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Abstract. Concurrency is often perceived as difficult by students. One reason for this may be due 
to the fact that abstractions used in concurrent programs leave more situations undefined com-
pared to sequential programs (e.g., in what order statements are executed), which makes it harder 
to create a proper mental model of the execution environment. Students who aim to explore the 
abstractions through testing are further hindered by the non-determinism of concurrent programs 
since even incorrect programs may seem to work properly most of the time. In this paper we 
aim to explore how students’ understanding these abstractions by examining 137 solutions to 
two concurrency questions given on the final exam in two years of an introductory concurrency 
course. To highlight problematic areas of these abstractions, we present alternative abstractions 
under which each incorrect solution would be correct. 

Keywords: abstraction, concurrency, memory model, synchronization, locks. 

1. Introduction 

One of the main differences between sequential programs and concurrent programs is 
the environment in which they are executed. While sequential programs are executed in 
a deterministic environment, concurrent programs are executed in a non-deterministic 
one and may thus behave differently each time they are executed, even on the same 
machine. This non-determinism means that it is difficult to learn about the underlying 
abstractions by running a program and observing its behavior, as is largely possible 
with sequential programs. Thus, a student who has misunderstood some part of an 
abstraction is not likely to find this out through trial and error, which Lönnberg et al. 
(2009) found to be how some students develop concurrent programs. 

Non-determinism is often a difficult concept for students (Alexandron et al., 2016). 
This is especially true when working with concurrent programs, as it is necessary to 
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consider a large set of possible interleavings between threads when reasoning about the 
program, which students often struggle with (Xie et al., 2007). Furthermore, Lawson 
and Kraemer (2020) found that students used various sleep-functions to avoid concur-
rency issues in Java. In order to make it feasible to reason about concurrent programs 
and to avoid the belief that the issues can be avoided by slowing down the program 
using sleep functions, it is necessary to use a suitable abstraction of the concurrent 
execution environment. In addition, one also needs to be aware of how synchronization 
primitives (which are often implemented as abstract data types) affect the execution of 
the concurrent program. All of these abstractions do, however, look very different from 
the ones used in sequential programs due to the non-determinism of the environment. 
In particular, an abstraction of a concurrent environment typically leaves a large portion 
of its behavior undefined compared to sequential ones. For example, it is often possible 
to find a single order in which statements are executed in a sequential program (assum-
ing the input is known). The same is not true for concurrent programs since statements 
executed by different threads may be executed in any order relative to each other, and 
may even appear to have been executed out of order. This example illustrates a situation 
where it is important to pay close attention to what is left unspecified by the abstrac-
tion of the concurrent execution environment, as it is otherwise easy to assume that the 
abstraction provides stronger guarantees than it actually does. 

These observations may at least partially be a reason for why students struggle with 
concurrent programming: students need to learn new abstractions, both of the execution 
environment, and the abstractions used to affect the execution environment (i.e., abstract 
data types, such as locks, semaphores, etc.). While doing this, students need to pay close 
attention to what properties that could previously be taken for granted are no longer true 
due to the non-determinism of the system. Finally, students are not able to verify their 
understanding of the new abstractions through testing. As noted by Strömbäck et al. 
(2019), the difficulties in testing solutions also means that any weaknesses in prereq-
uisite skills, such as pointers or references, may also affect a student’s ability to reason 
about concurrent programs without the student realizing it. 

In this paper, we continue the work by Strömbäck et al. (2019), Lawson and Kraemer 
(2020), and others, who studied common errors in student solutions to a concurrency 
question. In order to better understand the underlying reasons as to why a student makes 
a particular error, we focus on what part of the underlying abstractions students might 
have misunderstood rather than the errors themselves. These insights can then be used 
to better highlight the problematic areas in concurrency education, perhaps through ex-
amples or visualizations, in order to better aid students who learn concurrency in the 
future. In particular, we aim to answer the following research questions: 

RQ1 What incorrect assumptions do students make regarding abstractions used in 
concurrent programming in their first course on concurrency and operating sys-
tems? 

RQ2 To what extent do these students understand the concurrency constraints im-
posed by common abstractions in the C language? 

RQ3 How well do these students understand the concurrency constraints imposed 
by simple data structures implemented in the C language? 
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The remainder of this paper is structured as follows: In Section 2 we introduce the 
relevant abstractions used in concurrency. In Section 3 we present related work on teach-
ing concurrency. In Section 4, we introduce the method used in this paper and the two 
questions that were examined. We then present the results in Section 5, and discuss the 
method and the results in Section 6. Finally, we provide a conclusion in Section 7. 

2. Abstractions of a Concurrent Environment 

In this section we provide a brief introduction to concurrency, with a particular focus on 
the different abstractions that are used to describe concurrent systems and the abstract 
data types that are used to synchronize concurrent programs (synchronization primi-
tives). 

2.1. Concurrency in the Shared Memory Model 

In this paper, we only consider the shared memory model. In this model a concurrent 
program consists of one or more threads (Silberschatz et al., 2010, ch. 3–5). Each thread 
represents a sequential stream of instructions that may be executed concurrently with 
other threads. All threads belonging to the same process share memory and are thus able 
to communicate with each other. 

As with sequential programming, it is not feasible to consider all details of the ex-
ecution environment when writing concurrent programs. Therefore, programmers use an 
abstraction of the concurrent execution environment when writing concurrent programs. 
This abstraction defines a computational model that holds for a large set of implementa-
tions, regardless of how concurrency is achieved there (e.g., preemption or hardware 
parallelism). An abstraction of a concurrent execution environment essentially consists 
of two parts: a description of when threads are executed, and the semantics of the shared 
memory, which is typically called a memory model. 

Typically, few guarantees are provided regarding when threads are executed. Often 
it is only safe to assume that each thread will get the chance to be executed eventually. 
In particular, it is not safe to assume that threads are executed at (approximately) the 
same speed or even at the same time, even if this is may be the case in practice for some 
systems. 

The memory model used in the C language, which we use in this paper, is usually 
considered a weak memory model as it leaves many situations undefined. Essentially, 
the C (and C++) memory model assumes that no data is shared between threads unless 
access to it is explicitly protected in some manner (Batty et al., 2011). This assumption 
gives the compiler a large amount of freedom to perform optimizations, but might cause 
surprising results for students who accidentally assume that a stronger memory model, 
such as sequential consistency or total store ordering, is used. The sequential consis-
tency (Lamport, 1979) memory model guarantees that all threads observe that reads 
and writes happen in program order. As this model closely resembles how sequential 
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programs work, it is a natural first step to incorrectly assume that sequential consistency 
holds in concurrent systems. Total store ordering (Sewell et al., 2010) is weaker than 
sequential consistency, but still stronger than the C memory model. In this model, writes 
occur in program order, but they may not be visible to other threads immediately. There 
are, of course, many other memory models that a programmer might need to take into 
account in low-level programming (Alglave et al., 2010), but as they are not relevant to 
this paper, we will not cover them here. 

2.2. Synchronization Primitives 

One way of protecting shared data in a concurrent program is to use synchronization 
primitives, which are often implemented as abstract data types. These abstract data types 
provide a convenient and platform-independent abstraction of the low-level details pro-
vided by the current platform and operating system to control threads in a concurrent 
program. 

The questions analyzed in this paper involve locks, semaphores and condition vari-
ables. Locks are exclusively used to ensure that two or more threads do not access the 
same data concurrently by ensuring mutual exclusion for the critical sections in the 
program. Before entering a critical section, a thread needs to acquire the lock, and then 
release the lock after leaving the critical section. Semaphores and condition variables 
can be used to ensure mutual exclusion as well, but they also allow waiting for arbitrary 
events (e.g., a task being completed) without repeatedly checking if a condition is true 
(i.e., busy-wait). A semaphore can be described as a counter which can be incremented 
and decremented. If a thread attempts to decrement the counter below zero, it is put to 
sleep until another thread increments the counter. Similarly, a condition variable can be 
described as a queue of threads that are waiting for some condition to become true. Other 
threads may then wake the waiting threads as necessary. 

3. Related Work 

In this section we first present related work on the importance of fundamental program-
ming skills when learning more advanced topics, such as concurrency. We then present 
existing research in teaching and learning concurrency, a selection of tools that aim to 
help students to learn concurrency, and finally recent efforts in structuring the curricu-
lum to better teach concurrency in a CS program. 

3.1. The Impact of Fundamentals 

Even though the focus of this paper is abstractions related to concurrency, it is not pos-
sible to entirely ignore abstractions typically taught in earlier courses. As shown by 
Nelson et al. (2020) many assessments, such as the ones used in this paper, rely on the 
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student being familiar with the abstractions and concepts taught in earlier courses as well 
as the new ones. Furthermore, Valstar et al. (2019) found a correlation between students’ 
performance on their CS1 and CS2 courses. These observations suggest that at least 
some problems students face are due to a lacking understanding of fundamentals. 

Difficult concepts in introductory courses have been studied extensively. For ex-
ample, Ma et al. (2007) showed that only 17% of students held a viable mental model 
of reference assignments at the end of a Java programming course. Difficulties with 
pointers and references have been identified as difficult by others as well, for example 
by Goldman et al. (2008) using a Delphi process, and by Valstar et al. (2019) as still 
being problematic in a CS2 course. A good understanding of pointers and references in 
particular are important when working with concurrency, for example to identify shared 
data, as pointed out by Strömbäck et al. (2019). 

