
abstraction levels, it determined their perception of what the ‘right
abstraction level’ is. When moving to a higher abstraction level, they

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 661

could not control things that they used to control before, and thus felt
that they lose power.

It is not uncommon for people who are used to driving manual cars to report dif-
ficulties (at least at first) in switching to an automatic transmission, complaining of less
control (it is not possible to control the engine brake in the same way as in a manual car)
and a feeling of disorientation.

Therefore, since riding the abstraction rollercoaster of learning CS1 programming
seems difficult both upward and downward, we propose examples of how to use NLD
to support learning at these critical abstraction movements. We think NLD can help
in these critical learning steps, also thanks to its multiple influences (discussed in 2 –
e.g., the constructivist idea of “generation effect” for solid and deeper learning and to
favour the learning edge momentum; Productive Failure to best prepare for instruc-
tion).

Moreover, recognition of the direction of the abstraction movement helps guide the
design of the necessity sequence. Indeed, whether abstraction goes up or down, the na-
ture of the necessity problems changes since scenarios of different necessities arise.

Reducing the level of abstraction causes difficulties for students because it requires
them to see and deal with previously hidden details. We observe that in these cases, it is
useful (and generally straightforward) to stimulate a hard necessity (see 3.2.3) in them,
that is, to confront them with a problem that is (educationally) impossible to solve with-
out those additional details.

In a different way, increasing abstraction also causes difficulties for students since
it takes away details they learned to control. In these cases, it is difficult to find hard
necessity scenarios: usually, more abstract tools are intended to facilitate the use of
more trivial tools rather than to enable new functionalities (see 2.2). Consequently, when
abstraction increases, it is appropriate to stimulate a soft necessity (see 3.2.3) to use the
more abstract tool by constructing problems that make it difficult (i.e., time-consuming,
tiring, prone to errors) using “blindly” the less abstract tools already possessed by stu-
dents, thus showing the opportunity to resort to the more abstract one.

We consider more straightforward the development of problems supporting learning
when the abstraction goes down. Therefore we provide only one example of the NLD
use at a downward movement (example 2) and three examples of NLD supporting an
upward movement (examples 1,3,4). All examples are framed into a CS1 learning path,
which we describe in the following section.

4.3. A Possibile CS1 Learning Path

In the following, we report the contents of a CS1 learning path in which the examples
provided in subsection 4.4 are placed.

The proposed course follows a rather classical approach to CS1, based on the CS1
for Math major that we have successfully experimented with over the last ten years,
both with traditional in presence lectures and as a synchronous online course (Lodi
et al., 2021).

M. Sbaraglia, M. Lodi, S. Martini662

Compared to an entirely classical progression (as proposed in some textbooks, e.g.,
Guttag (2021), Downey (2015)), note the turtle module in the first lessons, used as a
tool for a playful and creative introduction to programming (influenced by Papert’s con-
structionist approach with Logo turtle geometry (Papert, 1980), of which the turtle
module is a Python implementation). Indeed, as in renowned courses (e.g., Harvard’s
CS5010 or Berkeley’s CS1011), this introductory part can be approached with visual lan-
guages such as Scratch or Snap!, which provide turtle primitives and simple repetition
constructs such as repeat N.

Here our proposal of a CS1 pathway follows, instantiated with Python language but
easily adaptable to any other high-level imperative language. The path includes main
programming concepts and constructs, together with Python language features realising
them, as well as elementary patterns, notable algorithms, and theoretical aspects. Along
the path, the target concepts of the necessity examples provided in 4.4 are indicated in
bold italics.

22 M. Sbaraglia, M. Lodi, S. Martini

as well as elementary patterns, notable algorithms, and theoretical aspects. Along the path,
the target concepts of the necessity examples provided in 4.4 are indicated in bold italics.

Here our proposal of a CS1 pathway follows, instantiated with Python language but
easily adaptable to any other high-level imperative language. The path includes main pro-
gramming concepts and constructs, together with Python language features realising them,
as well as elementary patterns, notable algorithms, and theoretical aspects. Along the path,
the target concepts of the necessity examples provided in 4.4 are indicated in bold italics.

Here our proposal of a CS1 pathway follows, instantiated with Python language but
easily adaptable to any other high-level imperative language. The path includes main pro-
gramming concepts and constructs, together with Python language features realising them,
as well as elementary patterns, notable algorithms, and theoretical aspects. Along the path,
the target concepts of the necessity examples provided in 4.4 are indicated in bold italics.

Here our proposal of a CS1 pathway follows, instantiated with Python language but
easily adaptable to any other high-level imperative language. The path includes main pro-
gramming concepts and

Example of CS1 learning path for non-majors

• Importing constants and functions from a module
• Basics of the turtle module

– forward (backward) function
– left (right) function

• for loop to express a simple repeat N with N being a fixed integer value
(e.g., for i in range(10)) – example 1 target concept

• Built-in data types
– Integers, floats
– Strings and their basic operations (including selection of a character)

• Variables and assignment
• Functions (calling them, passing paramenters, defining custom functions)
• Input and output (input and print functions)
• Type conversions (e.g., int(), str())
• random.randint to generate a random integer in an interval
• Boolean type and boolean expressions
• Conditional commands (if, if...else, if...elif...else)
• for loop to iterate over sequence elements (“foreach” loop)
• Elementary pattern: linear scan (for each element of a sequence, do some

operations)
• Tuples (and generalised assignment)
• Slices on sequences ([start:stop:step])
• Elementary pattern: linear scan with a gatherer
• Idea of object and methods

– is vs. ==
– Methods on built-in types (e.g., str, float)

10 https://cs50.harvard.edu/college/2021/fall/syllabus/#lectures
11 https://cs10.org/su21/5syllabus/#welcome

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 663A necessity-driven ride on the abstraction rollercoaster of CS1 programming 23

• range and for over a range to express the definite iteration with explicit
but automatically handled index (e.g. for i in range(1,10,2))

• Elementary pattern: linear search
• while loop to express indefinite iteration – example 2 target concept
• Algorithm: Euclidean algorithm to compute GCD
• Pattern/algorithm: binary search
• Computational complexity: linear vs. logarithmic
• matplotlib.pyplot.bar to plot a simple bar chart
• Arrays (or lists) with index access – example 3 target concept
• Lists (mutability, dynamic insertion and deletion of elements, list methods)
• Recursion
• Computational complexity

– resources, computational steps, cost of elementary/non-elementary
steps, big-Os

– complexity of binary search
– complexity of numeric algorithms

• Sorting algorithms: insertion sort, quicksort, merge sort
– their computational complexity

• Dictionaries – example 4 target concept
• List comprehension and dictionary comprehension
• Generators
• Object-oriented programming (OOP)

– Classes and objects, attributes and methods
– “Magic” methods
– Private attributes, instance attributes
– Subclassing and inheritance

• Binary tree abstract data type (implemented with OOP)
• The Halting Problem

This pathway is only a proposal, and we provided it to place the necessity examples in
a concrete context. Indeed, the examples we developed with NLD can fit into other CS1
learning paths, provided that the prerequisites are met and the topics students should not
know (to stimulate the various necessities across examples) have not been addressed.

