
Informatics in Education, 2023, Vol. 22, No. 1, 99–120
© 2023 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2023.01

99

An Experimental Study on a Conversational Agent
in Software Testing Lessons

Leo Natan PASCHOAL1, Silvana Morita MELO2,
Vânia de Oliveira NEVES3, Tayana Uchôa CONTE4,
Simone do Rocio Senger de SOUZA1

1Universiy of Sao Paulo – São Carlos, Brazil
2Federal University of Grande Dourados – Dourados, Brazil
3Fluminense Federal University – Niterói, Brazil
4Federal University of Amazonas – Manaus, Brazil
e-mail: paschoalln@usp.br, silvanamelo@ufgd.edu.br, vania@ic.uff.br,
tayana@icomp.ufam.edu.br, srocio@icmc.usp.br

Received: September 2021

Abstract. Nowadays, few professionals understand the techniques and testing criteria to system-
atize the software testing activity in the software industry. Towards shedding some light on such
prob lems and promoting software testing, professors in the area have established Massive Open
Online Courses as educational initiatives. However, the main limitation is the professor’s lack
of super vision of students. A conversation agent called TOB-STT has been defined in trying to
avoid the problem. A previous study introduced TOB-STT; however, it did not analyze its efficacy.
This arti cle addresses a controlled experiment that analyzed its efficacy and revealed it was not
expressive in its current version. Therefore, we conducted an in-depth analysis to find what caused
this result and provided a detailed discussion. The findings contribute to the TOB-STT since the
experimen tal results show that improvements need to be made in the conversational agent before
we use it in Massive Open Online Courses.

Keywords: chatbot, computer science education, software testing.

1. Introduction

Software testing aims to offer software quality based on identifying defects that persist
in the software under test (Myers et al., 2011). Such defects can be costly for an organi-
zation since they cause unwanted effects (e.g., security breaches, loss of data and infor-
mation, damage to the environment, financial losses, among others (Tan, 2016; Zhivich
and Cun ningham, 2009)) for both the organizations that develop them and those that
maintain the software, and can be avoided by the test activity.

L.N. Paschoal et al.100

Although the importance of software testing has been recognized by a significant
part of the software engineering community, it is commonly overlooked by computing
curric ula (Fraser et al., 2018). The attention given by ACM (ACM, 2016) and IEEE-CS
(IEEE, 2013) reference curricula has shown it is generally included as a unit among the
various topics of a software engineering course (Benitti, 2018), causing more complete
test ap proaches are to be no longer taught (Paschoal and Souza, 2018). Due to the vol-
ume to be addressed in this field and the workload limit of the course, the testing practice
is set aside (Paschoal and Souza, 2018). However, software testing learning requires
more practice than is commonly addressed (Fraser et al., 2018).

The lack of attention to software testing teaching has caused students to graduate
in computing with no knowledge of this subject (Lemos et al., 2017), and software
organi zations to hire unskilled professionals. According to Beneditti (Benitti, 2018),
the lack of qualified professionals in the software industry may be one of the main
reasons software organizations do not have a mature process to undertake the activity.
Several studies have corroborated this opinion, claiming professionals with no appro-
priate university educa tion and sufficient training are hired (Garousi and Zhi, 2013; Ng
et al., 2004; Melo et al., 2020).

Professionals with no proper understanding of testing practice or necessary skills
con tribute to the current state of testing practice adopted by a significant number of soft-
ware organizations and expressed in worldwide surveys – whose participants are indus-
trial test ing professionals – characterized by tests (or test cases) randomly established
for the prac tice of software systems under test (Garousi and Zhi, 2013; Ng et al., 2004;
Melo et al., 2020; Dias-Neto et al., 2017). The lack of knowledge in the software testing
area is be lieved to be a predominant factor for organizations’ failure in adopting criteria
that support an effective selection of test case sets (Benitti, 2018).

Graduates who work professionally in the software testing field seek alternative ways
to acquire knowledge in the area. Some learning strategies used by those professionals
are resources available online (Garousi and Zhi, 2013), among which are courses de-
signed within the scope of MOOC platforms (Massive Open Online Course) (Fassbinder
et al., 2017; Prates et al., 2018). Such courses are open alternatives offered by recog-
nized ed ucational institutions and that can meet demands and improve the development
of some apprentices’ skills.

Particularly MOOC can be seen as an initiative for professionals and organizations
to improve their skills and know testing techniques and criteria that help establish test
case sets (Enoiu, 2019). According to Enoiu (2019), software testing MOOCs can also
be an opportunity for teachers to disseminate the techniques and technologies defined
or addressed in their research in an industrial context, also supporting innovation in
informa tion technology companies. Therefore, they can potentially contribute to soft-
ware testing learning in non-formal education.

However, MOOCs have limitations. Recent studies have reported interaction and
feed back as the main factors for students’ evasion from courses (Mittal et al., 2018;
Mikic-Fonte et al., 2018; Aguirre et al., 2018), probably because the courses available
on those platforms are accessed by many students and rarely supported by teachers or
tutors. Stud ies that leverage such discussions also mentioned the use of conversational

An Experimental Study on a Conversational Agent in Software Testing Lessons 101

agents1 as a resource to supporting MOOCs. In this sense, they promote interaction
between students enrolled in the courses and agents, who solve doubts and receive ad-
equate feedback. It is in this context that the opportunities for investigations on the use
of TOB-STT, a sup port mechanism for teaching software testing (Paschoal et al., 2019)
in software testing MOOCs, arise in such a context.

TOB-STT was presented as software that interacts with software testing students
in natural English and solves their doubts on issues associated with software testing
concepts, criteria, and techniques (Paschoal et al., 2019). Although introduced in a
previous study, that study focused on understanding whether the knowledge bases of
the conversational agent are representing the necessary knowledge to help students in
the software testing area. Therefore, an evaluation that considers the efficacy of edu-
cational support offered by the TOB-STT to software testing students has not yet been
carried out. Before TOB-STT is considered in an effective deployment of a software
testing MOOC, it must be evaluated regarding its satisfactorily achieving its objective.
We argue here that there is still not enough evidence to confirm that the TOB-STT of-
fers educational support for students with doubts.

This article reports an experimental study for the identification of the efficacy of the
TOB-STT support to software testing students involved in an educational activity with
no teacher’s support.

The paper is organized as follows: Section 2 introduces TOB-STT; Section 3 addresses
studies on conversational agents in computer science education; Section 4 describes the
planning of the experimental study. Sections 5 and 6 are devoted to presenting the results
and threats to validity, respectively; Section 7, provided a discussions on the main results.
Section 8, reports some study limitations; finally, Section 9 provides the conclusions.