3.2. Learning Concurrency 

Much research has been done on how students learn concurrency. One notable line of 
inquiry explored by Kolikant is to explore mistakes made by students, both by exam-
ining incorrect answers and interviews (Kolikant, 2004). The results indicate that the 
difficult part is to correctly identify the synchronization goals, after which solving the 
problem is relatively easy. Kolikant (2001) also argues that problems with a strong 
connection to computing (e.g., a distributed system for selling tickets) is better than 
problems based on events in the real word (e.g., coordinating gardeners) since the limi-
tations imposed by the computerized setting better reflect what is actually possible in 
concurrent programs, especially for distributed systems. The first problem from this 
work, which is a text description of multiple sellers selling tickets to a concert, has been 
further studied in other contexts. One such example is Lewandowski et al. (2007), who 
used the problem to study what students know about concurrency before having formal 
instruction and found that students see the problems, even though they are not always 
able to find suitable solutions. Another example is Lawson et al. (2019), who studied 
what types of solutions are suggested by undergraduate students in four different years 
of their education. The authors found that students at all levels were able to identify 
the issues and found a number of different approaches to solve the problem. Kolikant 
(2005) has also shown that at least some part of incorrect solutions to concurrency 
problems are due to students having an alternative definition of correctness, for ex-
ample believing that it is enough for concurrent programs to produce the correct answer 
most of the time. Others have also examined students’ solutions to find and quantify 
errors. One such example is Strömbäck et al. (2019), who examined 216 solutions and 
quantified the types of errors present. Another example is Lawson and Kraemer (2020) 
who examined 24 students’ solutions to a concurrency problem along with students’ 
reflections. Each student solved the problem both in the shared memory model used 
in this paper, and in the actor model. The authors found a number of issues, perhaps 
most notably that students often use sleep-functions to avoid concurrency issues. Choi 
and Lewis (2000) also suggested using a tool to automatically find concurrency issues 
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in student solutions. Using this method, the authors found a number of solutions con-
taining race conditions, even in simple concurrent programs. Finally, Lönnberg et al. 
(2008) suggests using these common errors to guide the feedback given to students to 
better prepare students for future similar problems. 

A partially separate, but yet related, line of inquiry is how students experience 
the subject of concurrency and the various abstractions therein. This has largely been 
done using Phenomenography, a method to find different aspects of asubjectof learn-
ing through interviews (Marton, 2014). Using Phenomenography, Lönnberg et al. has 
explored how students perceive an abstraction called tuple spaces, which can be used to 
synchronize concurrent programs (Lönnberg and Berglund, 2007). They have also stud-
ied how students perceive correctness, developing and debugging concurrent programs 
(Lönnberg et al., 2009). Strömbäck et al. (2020) has also studied how students perceive 
concurrency itself as well as critical sections. 

Another important line of research is the design and evaluation of notations and 
methods to help students reason about and design concurrent programs. One early 
such example is Xie et al. (2007). The authors noted that instructors often use ad-hoc 
sketches to describe concurrent programs and that the large set of possible interleav-
ings are difficult for students to reason about. To help students, they developed an ex-
tension of UML sequence diagrams to help formalize the ad-hoc sketches, and to help 
students reason about the concurrent programs. Another approach was explored by 
Bijlsma et al. (2017), who suggested a 5-step design method for concurrent programs 
with the aim of scaffolding the often difficult design process of concurrent programs. 
The authors later evaluated the design process (Bijlsma et al., 2019), and found that 
while the method was useful, micro-steps should be available on demand to further aid 
scaffolding the difficult stages. The authors also pointed out the importance of clear 
instructions as to what parts of a program are expected to be executed in parallel, and 
highlighted the benefits and dangers of using real-world analogies for objects in the 
program. 

This paper takes an approach that lies between the first two lines of inquiry. We use 
student solutions to concurrency problems as a data source. We do, however, not use 
the data to find out which errors are common, but rather to find what abstractions in 
concurrency are problematic when certain errors occur. This aspect of our approach is 
thus more in line with the second line of inquiry, as it is more qualitative in nature. 

3.3. Tools to Aid Students 

Due to the difficulty of teaching and learning concurrency, a number of different tools 
has been proposed to aid students. One category of such tools propose an alternative 
concurrency model where communication between threads is more explicit than in the 
shared memory model. One example of this is to use tuple spaces to highlight the com-
munication between different threads (Lin and Tatar, 2011). Another approach is to use 
a language like Salsa (Desell, 2013) which uses the actor model, where threads are only 
able to communicate by exchanging messages. 
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There are also a number of tools that aim to visualize some aspects of concurrency. 
There are a large number of visualizations of classical concurrency problems, such as 
the dining philosophers problem (Adams et al., 2019). Another example is a tool called 
The Deadlock Empire1 which provides the user with two or more pieces of source code 
and asks the user to interleave execution of the pieces (by single-stepping a piece) in a 
way that exposes a concurrency issue. While this is an excellent introduction to concur-
rency issues, it does not allow users to modify the code or test their own code. It also 
does not include references or pointers, which is important in larger programs. A simi-
lar tool, called ConEE, was proposed by Offenwanger and Lucet (2014). This tool does 
allow loading arbitrary programs and automatically proving whether or not the solution 
is correct. Again, it does not address the issues introduced by pointers or references. 
Another approach is explored by Eludicate (Exton, 2000), which provides execution 
traces that users may use to reason about the program. Lönnberg (2012) has also exam-
ined a number of tools. One example is a train simulation to introduce semaphores, and 
another is a tool called Atropos (Lönnberg et al., 2011b), which visualizes the program 
flow as a graph and allows executing it both forwards and in reverse. Lönnberg et al. 
(2011a) also examined how students utilize Atropos when debugging concurrent pro-
grams. Finally, Alexandron et al. (2016) suggested using a visual language called live 
sequence charts to introduce students to nondeterminism, partly to help understanding 
nondeterministic state machines, and partly to help understanding of concurrency, as 
the authors argue that nondeterminism is an important part of both topics. 

3.4. Integrating Concurrency into the CS Curriculum 

Alongside the efforts to help students learn concurrency in various ways, much work has 
been done to better integrate concurrency into the CS curriculum. Among others, Ernst 
and Stevenson (2008) argue that since multicore systems become increasingly common, 
it is vital to educate CS students in how to properly utilize the available concurrency. 
Furthermore, they suggest integrating concurrency in CS1, CS2 and algorithms courses, 
and suggest a number of suitable projects at these levels. Concurrency was later formally 
included in the Computer Science Curricula 2013 (ACM/IEEE Joint Task Force, 2013), 
which motivated the CDER Book Project to provide detailed guidelines for integrating 
the ACM 2013 Curriculum Guidelines into programs, and to provide suitable material 
both for students and instructors (Prasad et al., 2015, 2018). Recently, a working group 
also explored further extending the curriculum to also include high performance com-
puting, which also covers distributed systems (Raj et al., 2020). 

Alongside this work, others have made various attempts at integrating concurren-
cy into their curriculum and evaluated their approaches. For example, Burtscher et al. 
(2015) explores how concurrency can be introduced into an already full curriculum us-
ing an early-and-often approach, similarly to what Ernst and Stevenson (2008) suggested 
earlier. Qasem et al. (2021) also explored an early-and-often approach, and put further 

1 https://deadlockempire.github.io/
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emphasis on introducing concepts at a proper level of abstraction at the different stages 
of the education. Others, such as Bogaerts (2017), have examined how concurrency can 
be introduced in a CS1 course and evaluated the approach across multiple years. The 
author concluded that it is more effective to cover a small set of topics in depth rather 
than a larger set of topics shallowly. 

4. Method 

In order to explore how students understand the concurrency abstractions and how they 
interact with other abstractions, we examine students’ solutions to synchronization prob-
lems that appeared on the final exam in a course on concurrency and operating systems. 
In particular, we examine any incorrect solutions and suggest one or more alternative 
abstractions of the execution environment that would be needed to make the solution 
correct, as this gives an insight into the incorrect abstractions that students might believe 
to be true. In cases where this is not possible, we suggest different semantics of the data 
structure described by the question which would make the solution correct. 

4.1. Data Collection 

Data was collected from the final exam of a course in concurrency and operating sys-
tems given at Linköping University. This course is given towards the end of the second 
year for students pursuing a bachelor’s degree in computer science. The course only 
introduces concurrency in a shared memory context (see Section 2) since it assumes that 
students are already familiar with the fundamentals of operating systems from an earlier 
course. As the course does not expect any prior experience with concurrency, the goal 
is to teach students why concurrent programs need synchronization and how to apply 
synchronization correctly rather than how to utilize concurrency to maximize the per-
formance of a program. Students practice these skills along with their previously gained 
knowledge on operating systems in a series of lab assignments using the educational 
operating system Pintos.2 The assignments involve implementing a number of system 
calls (e.g., read, write, exec and wait) and ensure that they behave correctly in 
the concurrent environment of an operating system kernel. In particular, students need to 
ensure that the wait system call behaves correctly (typically by using semaphores), and 
to make sure that file system operations behave atomically by synchronizing the existing 
file system implementation. 