With the same warnings about dependencies between topics, it is important to note
that other topics can be addressed with NLD. In fact, these presented here are only a few
examples of the many possible necessity sequences. For example, educators might use
NLD to stimulate the necessity of a coherent representation of an object instead of relying
on unrelated data structures and functions to introduce object-oriented programming. This
transition corresponds to a movement of (data and control) abstraction upward, which can
be set in a soft necessity scenario.

This pathway is only a proposal, and we provided it to place the necessity examples
in a concrete context. Indeed, the examples we developed with NLD can fit into other
CS1 learning paths, provided that the prerequisites are met and the topics students
should not know (to stimulate the various necessities across examples) have not been
addressed.

With the same warnings about dependencies between topics, it is important to note
that other topics can be addressed with NLD. In fact, these presented here are only a
few examples of the many possible necessity sequences. For example, educators might
use NLD to stimulate the necessity of a coherent representation of an object instead
of relying on unrelated data structures and functions to introduce object-oriented pro-
gramming. This transition corresponds to a movement of (data and control) abstraction
upward, which can be set in a soft necessity scenario.

M. Sbaraglia, M. Lodi, S. Martini664

4.3.1. Ups and Downs in Our and in Other Paths
From the viewpoint of abstraction movements, our learning path immediately shows
some ups and downs. In the beginning, we intuitively introduce the repeat N loop
(with N being a fixed integer known at compile time). The repeat N loop is realised
in Python with a for i in range(N). Leaving initially unexplained what i and
range are, we teach a simplified use of the construct that, in this case, serves only
to repeat N times a block of instructions. At this point the abstraction goes up a bit,
because the first “real” Python loop we teach after the repeat N loop is the for on
sequences (foreach). After that, the abstraction goes down, as we explain what a
range is and how to use the for construct to iterate over a range, to have (in Py-
thon, to simulate) a for loop with explicit but automatically handled numeric index.
The goal is to access sequence elements by index (and not just repeat N times a block
of instructions). A hard necessity sequence can be constructed around the need to use
indexes in a non-trivial way, e.g., to access the previous/next element or only certain
parametric positions. Abstraction goes down further when the while loop is intro-
duced to express indefinite iterations (see example 2).

The rollercoaster described so far is experienced by students not only at the crucial
moment of learning those new constructs/concepts. Indeed, students, in order to solve
future problems, will always have to move between the different levels of abstraction
encountered to choose the construct at the most suitable level for the problem faced.
Having made this necessary clarification, we observe how abstraction tends to increase
or remain constant from this point onwards in the proposed learning path.

However, since the path in 4.3 is only a proposal and no correct topic order is estab-
lished, it is easy to imagine other learning paths with other downward moments, show-
ing that the rollercoaster is inherent in CS1 programming.

For example, Python provides a powerful tool for “inline” list construction, list
comprehension12. This construct is more abstract than the classic elementary pattern
that uses a for loop and an empty list as a gatherer. In addition, it features a syntax
inspired by the mathematical notation of set construction (i.e., note the similarity of
{x3 | x ∈ [0..4]} with [x**3 for x in range(5)]). It has been found that
constructions such as these are intuitively much preferred by non-programmers (Pane
et al., 2001, p. 258). It is possible to consider introducing this list-building construct
first, a choice that might make particular sense for Math-major given the similar-
ity of list comprehension with the intensional mathematical representation of sets.
The necessity of learning the for loop, thus going down in abstraction, can then be
stimulated when creating the list is not the only thing that needs to be done, but other
operations also need to be performed at each iteration.

12 According to Python documentation, list comprehensions “provide a concise way to create lists. Common
applications are to make new lists where each element is the result of some operations applied to each
member of another sequence or iterable, or to create a subsequence of those elements that satisfy a certain
condition.”

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 665

Generally, an approach that starts from more abstract constructs – thus deviating from
the more established tradition of teaching programming from the basics and abstracting
from there – might be beneficial in domain-specific contexts other than Informatics. If
researchers or professionals outside Informatics need to learn to program, likely, the
level of abstraction of the tools they are interested in is the one closest to the type of data
they have and the elaborations they need to do.

According to this perspective, for instance, it would be possible to learn the tree
abstract data type first and only afterwards, when the necessity of modelling more so-
phisticated (than trees) data structures, learn how trees can be implemented through
lists. Similarly, as with list comprehension, it is possible to teach a powerful and useful
construct such as generators first in their most abstract and intentional form provided by
Python. Afterwards, it will be possible to descend the abstraction ladder to teach genera-
tors’ explicit construction and the more sophisticated commands (e.g., yield) when
necessary (e.g., when a mathematician needs to handle a large list of primes without al-
locating it all in memory).

4.4. Examples of NLD Use in Abstraction Movements

In the following subsections, we present four examples of the use of Necessity learning
design. The proposed examples are designed for Python, but – unless specific limitations
are reported – they can be adapted to introduce the same concepts in other imperative
languages as well.

The examples presented below are necessity sequences. A necessity sequence is the
succession of three phases: P!S, I and PS. Each sequence, designed according to NLD,
aims to teach a concept that determines a change in the abstraction level in the use of the
programming language.

Each example is presented in a box divided into three parts: necessity scenario, ne-
cessity sequence, and example’s characteristics.

The necessity scenario provides the following information.
Title ● . It evokes the necessity stimulated by the sequence.
Problem in a nutshell ● . A concise description of the problem posed to stimulate
the necessity for the target concept.
What students already know ● . It lists the knowledge students should have to deal
with the sequence, expressed both at the syntactic and conceptual level and the
strategic level (see 2.1).
Target concept ● . The new minimal addition to previous knowledge we want the
students to learn expressed both on the syntactic and conceptual level and the
strategic one (see 2.1).

After the first dashed line, the second part describes the necessity sequence in detail.
Before the necessity sequence ● . It reports an example of a task to which students
have become familiar in developing mastery of the prior knowledge. This task is

M. Sbaraglia, M. Lodi, S. Martini666

the last before the P!S phase and is structurally and linguistically very similar to
the necessity problem of the current sequence (see why in 3.1).
P!S – Problem-solving phase (unsolvable problem) ● .