2. An Overview on TOB-STT

TOB-STT is a rule-based conversational agent that has knowledge bases on software
test ing content, written in AIML language (Artificial Intelligence Markup Language2).
If was defined to subsidize software testing activities taught through distance learning.
In this per spective, it has an interface similar to a chat to be used by students to ex-
press doubts and opinions and receive feedback on uncertainties and convictions. Such
a teaching support mechanism uses natural language to communicate and performs lin-
guistic treatments on requests sent by students to produce appropriate feedback.

The agent was designed to support the three different stages of a conversation.
Students can introduce themselves, greet the agent (start phase of the conversation),
interact on the software testing content (development of the conversation), and say
goodbye to the agent (end of the conversation). Regarding the interaction over the
domain to which it was established, it can recognize four types of intention, shown in

1 Conversational agents are systems that interact with their users in natural human language through natural
language processing (Montenegro et al., 2019).

2 A complete description of the language is provided by Wallace (2009).

L.N. Paschoal et al.102

Table 1, together with their definition and some examples of dialogues accepted. After
understanding what the student wishes to know, the agent sends a message directed to
that request.

The authors (Paschoal et al., 2019) provided technical information associated with
the algorithms and technologies used for TOB-STT establishment. The current TOB-
STT version is available for use at <icmc.usp.br/e/89f12>. Since it was conceived
in a free software format for encouraging the community to contribute to its develop-
ment, its source codes are available for use and modification by the software engineer-
ing com munity at <icmc.usp.br/e/4644c>.

TOB-STT can adapt to different device interfaces (e.g., desktop, tablets, smart-
phones) towards encompassing the different modes of access to educational content
and educa tional paradigms (i.e., mobile learning and ubiquitous learning). Fig. 1 dis-
plays its in terface from a web browser (Fig. 1a) and smartphone (Fig. 1b). Fig. 1a also
shows an example of a dialogue between TOB-SST and a student. The student starts
interaction by asking what a “bug” is. In response, the agent provides an explana-
tion considering an existing definition in SWEBOK (Software Engineering Body of
Knowledge) and tries to make clear a “bug” has the same definition of a defect. The
student then asks the agent to differentiate between defect and error, ending interac-
tion by asking it to explain how to apply the testing criterion known as equivalence
partitioning.

TOB-STT is similar to other conversational agents from the literature (Mikic-Fonte
et al., 2018; Katchapakirin and Anutariya, 2018; Ocaña et al., 2019; Herpich et al.,
2016; Leonhardt et al., 2007; Paschoal et al., 2018). The next section shows an over-
view of the state of the art regarding the conversational agent to support de computer
science (CS) education.

Table 1
Set of intentions recognized by TOB-STT

Intention Intention description Examples

Define TOB-STT is expected to recognize questions or
comments related to the determination of any term,
concept, or jargon in the software testing area.

What is software testing?
Can you describe the functional testing
criteria?

Confront TOB-STT can identify questions or comments whose
nature is associated with the effect of differentiating
two or more terms, concepts, or jargon in the
software testing area.

What is the difference between functional
testing and structural testing?
Make a parallel among defects, er rors, and
failures.

Apply TOB-STT can detect questions or comments related
to both use and demonstration of some software
testing criteria.

How can the boundary-value analy sis
criterion be applied? How should I use the
equivalence class partitioning criterion.

Exemplify TOB-STT can distinguish questions or comments
that ask for real examples of software testing
techniques and criteria.

Provide examples of the use of the
boundary-value analysis criterion.
Provide examples of applications of the
equivalence partitioning crite rion.

An Experimental Study on a Conversational Agent in Software Testing Lessons 103

3. Conversational Agents in CS Education

The exploration of a conversational agent in the computing domain, more specifically
in educational practices in computing, is not new. Previous studies have shown the ef-

(a) TOB-STT being accessed from a desktop

(b) TOB-STT being accessed from a smartphone

Fig. 1. TOB-STT interface.

L.N. Paschoal et al.104

forts of researchers towards proposing educational solutions based on conversational
agents to problems in teaching computers, formal education, and training of profes-
sionals in the field. Conversational agents have been established for different contexts,
environments, and Computing disciplines. This section discusses some studies similar
to the present research.

Katchapakirin and Anutariya (2018) reported the need for a conversational agent
when Thailand adopted computer content in basic education and high school. Managers
recog nized the lack of qualified human resources in the area of computing (especially in
block-based visual programming language Scratch3) to teach certain content to students.
To wards mitigating the problem, ScratchThAI, a conversational agent that supports stu-
dents through textual conversations, was developed. The aim was to stimulate the devel-
opment of computational thinking skills.

Ocaña et al. (2019) also focused on a conversational agent that could support stu-
dents who were not studying computing in higher education, but were subjected to
initiatives as sociated with a programming learning at basic levels of education. The
agent was treated as a learning companion in an environment designed for children to
learn how to program; it asked them to write their programs and, if necessary, perform
debugging. It would enable students to practice programming concepts with real pro-
grams and immediate feedback.

Among studies focused on conversational agents for the teaching of computer net-
works, Herpich et al. (2016) introduced ELAI, a conversational agent available in a
vir tual world that simulates a laboratory dedicated to teaching computer networks. It is
rep resented through an NPC (Non-player character) and can solve students’ doubts on
the contents taught.

Leonhardt et al. (2007) designed a conversational agent as a tool for training com-
puter network management, which served as a support for professionals with little ex-
perience. According to the authors, such professionals tend to show limited understand-
ing of details of management protocols, and the agent, designed to explain concepts of
the computer network management domain would teach them how to obtain any given
information.

In the scope of software engineering education, Paschoal et al. (2018) developed a
prototype of a conversational agent for supporting students in developing skills associ-
ated with extracting software requirements through an interview technique. The agent
assumes the role of a stakeholder, and the student interacts with it towards extracting the
require ments and improving skills. Additionally, the agent has knowledge of software
engineering concepts, which allows students towards their doubts.

Mikic-Fonte et al. (2018) developed a conversational agent that answers students’
questions in a computer architecture course so that they would acquire the habit of lo-
cating information autonomously, with no direct interaction with the teacher. According
to the authors, the agent would free the teacher from answering questions usually asked
every semester/year. In such a course, most students’ doubts tend to be on the use of
as sembly language emulators (e.g., “How can I install the emulator on my Linux sys-

3 More information available at http://bit.ly/3qd28oJ

An Experimental Study on a Conversational Agent in Software Testing Lessons 105

tem?”). The authors’ intention was to use the agent in a course on a MOOC platform
maintained by the university.