The final exam of the course also focuses on concurrency and thus involves one or 
more exercises where students are given a piece of code that is executed concurrently. 
Students are then asked to identify and eliminate any concurrency issues in the code. 
This process is scaffolded by providing one or two scenarios that highlight some symp-
toms of the concurrency issues present and asking students to find the cause of these 

2 http://www.scs.stanford.edu/07au-cs140/pintos/pintos.html
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issues. Most students successfully find a cause for the highlighted issues, and we will 
therefore not focus on this part of the question in this paper. After this, students are asked 
to highlight the critical sections present in the code, and to eliminate concurrency issues 
using synchronization primitives. Students are also asked to maximize the theoretically 
possible concurrency in their solution (i.e., to minimize critical sections, and allow un-
related operations to execute concurrently as far as possible). This pushes students away 
from simply acquiring a lock in the beginning of each function and releasing it in the 
end. Rather, students have to closely consider what data is shared and where the critical 
sections are. As such, this reveals many misunderstandings of the underlying abstrac-
tions. The exam is given as a computer exam, where students are able to edit the code in 
a text editor and are able to compile and test their solutions using standard UNIX tools. 
Whether or not the solutions compile or not is, however, not a part of the grading. 

Data was collected from the final exam of two subsequent years (year 1 and year 2). 
Two different questions were used for the two years as the exam questions are published 
after each exam. As such, it is not possible to directly compare the students’ results from 
the two years. This is, however, not a problem for this paper since our goal is to find a 
large number of incorrect abstractions used by students. Thus, having two different ques-
tions increases the likelihood that more of these incorrect abstractions become visible, 
both by increasing the sample size and through the different nature of the questions. 

4.2. Data Analysis 

All solutions from the two final exams were collected and then analyzed using a method 
similar to the one used by Strömbäck et al. (2019): We examined each solution indi-
vidually, determined whether or not the solution was correct and the granularity of the 
synchronization. For each incorrect solution, we also recorded a short description of the 
issue. After examining all solutions individually, we categorized all incorrect solutions 
based on the description so that similar errors end up in the same category. As some solu-
tions contained multiple errors, a single solution may appear in multiple categories. 

In order to answer the research questions of this paper we need to find out which in-
correct abstractions are used by students. As such, we are interested in finding the answer 
to the question “What abstractions did this student use when arriving at this solution?” 
This question is, however, difficult to answer without interviewing each student, ideally 
during a think-aloud. If we assume that students reason logically within their current 
(but maybe incorrect or incomplete) understanding of the abstractions provided by the 
system, which Marton (2014, ch. 4) argues is typically the case, we can approximate the 
answer to the above question with a different question: “Which abstractions need to be 
altered in order to make this solution correct?” This is a question we are able to answer 
only from the submitted solutions by finding alternative abstractions that would make 
the solution correct. Since this is an approximation it is, however, necessary to treat the 
results accordingly. Since each incorrect solution may have multiple sets of alternative 
abstractions that makes it correct, we can not be sure of which corresponds to the ones 
actually used by the student. Furthermore, Albrecht and Grabowski (2020) found that 
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17% of incorrect solutions to programming exercises were due to unintentional mistakes 
(e.g., syntax errors, missing semicolons). We take this into account by not requiring that 
the submitted code should compile. It does, however, mean that we have to account for 
the fact that students make mistakes, especially during the stress many feel during an 
exam. Both the approximation and the fact that students may make mistakes in their rea-
soning means that we can not use the results to make quantitative statements about these 
alternative abstractions. Rather, the results are more similar to a Phenomenographic in-
quiry (Marton, 2014) which aims to qualitatively describe some aspects of an object of 
learning. Similarly, our results describe important aspects of the abstractions in a con-
current system by highlighting possible misinterpretations of them. Since the results are 
qualitative in nature, having a large and diverse sample size increases the likelihood that 
all relevant aspects are found, rather than allowing us to make statements about which 
of them are most common. 

We use this approximation by analyzing the solutions in each category in turn and for 
each of them we propose one or more abstractions that need to be altered (e.g., using a 
stricter memory model) for the solution to be correct. In case multiple combinations of 
relaxations were needed, we noted all of them. In this paper, we consider modifying the 
following abstractions: 

Abstractions regarding the memory model.  ●
Abstractions regarding the implementation of concurrency.  ●
Abstractions used in the C language and expectations regarding certain con- ●
structs.
The abstractions created in the questions (i.e., altering the semantics in the prob- ●
lem statement). 

4.3. The First Question (Year 1) 

The question that appeared on the exam in year 1 is presented in Fig. 1. It involved 
synchronizing a data structure, presented in Listing 1, that stores a number of strings 
in a C array with a fixed size. Insertions are done into the first empty element in the 
array and are expected to fail if the array is full. Removals pick a random element to 
remove and are expected to wait until an element is present in the data structure rather 
than failing. This is the same question as the one used in our previous study (Strömbäck 
et al., 2019). 

As can be seen in Fig. 1, the question aims to assess if students are able to use locks 
to synchronize access to shared data and use either semaphores or condition variables 
to wait for the data structure to contain at least one element. The question scaffolds the 
process of finding and eliminating synchronization issues in (a), which asks where busy-
wait occurs, in (c), which asks the student to highlight why some problems occur, and in 
(d), which asks students to mark critical sections in the code. 

A correct solution to this question would be to first find that the loop marked A in 
Listing 1 act as a busy-wait loop in part (a), and remove that issue by, for example, re-
placing the loop and the variable count with a semaphore in part (b). Next, in part (c), 
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the solution provides an example where two threads pick the same position in the array 
and read the element before removing it on the line marked B (c1), and another example 
where two threads pick the same empty position before inserting a new element on the 
line marked C (c2). The solution then identifies two critical sections in the code, marked 
D and E in Listing 1, (assuming count was removed) that needs to be protected for 
part (d). The critical data is the array ideas inside idea_buffer, or more precisely, 
the individual element that the algorithm is currently examining. Finally, in part (e), the 
solution introduces one or more locks to protect the critical sections. Ideally, the solu-
tion utilizes one lock for each element in the array to maximize theoretical concurrency, 
but a solution that uses one lock for each instance of the idea_buffer struct is also 
acceptable for our purposes. 

In the analysis of this question, we focus on parts (d) and (e) since they are the ones 
that involve identifying critical sections and protecting them with locks, and therefore 
typically provide most insights into students’ understanding of the subject. 

10 F. Strömbäck et al.

• The abstractions created in the questions (i.e., altering the semantics in the problem
statement)

4.3. The First Question (Year 1)

The question that appeared on the exam in year 1 is presented in Fig. 1. It involved syn-
chronizing a data structure, presented in Listing 1, that stores a number of strings in a C
array with a fixed size. Insertions are done into the first empty element in the array and
are expected to fail if the array is full. Removals pick a random element to remove and are
expected to wait until an element is present in the data structure rather than failing. This
is the same question as the one used in our previous study (Strömbäck et al., 2019).

As a teacher, you are constantly on the hunt for good ideas for exam exercises. The main prob-
lem, however, is that it is easy to forget the good ideas before they are actually used to produce a
good question. To solve this problem, one teacher implemented a data structure to keep track of
them. The implementation of the data structure is in the file exam_ideas.c (see Listing 1).
It has the following operations:

• idea_init: Initializes the idea buffer.
• idea_add: Adds an idea (a string) to the buffer. If the buffer is full and the idea could

not be added false should be returned, otherwise true should be returned.
• idea_get: Randomly selects and returns an idea from the buffer. The idea is also re-

moved to ensure it is not used for another exam. If no ideas are present, idea_get shall
wait until a new idea is added with idea_add.

During the exam periods,idea_add and idea_get are used frequently bymany teachers.
Therefore, it is important that they are usable from multiple threads simultaneously as far as
possible.
(a) Is busy-wait used somewhere in the implementation? If so, where?
(b) Use suitable synchronization primitives to eliminate any occurrences of busy-wait you

found.
(c) After using the data structure for a while, some users notice that the same idea has been

used multiple times (i.e., multiple calls to idea_get returned the same idea). Further-
more, ideas sometimes disappear from the buffer, even though idea_add indicated suc-
cess by returning true.
Explain with an example what could have happened when...
(c1) ...the same idea was used multiple times.
(c2) ...the buffer “lost” one or more ideas.

(d) Mark any critical sections present in the functions idea_add and idea_get. Also
note the resource(s) that need protection.

(e) Use suitable synchronization primitives to synchronize the code based on the critical sec-
tions you found.
Note: Strive for a solution that allows maximum theoretical concurrency, even though
that solution might perform worse in practice due to synchronization overheads (please
note if you think this is the case).
Note: Points may be deducted for excessive locking.

Fig. 1. The first question. The code in Listing 1 was provided in a separate file.
Fig. 1. The first question. The code in Listing 1 was provided in a separate file. 
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1 #define BUFFER_SIZE 32
2
3 struct idea_buffer {
4 // All ideas in the buffer. Empty elements are set to NULL.
5 const char *ideas[BUFFER_SIZE];
6 // Number of ideas in the buffer.
7 int count;
8 };
9 // Initialize the buffer.

10 void idea_init(struct idea_buffer *buffer) {
11 for (int i = 0; i < BUFFER_SIZE; i++)
12 buffer->ideas[i] = NULL;
13 buffer->count = 0;
14 }
15 // Add a new idea to an empty location in the buffer. Returns
16 // ’false’ if the buffer is full.
17 bool idea_add(struct idea_buffer *buffer, const char *idea) {
18 // Find an empty location.
19 int found = BUFFER_SIZE;
20 for (int i = 0; i < BUFFER_SIZE; i++) {
21 if (buffer->ideas[i] == NULL) {
22 found = i;
23 break;
24 }
25 }
26 // Full?
27 if (found >= BUFFER_SIZE)
28 return false;
29 // Insert into the buffer.
30 buffer->ideas[found] = idea;
31 buffer->count++;
32 return true;
33 }

C

D

34 // Get and remove a random element from the buffer. If no elements
35 // are present, the function waits for an element to be added.
36 const char *idea_get(struct idea_buffer *buffer) {
37 while (buffer->count == 0)
38 ;
39 buffer->count--;
40 // Find an element. Start from a random index, and look
41 // through the array until we find a non-empty element.
42 int pos = rand() % BUFFER_SIZE;
43 while (buffer->ideas[pos] == NULL) {
44 pos = (pos + 1) % BUFFER_SIZE;
45 }
46 // Remove it.
47 const char *result = buffer->ideas[pos];
48 buffer->ideas[pos] = NULL;
49 return result;
50 }

A

B

E

Listing 1. Code provided alongside the first question in a separate file. The markers were not present in the
original code. The code also contained the main-function presented in Appendix A.

