
Informatics in Education, 2023, Vol. 22, No. 1, 1–19
© 2023 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2023.05

1

Identifying Plagiarised Programming Assignments
with Detection Tool Consensus

Hayden CHEERS1, Yuqing LIN1,2, Weigen YAN2,*

1The University of Newcastle, Callaghan, NSW 2308, Australia
2Jimei University, Fujian, China
e-mail: hayden.cheers@newcastle.edu.au, yuqing.lin@newcastle.edu.au, weigenyan@263.net

Received: December 2021

Abstract. Source code plagiarism is a common occurrence in undergraduate computer science ed-
ucation. Many source code plagiarism detection tools have been proposed to ad dress this problem.
However, most of these tools only measure the similarity between assignment submissions, and do
not actually identify which are suspicious of plagia rism. This work presents a semi-automatic ap-
proach that enables the indication of suspicious assignment submissions by analysing source code
similarity scores among the submissions. The proposed approach seeks the consensus of multiple
source code plagiarism detection tools in order to identify program pairs that are consistently
evaluated with high similarity. A case study is presented to demonstrate the use of the proposed
approach. The results of this case study indicate that it can accurately identify assignment submis-
sions that are suspicious of plagiarism.

Keywords: source code plagiarism detection, behavioural similarity, source code similarity.

1. Introduction

Source code plagiarism is a common occurrence in undergraduate computer sci ence
courses. Prior studies have indicated between 50% to 79% of undergraduate students
will plagiarise at least once during their studies (Curtis and Popal, 2011; Pierce and
Zilles, 2017; Sraka and Kaucic, 2009; Yeo, 2007). With the recent impact of the COVID-
19 pandemic, there have also been some reports of an increased preva lence of under-
graduate plagiarism, especially in computer science courses. For example, the Austra-
lian Broadcasting Corporation reported in late 2020 that an entire class in a computer
science course at the Australian National University was to be penalised 30% of their
course mark due to a widespread suspicion of contract cheating (Evans, 2020), while
(Lancaster and Codrin, 2021) also reported an increased use of the homework help web-
site Chegg, that can be used by students to obtain help with or purchase answers to

* The author is supported by NSFC Grant 12071180

H. Cheers, Y. Lin, W. Yan2

assignment questions. Whether or not such cases are representative of a widespread
increase in plagiarism, plagiarism is a form of academic misconduct, and as such, cases
of plagiarism in academic environments need to be identified and addressed no matter
the perceived occurrence.

When an academic is marking programming assignments, source code plagiarism
can typically be suspected when work submitted for one assignment shares a large sub-
set of source code with another (Cosma and Joy, 2008) (e.g. via copy and paste), or
when one submission is copy or very similar of another (Parker and Hamblen, 1989). In
addition to examine all submissions for an assignment, very often, we have to consider
identifying cases of source code plagiarism that are sourced from external sources (e.g.
students in previous course offerings or from sources on the web). For example, many
students can be seen to have archived their works on the public web in version control
websites such as GitHub. This has led to a large search space for detecting source code
plagiarism, overall making the detection of plagiarism a continually difficult and time-
consuming process.

To aid in the identification of source code plagiarism, many automated Source Code
Plagiarism Detection Tools (SCPDTs) (Martins et al., 2014; Novak et al., 2019) have
been proposed, also being referred to as source code similarity detec tion/measurement
tools (Joy and Luck, 1999) or software/code plagiarism detection tools (Roy et al.,
2009; Ragkhitwetsagul et al., 2016; Ragkhitwetsagul et al., 2018). Such tools evaluate
the similarity scores of pairs of assignment submissions in a data set. This score com-
monly indicates what percentage of one submission can be found in another. A high
similarity score indicates that two submissions share a large portion of code which are
similar, and is considered suspicious of plagiarism. A mid-range score can imply that
students might have colluded on an assignment (a form of academic misconduct) or
simply be a result of students completing an assignment with similar application de-
signs (e.g. as influenced by course work). A low score generally means the submissions
are dis-similar.