Aguirre et al. (2018) reported the planning of conversational agent to solve difficul-
ties faced by students while learning Java language and the object-oriented paradigm.
The conversational agent is described as an additional resource to the MOOC, which
uses natural spoken language. According to the authors, its main function is to suggest
MOOC modules that require further student attention and explain concepts of the con-
tents covered in the course.

4. Experimental Study

The experimental study addressed in this article was planned and conducted according
to the experimental process recommended by Wohlin et al. (2012). Therefore, tasks for
identification and scope definition were followed for planning, operation, and execution.
Each task is discussed in this section.

4.1. Scope

Our experiment studied whether the conversational agent could provide effective edu-
cational support to students who needed help. The effect to be observed was associated
with both availability and assistance of the agent in educational activities on software
testing. Therefore, we analyzed the efficacy of students in undertaking an activity on
soft ware testing concepts with the help of the agent. The analysis was based on the
follow ing research question: Can TOB-STT support software testing students in solv-
ing their content-related questions while performing their activities? The following
hypotheses were then generated from the question:

Null hypothesis: ● There is no difference between the efficacy of students in under-
taking an educational activity supported or not by the TOB-STT.
Alternative hypothesis: ● There is a difference between the efficacy of students in
un dertaking an educational activity supported or not by the TOB-STT.

After the research question had been raised, the goals of the experiment were speci-
fied in the following five parts, as a paradigm similar to the GQM (Goal-Question-
Metric) (Basili et al., 1994): analyze TOB-STT, for the purpose of verifying its efficacy
in sup porting students, with respect to students’ efficacy in undertaking educational ac-
tivities, from the point of view of the researchers, in the context of computer science
graduate stu dents studying software testing.

The experimental study was conducted in two Brazilian educational institutions,
namely Federal University of Grande Dourados (UFGD) and Fluminense Federal Uni-
versity (UFF), in the context of Verification, Validation and Software Testing (VV&T)
and Quality and Testing (QT) courses, both part of undergraduate programs in Informa-
tion Systems. In the period of the experiment study, the course offered by UFGD had 21
students, and the course at UFF had 17.

L.N. Paschoal et al.106

4.2. Planning

After the planning of the experiment discussed in this section, the variables and the nec-
essary instruments for its development were established.

Selection of variables

In the scientific method of experimentation, variables are used as a mechanism to mea-
sure the relationship between cause and effect. According to Wohlin et al. (2012), they
are called independent and dependent variables. The former present the cause that af-
fects the result of an experimental process, whereas the latter shows the effect produced.
Ac cording to this understanding, the following independent variables were considered
in the experimental study:

Participants’ knowledge, which refers to students’ previous knowledge of software test-
ing content. Undergraduate students had already attended classes on software testing
concepts and terminologies approximately eight weeks before the experiment.

Educational activity, which consists of the activity on software testing undertaken by
the students.

Teaching support mechanism (factor), which represents the initiative that guides the
setup of the treatments adopted in an experiment. The following two were consid-
ered:

Treatment A: ● the conversational agent is at the students’ disposal to solve their
doubts while undertaking the educational activity.
Treatment B: ● the conversational agent is not at the students’ disposal; therefore,
they undertake the educational activity with no support to resolve doubts.

The following dependent variables were considered:

Efficacy, which portrays the efficacy of students in recognizing the defects injected in an
activity on concepts, terminologies, and definitions in the software testing area. Below
is the formula that measured efficacy:

(i) =
(i)



where
E = represents the value assigned to efficacy,
i = denotes the student, i.e., {1, 2 ... z},
n = is the number of defects correctly identified, i.e., predicted in the test oracle4 and

were recognized by the students, and
total = denotes the number of defects predicted by the test oracle.

4 A software artifact that helps you decide whether or not the software test output was a success.

An Experimental Study on a Conversational Agent in Software Testing Lessons 107

Instrumentation description

The experiment required the preparation and recovery of some materials, which assumed
different functionalities (e.g., helping the teacher to instruct students participating and
collecting data to be further used in the analyses).

The educational activity was established after the description of the instruction mate-
rial. It consisted of the analysis of an argument of a test team5 on the importance of the
activity within a software organization and its prioritization in a software development
process. The argument was a text addressed to the team that managed the organization
asking for a document that explained the functioning of the test and why it should be pri-
oritized. The students assumed the role of testers and analyzed the argument, listing the
defects identified in a table. The argument involved concepts, definitions of test subjects,
and examples of tests conducted in source code.

TOB-STT is part of the study. We use the available version organized by the authors
(Paschoal et al., 2019) for web access. Therefore, no server preparation was necessary
to make the agent available.

A tutorial designed by the authors (Paschoal et al., 2019) supported the develop-
ment of activity and introduction of the conversational agent to the students, clarifying
its func tionalities. Examples of interactions and a link to access the agent were also
provided. An informed consent form was created to explain the experiment to the
students regarding the use of the data and the abandonment of the study at any time
with no losses.

Finally, a form for collecting the student’s perception of the conversational agent was
prepared. The instrument was based on the study by Herpich et al. (2016) and consisted
of nine statements based on the five-point Likert scale, which ranges from strongly dis-
agree to strongly agree. Such statements alternate between negative and positive for
controlling participants’ hypothetical tendency to agree with them (Lewis, 2018). The
assertions are listed in what follows:

The interaction with TOB-STT for the first time was not encouraging. 1.
The answers provided by TOB-STT were related on the topic questioned. 2.
TOB-STT was unable to answer the questions asked. 3.
By using TOB-STT, I could acquire the knowledge I wanted. 4.
TOB-STT did not provide reliable information in its responses. 5.
TOB-STT contributed to the accomplishment of the task. 6.
TOB-STT provided answers slowly. 7.
TOB-STT has an easy-to-use interface. 8.
I was dissatisfied with TOB-STT. 9.

4.3. Operation and Execution

After the definition of the instruments, the experiment execution was prepared and per-
formed.

5 A test team is a group of individuals who work in the software testing activity of a software organization.

L.N. Paschoal et al.108

Preparation

During the semester of the planning stage, the professors taught subjects that involved
software testing at their respective universities (i.e., UFGD and UFF). The course curri-
cula were similar, and both were offered to students of the final year of the undergraduate
program. The context was selected according to the adequacy, and the samples used in
the experimental study were selected for convenience. The number of necessary classes
was established in function of the schedule of each course so that the experiment would
not hinder its progress.