Problem – . The text (as proposed to students) of the necessity problem (see 3.2),
a problem that requires the target concept in order to be solved. It may consist
of a sequence of tasks.
Necessity trigger(s) – . The obstacles students encounter when trying to solve
the problem without the target concept. Not being able to overcome these
obstacles should stimulate the feeling of need for the target concept.
Necessity – . The core mechanism of our learning design describes the feeling of
the necessity of the target concept. That is, what students experience by not
being able to solve the proposed problem.
Sub-optimal solution(s) – . The solutions that students might develop trying to
solve the problem without the target concept. A solution may be incomplete
or complete (i.e., a solution that works for all cases but is still sub-optimal for
other reasons, see 3.2.3). The solutions reported do not necessarily have to
emerge, nor is it required that all students are able to formulate them.

I – Instruction phase ● . The target concept, and its related knowledge, that the
teacher directly instructs to students (without applying it to solve the necessity
problem).
PS – Second problem-solving phase ● . It shows the optimal target code students
should be able to develop engaging again in the necessity problem after being
instructed on the target concept.

After the second dashed line, the third and last part reports some characteristics of
the example and, when present, implementation’s warnings.

Characteristics ● .
Abstraction mechanism – . It indicates whether the sequence is about control ab-
straction or data abstraction (see 2.2).
Abstraction movement – . It indicates whether the target concept represents an
increase or decrease in the abstraction level (compared to what students can
do with the tools they already know).
Educational hardness – . It indicates whether an educationally hard or soft ne-
cessity is stimulated (it depends on whether or not it is possible to develop
complete solutions without the target concept, see 3.2.3)

Warning(s) ● (optional). It lists, if any, the knowledge that, if possessed by stu-
dents, would allow them to easily solve the problem, not letting them experience
the need for the target concept.

Each example is followed by a short discussion where we report some important
considerations on the related necessity sequence.

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 667

4.4.1. The Necessity of Definite Iteration

26 M. Sbaraglia, M. Lodi, S. Martini

4.4.1. The necessity of definite iteration

continued on next page

Necessity example 1

The necessity of definite iteration
(with turtle geometry)

Problem in a nutshell
Drawing a polygon with a given (high) number of sides. Then, changing the pro-
gram to modify the side length. Finally, changing the program to modify the num-
ber of sides.

What students already know
• Syntactic level + viable conceptual model

– Importing functions from libraries
– Basics of the turtle module:

∗ forward (backward) function
∗ left (right) function

• What students already know how to do (strategic level)
– Using forward (backward), left (right) functions from
turtle module to draw contiguous segments

Target concept
• repeat N loop, with N being a fixed integer known at compile time

(syntactic + conceptual)
• repeat instructions a fixed, pre-determined number of times (strategic)

Before the necessity sequence
Example of a previous task not needing the target concept
Draw a square of side 50.

P!S – Problem-solving phase (unsolvable problem)
Problem
The problem consists of three sequential tasks. The next task is given when stu-
dents have finished the current one.
A. Draw a 20-side regular polygon of side 50.
B. Edit the previous program so that it now draws a polygon (still 20-side) with

sides length equal to 45.
C. Edit the previous program so that it now draws a 18-side polygon (with sides

length equal to 45).

M. Sbaraglia, M. Lodi, S. Martini668

A necessity-driven ride on the abstraction rollercoaster of CS1 programming 27

continued on next page

Necessity triggers
A. Students need to repeat 20 times a two-instruction block.

forward(50)
left(18)

B. Students need to update 20 times the side length.
forward(45)
left(18)

C. Students need to remove two blocks and update 18 times the angle.
forward(45)
left(20)

Necessity
I need a way to repeat a block of code a fixed number of times.

Sub-optimal solution
• (complete) The straightforward solutions with the replicated code are com-

pletely correct, but tiring and likely subject to errors or oversights.

I – Instruction phase
Illustrating how to repeat N times a block of instructions, with N being a fixed
integer value, realised in Python.

for i in range(N):
<block of code>

PS – Second problem-solving phase
Target code
A possibile solution to task C (solutions to taks A and B can now be easily obtained
by modifying this code as well).

from turtle import forward, left
for i in range(18):

forward(45)
left(20)

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 66928 M. Sbaraglia, M. Lodi, S. Martini

Characteristics
• Control abstraction
• Upward abstraction movement (compared to replicating the same block of

instructions many times)
• Soft necessity (complete, though sub-optimal, solutions are possible without

the target concept)

Implementation warning
Other concepts that students should not know yet for the mechanism to work:
• Variables and assignments

Example discussion
Task A would be sufficient to introduce the necessity of definite iteration. However, we
believe that tasks B and C can reinforce this necessity. Indeed, the request for multiple
changes aims to provoke a little frustration in students so that they can feel the need for a
repetition construct, especially in a case like this of soft necessity (see 3.2.3).

Note that this would not be the case if variables and assignments were already known
to students. In that scenario, tasks B and C are not useful. Therefore, task A should be
designed in such a way as to stimulate the necessity of definite iteration even more (e.g.,
asking for more polygons with more sides) since using two variables (i.e., one for the side
length and one for the number of sides) would make the updates required by tasks B and
C immediate.

4.4.2. The necessity of indefinite iteration

continued on next page

Necessity example 2

The necessity of indefinite iteration

Problem in a nutshell
Counting how many random numbers are generated before getting a certain value.

What students already know
• Syntactic level + viable conceptual model

– Importing functions from libraries
– Variables and assignments
– Boolean expressions
– if statement
– for loop with explicit, automatically handled index (“true” definite it-

eration; e.g., Python for i in range(1,11), Snap! (and Pascal)

Example discussion
Task A would be sufficient to introduce the necessity of definite iteration. However, we
believe that tasks B and C can reinforce this necessity. Indeed, the request for multiple
changes aims to provoke a little frustration in students so that they can feel the need for
a repetition construct, especially in a case like this of soft necessity (see 3.2.3).

Note that this would not be the case if variables and assignments were already known
to students. In that scenario, tasks B and C are not useful. Therefore, task A should be
designed in such a way as to stimulate the necessity of definite iteration even more (e.g.,
asking for more polygons with more sides) since using two variables (i.e., one for the
side length and one for the number of sides) would make the updates required by tasks
B and C immediate.

4.4.2. The Necessity of Indefinite Iteration

28 M. Sbaraglia, M. Lodi, S. Martini

Characteristics
• Control abstraction
• Upward abstraction movement (compared to replicating the same block of

instructions many times)
• Soft necessity (complete, though sub-optimal, solutions are possible without

the target concept)

Implementation warning
Other concepts that students should not know yet for the mechanism to work:

• Variables and assignments

Example discussion
Task A would be sufficient to introduce the necessity of definite iteration. However, we
believe that tasks B and C can reinforce this necessity. Indeed, the request for multiple
changes aims to provoke a little frustration in students so that they can feel the need for a
repetition construct, especially in a case like this of soft necessity (see 3.2.3).