Contrary to their name, SCPDTs do not detect plagiarism. SCPDTs can only be con-
sidered to identify indications of plagiarism (Joy and Luck, 1999). These indica tions are
represented through the similarity scores of the submissions, which are used by a human
reviewer to judge whether plagiarism has occurred. While the reported similarity scores
support the detection of plagiarism, there are no clear and unambigu ous criteria to de-
termine plagiarism based on the similarity scores. Consequently, a reviewer is required
to manually inspect submission pairs with subjectively high sim ilarity scores. This is a
largely unassisted process, where the reviewer must use their own academic judgement
to determine if any submissions are suspicious of plagiarism.

In an ideal scenario, there will be a clear distinction between the similarity scores of
program pairs that are plagiarised, and those that are not plagiarised. For ex ample, pla-
giarised pairs would always be reported as (or near) 100% similar, while innocent pairs
will be reported with a low similarity (e.g. less than 20%). Hence, a human reviewer
could then easily examine the obvious high-valued scores, and sep arate them from the
low-valued scores. However, students are known to hide their plagiarism by modifying
the source code of a program (Faidhi and Robinson, 1987; Joy and Luck, 1999; Cosma

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 3

and Joy, 2012; Cheers et al., 2020). Such plagiarism-hiding source code modifications
are applied in an attempt to reduce the evaluated similarity of the plagiarised work, and
hence it is common to see similarity scores of plagiarised programs that are considerably
lower than 100%. When reviewing assign ments and their similarity scores, it can then
become difficult to identify program pairs that are suspicious of plagiarism. This then
ultimately increases the workload of an academic.

In order to address this issue, this work proposes a semi-automated approach for in-
dicating program pairs that are suspicious of plagiarism based on their similarity scores.
The approach is based on the observation that an individual SCPDT provides its own per-
spective of whether plagiarism is present between a program pair based on if it evaluates
a high similarity score, relative to any other program pairs in a data set. This perspective
is a result of how a SCPDT evaluates the similarity of program pairs, and this can result
in different SCPDTs providing different indications of whether plagiarism is present
(Ahadi and Mathieson, 2019). The perspective of one SCPDT can never be correct or
incorrect by itself without further investigation. Hence, in order to gain confidence of a
SCPDT is indeed providing an indication of plagiarism, the perspective of not one but
multiple SCPDTs are combined to find consensus in indicating cases of plagiarism. By
combining the results of multiple SCPDTs and finding consensus amongst their indica-
tions of plagiarism, a semi-automated method of detecting plagiarism can be afforded.
This approach is then intended to support a human reviewer in efficiently analysing the
results of a SCPDT for indications of plagiarism, and to subsequently aid in the overall
detection of plagiarism.

The remainder of this work is structured as followed. Section 2 presents background
on methods of measuring source code similarity, commonly available SCPDTs and com-
monly used methods of identifying suspicious similarity scores. Section 3 describes the
proposed consensus-based approach for the indication program pairs that are sus picious
of plagiarism. Section 4 presents a case study detailing the use of the proposed approach.
And finally, Section 5 discusses the results of the case study and using the proposed ap-
proach, and concludes this work.

2. Background

2.1. Types of Similarity

As stated, SCPDTs measure source code similarity. However, source code has intrinsic
qualities that can be measured for similarity, and this has resulted in many different
methods of measuring source code similarity. For the purpose of this work, methods of
measuring source code similarity are generalised as being either: structural, semantic or
behavioural. Each of which can be measured and compared to provide a perspective of
how two pieces of source code are similar.

Structural similarity represents how similar the composition two source code files
are by measuring their internal structures. In its most basic form, structural similarity

H. Cheers, Y. Lin, W. Yan4

can be measured with textual strings. This is by applying techniques such as string edit
distance or string alignment to measure the similarity of source code (Joy and Luck,
1999; Pike, n.d.; Gitchell and Tran, 1999; Rani and Singh, 2018). However, it is more
common to see structural similarity measured with the com parison of lexical token
sequences, representing the structure of the source code in terms of important lexical
elements. Subsequently, structural similarity can be measured with token edit distance
or tiling-based approaches (Joy and Luck, 1999; Prechelt and Malpohl, 2003; Schleim-
er et al., 2003; Schleimer, Wilkerson, and Aiken, Ahtiainen et al., 2006; Grune and
Huntjens, 1989; Anzai and Watanobe, 2019). Other approaches measure the structural
similarity of parse trees or abstract syntax trees, representing the source code within
the grammar of a programming language (Li and Zhong, 2010; Zhao et al., 2015; Fu
et al., 2017).