Since the contents are part of the course, no special tactics were necessary; a class on
testing fundamentals and another on functional testing would be taught normally. A third
class on the activity to be developed after eight weeks was offered. The activity would
take place after students have acquired knowledge on the subject, and was planned to be
taken at the time of the class. However, it was not mandatory for students, and it would
be conducted in a way the results would not interfere with their grades. It aimed at en-
couraging students’ participation in the class as an opportunity for them to review the
content and observe aspects to be fixed.

A form with the nine statements was prepared on Google6 for collecting students’
feedback. It would be available for those who would participate in the experimental
group after the activity, which was organized in a way to be accessed through computers
in the computer labs of each educational institution. It would also facilitate the execu-
tion, especially because the students of the experimental group would undertake the
activity while interacting with TOB-STT.

Finally, a learning management system was prepared to facilitate receiving stu-
dents’ submissions, i.e., a list of defects found in the argument on the importance
of prioritiz ing software testing. The environment was essential for the experimental
group since the students should provide feedback on their perceptions after using the
conversational agent.

Execution

The experimental study was conducted in three classes at each educational institution.
This section describes the activities developed during the classes.

Class 1: ● In the first meeting, the professor of each course presented the fundamen-
tals of software testing, the objectives of the test, the process, terminologies, test
cases (i.e., what they are, their constitutive parts, and order of execution: cascade
test cases, in dependent test cases), testing techniques (what they are, their aim,
specification-based testing, implementation-based testing), test criteria, test steps
(planning, design, exe cution, analysis), and test phases (unit, integration, system).
As each subject was ad dressed, examples were given and doubts were resolved.
Eventually, an exercise was performed for fixing the content, and doubts arisen
were resolved.

6 More information available at: http://bit.ly/3nEc212

An Experimental Study on a Conversational Agent in Software Testing Lessons 109

Class 2: ● In the second meeting, the professor of each course explained the func-
tional testing technique, also known as a black-box based on specifications and
documenta tion of the software to derive test requirements. The steps for applying
functional test criteria were discussed, and the most well-known ones were pre-
sented, with emphasis on equivalence partitioning and boundary value analysis.
Examples were provided as each criterion was taught step-by-step. As in the first
meeting, the students eventually developed an activity towards exercising the cri-
teria learned. The professors resolved the arisen doubts.
Class 3 (experimental group): ● In the third meeting, the professor of the Veri-
fication, Validation, and Software Testing course at UFGD taught the class in a
computer lab, which had a computer for each student with access to the Internet.
The professor ex plained the educational activity and made it, together with the
informed consent form and the links to the conversational agent and the form with
the statements about the per ception of use available in a learning management sys-
tem. Students were informed that the activity would be individual, not evaluative,
but only to fix the content. They should read it and interact with TOB-STT, con-
sidered a tutor -specialist in the domain, and use no other material for consultation.
They were given 60 minutes to complete the ac tivity, and should eventually send
the table with the defects identified and give feedback through the available form.
Class 3 (group control): ● In the third meeting, the professor of the Quality and
Test ing course at the UFF developed the activity in the laboratory, similarly to the
UFGD professor. Each student was provided with a computer with access to the
learning man agement system in which the educational activity was available and
an option to send the table with the defects identified. They were also informed
the activity was individ ual and no support mechanism should be used, including
consultation with teaching materials. They were given 60 minutes the perform the
activity and send files to the professor.

After the experiment, the collected data were analyzed, as addressed in the next sec-
tion.

5. Results

This section is devoted to the analyses performed with the obtained data. It describes the
decisions made during the analyses and then analyses the efficacy of the conversational
agent. Finally, it discusses the students’ perceptions who interacted with the TOB-STT.

5.1. Efficacy Recognition

The defects identified and listed by the students in both control and experimental groups
were analyzed, following the test oracle. The efficacy value was then calculated for each
participant of the experiment, and different analyses were performed on the data col-
lected. In particular, descriptive analyses and statistical inference were used.

L.N. Paschoal et al.110

Boxplots were used in the descriptive analysis to recognize outliers7 in each variable.
Since the sample was relatively small (i.e., less than 30 per sample group), the outliers
were considered in all analyses.

Finally, the Shapiro-Wilk test checked the normality of the data in the inferential
statis tics. Since the experiment considered one factor and two treatments, Student’s t-
test was applied to data that followed a normal distribution, and the Mann-Whitney test
was used for those that did not, during the planning of the experiment analysis.

5.2. Efficacy Analysis

Regarding efficacy, the performance of both the experimental group and the control
group was not expected by the researchers, since efficacy values greater than 50% were
expected, indicating students would identify at least 50% of the defects injected in the
educational activity. However, as shown in Table 2, the average of the recognized de-
fects was 27% in both groups.

By directing attention to the median, we found that the groups were able to obtain a
median equal to 30%. This means that 50% of the efficacy values were less than 30%.
The sample standard deviation revealed that the variation in the number of the identified
defects in the control group was equivalent to the experimental group.

The box plots in Fig. 2 support the graphical analysis of students’ efficacy in identi-
fying defects in each group. Students who did not use the conversational agent to iden-
tify defects obtained a greater variability than those supported by TOB-STT. Therefore,
the agent may be contributed to the less oscillation in variability on the efficacy of the
exper imental group.

Finally, inference tests checked if the efficacy of the students undertaking the
educa tional activity on software testing with the support by TOB-STT was different
from that with no support. The normality of the data was analyzed according to a 95%
confidence level. Shapiro-Wilk test revealed (i) the efficacy data for the experimental
group did not follow a normal distribution, since the p-value resulted in 0.0000028,
and (ii) the efficacy data for the control group did not follow a normal distribution – its
p-value was 0.0000093. Therefore, the Mann-Whitney test was applied and provided a
0.484352 p-value, and the null hypothesis was not rejected.

7 Outliers represent atypical values from variations in the sample groups.

Table 2
Descriptive statistics of the efficacy values

Group
Control Experimental

Mean 27% 27%
Median 30% 30%
Standard deviation 0.13 0.13

An Experimental Study on a Conversational Agent in Software Testing Lessons 111

The study shows that students with and without the support of TOB-STT achieved the
same efficacy in the activity, indicating this support was not as effective as expected.
The efficacy of the educational support may be related to different aspects, and we
believe the students’ perception of the agent can offer shreds of evidence that contribute
to understanding the reasons why TOB-STT was not able to increase the efficacy of the
student in the identification of defects during the educational activity.

5.3. Feedback from Participants

An exploratory analysis was conducted with data on the students’ perceptions who used
TOB-STT (see Fig. 3). The data set shows that the students mostly agreed on the ease of
the interface use, whereas that of higher disagreement is related to the time TOB-STT
takes to provide its answers. In this case, since the statement was negative, we under-
stand the students were satisfied with the agent’s performance in offering answers.