Listing 1. Code provided alongside the first question in a separate file. The markers were 
not present in the original code. The code also contained the main-function presented in 
Appendix A.
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4.4. The Second Question (Year 2) 

The question that appeared on the exam in year 2 is presented in Fig. 2. In this question, 
two threads try to acquire ingredients from a shared inventory. The code presented in 
Listing 2 implements the logic to ensure that the correct amount of each ingredient is 
removed from the inventory, or reports a failure without removing any ingredient. In 
order to aid readability, only the important parts of the code are presented in Listing 2. 
The remainder of the implementation, including a simple main function, is provided in 
Appendix B. 

As with the first question, this question aims to assess if students are able to use locks 
to synchronize access to shared data. This question does not, however, require threads to 
wait and does therefore not cover semaphores and condition variables. Instead, it covers 
the possibility of deadlocks in (d). Again, this question scaffolds the process of finding 
and eliminating synchronization issues by asking students to find the cause of an issue 
in (a), and then asking students to mark critical sections in (b) before asking students to 
solve the issues in the implementation. 

Exploring how Students Understand the Abstractions of Concurrency 13

In a small and remote village, the villagers like to spend their Friday nights on the only bar in
the village drinking the excellent milk beverages served there. Understandably, nobody is eager
to tend to the bar since everyone is tired from a hard week at work. After much consideration,
the villagers decided to solve the problem by building two robots to tend the bar.

The robots are controlled by a computer running the program in the given file. To manage
both robots at the same time, the program runs a thread for each robot. The program keeps
track of the bar’s inventory (the data type ingredient) and the recipes for the available
drinks (the data type recipe). When the system is started it initializes the inventory before
the threads are started. Thus, we can assume that the initialization is executed in a single thread,
and not during normal operation. The threads controlling the robots then call make_drink
to check whether enough ingredients are available to make a drink that has been ordered, and
updates the amount available in the inventory.
(a) After using the system for a couple of nights a problem surfaces. Sometimes, often near

closing time when there are few ingredients remaining, the robots make drinks without
having sufficient ingredients available. This is even though there are explicit checks for
this particular case in the code!
Explain with an example what could have happened in this case (i.e., when make_drink
returns true even though there are not enough of both ingredients).

(b) Mark any critical sections you find in the make_drink function. Also note the re-
source(s) that need protection.

(c) Use suitable synchronization primitives to solve the issue based on the critical sections
you found in (b).
Note: Strive for a solution that allows maximum theoretical concurrency, even though
that solution might perform worse in practice due to synchronization overheads (please
note if you think this is the case).

(d) Is there risk for deadlock in your solution to (c)? Motivate your answer using the four
conditions for deadlock.

Fig. 2. The second question. The code in Listing 2 was provided in a separate file.

sections marked as B and C in Listing 2 associated with ing1 and ing2 respectively,
or a single critical section that spans the entirety of B and C associated with both ing1
and ing2. Then, for part (c), the solution introduces one lock for each ingredient, and
acquires these locks according to the identified critical sections. In this case it is, however,
necessary to be aware of the possibility for a deadlock to occur. There are a number of
ways to avoid this problem. For example, one may make sure to always acquire the two
locks in the same order (based on the index, for example). Another possibility is to per-
form the two comparisons and subtractions separately to avoid the need to acquire two
locks at the same time. Such solutions need to take care to undo any changes to the first
ingredient in case the second ingredient turns out not to be available. Finally, the solution
argues that deadlocks are not possible in the proposed solution using the four conditions
for deadlock in part (d). In case a deadlock is possible, the solution should of course argue
for that instead (but full credits would not be given for part (c) in that case).

In this question, we focus on parts (b) and (c). For solutions in which a deadlock may
happen we also use part (d) to understand if the students were aware of this issue after it
was pointed out to them, or if the student believed that a deadlock was not possible.

Fig. 2. The second question. The code in Listing 2 was provided in a separate file. 
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1 // One ingredient available in the bar.
2 struct ingredient {
3 // Name
4 const char *name;
5 // Amount.
6 int amount;
7 // The ingredient’s index in the array.
8 int index;
9 };

10 // A recipe. Each recipe consists of exactly two ingredients.
11 struct recipe {
12 // Name.
13 const char *name;
14 // Name and amount required for the first ingredient.
15 const char *ingredient1;
16 int amount1;
17 // Name and amount required for the second ingredient.
18 const char *ingredient2;
19 int amount2;
20 };
21 // Find an ingredient. Returns NULL if none was found.
22 struct ingredient *find_ingredient(const char *name);
23 // Find a recipe. Returns NULL if none was found.
24 struct recipe *find_recipe(const char *name);
25
26 // Make a drink. Return true on success, otherwise false.
27 // This function may be called concurrently from multiple threads
28 // since we have multiple robots in the bar!
29 bool make_drink(const char *name) {
30 struct recipe *recipe = find_recipe(name);
31 // Does the recipe exist?
32 if (recipe == NULL)
33 return false;
34 // Do the ingredients exist?
35 struct ingredient *ing1 = find_ingredient(recipe->ingredient1);
36 struct ingredient *ing2 = find_ingredient(recipe->ingredient2);
37 if (ing1 == NULL || ing2 == NULL)
38 return false;
39 // Note: We assume that ing1 != ing2.
40 // Is there enough of everything?
41 if (ing1->amount < recipe->amount1)
42 return false;
43 if (ing2->amount < recipe->amount2)
44 return false;
45 // Everything seems to be good. We can make the drink!
46 ing2->amount -= recipe->amount2;
47 ing1->amount -= recipe->amount1;
48 return true;
49 }

B

C

A

Listing 2. Code provided alongside the second question in a separate file. The highlights were not present in
the original code. The implementation of the unlisted functions are provided in Appendix B. The two functions
find_ingredient and find_recipe search for elements in global arrays.

Listing 2. Code provided alongside the second question in a separate file. The highlights 
were not present in the original code. The implementation of the unlisted functions are pro-
vided in Appendix B. The two functions find_ingredient and find_recipe search 
for elements in global arrays. 
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A correct solution to this question identifies that the function make_drink may 
incorrectly return true when two threads conclude that there is enough of both in-
gredients before any of them has modified the amount in stock (lines marked A in 
Listing 2) as a solution to part (a). For part (b), the solution then identifies either two 
smaller critical sections marked as B and C in Listing 2 associated with ing1 and 
ing2 respectively, or a single critical section that spans the entirety of B and C associ-
ated with both ing1 and ing2. Then, for part (c), the solution introduces one lock for 
each ingredient, and acquires these locks according to the identified critical sections. In 
this case it is, however, necessary to be aware of the possibility for a deadlock to occur. 
There are a number of ways to avoid this problem. For example, one may make sure 
to always acquire the two locks in the same order (based on the index, for example). 
Another possibility is to perform the two comparisons and subtractions separately to 
avoid the need to acquire two locks at the same time. Such solutions need to take care 
to undo any changes to the first ingredient in case the second ingredient turns out not to 
be available. Finally, the solution argues that deadlocks are not possible in the proposed 
solution using the four conditions for deadlock in part (d). In case a deadlock is pos-
sible, the solution should of course argue for that instead (but full credits would not be 
given for part (c) in that case). 

In this question, we focus on parts (b) and (c). For solutions in which a deadlock may 
happen we also use part (d) to understand if the students were aware of this issue after it 
was pointed out to them, or if the student believed that a deadlock was not possible. 

5. Results 

A total of 137 answers were collected and analyzed, 67 in the first year and 70 in the 
second year. Out of all solutions, 37 solutions (55%) were deemed correct in the first 
year, and 39 (56%) in the second year. Fig. 3 provides an overview of the remaining 
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5. Results

A total of 137 answers were collected and analyzed, 67 in the first year and 70 in the
second year. Out of all solutions, 37 solutions (55%) were deemed correct in the first year,
and 39 (56%) in the second year. Figure 3 provides an overview of the remaining incorrect
solutions. Note that a single solutionmay contain multiple errors andmay therefore appear
in more than one category. Unsurprisingly, the different nature of the two questions made
different types of errors visible. Therefore, we first present the two categories that describe
errors in both questions (Section 5.1), followed by the categories that describe errors in
only one of the questions (Sections 5.2 and 5.3). In the remainder of this section we will
present these categories in further detail and provide alternative abstractions that make
solutions correct. All of these alternative abstractions are written in italics, followed by a
number in parenthesis that refers to the summary in Section 5.4.

0 5 10 15 20 25 30

Possible deadlock

Lock placement

Protecting local data

Semantics

Multiple calls to acquire

Different locks, same data

Split CS

Too small CS

First Question
Second Question

Fig. 3. Overview of the types of errors found in the solutions to the two questions. Note that only the first two
categories were present in both questions.

5.1. Common Errors

In this section, we present the categories that contain errors from both questions.