Note that this would not be the case if variables and assignments were already known
to students. In that scenario, tasks B and C are not useful. Therefore, task A should be
designed in such a way as to stimulate the necessity of definite iteration even more (e.g.,
asking for more polygons with more sides) since using two variables (i.e., one for the side
length and one for the number of sides) would make the updates required by tasks B and
C immediate.

4.4.2. The necessity of indefinite iteration

continued on next page

Necessity example 2

The necessity of indefinite iteration

Problem in a nutshell
Counting how many random numbers are generated before getting a certain value.

What students already know
• Syntactic level + viable conceptual model

– Importing functions from libraries
– Variables and assignments
– Boolean expressions
– if statement
– for loop with explicit, automatically handled index (“true” definite it-

eration; e.g., Python for i in range(1,11), Snap! (and Pascal)

M. Sbaraglia, M. Lodi, S. Martini670 A necessity-driven ride on the abstraction rollercoaster of CS1 programming 29

continued on next page

for i:=1 to 10, but not the 3-clause for of C and Java)
– Function to generate a random integer in an interval

• What students already know how to do (strategic level)
– Use a variable as a counter
– Combine definite iteration with selection to iterate over a collection and

perform an action on the basis of a condition

Target concept
• while loop (syntactic + conceptual)
• Repeating until a condition is met (without knowing how many iterations will

take) (strategic)

Before the necessity sequence
Example of a previous task not needing the target concept
Count how many times a program that generates K pseudo-random integers be-
tween 1 and 1000 produces the number 42.

P!S – Problem-solving phase (unsolvable problem)
Problem
Count how many pseudo-random integers between 1 and 1000 a program gener-
ates before getting the number 42.

Necessity trigger
Students do not know a-priori how many calls the program needs to get 42.

Necessity
I need a way to repeat “until something happens” without knowing in advance
when (or even if) it will happen.

Sub-optimal solutions
• (incomplete) Using a definite iteration to repeat a very high number of times

(ideally to the MAXINT, if available in the language), hoping that 42 will be
generated before.

• (complete) Using the (often not simple nor elegant) possibility of modern
languages’ for-like loops to realise an indefinite iteration.

I – Instruction phase
Illustrating the concept of indefinite repetition using the construct that repeats a
block of code “while a condition <C> is True” realised in Python.

while <C>:
<block of code>

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 67130 M. Sbaraglia, M. Lodi, S. Martini

PS – Second problem-solving phase
Target code

from random import randint
count = 1
while randint(1,1000) != 42

count = count + 1
print(count)

Characteristics
• Control abstraction
• Downward abstraction movement (compared to the for loop with explicit,

automatically handled index)
• Hard necessity (without the target concept, using (true) definite iteration,

only incomplete solutions are possible; complete solutions are possible by
using—often inelegantly hence sub-optimally—for-like loops to realise in-
definite iteration)

Example discussion
The necessity that this example aims to stimulate would also be satisfied by using the re-
cursive mechanism. Consequently, the same sequence can be used to introduce recursion.

Another essential clarification concerns a limitation of this necessity sequence. It can
only be used with languages (such as Scratch and Python) in which the for loop realises
a “true”14 definite iteration. For obvious reasons, it cannot be used with languages in
which the for construct (such as the 3-clause for of C and Java) can express indefinite
iterations and thus be used instead of the while loop.

An alternative but equally viable scenario to stimulate this necessity is the well-known
Rainfall problem (Soloway, 1986). The condition on which the program waits is not re-
lated to the extraction of a pseudo-random number but the user’s input of a termination
value. Only few prerequisites change: students need to know how to use basic input func-
tionalities, they do not need to know how to import modules nor generate pseudo-random
integers.

Another “less straightforward” way to stimulate the necessity of indefinite iteration
is asking to terminate the scan before the end of the sequence (without using break,
return, or auxiliary functions) when a certain condition is satisfied. For example, the
problem might ask students to determine whether a very long sequence contains at least
one certain integer and to do so in the shortest possible time. Consequently, since the
sequence is very long, it is critical to stop as soon as the number is found. We consider this

14Please, recall the discussion about this matter in 3.2.3.

Example discussion
The necessity that this example aims to stimulate would also be satisfied by using
the recursive mechanism. Consequently, the same sequence can be used to introduce
recursion.

Another essential clarification concerns a limitation of this necessity sequence. It can
only be used with languages (such as Scratch and Python) in which the for loop realises
a “true”13 definite iteration. For obvious reasons, it cannot be used with languages in
which the for construct (such as the 3-clause for of C and Java) can express indefinite
iterations and thus be used instead of the while loop.

An alternative but equally viable scenario to stimulate this necessity is the well-
known Rainfall problem (Soloway, 1986). The condition on which the program waits
is not related to the extraction of a pseudo-random number but the user’s input of a ter-
mination value. Only few prerequisites change: students need to know how to use basic
input functionalities, they do not need to know how to import modules nor generate
pseudo-random integers.

Another “less straightforward” way to stimulate the necessity of indefinite iteration
is asking to terminate the scan before the end of the sequence (without using break,
return, or auxiliary functions) when a certain condition is satisfied. For example, the
problem might ask students to determine whether a very long sequence contains at least

13 Please, recall the discussion about this matter in 3.2.3.

M. Sbaraglia, M. Lodi, S. Martini672

one certain integer and to do so in the shortest possible time. Consequently, since the
sequence is very long, it is critical to stop as soon as the number is found. We consider
this to be a more artificial request and consequently less effective in stimulating the
necessity of indefinite iteration: this is not a problem that cannot be solved without the
target concept, but that can be solved more efficiently with it.

4.4.3. The Necessity of Arrays

A necessity-driven ride on the abstraction rollercoaster of CS1 programming 31

to be a more artificial request and consequently less effective in stimulating the necessity of
indefinite iteration: this is not a problem that cannot be solved without the target concept,
but that can be solved more efficiently with it.

4.4.3. The necessity of arrays

continued on next page

Necessity example 3

The necessity of arrays

Problem in a nutshell
Keeping track of how many times each number is drawn, with many possible num-
bers and many extractions.

What students already know
• Syntactic level + viable conceptual model

– Variables and assignments
– Boolean expressions
– for statement
– if statement
– Function to generate a random integer in an interval
– Function to plot a bar chart

• What students already know how to do (strategic level)
– Using a variable as a counter

Target concept
• Arrays/lists with index access (syntactic + conceptual)
• Using arrays/lists to store, read and modify values accessing them by index

(strategic)

Before the necessity sequence
Examples of previous tasks not needing the target concept
A. Given the possibility of tossing a coin (i.e., generating a random integer be-

tween 0 and 1), check whether the number of heads and tails is approximately
equal after a high number of tosses (e.g., 10000).

B. Given the possibility of throwing a die (i.e., generating a random integer be-
tween 0 and 5), check whether the results of the throws are evenly distributed
after a very high number of throws (e.g., 1 million).