Semantic similarity represents the similarity in the meaning of source code. This
is through semantic analysis, that analyses source code to extract infor mation not ex-
pressed through the grammar of a programming language. Seman tic approaches typi-
cally analyse a program through program dependence graphs (Ferrante et al., 1987).
The program dependence graph identifies the relations be tween terms within a proce-
dure or method. Subsequently, the similarity of these graphs can be calculated (e.g.
with graph edit distance or sub-graph embed ding (Liu et al., 2006) Liu, Chen, Han,
and Yu, Chen et al., 2010; Chae et al., 2013)) to identify similar source code. Other
semantic methods include applying latent seman tic analysis to identify similarly refer-
enced terms (Cosma and Joy, 2012) or identifying similar call graph structures (Prado
et al., 2018).

Behavioural similarity (also known as dynamic analysis) identifies similar run time
behaviours of source codes. There are a diverse range of techniques applied to iden-
tify behavioural similarity. This can be by analysing the functional equiv alence of a
program (Li et al., 2016; Bertran et al., 2005), the use of data at run time (Jhi et al.,
2011), identifying similar interactions with the execution environ ment (Anjali et al.,
2015), or identifying similar program logic (Zhang et al., 2014; Luo et al., 2017). Such
approaches are based on the assumption that the behaviour of a program expressed
through source code is a uniquely identifying feature, and that similar behaviours indi-
cate similar fragments of source code.

2.2. Source Code Plagiarism Detection Tools

There are many SCPDTs proposed to aid in the identification of source code plagia rism
(Joy and Luck, 1999; Martins et al., 2014; Novak et al., 2019). Most SCPDTs follow the
same basic principle of identifying indications of plagiarism by evaluat ing the similarity
of two assignment submissions. This may be on a file-wise basis (where a tool reports
similarity of all file pairs between two submissions), and/or on a submission-wise basis
(where a tool reports the similarity of two individual assignment submissions).

A recent survey by (Novak et al., 2019) indicated that there have been at least 170
SCPDTs proposed in recent years. However, despite the large number of proposed tools,

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 5

the overwhelming majority are not made available for reuse after publication (Cheers
et al., 2020; Novak et al., 2019). Subsequently, there exist six commonly used SCPDTs
referenced in academic works:

MOSS (Schleimer ● et al., 2003; Schleimer, Wilkerson, and Aiken).
JPlag (Prechelt and Malpohl, 2003). ●
Plaggie (Ahtiainen ● et al., 2006).
Sim (Grune and Huntjens, 1989). ●
Sherlock-W (Joy and Luck, 1999). ●
Sherlock-S (Pike, n.d.). ●

MOSS (Schleimer et al., 2003; Schleimer, Wilkerson, and Aiken) evaluates
source code similarity using a winnowing-based document fingerprinting algorithm.
First, documents are pre-processed to remove irrelevant details (e.g. whitespace and
format ting). Second, documents are divided into k-grams (continuous sub-strings of
length k) which are then hashed. A sliding window is then used to identify a sub-
set of hashes which form a fingerprint of the document. Similar documents are then
found by com paring these fingerprints, with similar documents containing an overlap
of fingerprints.

JPlag (Prechelt and Malpohl, 2003) operates by applying a token tiling algorithm
to cover one source code file with tokens extracted from another. If two source files
have a large degree of coverage, they can be considered similar and hence suspicious
of plagiarism. First, source code files are converted into a stream of lexical tokens.
Second, the extracted tokens are compared between files to determine similarity by
the Running-Karp-Rabin greedy string tiling algorithm (Karp and Rabin, 1987) where
tokens from one file are covered over another within a tolerance of mis-match. Program
similarity is evaluated as the percentage of tokens from one program which can be tiled
over another.