5.1.1. Too Small Critical Section
This category contains solutions where at least one critical section was smaller than nec-
essary. This is problematic since the behavior of concurrent reads and writes is undefined
according to the memory model of the C language. Even in a stricter memory model, any
invariants established by the code in the critical section can not be assumed to hold outside
of the critical section in general since other threads are free to interfere.

In the first question we found a number of solutions with too small critical sections
in both the idea_add and the idea_get functions, as shown in Listing 3. In the
idea_add function, the most common error was to only lock the assignment to the array
(B), and sometimes also the if-statement before it. Another related error was to only lock

Fig. 3. Overview of the types of errors found in the solutions to the two questions.  
Note that only the first two categories were present in both questions. 
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incorrect solutions. Note that a single solution may contain multiple errors and may 
therefore appear in more than one category. Unsurprisingly, the different nature of the 
two questions made different types of errors visible. Therefore, we first present the 
two categories that describe errors in both questions (Section 5.1), followed by the 
categories that describe errors in only one of the questions (Sections 5.2 and 5.3). In the 
remainder of this section we will present these categories in further detail and provide 
alternative abstractions that make solutions correct. All of these alternative abstractions 
are written in italics, followed by a number in parenthesis that refers to the summary 
in Section 5.4.

5.1. Common Errors 

In this section, we present the categories that contain errors from both questions. 

5.1.1. Too Small Critical Section 
This category contains solutions where at least one critical section was smaller than 
necessary. This is problematic since the behavior of concurrent reads and writes is un-
defined according to the memory model of the C language. Even in a stricter memory 
model, any invariants established by the code in the critical section can not be as-
sumed to hold outside of the critical section in general since other threads are free to 
interfere. 

In the first question we found a number of solutions with too small critical sections 
in both the idea_add and the idea_get functions, as shown in Listing 3. In the 
idea_add function, the most common error was to only lock the assignment to the 
array (B), and sometimes also the if-statement before it. Another related error was to 
only lock the for-loop before the assignment (A). Both types of solutions would only 
be correct if using a lock inside a function prevents the entire function from being ex-
ecuted concurrently (4). The first solution (locking only B) is also correct if a function 
is only called concurrently with other functions, not with itself (7), in this case disal-
lowing concurrent calls to idea_add and also assuming sequential consistency (1). 
Since these solutions often locked the lines where the solution to part (c) indicated that 
preemption would lead to errors, students likely understood that locks would prevent 
this issue, but failed to see other possibilities that cause the same issue.

In idea_get many solutions only locked around the two lines that read an element 
from the array and sets it to NULL (D). Some solutions instead only locked the while-
loop that finds a suitable element (C). Once again, these solutions would be correct if 
using a lock inside a function prevents the entire function from being executed concur-
rently (4). Additionally, only locking the read and write to the array (D) is correct if 
a function is allowed to fail sporadically (9), in this case if idea_get is allowed to 
return NULL even if the buffer contains an element. Another possibility is if a function 
is only called concurrently with other functions, not with itself (7), in this case disal-
lowing concurrent calls to idea_get. Both of these also require assuming sequential 
consistency (1). 
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Similar errors were found in the solutions to the second question, as shown in List-
ing 4. Some solutions only locked around the subtractions (B), and others only around 
the comparisons (A). Once again, these solutions are only correct if using a lock inside 
a function prevents the entire function from being executed concurrently (4). They may 
also be correct if sequential consistency (1) is assumed and the ingredients in stock are 
allowed to become (a bit) negative, which is essentially a variant of a function is al-
lowed to fail sporadically (9), but applied to invariants. These solutions are similar to 
those in the first question since they often lock the parts where an issue was found in 
part (a), but failed to see other potential locations for the same issue.
16 F. Strömbäck et al.

bool idea_add(struct idea_buffer *buffer, const char *idea) {
int found = BUFFER_SIZE;
for (int i = 0; i < BUFFER_SIZE; i++) {

if (buffer->ideas[i] == NULL) {
found = i;
break;

}
}
if (found >= BUFFER_SIZE)

return false;
buffer->ideas[found] = idea;
buffer->count++;
return true;

}

A

B

const char *idea_get(struct idea_buffer *buffer) {
// ...
int pos = rand() % BUFFER_SIZE;
while (buffer->ideas[pos] == NULL) {

pos = (pos + 1) % BUFFER_SIZE;
}
const char *result = buffer->ideas[pos];
buffer->ideas[pos] = NULL;
return result;

}

C

D

Listing 3. Incorrect critical sections found in the first question.

the for-loop before the assignment (A). Both types of solutions would only be correct
if using a lock inside a function prevents the entire function from being executed concur-
rently (4). The first solution (locking only B) is also correct if a function is only called
concurrently with other functions, not with itself (7), in this case disallowing concurrent
calls to idea_add and also assuming sequential consistency (1). Since these solutions
often locked the lines where the solution to part (c) indicated that preemption would lead
to errors, students likely understood that locks would prevent this issue, but failed to see
other possibilities that cause the same issue.

In idea_get many solutions only locked around the two lines that read an element
from the array and sets it to NULL (D). Some solutions instead only locked the while-
loop that finds a suitable element (C). Once again, these solutions would be correct if using
a lock inside a function prevents the entire function from being executed concurrently (4).
Additionally, only locking the read and write to the array (D) is correct if a function is
allowed to fail sporadically (9), in this case if idea_get is allowed to return NULL
even if the buffer contains an element. Another possibility is if a function is only called
concurrently with other functions, not with itself (7), in this case disallowing concurrent
calls to idea_get. Both of these also require assuming sequential consistency (1).

Similar errors were found in the solutions to the second question, as shown in List-
ing 4. Some solutions only locked around the subtractions (B), and others only around
the comparisons (A). Once again, these solutions are only correct if using a lock inside

Listing 3. Incorrect critical sections found in the first question. 
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void make_drink(const char *name) {
// ...
if (ing1->amount < recipe->amount1)

return false;
if (ing2->amount < recipe->amount2)

return false;
// Everything seems to be good. We can make the drink!
ing2->amount -= recipe->amount2;
ing1->amount -= recipe->amount1;
return true;

}

A

B

Listing 4. Incorrect critical sections found in the second question.

a function prevents the entire function from being executed concurrently (4). They may
also be correct if sequential consistency (1) is assumed and the ingredients in stock are
allowed to become (a bit) negative, which is essentially a variant of a function is allowed
to fail sporadically (9), but applied to invariants. These solutions are similar to those in
the first question since they often lock the parts where an issue was found in part (a), but
failed to see other potential locations for the same issue.

5.1.2. Split Critical Section
A related problem to the above-mentioned too small critical section is the one of correctly
identifying the problematic parts of the functions, but failing to lock them as one consec-
utive region, essentially splitting the critical section into two pieces. This is incorrect as it
allows other threads to modify any invariants that were established in the first part of the
critical section but are not re-established in the second critical section.

In the first question, we found solutions that identified both of the parts highlighted
in Section 5.1.1 for both idea_add and idea_get. All of these solutions would once
again be correct if using a lock inside a function prevents the entire function from being
executed concurrently (4). Another possibility is if a function is only called concurrently
with other functions, not with itself (7) (either idea_add, idea_get, or both, depend-
ing on which critical sections were split). Since all shared data is protected by locks, these
solutions do not require a stronger memory model. In this case, students have likely found
a number of locations where preemption would be an issue and have attempted to avoid
those issues with locks, but failed to see that their solution has the same issue when pre-
emption occurs between the locked regions.

Another type of solution with split critical sections was visible in solutions to the
first question, namely solutions that only locked around writes to shared data. This is
essentially an extreme case of the solutions mentioned above. Again, a model where this
solution would be correct is one where locks inside a function prevent the functions from
executing concurrently. Likely, these particular solutions come from an over-reliance on
pattern matching – the students have learned that writes need to be protected with locks
and do so without understanding why.

Listing 4. Incorrect critical sections found in the second question. 
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5.1.2. Split Critical Section 
A related problem to the above-mentioned too small critical section is the one of cor-
rectly identifying the problematic parts of the functions, but failing to lock them as one 
consecutive region, essentially splitting the critical section into two pieces. This is incor-
rect as it allows other threads to modify any invariants that were established in the first 
part of the critical section but are not re-established in the second critical section. 

In the first question, we found solutions that identified both of the parts highlighted 
in Section 5.1.1 for both idea_add and idea_get. All of these solutions would once 
again be correct if using a lock inside a function prevents the entire function from being 
executed concurrently (4). Another possibility is if a function is only called concur-
rently with other functions, not with itself (7) (either idea_add, idea_get, or both, 
depending on which critical sections were split). Since all shared data is protected by 
locks, these solutions do not require a stronger memory model. In this case, students 
have likely found a number of locations where preemption would be an issue and have 
attempted to avoid those issues with locks, but failed to see that their solution has the 
same issue when preemption occurs between the locked regions. 

Another type of solution with split critical sections was visible in solutions to the 
first question, namely solutions that only locked around writes to shared data. This is 
essentially an extreme case of the solutions mentioned above. Again, a model where this 
solution would be correct is one where locks inside a function prevent the functions from 
executing concurrently. Likely, these particular solutions come from an over-reliance on 
pattern matching – the students have learned that writes need to be protected with locks 
and do so without understanding why. 

In the second question, we saw solutions similar to the first question, where the 
check for sufficient ingredients (A) was locked separately (but with the same lock) as 
the subtractions (B). Once again, this is correct if using a lock inside a function prevents 
the entire function from being executed concurrently (4) or if the ingredients in stock 
are allowed to become (a bit) negative, which, again, is essentially a variant of a func-
tion is allowed to fail sporadically (9), but applied to invariants. This does not require a 
stronger memory model. 