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 67332 M. Sbaraglia, M. Lodi, S. Martini

continued on next page

P!S – Problem-solving phase (unsolvable problem)
Problem
Given a simplified version of the Bingo game (i.e., the possibility of drawing a
number between 0 and 89), check whether the distribution of the results of the
extractions is uniformly distributed through a very high number of extractions
(e.g., 1 million).

Necessity trigger
Students need to create an unnaturally high number of unrelated variables and han-
dle them with a very long sequence of selection statements, resulting in a program
that is hard to manage without errors.

Necessity
I need a data structure to collect the frequency of extraction of each number and
access (and modify) the values in that structure in a programmatic way based on
runtime informations (i.e., the current number extracted).

Sub-optimal solution
• (complete) Create a variable for each number (90 variables) and, after every

extraction, increment the corresponding variable through a multiple selection
statement.

I – Instruction phase
Illustrating:
• how to create a (fixed length) ordered structure (array/list) and initialize it

with constant values;
• how to access elements of the structure by integer index;
• how to modify an element by using index access on the left hand side of the

assignment.

PS – Second problem-solving phase
Target code
An example, using Python lists as arrays, i.e., with fixed length.

from matplotlib.pyplot import *
from random import randint
L=[0]*90
for k in range(10**6):

L[randint(0,89)] += 1

bar(range(90),L)
show()

M. Sbaraglia, M. Lodi, S. Martini674 A necessity-driven ride on the abstraction rollercoaster of CS1 programming 33

Characteristics
• Data abstractiona
• Upward abstraction movement (compared to using many unrelated variables)
• Soft necessity (complete, though sub-optimal, solutions are possible without

the target concept)

Implementation warning
Other concepts that students should not know yet for the mechanism to work:
• Dictionary-like data structures
aThis data abstraction allows also for a powerful control abstraction. See the related discussion

after the example.

Example discussion
This example concerns data abstraction because a set of unrelated variables is gathered in
a single data structure. However, accessing by index to the elements of this structure allows
a powerful control abstraction since it makes a long cascade of if statements (previously
used to decide which variable to modify) disappear in one fell swoop.

Moreover, although the example uses Python’s lists (i.e., dynamically extendable struc-
tures), the core necessity here is access by index. So this example is more generally suitable
for use with languages providing array-like structures.

Lastly, the scenario in this example could be used to introduce dictionaries instead of
arrays. However, we present below example 4 that we consider more effective for intro-
ducing dictionaries since the necessity problem requires the use of non-numeric indexes.

4.4.4. The necessity of dictionaries

continued on next page

Necessity example 4

The necessity of dictionaries

Problem in a nutshell
Counting the frequency of each character in an input string.

What students already know
• Syntactic level + viable conceptual model

– Variables and assignments
– if statement
– Taking string input
– Type conversion from char to int
– foreach over a string

Example discussion
This example concerns data abstraction because a set of unrelated variables is gathered
in a single data structure. However, accessing by index to the elements of this structure
allows a powerful control abstraction since it makes a long cascade of if statements
(previously used to decide which variable to modify) disappear in one fell swoop.

Moreover, although the example uses Python’s lists (i.e., dynamically extendable
structures), the core necessity here is access by index. So this example is more generally
suitable for use with languages providing array-like structures.

Lastly, the scenario in this example could be used to introduce dictionaries instead
of arrays. However, we present below example 4 that we consider more effective for
introducing dictionaries since the necessity problem requires the use of non-numeric
indexes.

4.4.4. The Necessity of Dictionaries

A necessity-driven ride on the abstraction rollercoaster of CS1 programming 33

Characteristics
• Data abstractiona
• Upward abstraction movement (compared to using many unrelated variables)
• Soft necessity (complete, though sub-optimal, solutions are possible without

the target concept)

Implementation warning
Other concepts that students should not know yet for the mechanism to work:
• Dictionary-like data structures
aThis data abstraction allows also for a powerful control abstraction. See the related discussion

after the example.

Example discussion
This example concerns data abstraction because a set of unrelated variables is gathered in
a single data structure. However, accessing by index to the elements of this structure allows
a powerful control abstraction since it makes a long cascade of if statements (previously
used to decide which variable to modify) disappear in one fell swoop.

Moreover, although the example uses Python’s lists (i.e., dynamically extendable struc-
tures), the core necessity here is access by index. So this example is more generally suitable
for use with languages providing array-like structures.

Lastly, the scenario in this example could be used to introduce dictionaries instead of
arrays. However, we present below example 4 that we consider more effective for intro-
ducing dictionaries since the necessity problem requires the use of non-numeric indexes.

4.4.4. The necessity of dictionaries

continued on next page

Necessity example 4

The necessity of dictionaries

Problem in a nutshell
Counting the frequency of each character in an input string.

What students already know
• Syntactic level + viable conceptual model

– Variables and assignments
– if statement
– Taking string input
– Type conversion from char to int
– foreach over a string
– Arrays/lists with index access

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 675
34 M. Sbaraglia, M. Lodi, S. Martini

continued on next page

• What students already know how to do (strategic level)
– Check if a character is in a string
– Use a variable as a counter
– Iterating over values of a sequence
– Combine definite iteration with selection to iterate over a collection and

perform an action on the basis of a condition
– Using arrays/lists to store, read and modify values accessing them by

index

Target concept
• Dictionaries (syntactic + conceptual)
• Using dictionaries to store, read and modify values accessing them by key

(strategic)

Before the necessity sequence
Example of a previous task not needing the target concept
Given a string taken from user input, determine the frequency of each of the ten
digits in the string.

P!S – Problem-solving phase (unsolvable problem)
Problem
Given a string taken from user input in an unknown (potentially very long) alpha-
bet, determine the frequency of each character in the string.

Necessity trigger
Students need to keep correspondence between each character and its frequency.
However, arrays allow accessing values only by integer indexes.

Necessity
I need a way to associate a non-integer element (i.e., a character) with its frequency
and use that element as a key to access and modify such frequency.

Sub-optimal solution
(complete) Creating two “parallel” arrays/lists. The first one stores each charac-
ter encountered, and the second one stores the frequency of that character in the
corresponding position.
Note that a way to dynamically increase the structures’ length is needed because
it is unknown beforehand how many different characters are in the string.
Note also that looking up for characters (and their corresponding integer index) in
the first array/list introduces a high computational overheada.

M. Sbaraglia, M. Lodi, S. Martini676
A necessity-driven ride on the abstraction rollercoaster of CS1 programming 35

I – Instruction phase
Illustrating:
• how to create a dictionaryb data structure that keeps a collection of

(key,value) pairs, i.e., a correspondence between unique keys and arbitrary
values;

• check if a key is already associated with a value in a dictionary;
• how to access dictionary elements by key;
• how to modify a dictionary element by using key access on the left-hand side

of the assignment.