Towards a better understanding of the results of the analysis of efficacy, the stu-
dents’ perceptions were organized into six categories, namely adequacy of the response,
perfor mance, efficiency, experience, user interface quality, and satisfaction. The former
grouped more than one statement and addresses aspects of students’ perception of the
quality of the interaction promoted by TOB-STT. According to the category adequacy of
the response of Fig. 3, most students claimed (i) the answers provided by TOB-STT was

Effectiveness in recognizing the defects

References
[1] The jamovi project (2021). jamovi. (Version 1.6) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2020). R: A Language and environment for statistical computing. (Version 4.0) [Computer software]. Retrieved
from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2020-08-24).

Fig. 2. Comparison of the efficacy values in the identification of defects.

Category Assertion

Adequacy of the
response

The answers provided by TOB-STT were on the topic questioned

TOB-STT was unable to answer the questions asked

TOB-STT did not provide reliable information in its responses

Efficiency
TOB-STT contributed to the accomplishment of the task

By using TOB-STT, I could acquire the knowledge I wanted

Experience The interaction with TOB-STT for the first time was not encouraging

Performance TOB-STT provided answers slowly

Satisfaction I was dissatisfied with TOB-STT

User interface quality TOB-STT has an easy-to-use interface

Likert scale chart
Answer

Strongly disagree
Disagree
Undecided
Agree
Strongly agree

Gannt percent e média de Score para cada Assertion dividido por Category. Para o painel Gannt percent: A cor mostra detalhes sobre Answer. O tamanho mostra Percent of
total sizing. Para o painel Média de Score: As marcas são rotuladas por média de Score.

Fig. 3. Students’ perceptions of the TOB-STT.

L.N. Paschoal et al.112

following the subject of the question; (ii) the information provided by the TOB-STT is
reliable; and (iii) the TOB-STT was unable to answer some questions.

As some students indicated that the agent was unable to answer some of their doubts,
we believe that this may have contributed to the result observed in the efficacy analysis.
Students may have asked some specific questions about a software testing concept, and
the agent was unable to help them. Another possible interpretation is they may have
asked questions not related to the domain.

In a given statement, the students informed whether they believed TOB-STT had
con tributed to the performance of the activity. As shown in the efficiency category of
Fig. 3, most answers corroborate the hypothesis raised at the beginning of the study, i.e.,
the conversational agent offers support to the activity. This result shows the additional
support provided confidence to the students, i.e., they were convinced the agent would
help them. However, students were undecided whether the agent was able to contribute
to increasing knowledge about software testing.

We try to understand the students’ experience when interacting with the conversa-
tional agent during the educational activity. In particular, students indicated whether the
expe rience was not encouraging. The experience category in Fig. 3 shows the Likert
scale offered no option that attracted special attention from the students. Therefore, we
believed that some students were excited by the experience of using the TOB-STT, while
others were not.

The last statement addressed student’s satisfaction with TOB-STT. Similarly to the
assertion related to the experience, the data show some students were satisfied, whereas
others were not very pleased (see the satisfaction category in Fig. 3).

The results provided some evidence that contributes to the analysis of the efficacy of
the educational support. Those that drew the most attention refer to the agent not being
able to offer answers to some doubts. However, the students believed it helped them in
completing the activity. As the results of efficacy, presented in Section V-B, indicated
that the support offered by the conversational agent did not promote greater efficacy in
the identification of defects by software test students, the feeling of support was mani-
fested in the experimental session.

6. Threats to Validity

Although this study adopted an experimental process, it is not free from threats to valid-
ity, which were mitigated by some initiatives undertaken during the planning and con-
ducting. The main threats and actions are presented in that follows.

Reliability of measures: ● efficacy was used as a metric to check whether the stu-
dent who has access to TOB-STT can identify the defects more accurately than the
student who does not. It has been used in experimental studies on software testing
education (de Jesus et al., 2020; Paschoal et al., 2020). To mitigate any threats
to validity, the test oracle was established by a professor in the software testing
course with more than 20 years of experience. In addition to this, the comparison
among the defects identified by the students with what was expected by the test

An Experimental Study on a Conversational Agent in Software Testing Lessons 113

oracle was made by a single person who has worked in research on software test-
ing education. Therefore, a poorly formulated form was avoided, since it might
jeopardize the viability of the research.
Single method bias: ● the efficacy of the educational support offered by TOB-STT
was analyzed through an educational activity. Ideally, it is believed efficacy is
observed throughout the development of a larger set of activities, thus providing
a context closer to a learning environment. Students can do better in one activity
than in another be cause of their affinities, preferences, etc. However, more classes
would be necessary for a larger set of activities, compromising the schedule of the
courses. The performance of a single educational activity has been adopted in an
experimental study of the theme (Paschoal et al., 2020) towards not interfering
with the teaching of other subjects and the courses’ calendar.
Generalization of results: ● the results from an experimental process are expected
to be generalizable. In this sense, the choice of the participants may make gen-
eralization un feasible, since they provide the data used during analyses. Students
were selected for our experiment because they were enrolled in software testing
subjects at two educa tional institutions, which makes the sampling heterogeneous.
The threat was mitigated through the selection of the academic context.
Risk of error in the analysis: ● in some experimental studies, tests may not indi-
cate the re lationship between cause and effect, although it may exist. Therefore,
specific care must be devoted to both treatments and analyzed data. The threat was
evidenced in our exper iment and it was mitigated by a replication of the experi-
ment with Software Testing and Inspection students at the University of Sao Paulo
(USP). The students were selected by convenience, were in the last year of their
undergraduate programs, had received train ing, and undertook the educational ac-
tivity with the support of TOB-STT after eight weeks. The data were collected
and analyzed, and eventually, the Mann-Whitney test again shows no statistical
difference in the efficacy of the students supported by TOB– STT (USP students)
with no support (UFF students), since the p-value was 0.959729.

7. Discussion

In this section, we discuss some interesting results of the analyses presented in Section 5.
These results were obtained through the experimental study execution on TOB-STT
conversational agent and relating them to the findings of other researchers in the area to
glimpse a possible explanation to the results obtained. A key point is a failure of reject-
ing the null hypothesis (i.e., there is no difference between the efficacy of students in
under taking an educational activity supported or not by the TOB-STT). To find evidence
of the causes that influenced these results, we revisited the students’ feedback about their
perceptions on the TOB-STT (see Section 5.3). In a detailed analysis of the feedback
results, the third assertion draws attention since most experimental study participants re-
ported that the TOB-STT fails to correctly answer the participants’ questions. According
to Quiroga Perez et al. (2020) and Molnár and Szüts (2018), one of the problems that

L.N. Paschoal et al.114

can affect conversational agents is student frustration when they cannot get the answers
to what they are looking for, in which case the conversation does not flow as expected.
Thus, the agent is unable to give effective learning support.