5.2. Unique to the First Question 

In this section we present categories that were only visible in solutions to the first ques-
tion. This does not necessarily mean that they are specific to the first problem itself, but 
rather that these problems did not surface in the second question (e.g., since only one 
function had to be locked there). 

5.2.1. Different Locks for the Same Data 
A number of solutions used different sets of locks to protect the data in the ideas array. 
Some of these solutions used two locks (either inside the data structure or global), one 
for idea_add and one for idea_get. Others used an array of locks (each associated 
with an element in ideas) for idea_add and a single lock for idea_get. Regard-
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less, since these solutions do not ensure mutual exclusion when accessing shared data, 
they exhibit undefined behavior according to the C memory model. However, if sequen-
tial consistency can be assumed (1) these solutions would be correct. These solutions 
would also be correct if either acquiring a lock disallows all other threads from execut-
ing (6), or if the semantics of the code were relaxed, namely assuming that a function 
is only called concurrently with itself, not with other functions (8), in this case for both 
idea_add and idea_get. 

Another interesting solution used one global lock to protect the while-loop in 
idea_get, but rather than holding the global lock until removal was complete, ac-
quired the lock associated with the found element and released the global lock before 
removal. Even though this solution might at first look correct, it does not actually ensure 
that two threads do not attempt to remove the same element twice. It is, however, correct 
if a function is allowed to fail sporadically (9), in this case if idea_get is allowed to 
return NULL even if the buffer contains an element. This also requires assuming that 
acquiring a lock disallows all other threads from executing (6). 

5.2.2. Multiple Calls to Acquire 
One interesting, but incorrect, solution was to acquire a global lock as the first state-
ment of the loop body in idea_add (A in Listing 3). It is indeed a correct observa-
tion that the loop header does not need to be protected by the lock, but acquiring the 
lock multiple times in the loop without also releasing it (the release was after the line 
marked B) is problematic as the number of calls to acquire and release do not necessar-
ily match. As such, this solution would be correct if the acquire and release operations 
define a lexical region that is protected by the lock (5). This could indeed be achieved 
in a language which has first-class support for synchronization primitives, but this is 
not the case for C. 

5.3. Unique to the Second Question 

In this section we present categories which were only visible in solutions to the second 
question. Once again, this does not necessarily mean that they are due to the second 
problem itself, but rather that they did not surface in the first question (e.g., since there 
was no possibility of deadlock there). 

5.3.1. Semantics 
Solutions in this category alter the semantics of the make_drink function in some 
way. One set of these solutions modify the code to check and subtract each ingredient 
individually. This is possible to do correctly with some extra care: if the code finds an 
insufficient amount of the second ingredient, it needs to restore the amount subtracted 
from the first ingredient to preserve proper semantics. This was not done by a large 
number of these solutions, and they do thereby not preserve the semantics of the original 
code as they may decrease one ingredient but not the other. Even with proper care, this 
solution means that a function is allowed to fail sporadically (9), in this case that one call 
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make_drink may cause other concurrent calls to fail sporadically if supplies are low. 
The question does not specify whether this is a problem or not. 

A number of solutions also attempted to replace or augment the variable amount 
in ingredient with a semaphore or a condition variable in order to wait for a suf-
ficient amount of ingredients to become available, rather than returning false from 
make_drink. As such, this is correct if the function should be waiting for a condition 
to be fulfilled rather than failing (10), even though the question explicitly states that the 
supply is filled before make_drink is called, and not concurrently with it. 

Another semantic issue was that a number of solutions attempted to synchronize oth-
er functions, such as add_supply, even though the question and the comments in the 
code state that they are not executed concurrently with make_drink. While too much 
synchronization typically does not hurt the correctness of the program, it is considered 
incorrect in the context of the questions since students are asked to strive to minimize 
their synchronization. Thus, these solutions would be correct if make_drink could be 
executed concurrently with the add_* functions (11). 

5.3.2. Protecting Local Data 
Solutions in this category are correct in the sense that they do not exhibit concurrency 
issues, but incorrect in the sense that they needlessly limit the ability to execute code 
concurrently by protecting local variables with locks. 

First and foremost, two solutions locked the assignment to recipe and the call 
to find_recipe (marked A in Listing 5). Since none of them attempted to protect 
any of the add_* functions, this is most likely not due to the realization that call-
ing find_recipe while adding a recipe is problematic. Rather, since both solutions 
noted that they protected the variable name, and one also noted the variable recipe, 
this protection is sensible if we assume that local variables are shared between con-
current calls to the same function (2). This issue may also be due to excessive use of 
pattern matching: 
20 F. Strömbäck et al.

bool make_drink(const char *name) {
struct recipe *recipe = find_recipe(name);
// Does the recipe exist?
if (recipe == NULL)

return false;
// Do the ingredients exist?
struct ingredient *ing1

= find_ingredient(recipe->ingredient1);
struct ingredient *ing2

= find_ingredient(recipe->ingredient2);
if (ing1 == NULL || ing2 == NULL)

return false;
// ...

}

A

B

C
D

Listing 5. Local data protected in the second question.

These students may have learned that pointers are often problematic, and therefore opt
to lock code dealing with pointers. Some solutions also protected the check if recipe
is NULL (marked B in Listing 5) in isolation. These solutions would be sensible if local
variables are shared between concurrent calls to the same function (2), but would also
require that using a lock inside a function prevents the entire function from being executed
concurrently (4).

Secondly, we found a number of solutions that lock the assignments to ing1 and
ing2, as well as the two calls to find_ingredient (C), sometimes including the
checks for NULL (D).Many of them explicitly point out that the variables ing1 and ing2
need to be protected, and thus these solutions would also be correct if local variables are
shared between concurrent calls to the same function (2). Some of these solutions also
suffer from the problem that they release the lock and re-acquire the lock in the function,
which could cause other threads to alter the shared locals, thus also requiring that using a
lock inside a function prevents the entire function from being executed concurrently (4).

5.3.3. Lock Placement
Solutions in this category are incorrect since the locks are not properly associated with the
data they protect. One example of this is solutions that used a lock in the recipe struct to
protect the ingredients in there. This means that the lock will ensure that only one thread
uses a particular recipe, rather than the ingredients required by the recipe. Therefore, race
conditions are not eliminated if two recipes share some ingredient. This kind of solution
would be correct if different recipes are not allowed to share ingredients (12). This is,
however, shown not to be true by the main function. As such, another possibility is that
pointers work like values (3), which in this case means that the ingredients are copied
as they are returned from find_ingredient. Yet another alternative abstraction that
would make these solutions correct is if acquiring a lock disallows all other threads from
executing (6), since that means it is not important which lock is used to protect data.

Listing 5. Local data protected in the second question. 
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These students may have learned that pointers are often problematic, and therefore 
opt to lock code dealing with pointers. Some solutions also protected the check if rec-
ipe is NULL (marked B in Listing 5) in isolation. These solutions would be sensible if 
local variables are shared between concurrent calls to the same function (2), but would 
also require that using a lock inside a function prevents the entire function from being 
executed concurrently (4). 

Secondly, we found a number of solutions that lock the assignments to ing1 and 
ing2, as well as the two calls to find_ingredient (C), sometimes including the 
checks for NULL (D). Many of them explicitly point out that the variables ing1 and 
ing2 need to be protected, and thus these solutions would also be correct if local vari-
ables are shared between concurrent calls to the same function (2). Some of these solu-
tions also suffer from the problem that they release the lock and re-acquire the lock in 
the function, which could cause other threads to alter the shared locals, thus also requir-
ing that using a lock inside a function prevents the entire function from being executed 
concurrently (4). 

5.3.3. Lock Placement 
Solutions in this category are incorrect since the locks are not properly associated with 
the data they protect. One example of this is solutions that used a lock in the recipe 
struct to protect the ingredients in there. This means that the lock will ensure that only 
one thread uses a particular recipe, rather than the ingredients required by the recipe. 
Therefore, race conditions are not eliminated if two recipes share some ingredient. This 
kind of solution would be correct if different recipes are not allowed to share ingredi-
ents (12). This is, however, shown not to be true by the main function. As such, another 
possibility is that pointers work like values (3), which in this case means that the ingre-
dients are copied as they are returned from find_ingredient. Yet another alternative 
abstraction that would make these solutions correct is if acquiring a lock disallows all 
other threads from executing (6), since that means it is not important which lock is used 
to protect data. 

Another type of solution was to use two global locks to protect ing1 and ing2 
independently. Due to the nature of these solutions, they are most likely related to the 
belief that local variables are shared between concurrent calls to the same function (2), 
but to make these solutions correct it is also necessary to assume that pointers work like 
values (3). Another possibility would once again be that acquiring a lock disallows all 
other threads from executing (6). 

A final type of solution found in this category was solutions that used locks declared 
as local variables inside the make_drink function. This is incorrect since each invo-
cation of the function will use a separate instance of the lock, and thus each invocation 
is guaranteed immediate access to the critical section. Therefore, this solution would 
indeed be correct if local variables are shared between concurrent calls to the same 
function (2), or if acquiring a lock disallows all other threads from executing (6), since 
then it would not matter which lock was acquired. It is worth noting that according to 
Strömbäck et al. (2019) this was visible in the first question as well. It was, however, not 
in the dataset examined in this paper. 
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5.3.4. Possible Deadlock 
Solutions in this category used multiple locks (one for each ingredient), but failed to 
ensure that deadlocks were not possible. As previously mentioned, this could be done 
by making sure to always acquire locks in a particular order. By examining the answer 
to (d), we found that most students were aware of the issue, at least when it was pointed 
out to them. Some students even suggested a solution to the problem. The most com-
mon solution was to ensure that locks were always acquired in some global order. Other 
solutions, such as separating the critical sections for the two ingredients (thus altering 
semantics as previously mentioned) were also suggested. 