PS – Second problem-solving phase
Target code
We propose a solution using Python dictionaries.

text = input()
freq = {}
for c in text:

if c not in freq:
freq[c] = 1

else:
freq[c] += 1

Characteristics
• Data abstraction
• Upward abstraction movement (compared to using structures with only inte-

ger index access)
• Hard necessity (although complete but still heavily sub-optimal solutions are

possible without the target concept, they require advanced concepts such as
parallel arrays and dynamically increasing structures)

aFor each character c of the input string, O(len(L_CAR)) to determine if c is already present
in L_CAR and, if present, to determine its integer index.

bOften called associative array.

Example discussion
Although the presented sub-optimal solution (using parallel lists) is complete, we still
consider this to be an educationally hard necessity. Indeed, if students are not aware of
the parallel arrays/lists pattern, it is unlikely that they can conceive this solution strategy.

Furthermore, we believe it is best if students are not exposed to the use of arrays/-
parallel lists to keep a correspondence between different sets of elements in order to in-
crease the efficacy of this necessity sequence. Because this programming pattern allows

Example discussion
Although the presented sub-optimal solution (using parallel lists) is complete, we still
consider this to be an educationally hard necessity. Indeed, if students are not aware
of the parallel arrays/lists pattern, it is unlikely that they can conceive this solution
strategy.

Furthermore, we believe it is best if students are not exposed to the use of arrays/
parallel lists to keep a correspondence between different sets of elements in order to in-

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 677

crease the efficacy of this necessity sequence. Because this programming pattern allows
the problem to be solved completely and quite easily (though less straightforwardly than
using dictionaries), the necessity perceived by students would be much weaker. Besides
becoming a soft necessity scenario (since students could resort to the tools they already
know, see 3.2.3), the feeling of necessity would concern not the possibility to solve the
problem but just the solution efficiency (significant and observable only with very long
inputs) and the conciseness of the code.

We make this remark because, traditionally, programming courses teach this pattern.
However, in languages that include more advanced data abstractions (such as dictionar-
ies or OOP), we think it is not advisable to teach it, as it is less efficient, concise and
elegant than its more advanced alternatives.

5. Conclusions

Two are the main contributions of this paper.
The proposal of a specific learning design for CS1 programming (NLD), based ●
on the necessity mechanism. The learning design asks students to engage with
problems that are very similar to those they already successfully faced, but this
time they miss an essential ingredient (the target concept). Hence, struggling
to solve the problem without success, they will experience the necessity of that
concept.
A series of examples, framed in a concrete CS1 path, of NLD use in specific ●
learning moments when abstraction changes. These moments are the ups and
downs of what we call the rollercoaster of abstraction. Research shows that
moving between the different levels of abstraction of programming language
constructs is difficult for novices, both going upward and downward (albeit for
different reasons).

Necessity learning design for CS1 programming (NLD). From an educational point
of view, our design is inspired by PS-I approaches and, in particular, by Productive
Failure learning design. However, necessity learning is domain-specific (Nelson and Ko,
2018) since it leverages inherent aspects of programming problems, like programs inter-
activity and the possibility to have honest feedback from the machine to check whether
the problem is solved or not. Therefore, we developed a three-phase approach, syntheti-
cally described with P!S-I-PS.

In the i. P!S phase, students are not able to solve (or optimally solve) a given
programming problem, experiencing the necessity of the target concept.
In the ii. I phase, unlike in Productive Failure, students are not given the solution.
The target concept and its general usage are directly taught.
In the final iii. PS phase, students go back to the problem with the necessary knowledge
to solve it, building on their previous failed attempts.

Moreover, this approach seems more generally in line with the vast body of research
on CS1 courses for various reasons.

M. Sbaraglia, M. Lodi, S. Martini678

It falls in the domain of active-learning designs since students are actively in- ●
volved in solving a problem.
It can help reduce the cognitive load since it allows for a very gradual path, in ●
which new concepts are a minimal addition to the previous knowledge and are
introduced in isolated situations.
Problems are carefully crafted to capture the essence of the target concept, i.e., ●
meaningful, prototypical examples of the use of that concept.
Problems are built so that the target concept is (at least at that specific point in the ●
learning path) the optimal one to use to solve that problem. Therefore, our design
helps not to focus only on syntactical (and conceptual) knowledge but is espe-
cially useful for fostering strategic knowledge since it puts students right away in
a situation where the target concept is essential to reach the purpose.
The examples we presented are mostly built around the ● edges of basic program-
ming concepts. This choice is in line with the Learning Edge Momentum hypoth-
esis, suggesting that paying careful attention to introducing the basic concepts
and their connections is essential to avoid a negative momentum. We argue that
our approach can help those students who typically fail to keep the pace of CS1
courses from early stages.

NLD examples in the abstraction rollercoaster. We proposed examples of NLD
use in CS1 programming learning moments in which the level of abstraction changes
because the literature recognises these moments as critical. Indeed, we recognised a
“rollercoaster” that goes up and down the level of abstraction within the programming
language chosen for CS1. Both directions are challenging for novices, require different
kinds of attention from educators and present different scenarios for the use of NLD.

Going down in abstraction is problematic because it adds details, so the cogni- ●
tive load increases. Usually, to stimulate the right necessity in students, they
have to be put in a situation where those extra details are necessary to solve the
problem.
Going up is also tricky because details that students have learned to control and ●
master are taken away. Teachers have to convince students that the new construct
makes their life easier because it is either more simple, efficient, elegant or ex-
pressive (or a combination of these).

Although we acknowledge that there is no agreement among researchers and edu-
cators on the pathway to follow in CS1, we proposed a concrete learning path (greatly
based on the CS1 for Math major successfully tested in years, also online) and four ne-
cessity sequences (the examples in 4.4) in it. As extensively discussed, the path (particu-
larly the order of topics) determines the abstraction movements in it and thus influences
the choice and design of necessity sequences.

Future developments. Our proposal is grounded in the literature, and we believe
it is a sound necessity-driven learning design. We informally experimented with it in
several editions of a CS1 for Math major at the undergraduate level. More controlled
testing should be done to obtain quantitative and qualitative measures of its effectiveness
and impact on aspects like cognitive load, different types of programming knowledge,
learning edge momentum.

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 679

We would be delighted to receive from educators examples of necessity situations
they recognise in their teaching (contextualised in the learning path, to identify the di-
rection of the abstraction movement) to help us build relevant necessity sequences so as
to cover more and more learning moments in different CS1 paths and continue to refine
our learning design.