Plaggie (Ahtiainen et al., 2006) is a tool that is claimed to operate similarly to JPlag.
However, it is an entirely local application, compared to JPlag which was orig inally
provided as a web service. No known publication describes the operation of Plaggie.
However from examining the implementation of Plaggie, it operates upon tokenised
representations of source code evaluating similarity with token tiling.

Sim (Grune and Huntjens, 1989) analyses programs for structural similarity through
the use of string alignment. For two programs, Sim will firstly parse the source code cre-
ating a parse tree. The tool will then represent the parse trees as strings and align them by
inserting spaces to obtain a maximal common sub-sequence of their contained tokens.
The similarity of programs is then evaluated as the quantity of matches.

Sherlock-W (Joy and Luck, 1999) implements both text and tokenised comparison
methods. In the tool, a pair of programs are compared for similarity five times: in their
original form, with whitespace removed, with comments removed, with whitespace and
comments removed, and as a tokenised source file. In all cases, the comparisons measure
similarity through the identification of common runs. A run is a sequence of lines shared
between two files.

Sherlock-S (Pike, n.d.) analyses programs by extracting digital signatures. Digital
signatures of source code are generated by hashing string token sequences extracted

H. Cheers, Y. Lin, W. Yan6

from text files. The digital signatures are then compared, with the similarity of files be-
ing evaluated as the number of digital signatures in common.

These six common tools measure the structural similarity of source code. Unfor-
tunately, there are few known or available approaches that measure the semantic or
behavioural similarity of source code for source code plagiarism detection. One seman-
tics-based approach is Plagate (Cosma and Joy, 2012). Plagate applies latent semantic
analysis to match source code documents with similar terms, and allows for identifying
similar documents with similar terms used in similar manners. While Cheers, Lin and
Smith (Cheers et al., 2021b) utilised a Program Dependence Graph-based tool to evalu-
ate semantic similarity for plagiarism detection. This tool is referred to as ‘Graph ED‘,
and measures similarity by identifying similar relations between terms in source code.
BPlag (Cheers et al., 2021a) is a recently proposed behavioural SCPDT that analyses
the behavioural similarity of programs by identifying common execution behaviours
through a process based on symbolic execution.

2.3. Identifying Suspicious Similarity Scores

As existing SCPDTs do not indicate suspicious similarity scores, prior works that evalu-
ate SCPDTs often use fixed score cut-off values to identify suspicious similarity scores
used to indicate the presence of plagiarism (Novak et al., 2019). For example, prior
works have used two common types of cut-offs: scores above a threshold of %, or the
top  ranked scores in a data set (Allyson et al., 2019; Cosma and Joy, 2012; Durić and
Gašević, 2013; Ragkhitwetsagul et al., 2018; Zheng et al., 2018).

When applying score cut-offs, often a single % threshold or top  value is used to
identify suspicious scores. Prechelt and Malpohl (Prechelt and Malpohl, 2003) applied
a threshold of 50% to identify suspicious scores reported by JPlag. Similarly, Ramirez-
de-la Cruz et al. (Ramírez-de-la Cruz et al., 2014) applied a threshold value of 50% to
identify plagiarised scores. Cosma and Joy (Cosma and Joy, 2012) evaluated their tool,
Plagate, against JPlag and Sherlock-W on four data sets of assignment submissions.
In this evaluation, different threshold or cut-off values were utilised for each tool and
evaluation data set. Cosma and Joy utilised score thresholds between 70% and 80% with
Plagate, and 54.8% and 100% for JPlag; as well as applied a cut-off to the top  scores
from Sherlock-W, with  values between 20 and 50. Burrows et al. (Burrows et al.,
2007) utilised a threshold value of 30% for use with JPlag, that was justified by know-
ing in advance the lowest similarity score in a data set. Zheng et al. (Zheng et al., 2018)
analysed the top ten results in evaluating their tool CodEX.