To obtain evidence to justify this perception, we retrieved the logs of interactions pro-
duced between the students and TOB-STT towards evaluating whether the students have
received the answers expected during the interaction. The interactions records analysis
to evaluate the usefulness of the responses generated by the TOB-STT to software test-
ing students was based on the strategy defined in AbuShawar and Atwell (2016). During
the evaluation, the quality of the responses was measured by observing and classifying
the conversational pairs8 produced throughout an interaction. The classification of the
answer into a specific category is based on the analysis of the conversational pairs. The
categories adopted in this study are presented as follows.

Correct answer: ● the conversational agent correctly understood the question is-
sued by the student answering in the right way for the interaction. For example, the
student asked: “what is a bug?” and the conversational agent correctly explained
that a bug is a divergence of a code specification from what was developed.
Incorrect answer: ● the conversational agent did not correctly understand the ques-
tion made by the student and so could not decide the correct answer, responding
inappro priately to the interaction. For example, the conversational agent answers
“what is a functional testing technique” when the student asks: “what is a bug?”.
This type of an swer is inappropriate because the conversational agent failed to
capture the statement and offered an incorrect answer. The incorrect answer can
be divided into partially re lated and unrelated.

Partially related: ○ in this case, the answer provided by the conversational
agent is not correct, but it is about the same subject. For example, the student
asks the conver sational agent what a defect in software is, and the agent an-
swers what a software failure is.
Unrelated: ○ in this case, the answer issued by the conversational agent is not
correct and is about a different subject. For example, the student asks the con-
versational agent what is a defect in the software, and the agent, rather than
answering the student, will ask the student: “How are you?”.

No Answer: ● the conversational agent was unable to answer the question made by
the student and consequently left the student unanswered or issued a warning that
it did not know how to answer the student’s question. For example, the student
asks the conver sational agent “What is a bug?” and TOB-STT replies that it can-
not answer.

Whereas the strategy proposed by AbuShawar and Atwell (2016) based on a subjective
metric, we invited a software testing expert who did not take part in experiment execution
to classify the interaction between students and TOB-STT. We included an expert who did
not participate during the experiment execution to avoid bias in the interactions classifica-
tion. The expert has five years of experience in education and researching software test-

8 In this study, conversational pairs represent the questions asked by the student and the response issued by
the conversational agent to that question.

An Experimental Study on a Conversational Agent in Software Testing Lessons 115

ing, shown by publications in conferences and journals of Computer Science Education
and Software Testing, Verification, and Validation. The expert analyzed 619 interactions
be tween the TOB-STT and the 21 students in the experimental group and classified them
according to the proposed method. From this classification, we analyze the results.

In the first moment, we checked if all 21 students interacted with the TOB-STT. We
found that all students talked to the TOB-STT, asking questions pertinent to the educa-
tional activity subject that they were doing. Fig. 4 presents the box plot with the number
of interactions made by the participants. We noticed that there were no outliers, and thus
there were no discrepant values of interaction. Additionally, we observed that the TOB-
STT interacted on average 29 times with each student (value represented by the black
square in the box plot). The median value, represented by the line in the box plot, indi-
cates that 50% of the participants interacted more than 27 times with the conversational
agent. The other 50% of the participants interacted less than 27 times. Through this anal-
ysis, it was possible to obtain evidence that the students interacted adequately with the
TOB-STT to use it as a support to perform the activity. Based on results, some students
interacted more than others, but the number of interactions per student remains normal
from a statistical point of view (Fig. 4).

We analyzed the classification made by the expert. Fig. 5 shows that the conversa-
tional agent correctly answered the students’ doubts and questionings in 39.74% of the
interactions made by the students. However, in 42.33% of interactions, the students did
not receive a response from the TOB-STT. This last result is disturbing, given that the
students failed to get the answers expected from the conversational agent, and the agent
failed to support in solving the activity. Furthermore, in 17.84% of the interactions, the
student received an incorrect response from the conversational agent, which indicates
that the agent is unable to understand the students’ interactions. In this case, the agent
offered an answer that may have confused and increased the difficulty of solving the
educational activity.

According to Hobert (2019), an important factor in successful learning by conversa-
tional agents is natural language understanding and response generation. In the case that
an agent cannot understand the student’s intent, it cannot generate the appropriate re-
sponses. Consequently, the students tend to reconsider using the conversational agent.

20

40

60

N
um

be
r o

f i
nt

er
ac

tio
ns

Fig. 4. Number of interactions made by the students.

L.N. Paschoal et al.116

The log analysis results suggest that the student’s performance in the activity may
have influenced the omission or inconsistency of the answers offered by the agent. As a
result, the agent failed in providing educational support to the student during software
testing educational activity. It is important to reiterate that they were instructed during
the experiment that the TOB-STT is an expert in software testing, so the students as-
sumed that the answers offered by the conversational agent were correct. That means
that the students may have harmed themselves while performing the activity by relying
on the responses provided by the conversational agent.

The last analysis on the usefulness of the responses generated by the TOB-STT cor-
responded to the classification of the incorrect answers into the classes partially related
and unrelated. According to Fig. 6, most of the incorrect responses from the TOB-STT
were about a different subject than the one requested by the learners in the interaction.

The analysis from the interactions points out that the TOB-STT has some diffi-
culties interacting with the student, failing to answer the student on the subject and
answering some questions incorrectly. That means that the conversational agent needs
improvement. One way to improve the conversational agent is to extend its knowledge

42 33%
39 74%

17 84%

50 00%

45 00%

40 00%

35 00%

30 00%

25 00%

20 00%

15 00%

10 00%

5 00%

0 00%
No answer Correct answer Incorrect answer

Pe
rc

en
t o

f i
nt

er
ac

tio
ns

Fig. 5. Proportion by type of answer classified.

18 02%

81 98%

0 00%

10 00%

20 00%

30 00%

40 00%

50 00%

60 00%

70 00%

80 00%

90 00%

Partially related Unrelated

Pe
rc

en
t o

f i
nc

or
re

ct
 a

ns
w

er

Fig. 6. Incorrect answers classification.