References

Alexandron, G., Armoni, M., Gordon, M., Harel, D. (2012). The effect of previous programming experience
on the learning of scenario-based programming. In: Proceedings of the 12th Koli Calling International
Conference on Computing Education Research. Koli Calling ’12. Association for Computing Machinery,
New York, NY, USA, pp. 151–159. 9781450317955. https://doi.org/10.1145/2401796.2401821

Barrows, H.S. (1996). Problem-based learning in medicine and beyond: A brief overview. New Directions for
Teaching and Learning, 1996(68), 3–12. https://doi.org/10.1002/tl.37219966804

Bawamohiddin, A.B., Razali, R. (2017). Problem-based learning for programming education. International
Journal on Advanced Science, Engineering and Information Technology, 7(6), 2035.
https://doi.org/10.18517/ijaseit.7.6.2232

Bayman, P., Mayer, R.E. (1988). Using conceptual models to teach BASIC computer programming. Journal of
Educational Psychology, 80(3), 291–298. https://doi.org/10.1037/0022-0663.80.3.291

Bjork, E., Bjork, R. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties
to enhance learning. Psychology and the Real World: Essays Illustrating Fundamental Contributions to
Society, 56–64.

Caspersen, M.E. (2018). Teaching Programming. In: Sentance, S., Barendsen, E., Schulte, C. (Eds.), Computer
Science Education: Perspectives on Teaching and Learning in School. Bloomsbury Academic, London-
New York, pp. 109–130. 9781350057111 9781350057104.

Colburn, T., Shute, G. (2007). Abstraction in Computer Science. Minds and Machines, 17(2), 169–184.
https://doi.org/10.1007/s11023-007-9061-7

Costantini, U., Lonati, V., Morpurgo, A. (2020). How plans occur in novices’ programs: A method to evalu-
ate program-writing skills. In: Proceedings of the 51st ACM Technical Symposium on Computer Science
Education. SIGCSE ’20. Association for Computing Machinery, New York, NY, USA, pp. 852–858.
9781450367936. https://doi.org/10.1145/3328778.3366870

Curzon, P., Bell, T., Waite, J., Dorling, M. (2019). Computational thinking. In: Fincher, S.A., Robins, A.V.
(Eds.), The Cambridge Handbook of Computing Education Research. Cambridge Handbooks in Psychol-
ogy. Cambridge University Press, Cambridge, pp. 513–546.
https://doi.org/10.1017/9781108654555.018

Deek, F., Kimmel, H., McHugh, J.A. (1998). Pedagogical changes in the delivery of the First-Course in Com-
puter Science: Problem solving, then programming. Journal of Engineering Education, 87(3), 313–320.
https://doi.org/10.1002/j.2168-9830.1998.tb00359.x

Downey, A. (2015). Think Python. O’Reilly Media, Sebastopol, CA. 978-1491939369.
Falkner, K., Sheard, J. (2019). Pedagogic approaches. In: Fincher, S.A., Robins, A.V. (Eds.), The Cambridge

Handbook of Computing Education Research. Cambridge Handbooks in Psychology. Cambridge Univer-
sity Press, Cambridge, pp. 445–480. https://doi.org/10.1017/9781108654555.016

Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H., Wenderoth, M.P. (2014).
Active learning increases student performance in science, engineering, and mathematics. Proceedings of
the National Academy of Sciences, 111(23), 8410–8415.
https://doi.org/10.1073/pnas.1319030111

Gabbrielli, M., Martini, S. (2010). Programming Languages: Principles and Paradigms. Springer London,
London. https://doi.org/10.1007/978-1-84882-914-5

Glogger-Frey, I., Fleischer, C., Grüny, L., Kappich, J., Renkl, A. (2015). Inventing a solution and studying
a worked solution prepare differently for learning from direct instruction. Learning and Instruction, 39.
https://doi.org/10.1016/j.learninstruc.2015.05.001

Guttag, J. (2021). Introduction to Computation and Programming Using Python : With Application to Compu-
tational Modeling and Understanding Data. The MIT Press, Cambridge, Massachusetts. 9780262542364.

M. Sbaraglia, M. Lodi, S. Martini680

Guzdial, M. (2008). Paving the way for computational thinking. Commun. ACM, 51(8), 25–27.
https://doi.org/10.1145/1378704.1378713

Guzdial, M. (2017). Balancing teaching CS efficiently with motivating students. Commun. ACM, 60(6), 10–11.
https://doi.org/10.1145/3077227

Kapur, M. (2016). Examining productive failure, productive success, unproductive failure, and unproductive
success in learning. Educational Psychologist, 51(2), 289–299.
https://doi.org/10.1080/00461520.2016.1155457

Kapur, M., Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21(1),
45–83. https://doi.org/10.1080/10508406.2011.591717

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O., Kingston, J.H., Crawford, K. (2000). Problem-
based learning for foundation computer science courses. Computer Science Education, 10(2), 109–128.
https://doi.org/10.1076/0899-3408(200008)10:2;1-c;ft109

Lodi, M. (2020). Informatical thinking. Olympiads in Informatics, 14, 113–132.
https://doi.org/10.15388/ioi.2020.09

Lodi, M., Martini, S. (2021). Computational thinking, between Papert and Wing. Science & Education, 30(4).
https://doi.org/10.1007/s11191-021-00202-5

Lodi, M., Sbaraglia, M., Zingaro, S.P., Martini, S. (2021). The online course was great: I would attend it face-
to-face: the good, the bad, and the ugly of IT in emergency remote teaching of CS1. In: Proceedings of the
Conference on Information Technology for Social Good. GoodIT ’21. Association for Computing Machin-
ery, New York, NY, USA, pp. 242–247. https://doi.org/10.1145/3462203.3475902

Loibl, K., Rummel, N. (2014). The impact of guidance during problem-solving prior to instruction on students’
inventions and learning outcomes. Instructional Science, 42.
https://doi.org/10.1007/s11251-013-9282-5

Loibl, K., Roll, I., Rummel, N. (2017). Towards a theory of when and how problem solving followed by in-
struction supports learning. Educational Psychology Review, 29(4), 693–715.
https://doi.org/10.1007/s10648-016-9379-x

Martini, S. (2016a). Several types of types in programming languages. In: Gadducci, F., Tavosanis, M. (Eds.),
HAPOC2015. IFIP Advances in Information and Communication Technology. Springer, Cham, pp. 216–
227. https://doi.org/10.1007/978-3-319-47286-7_15

Martini, S. (2016b). Types in programming languages, between modelling, abstraction, and correctness. In:
Beckmann, A., Bienvenu, L., Jonoska, N. (Eds.), CiE 2016: Pursuit of the Universal. LNCS: Vol. 9709.
Springer, Cham, pp. 164–169. https://doi.org/10.1007/978-3-319-40189-8_17

Martini, S. (2020). The standard model for programming languages: The birth of a mathematical theory of
computation. In: de Boer, F.S., Mauro, J. (Eds.), Recent Developments in the Design and Implementa-
tion of Programming Languages. OpenAccess Series in Informatics (OASIcs): Vol. 86. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 1–13. 978-3-95977-171-9.
https://doi.org/10.4230/OASIcs.Gabbrielli.8