Six of these solutions argue that there is no risk for deadlock. This was either due 
to failing to understand some of the semantics of their solution (e.g., arguing that there 
is no mutual exclusion), or by arguing that the example recipes provided in the main 
function have no risk of causing a deadlock when only two robots were used. While this 
observation is true (the example recipes need three robots to exhibit a deadlock), the 
code inside the main function was labeled as a conservative example. 

5.4. Summary of Incorrect Abstractions 

To conclude the results section, we list all alternative abstractions proposed previously. 
To aid readability, we order these assumptions according to the abstraction they modify: 
The Memory Model: 

Sequential consistency can be assumed. 1. 
Local variables are shared between concurrent calls to the same function. 2. 

Abstractions in C: 
Pointers work like values (i.e., pointer assignments copy the data pointed to). 3. 

Abstractions for Synchronization: 
Using a lock inside a function prevents the entire function from Being executed 4. 
concurrently. 
The acquire and release operations define a lexical region that is protected by the 5. 
lock. 
Acquiring a lock disallows all other threads from executing. 6. 

Concurrent Aspects of Abstractions: 
A function is only called concurrently with other functions, not with itself. 7. 
A function is only called concurrently with itself, not with other functions. 8. 
A function is allowed to fail sporadically. 9. 
Waiting for a condition to be fulfilled rather than failing. 10. 

Specific to the Questions: 
 11. make_drink could be executed concurrently with the add_* functions. 
Different recipes are not allowed to share ingredients. 12. 
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6. Discussion 

In this section, we will first discuss the validity and limitations of the method and the 
results. After that, we will further examine the incorrect abstractions found in the results 
and discuss how they can be applied to teaching in the future. 

6.1. Validity and Limitations 

First and foremost, it is worth reiterating that the method used in this paper relies on 
the assumption that students reason logically in the realm of their understanding of 
the abstractions that the problem relies on. This is the same assumption that is used by 
Marton (2014, ch. 4) when arguing for the validity of Phenomenographic studies of 
how a cohort of students understand a particular object of learning. While we believe 
this assumption to be true in general, as noted by Albrecht and Grabowski (2020), it is 
necessary to take into account the fact that it is easy to make mistakes in one’s reason-
ing when working with complex problems, especially if one’s view of the underlying 
abstractions is incomplete or contains contradictions. Because of this, we believe that 
our approach of finding alternative abstractions for individual categories in isolation, 
rather than for the entire solution as a whole, works well. Not only is it much more fea-
sible to conduct for larger data sets, but it is also less affected by students possibly fail-
ing to consider all aspects of a relatively large and complex problem, and is therefore 
less affected by mistakes or slips made by the students. This could, however, mean that 
we fail to see the implications of how certain combinations of errors interact with each 
other. Furthermore, it is worth pointing out that while we believe that this approach 
gives a good approximation of students’ reasoning while solving a problem, it is an ap-
proximation based only on their answers and is not yet validated. 

Even though it might be difficult to find all possible ways in which the underlying 
abstractions can be modified in order to make a solution correct, our data set of 137 so-
lutions makes it likely that we have found most of them regardless. Using two separate 
problems rather than a single one is also beneficial since it reduces the risk of one prob-
lem hiding certain types of errors. This benefit is clearly visible in Fig. 3, which shows 
that many categories only contained errors from one question. Thus, excluding one of 
the problems would have removed many of the categories, and thereby also many al-
ternative abstractions. It is, however, worth noting that the types of errors visible in this 
paper are most likely influenced by how the subject is taught. For example, relaxation 
number 1 (sequential consistency can be assumed) might be prominent since concur-
rency is introduced in terms of preemption on a single-threaded system, and might not 
be as clearly visible in other settings. 

It is also worth pointing out that even though we provide an overview of how com-
mon certain types of errors are in Fig. 3, similarly to Strömbäck et al. (2019), it is not 
possible to draw definitive conclusions regarding how common it is for students to use 
a particular incorrect abstraction. This is since some errors may be caused by more than 
one combination of such abstractions, and in these situations it is not possible to deter-
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mine which of the alternatives were actually used by the student. This kind of estima-
tions are further complicated by the fact that there are likely scenarios where approxi-
mating the reason for errors in terms of alternative abstractions is not ideal. One good 
example of this is solutions with too small critical sections. Here, students might simply 
have failed to realize which overall constraints were important to protect rather than 
believing that locks automatically protect the entire function they are used in. Students 
with particularly short critical sections may also have resorted to pattern matching (e.g., 
believing that it is enough to protect all writes to shared data individually). 

Taking these issues into account, we still believe that this method provides inter-
esting and valuable results that reveal how students experience concurrency and the 
abstractions provided by a concurrent execution environment. 

6.2. Interpretation of the Results 

Based on the previous discussion of limitations, we will now discuss how the results 
may be interpreted and used. While most of them have a clear connection to incor-
rect beliefs that a student might have, some do not. As previously noted, this might 
be due to failure to reason about the abstractions in a larger problem rather than un-
derstanding the abstractions themselves. Therefore, we will discuss how the alterna-
tive abstractions can be interpreted, with the goal of providing important aspects of 
concurrency to help students discern when teaching concurrency. We will start by 
discussing the incorrect abstractions related to the memory model, abstractions in C, 
and abstractions for synchronization (number 1–6). This discussion constitutes our 
answers to RQ1 and RQ2. 

Since concurrency was introduced in terms of preemption in a system with a 1. 
single CPU, assuming sequential consistency is not far-fetched since sequential 
consistency actually holds in such a system (ignoring compiler optimizations). 
Some combinations of assumptions only require total store ordering, but not in 
isolation. 
Since both recursion and scope are pointed out as difficult but important concepts 2. 
for beginners by Goldman et al. (2008), it is not unlikely that some students as-
sume that local variables are shared between concurrent calls to the same function. 
This could, for example, be a direct consequence of believing that all variables are 
global. One consequence of this belief would be difficulties in tracing recursion, 
since that also requires keeping different instances of local variables apart. 

Even though this relaxation was only seen in the solutions to question B, it 
is probably present in the solutions to question A as well but not clearly visible. 
For example, the synchronization of idea_add would look almost the same if 
locals were shared, only that the line before the loop would have to be protected 
as well. Since this is a small difference, these solutions were still considered to be 
correct without alternative abstractions and did not show up in our analysis. Some 
examples for part (a) of the question also pointed in this direction, further suggest-
ing that this belief is indeed present in solutions to question A as well. 
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The belief that 3. pointers work like values, or some variation thereof, is also com-
mon in introductory programming courses (Goldman et al., 2008). Thus, the same 
thing being a problem when working with concurrency is no surprise. 
The assumption that 4. using a lock inside a function prevents the entire function 
from being executed concurrently is one of the alternative abstractions that is less 
likely to correspond to the belief of the student. Most of the solutions that were 
correct under this modified abstraction had too small or split critical sections, 
which could be caused by the student failing to realize what invariants need to be 
maintained by the data structure, for example. 
Assuming that 5. the acquire and release operations define a lexical region that is 
protected by the lock is a valid interpretation of how critical sections work. In fact, 
there are languages that take this approach to synchronization (e.g., synchro-
nized blocks in Java). This is, however, not the case in C, as locks are acquired 
and release through regular function calls. 
Assuming that 6. acquiring a lock disallows all other threads from executing is also 
a natural first step when concurrency is introduced as preemption in a system with 
a single CPU. In such a system, a lock could simply prevent preemption from oc-
curring, thus solving all concurrency issues. 

The following four categories highlight incorrect ways in which students understood 
the abstractions described by the two questions. As such, these categories cover the ad-
ditional aspects one needs to consider when implementing or using an abstraction (e.g., 
an abstract data structure) in a concurrent environment, and thus our answer to RQ3. 
These four categories are described below: 

Assuming that 7. a function is only called concurrently with other functions, not 
with itself likely arises from a student who fails to realize that concurrent calls to 
the same function are allowed. This could be simply because it is easier to trace 
concurrent execution in two different functions, or due to some other reason (e.g., 
believing that locals are shared between threads) that makes it infeasible to allow 
concurrent calls to a function. 
In contrast to the previous assumption, assuming that 8. a function is only called 
concurrently with itself, not with other functions likely arises from failure to 
see how multiple functions interact with each other. This could, in turn, either 
be due to failure to realize how data is shared through pointers or references, or 
failure to understand the desired behavior of the abstraction that is described in 
the question. 
Assuming that 9. a function is allowed to fail sporadically is likely either due to stu-
dents failing to account for some possible interaction between threads in the pro-
gram (the issue in question B is indeed quite difficult to spot), or due to students 
believing that some (unlikely) failures are acceptable. Kolikant (2005) found the 
latter to be a reason for some portion of student errors in concurrent programs, 
and used the term alternative correctness to describe the phenomenon. 
Finally, assuming that a function shall 10. wait for a condition to be fulfilled rather 
than failing illustrates one important but problematic aspect of concurrent abstrac-
tions. Namely, when something is to happen. This could be because students failed 
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to distinguish between different types of waiting. In this particular case, the two 
options are: 1) acquire a lock and check if a condition is true, which may require 
waiting if another thread is holding the lock, and 2) wait for the condition to 
become true using a semaphore. Both options may require waiting, but option 1) 
is guaranteed to not keep threads waiting forever (i.e., progress), while option 2) 
may require other parts of the program to call some function to avoid unbounded 
waiting. This key difference is likely not trivial to see, as it often requires a higher 
level view of the system. 