There also exist works that apply a sliding window of cut-offs to identify an op timal
value. Allyson et al. (Allyson et al., 2019) evaluated their tool, Sherlock N-Overlap,
against Sherlock-S, JPlag, Sim and MOSS on 10 code samples. Utilising threshold val-
ues 10%, 20%, .., 90%; Allyson et al. identified optimal threshold ranges between 40% to
70% for Sim, 10% to 70% for MOSS, and 30% to 70% for JPlag. Sim ilarly, Duric (Durić
and Gašević, 2013) evaluated their tool, SCSDS, against JPlag with cut-off thresholds
between 10% and 90% (at 5% steps). Subsequently, they identified SCDSD had optimal

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 7

accuracy between thresholds of 35% to 50%, while JPlag had high accuracy between
thresholds of 30% to 60%. Ragkhitwetsagul et al. (Ragkhitwetsagul et al., 2018) applied
threshold values of 19% for JPlag, 19% for Plag gie, 6% for Sherlock-S, and 16% for
Sim in an evaluation of source code similarity. These values were identified in advance
to produce the best possible results on their evaluation data sets.

The problem with these approaches is that, as the SCPDTs do not indicate what
scores are suspicious, different cut-off values need to be identified ahead-of-time. This
then results in a wide range of selected cut-off values being used for different SCPDTs
and data sets. In experimental scenarios with pre-assessed evaluation data sets, an op-
timal  or  value can be identified ahead of time to identify known suspicious scores.
However, in a real world scenario, a reviewer using a SCPDT will not know in advance
what submissions are suspicious, or how similar any suspicious submissions will be in
terms of similarity score. It also needs to be considered that there is great variability in
the scores reported by individual SCPDTs for the same data set. Fig. 1 exemplifies this
on a set of undergraduate assignment submissions. Sherlock-S (Fig. 1b) reports con-
siderably lower-valued similarity scores than evaluated by JPlag (Fig. 1a). However,
within the scores reported by both tools, two outliers can be identified: scores above
60% for JPlag, and scores above 30% for Sherlock-S. In both cases, the scores are
clearly outliers in the data sets, and hence should be considered suspicious of plagia-
rism. This great variability results in a large range of threshold or top  cut-offs applied
in prior studies. For example, consider the range of thresholds utilised for JPlag, that
range between 19% (Ragkhitwetsagul et al., 2018) and 100% (Cosma and Joy, 2012).
It is unlikely a human reviewer would consider the lower end of the range (i.e. 19%) as
being suspicious of plagiarism and use that value in a real world evaluation. It is also
difficult to conceive such values being re-applied between different data sets from dif-
ferent groups of students. For example, considering a first year introductory program-
ming course at a university where the programs developed by students are simple and
often developed by re-imagining some existing samples provided in the course. The
similarity between such submissions is very likely to be higher than the similarity be-
tween assignment submissions of a third year programming course where students have
much broader skill sets. Hence, pre-defined cut-off values alone are not appropriate to
be used outside of experimental settings.

0 20 40 60 80 100
0

10

20

30

Similarity (%)

S
co

re
C

o
u
n
t

(a) Scores evaluated with JPlag.

0 20 40 60 80 100
0

10

20

30

Similarity (%)

S
co

re
C

o
u
n
t

(b) Scores evaluated with Sherlock-S.

Figure 1.: An example of variability in similarity score distribution for a single data
set when evaluated with different SCPDTs. JPlag (left) places most scores in the 20%
to 50% range, with outliers at approx. 70% and 80%. Sherlock-S (right) places most
scores below 20%, with 2 outliers above 30%.

de-la Cruz et al. [Ramı́rez-de-la Cruz et al.(2014)] applied a threshold value of 50% to
identify plagiarised scores. Cosma and Joy [Cosma and Joy(2012)] evaluated their tool,
Plagate, against JPlag and Sherlock-W on four data sets of assignment submissions.
In this evaluation, different threshold or cut-off values were utilised for each tool
and evaluation data set. Cosma and Joy utilised score thresholds between 70% and
80% with Plagate, and 54.8% and 100% for JPlag; as well as applied a cut-off to
the top r scores from Sherlock-W, with r values between 20 and 50. Burrows et al.
[Burrows et al.(2007)] utilised a threshold value of 30% for use with JPlag, that was
justified by knowing in advance the lowest similarity score in a data set. Zheng et al.
[Zheng et al.(2018)] analysed the top ten results in evaluating their tool CodEX.
There also exist works that apply a sliding window of cut-offs to identify an op-