An Experimental Study on a Conversational Agent in Software Testing Lessons 117

base by creating new conversational pairs in the agent’s database (Sandoval, 2018).
Another way is to in spect the inference model used by the conversational agent during
the search for answers to interactions. This inspection should find if there are any prob-
lems in the pattern match ing algorithm implementation. The pattern matching algo-
rithm used in TOB-STT may contain defects. Even more drastically, a design technique
that performs natural language processing more accurately can be the solution for the
conversational agent to improve its interaction and increase the percentage of correct
answers (e.g., a model based on machine learning (Hiremath et al., 2018)).

8. Limitations of the Study

Although the study was conducted systematically, with planning and mitigation of
threats to validity, it has some limitations. The experimental group was comprised of
students from the same university who might have been less effective without the help
of the con versational agent. Since the study did not collect additional data for checking
this assump tion, the following research question remains open: “Would the efficacy
of the students who interacted with TOB-STT be lower than that with no support?”.
The experimental session was replicated at USP and revealed the agent was unable to
increase the efficacy of the results; however, the student’s preliminary knowledge was
not investigated, which may lead to the emergence of new theories.

A way to address those limitations would be to experiment with a different design.
Instead of dividing the students into groups (control and experimental) based on their
home institution, each course could be randomly divided – the groups would undertake
the educational activity with and without the conversational agent, respectively. How-
ever, the division would require different spaces (two computer labs at each university)
and at least one more professor for the activities. While one group would undertake the
activity with no conversational agent, the other would be in another laboratory partici-
pating with the support of the agent. Another alternative could be through a paireddesign
experimental (Wohlin et al., 2012).

9. Concluding Remarks

TOB-STT conversational agent was designed for supporting students who have no ac-
cess to professors. It was first described by the authors (Paschoal et al., 2019), who
evaluated the agent’s knowledge of the software testing domain. We believe that TOB-
STT can be introduced in a software testing MOOC; however, the efficacy of educa-
tional support of fered by TOB-STT has not been investigated. We conducted a study to
understand the impact of TOB-STT when it is used as a mechanism to support teaching
in a scenario where the student does not have the support of the professor. A controlled
experiment was planned and developed; some software testing students undertook an
educational activity supported by the TOB-STT, while others students performed the
same activity without it. The experimental sessions demonstrated the support offered

L.N. Paschoal et al.118

did not significantly impact the performance of the software testing activity. Based on
experimental results, we ana lyzed the interaction logs. We found that the TOB-STT
did not provide adequate responses to most students’ questions. We believe that the
efficacy was affected by the omission and inconsistency of the answers offered by the
conversational agent during the educational ac tivity. Improvements must be made on
the conversational agent before being incorporated into some software testing MOOC.
Among the possible improvements to be implemented in TOB-STT, we can highlight:
(i) extension of the conversational agent’s knowledge base; (ii) training the model
that represents knowledge with new examples of interactions; (iii) improve the design
technique that characterizes the linguistic treatments performed by the conversational
agent; among others.

Acknowledgments

The authors acknowledge CAPES – Financing Code 001, FAPESP (Process 2020/05191 2),
CNPq (Process 314174/2020-6 and Process 312922/2018-3), and PROPP/UFGD (Sig-
Proj protocol: 329332.1866.8276.06042019) for their financial support.

References

AbuShawar, B., Atwell, E. (2016). Usefulness, localizability, humanness, and language-benefit: additional
eval uation criteria for natural language dialogue systems. International Journal of Speech Technology,
19(2), 373–383.

ACM (2016). Curricula Recommendations. Accessed on January 10, 2021.
Aguirre, C.C., Kloos, C.D., Alario-Hoyos, C., Muñoz-Merino, P.J. (2018). Supporting a MOOC through a

con versational agent. Design of a first prototype. In: International Symposium on Computers in Education,
pp. 1–6.

Basili, V.R., Caldiera, G., Rombach, H.D. (1994). The goal question metric approach. In: Marciniak, J.J. (Ed.),
Encyclopedia of Software Engineering (Vol. 2) (1st ed.). John Wiley & Sons, Hoboken, New Jersey, pp.
528–232.

Benitti, F.B.V. (2018). A methodology to define learning objects granularity: a case study in software testing.
Informatics in Education, 17(1), 1–20.

de Jesus, G.M., Ferrari, F.C., Paschoal, L.N., de Souza, S.R.S., de Paula Porto, D., Durelli, V.H.S. (2020). Is It
Worth Using Gamification on Software Testing Education? An Extended Experience Report in the Context
of Undergraduate Students. Journal of Software Engineering, 6, 1–19.

Dias-Neto, A.C., Matalonga, S., Solari, M., Robiolo, G., Travassos, G.H. (2017). Toward the characterization
of software testing practices in South America: looking at Brazil and Uruguay. Software Quality Journal,
25(4), 1145–1183.

Enoiu, E.P. (2019). Teaching software testing to industrial practitioners using distance and Web-based learn-
ing. In: International Workshop on Frontiers in Software Engineering Education, pp. 73–87. Springer.

Fassbinder, A.G.O., Fassbinder, M., Barbosa, E.F., Magoulas, G.D. (2017). Massive open online courses in
software engineering education. In: IEEE Frontiers in Education Conference, pp. 1–9.

Fraser, G., Gambi, A., Rojas, J.M. (2018). A preliminary report on gamifying a software testing course with the
code defenders testing game. In: European Conference of Software Engineering Education, pp. 50–54.

Garousi, V., Zhi, J. (2013). A survey of software testing practices in Canada. Journal of Systems and Software,
86(5), 1354–1376.

Herpich, F., Nunes, F.B., Voss, G.B., Medina, R.D. (2016). Three-dimensional virtual environment and npc:
a perspective about intelligent agents ubiquitous. In: Handbook of Research on 3-D Virtual Environments
and Hypermedia for Ubiquitous Learning. IGI Global, ???, pp. 510–536.

An Experimental Study on a Conversational Agent in Software Testing Lessons 119

Hiremath, G., Hajare, A., Bhosale, P., Nanaware, R., Wagh, K. (2018). Chatbot for education system. Interna-
tional Journal of Advance Research, Ideas and Innovations in Technology, 4(3), 37–43.

Hobert, S. (2019). How are you, chatbot? Evaluating chatbots in educational settings. Lecture Notes in Infor-
matics, 17, 259–270.

IEEE (2013). Computing Curriculum Efforts. Accessed on January 10, 201.
Katchapakirin, K., Anutariya, C. (2018). An architectural design of scratchthai: A conversational agent for

com putational thinking development using scratch. In: International Conference on Advances in Informa-
tion Technology, pp. 1–7.