McGill, T.J., Volet, S.E. (1997). A conceptual framework for analyzing students’ knowledge of programming.
Journal of Research on Computing in Education, 29(3), 276–297.
https://doi.org/10.1080/08886504.1997.10782199

Moallem, M., Hung, W., Dabbagh, N. (Eds.) (2019). The Wiley Handbook of Problem-Based Learning. John
Wiley & Sons, Hoboken, NJ. https://doi.org/10.1002/9781119173243

Nelson, G.L., Ko, A.J. (2018). On use of theory in computing education research. In: Proceedings of the 2018
ACM Conferenceon International Computing Education Research. ACM, New York.
https://doi.org/10.1145/3230977.3230992

Nuutila, E., Törmä, S., Kinnunen, P., Malmi, L. (2008). Learning programming with the PBL method – Ex-
periences on PBL cases and tutoring. In: Bennedsen, J., Caspersen, M.E., Kölling, M. (Eds.), Reflections
on the Teaching of Programming: Methods and Implementations. Springer, Berlin, Heidelberg, pp. 47–67.
978-3-540-77934-6. https://doi.org/10.1007/978-3-540-77934-6_5

O’Grady, M.J. (2012). Practical problem-based learning in computing education. ACM Transactions on Com-
puting Education, 12(3), 1–16. https://doi.org/10.1145/2275597.2275599

Oliveira, A.M.C.A., dos Santos, S.C., Garcia, V.C. (2013). PBL in teaching computing: An overview of the
last 15 years. In: 2013 IEEE Frontiers in Education Conference (FIE). IEEE, Oklahoma City, Oklahoma.
https://doi.org/10.1109/fie.2013.6684830

Pane, J.F., Ratanamahatana, C., Myers, B.A. (2001). Studying the language and structure in non-programmers’
solutions to programming problems. International Journal of Human-Computer Studies, 54(2), 237–264.
https://doi.org/10.1006/ijhc.2000.0410

A Necessity-Driven Ride on the Abstraction Rollercoaster of CS1 Programming 681

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., New York.
0-46504627-4.

Peng, W. (2010). Practice and experience in the application of problem-based learning in computer program-
ming course. In: 2010 International Conference on Educational and Information Technology. IEEE,
Chongqing, China. https://doi.org/10.1109/iceit.2010.5607778

Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education,
93(3), 223–231. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

Robins, A. (2010). Learning edge momentum: a new account of outcomes in CS1. Computer Science Educa-
tion, 20(1), 37–71. https://doi.org/10.1080/08993401003612167

Robins, A.V. (2019). Novice programmers and introductory programming. In: Fincher, S.A., Robins, A.V.E.
(Eds.), The Cambridge Handbook of Computing Education Research. Cambridge Handbooks in Psychol-
ogy. Cambridge University Press, Cambridge, pp. 327–376.
https://doi.org/10.1017/9781108654555.013

Schwartz, D., Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging
original student production in statistics instruction. Cognition and Instruction - COGNITION INSTRUCT,
22, 129–184. https://doi.org/10.1207/s1532690xci2202_1

Schwartz, D.L., Bransford, J.D. (1998). A time for telling. Cognition and Instruction, 16(4), 475–5223.
https://doi.org/10.1207/s1532690xci1604_4

Shneiderman, B. (1977). Teaching programming: A spiral approach to syntax and semantics. Computers &
Education, 1(4), 193–197. https://doi.org/10.1016/0360-1315(77)90008-2

Sinha, T., Kapur, M. (2019). When productive failure fails. Europe (Germany, Switzerland, UK), 30, 31–6.
Sinha, T., Kapur, M. (2021). Robust effects of the efficacy of explicit failure-driven scaffolding in problem-

solving prior to instruction: A replication and extension. Learning and Instruction, 75, 101488.
https://doi.org/10.1016/j.learninstruc.2021.101488

Soloway, E. (1986). Learning to Program = Learning to Construct Mechanisms and Explanations, 29(9), 850–
858. https://doi.org/10.1145/6592.6594

Statter, D., Armoni, M. (2020). Teaching abstraction in computer science to 7th grade students. ACM Trans.
Comput. Educ., 20(1). https://doi.org/10.1145/3372143

Turner, R. (2021). Computational abstraction. Entropy, 23(2). https://doi.org/10.3390/e23020213
VanLehn, K., Siler, S., Murray, R.C., Yamauchi, T., Baggett, W. (2003). Why do only some events cause learn-

ing during human tutoring? Cognition and Instruction - COGNITION INSTRUCT, 21, 209–249.
https://doi.org/10.1207/S1532690XCI2103_01

Visser, E. (2015). Understanding software through linguistic abstraction. Science of Computer Programming,
97, 11–16. Special Issue on New Ideas and Emerging Results in Understanding Software.
https://doi.org/10.1016/j.scico.2013.12.001

M. Sbaraglia holds bachelor and master degrees in Informatics Engineering. After re-
searching biochemically inspired self-organizing systems (publishing in an international
journal), he worked for a few years as a developer. He has been teaching Informatics in
high school since 2013 and has been holding a chair since 2016. Driven by an interest
in Informatics Education, he is now a PhD student in Informatics (at Alma Mater Stu-
diorum – Università di Bologna, Italy). He researches introductory programming, CS1
online learning, big ideas of Cryptography and interdisciplinarity between Informatics
and Mathematics. He published in international conferences and journals of Informatics
and Science Education.

M. Sbaraglia, M. Lodi, S. Martini682

M. Lodi holds bachelor, master and PhD degrees in Informatics. He is currently a post-
doctoral researcher and adjunct professor of Informatics Education at Alma Mater Stu-
diorum – Università di Bologna, Italy. His research interest is in informatics education,
particularly on computational thinking with a constructivist and constructionist approach,
teaching of cryptography, transfer of learning, informatics mindset, and epistemological
aspects of informatics as a discipline. He is the author of more than fifteen publications
in international conferences and journals on informatics education and a book in Italian
for primary school teachers. He is actively involved in national initiatives to introduce
Informatics in the Italian K-12 curriculum. https://lodi.ml

S. Martini (Ph.D. in Computer Science, University of Pisa, 1987) is professor of Com-
puter Science at Alma Mater Studiorum – Università di Bologna, Italy. Before joining
Università di Bologna in 2002, he taught at the universities of Pisa and Udine. He has
been a visiting scientist at the former Systems Research Center of Digital Equipment
Corporation, Palo Alto; at Stanford University; at École normale supérieure, Paris; at
Université Paris 13; at University of California at Santa Cruz; and the Collegium – Lyon
Institute for Advanced Studies. His research interests are in the logical foundations of
programming languages, in history and philosophy of computer science, and in com-
puter science education.