Finally, we found two categories specific to the second question. First, some stu-
dent assumed that all functions may be called concurrently, even though the problem 
states that this is not the case. This is essentially the opposite of categories 7 and 8. 
It is, however, less problematic as too much synchronization rarely makes a solution 
incorrect, it only degrades performance. Finally, the assumption that recipes do not 
share ingredients (number 12) is most likely related to issues with differentiating be-
tween pointers and values, but might also be due to failing to understand the problem 
statement. 

6.3. Applications of the Results 

There are two immediate applications of these results. First and foremost, the alterna-
tive abstractions, as previously discussed, provide an insight into areas that benefit 
from additional care when teaching concurrency. In particular, many of these alterna-
tive abstractions have implications that are not always visible in smaller examples that 
may be suitable to teach during class. They only surface in slightly larger and more 
complex examples that involve multiple functions and multiple instances of data struc-
tures. Additionally, some of them also highlight the importance of connecting the new 
concurrency concepts to more fundamental language concepts that are typically taught 
in introductory courses (e.g., pointers and scope). 

These insights are also valuable when designing other kinds of teaching aids, such 
as visualization tools. Once again, being aware of these incorrect abstractions makes it 
possible to design a visualization that highlights why they are incorrect, and thereby al-
low students to acquire a correct understanding of these important abstractions. In order 
to address some of the incorrect abstractions, it is necessary to provide a visualization 
that embeds concurrency into its context of more fundamental concepts, rather than 
focusing entirely on concurrency. It is also worthwhile to illustrate how concurrency 
interacts with other abstractions, such as data structures implemented in the language, 
by highlighting what operations are allowed to be called concurrently. 

6.4. Future Work 

There are many ways in which the work presented in this paper can be extended in the 
future. One path of future work is to collect data from different problems and/or from 
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different institutions in order to find any abstractions that are missing from the list 
presented previously, and/or to validate the results in this paper. As noted previously, 
different types of problems and perhaps also different approaches of teaching concur-
rency could make other incorrect abstractions surface. This could then, in turn, be used 
to build a codebook of skills (perhaps with associated incorrect abstractions) that are 
important to assess in concurrency courses, similarly to what Nelson et al. (2020) did 
for prerequisite skills. Such a codebook is useful for creating differentiated assessments 
(i.e., assessments that can tell students what part of a subject they need to practice fur-
ther), and also concept inventories for the subject in the future. 

The list of incorrect abstractions could also be used to create assignments that 
highlight these issues, use these assignments while teaching concurrency, and evaluate 
whether such interventions are effective in helping students build the correct abstrac-
tions. These incorrect abstractions could also be used to design visual representations 
that can be used in visualization tools to illustrate how the correct abstractions work, 
and why the ones found here are incorrect. In particular, none of the visualization 
tools presented previously allow exploring how concurrency abstractions interact with 
pointers vs. values. It is also a challenge to create a useful and intuitive visualization 
of the weak C/C++ memory model. Such tools could then be used, perhaps in conjunc-
tion with the previously mentioned assignments, when teaching concurrency to further 
aid students. 

7. Conclusion 

In this paper we collected and analyzed 137 solutions to two concurrency questions. To 
estimate what incorrect abstractions students use when reasoning about concurrency, 
we proposed one or more incorrect abstractions under which each of the 61 incorrect 
solutions would be correct. In this analysis, we considered incorrect abstractions both 
related to the concurrent execution environment, and regarding the abstract data types 
covered by the two questions. The analysis resulted in 10 incorrect abstractions that are 
presented in Section 5.4. These abstractions describe problematic assumptions made 
by the solutions, such as assuming a stronger memory model than what is actually pro-
vided, assuming that certain functions are not called concurrently, or allowing functions 
to fail sporadically. 

Since these modifications were derived from incorrect solutions, they indicate some 
aspect of the abstraction that students find difficult or failed to understand entirely. The 
analysis in this paper does not, however, give any exact measure of how difficult each 
of these aspects are. Regardless, being aware of these alternative abstractions makes it 
possible to design relevant problems and examples so that the sometimes hidden diffi-
culties with these abstractions can be properly addressed when teaching. They can also 
be used to design visualizations to highlight these concepts, so that students can explore 
these areas for themselves. 
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Appendix A. Example Program for the First Question 

Below is the example code provided alongside the code for the first question (see Sec-
tion 4.3). 

Appendix B. Example Program for the Second Question 

Provided below are the operations that were left out of the Listing in Section 4.4. 
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A. Example Program for the First Question

Below is the example code provided alongside the code for the first question (see Sec-
tion 4.3).

1 /**
2 * Main program. This is only to illustrate how we can use the
3 * code above. All changes below will be ignored during grading.
4 */
5
6
7 const char *sample_ideas = {
8 "Bakeries", "Card games", "Dice", "Cookies", NULL
9 };

10
11 void worker(void *param) {
12 struct idea_buffer *buffer = param;
13
14 for (int i = 0; sample_ideas[i]; i++) {
15 idea_add(buffer, sample_ideas[i]);
16 }
17 }
18
19 int main(void) {
20 srand(time(NULL));
21
22 struct idea_buffer buffer;
23 idea_init(&buffer);
24
25 thread_create("worker", 0, &worker, &buffer);
26
27 for (int i = 0; sample_ideas[i]; i++) {
28 printf("Idea: %s\n", idea_get(&buffer));
29 }
30
31 return 0;
32 }

B. Example Program for the Second Question

Provided below are the operations that were left out of the listing in Section 4.4.

1 #define MAX_INGREDIENTS 20
2 #define MAX_RECIPES 20
3
4 // Current supply of ingredients in the bar.
5 struct ingredient supply[MAX_INGREDIENTS];
6 int supply_count = 0;
7 // All recipes the bar knows how to make.
8 struct recipe recipes[MAX_RECIPES];
9 int recipe_count = 0;
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10
11 // Initialize the bar. Called once at the start of the program.
12 void init_bar() {
13 supply_count = 0;
14 recipe_count = 0;
15 }
16 // Add an ingredient to the bar. If we call "add_supply" for an
17 // ingredient that already exists, the amount available is
18 // increased. Otherwise, a new one is added.
19 // We assume that this function is not called concurrently to
20 // other functions in the program.
21 void add_supply(const char *name, int amount) {
22 // Already available?
23 struct ingredient *found = find_ingredient(name);
24 if (found) {
25 found->amount += amount;
26 return;
27 }
28
29 // Not found... add a new element!
30 int id = supply_count;
31 supply[id].name = name;
32 supply[id].amount = amount;
33 supply[id].index = id;
34 supply_count++;
35 }
36 // Add a recipe.
37 // We assume that this function is not called concurrently to
38 // other functions in the program.
39 void add_recipe(const char *name, const char *ing1, int amount1,
40 const char *ing2, int amount2) {
41 struct recipe *recipe = &recipes[recipe_count];
42 recipe->name = name;
43 recipe->ingredient1 = ing1;
44 recipe->amount1 = amount1;
45 recipe->ingredient2 = ing2;
46 recipe->amount2 = amount2;
47
48 recipe_count++;
49 }
50 // Find an ingredient. Returns NULL if none was found.
51 struct ingredient *find_ingredient(const char *name) {
52 for (int i = 0; i < supply_count; i++) {
53 if (strcmp(name, supply[i].name) == 0) {
54 return &supply[i];
55 }
56 }
57 return NULL;
58 }
59 // Find a recipe. Returns NULL if none was found.
60 struct recipe *find_recipe(const char *name) {
61 for (int i = 0; i < recipe_count; i++) {
62 if (strcmp(name, recipes[i].name) == 0) {
63 return &recipes[i];
64 }
65 }
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Below is the example code provided alongside the code for the second question (see 
Section 4.4). 
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66 return NULL;
67 }

Below is the example code provided alongside the code for the second question (see
Section 4.4).

1 /**
2 * Main program. This is only to illustrate how we can use the
3 * code above. All changes below will be ignored during grading.
4 */
5
6 void check(const char *drink) {
7 printf("Making %s... ", drink);
8 if (make_drink(drink))
9 printf("OK!\n");

10 else
11 printf("Failed...\n");
12 }
13
14 int main() {
15 init_bar();
16 add_supply("milk", 100);
17 add_supply("blueberry", 50);
18 add_supply("raspberry", 50);
19 add_supply("cacao", 10);
20
21 add_recipe("Blueberry milk", "blueberry", 5, "milk", 10);
22 add_recipe("Hot cocoa", "milk", 10, "cocoa", 1);
23 add_recipe("Chocolate berries", "cocoa", 1, "blueberry", 5);
24
25 // Make some drinks.
26 check("Blueberry milk");
27 check("Hot cocoa");
28 check("Chocolate berries");
29 check("Blueberry milk");
30 check("Hot cocoa");
31 check("Blueberry milk");
32 check("Hot cocoa");
33 check("Chocolate berries");
34 check("Blueberry milk");
35 check("Hot cocoa");
36 check("Blueberry milk");
37 check("Blueberry milk");
38 check("Blueberry milk");
39 check("Blueberry milk");
40
41 return 0;
42 }
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