Lemos, O.A.L., Silveira, F.F., Ferrari, F.C., Garcia, A. (2017). The impact of Software Testing education on
code reliability: An empirical assessment. Journal of Systems and Software.

Leonhardt, M.D., Tarouco, L., Vicari, R.M., Santos, E.R., da Silva, M.S. (2007). Using chatbots for network
management training through problem-based oriented education. In: IEEE International Conference on
Ad vanced Learning Technologies, pp. 845–847.

Lewis, J.R. (2018). The system usability scale: past, present, and future. International Journal of Human–
Computer Interaction, 34(7), 577–590.

Melo, S.M., Moreira, V.X.S., Paschoal, L.N., Souza, S.R.S. (2020). Testing Education: A Survey on a Global
Scale. In: Brazilian Symposium on Software Engineering, pp. 554–563.

Mikic-Fonte, F.A., Llamas-Nistal, M., Caeiro-Rodríguez, M. (2018). Using a Chatterbot as a FAQ Assistant in
a Course about Computers Architecture. In: IEEE Frontiers in Education Conference, pp. 1–4.

Mittal, A., Vigentini, L., Djatmiko, M., Prusty, G., Sharma, Y., King, M.E. (2018). Mooc-o-bot: using cogni-
tive technologies to extend knowledge support in moocs. In: IEEE International Conference on Teaching,
Assessment, and Learning for Engineering, pp. 69–76.

Molnár, G., Szüts, Z. (2018). The role of chatbots in formal education. In: 2018 IEEE 16th International Sym-
posium on Intelligent Systems and Informatics (SISY), pp. 000197–000202.
https://doi.org/10.1109/SISY.2018.8524609

Montenegro, J.L.Z., Costa, C.A., Righi, R.R. (2019). Survey of conversational agents in health. Expert Sys-
tems with Applications, 129, 56–67.

Myers, G.J., Sandler, C., Badgett, T. (2011). The Art of Software Testing. John Wiley & Sons, ???.
Ng, S., Murnane, T., Reed, K., Grant, D., Chen, T.Y. (2004). A preliminary survey on software testing practices

in Australia. In: Australian Software Engineering Conference, pp. 116–125. IEEE.
Ocaña, J.M., Morales-Urrutia, E.K., Pérez-Marín, D., Tamayo-Moreno, S. (2019). How to Create a Pedagogic

Conversational Agent for Teaching Computer Science. In: Advanced Online Education and Training Tech-
nologies. IGI Global, ???, pp. 114–134.

Paschoal, L.N., Souza, S.R.S. (2018). A survey on software testing education in brazil. In: Brazilian Sympo-
sium on Software Quality, pp. 334–343.

Paschoal, L.N., Oliveira, M.M., Chicon, P.M.M. (2018). A chatterbot sensitive to student’s context to help on
software engineering education. In: XLIV Latin American Computer Conference, pp. 839–848. IEEE.

Paschoal, L.N., Turci, L.F., Conte, T.U., Souza, S.R.S. (2019). Towards a Conversational Agent to Support the
Software Testing Education. In: Brazilian Symposium on Software Engineering, pp. 57–66.

Paschoal, L.N., Oliveira, M.M., Melo, S.M., Barbosa, E.F., Souza, S.R.S. (2020). Evaluating the impact of
Soft ware Testing Education through the Flipped Classroom Model in deriving Test Requirements. In: Bra-
zilian Symposium on Software Engineering, pp. 570–579.

Prates, J.M., Garcia, R.E., Maldonado, J.C. (2018). MOOCs on the Context of Software Engineering Teaching
and Training: Trends and Challenges. In: IEEE Frontiers in Education Conference, pp. 1–9.

Quiroga Perez, J., Daradoumis, T., Puig, J. (2020). Rediscovering the use of chatbots in education: A system-
atic literature review. Computer Applications in Engineering Education, 28.
https://doi.org/10.1002/cae.22326

Sandoval, Z.V. (2018). Design and Implementation of a Chatbot in Online Higher Education Settings. Issues
in Information Systems, 19(4), 44–52.

Tan, G. (2016). A Collection of Well-Known Software Failures.
http://www.cse.psu.edu/gxt29/bug/softwarebug.html

Wallace, R.S. (2009). The anatomy of ALICE. In: Parsing the Turing Test. Springer, ???, pp. 181–210.
Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A. (2012). Experimentation in Software

Engineering. Springer Publishing Company, Incorporated, ???.
Zhivich, M., Cunningham, R.K. (2009). The real cost of software errors. IEEE Security Privacy, 7(2), 87–90.

L.N. Paschoal et al.120

L.N. Paschoal received a bachelor’s degree in computer science from the University
of Cruz Alta (UNICRUZ) in 2017 and a master’s degree in computer science and com-
putational mathematics from the University of São Paulo (USP) in 2019, where he is
currently pursuing the Ph.D. degree in computer science and computational mathemat-
ics with ICMC. His current research topics include conversational systems, software
engineering education, and software testing education.

S.M. Melo is an Assistant Professor at the Faculty of Exact Sciences and Technology
(FACET) Federal University of Grande Dourados (UFGD). She holds a Ph.D. degree
in Computer Science and Computational Mathematics from the Institute of Mathemat-
ics and Computer Science (ICMC) University of São Paulo (USP), received in 2018.
Her research interests focus on computing education, software testing, and experimental
software engineering.

V.O. Neves received a Ph.D. in computer science from the University of São Paulo
(USP), Brazil, in 2015. She is an Assistant Professor at the Institute of Computing of
Fluminense Federal University (UFF). Her research focuses on testing complex systems,
including robotic systems, system-of-systems, and microservices.

T.U. Conte received a Ph.D. in software engineering from the Federal University of Rio
de Janeiro (UFRJ) in 2009. She is an Associate Professor with the Institute of Computing
(IComp), Federal University of Amazonas (UFAM). Her research interests include the
intersection between software engineering and human–computer interaction, software
quality, human-centred computing, and empirical software engineering.

S.R.S de Souza received a joint M.Sc. and Ph.D. in computer science from the Uni-
versity of São Paulo (USP), Brazil, in 1996 and 2000, respectively. From 2010 to 2011,
she was a Visiting Scientist with the University of Southampton, U.K. She has been an
Associate Professor of software engineering with the Institute of Mathematics and Com-
puter Science (ICMC), University of São Paulo (USP), since 2005. In the past, she was a
Lecturer with the Department of Informatics, State University of Ponta Grossa (UEPG),
Parana, Brazil, from 1991 to 2005. She researches software testing, software engineer-
ing experimentation, and software testing education.