timal value. Allyson et al. [Allyson et al.(2019)] evaluated their tool, Sherlock N-
Overlap, against Sherlock-S, JPlag, Sim and MOSS on 10 code samples. Utilising
threshold values 10%, 20%, .., 90%; Allyson et al. identified optimal threshold ranges
between 40% to 70% for Sim, 10% to 70% for MOSS, and 30% to 70% for JPlag. Sim-
ilarly, Duric [Durić and Gašević(2013)] evaluated their tool, SCSDS, against JPlag
with cut-off thresholds between 10% and 90% (at 5% steps). Subsequently, they
identified SCDSD had optimal accuracy between thresholds of 35% to 50%, while
JPlag had high accuracy between thresholds of 30% to 60%. Ragkhitwetsagul et al.
[Ragkhitwetsagul et al.(2018)] applied threshold values of 19% for JPlag, 19% for Plag-
gie, 6% for Sherlock-S, and 16% for Sim in an evaluation of source code similarity.
These values were identified in advance to produce the best possible results on their
evaluation data sets.
The problem with these approaches is that, as the SCPDTs do not indicate what

scores are suspicious, different cut-off values need to be identified ahead-of-time. This
then results in a wide range of selected cut-off values being used for different SCPDTs
and data sets. In experimental scenarios with pre-assessed evaluation data sets, an
optimal x or r value can be identified ahead of time to identify known suspicious scores.
However, in a real world scenario, a reviewer using a SCPDT will not know in advance
what submissions are suspicious, or how similar any suspicious submissions will be in
terms of similarity score. It also needs to be considered that there is great variability
in the scores reported by individual SCPDTs for the same data set. Fig. 1 exemplifies
this on a set of undergraduate assignment submissions. Sherlock-S (Fig. 1b) reports
considerably lower-valued similarity scores than evaluated by JPlag (Fig. 1a). However,
within the scores reported by both tools, two outliers can be identified: scores above

6

0 20 40 60 80 100
0

10

20

30

Similarity (%)

S
co

re
C

o
u
n
t

(a) Scores evaluated with JPlag.

0 20 40 60 80 100
0

10

20

30

Similarity (%)

S
co

re
C

o
u
n
t

(b) Scores evaluated with Sherlock-S.

Figure 1.: An example of variability in similarity score distribution for a single data
set when evaluated with different SCPDTs. JPlag (left) places most scores in the 20%
to 50% range, with outliers at approx. 70% and 80%. Sherlock-S (right) places most
scores below 20%, with 2 outliers above 30%.

de-la Cruz et al. [Ramı́rez-de-la Cruz et al.(2014)] applied a threshold value of 50% to
identify plagiarised scores. Cosma and Joy [Cosma and Joy(2012)] evaluated their tool,
Plagate, against JPlag and Sherlock-W on four data sets of assignment submissions.
In this evaluation, different threshold or cut-off values were utilised for each tool
and evaluation data set. Cosma and Joy utilised score thresholds between 70% and
80% with Plagate, and 54.8% and 100% for JPlag; as well as applied a cut-off to
the top r scores from Sherlock-W, with r values between 20 and 50. Burrows et al.
[Burrows et al.(2007)] utilised a threshold value of 30% for use with JPlag, that was
justified by knowing in advance the lowest similarity score in a data set. Zheng et al.
[Zheng et al.(2018)] analysed the top ten results in evaluating their tool CodEX.
There also exist works that apply a sliding window of cut-offs to identify an op-

timal value. Allyson et al. [Allyson et al.(2019)] evaluated their tool, Sherlock N-
Overlap, against Sherlock-S, JPlag, Sim and MOSS on 10 code samples. Utilising
threshold values 10%, 20%, .., 90%; Allyson et al. identified optimal threshold ranges
between 40% to 70% for Sim, 10% to 70% for MOSS, and 30% to 70% for JPlag. Sim-
ilarly, Duric [Durić and Gašević(2013)] evaluated their tool, SCSDS, against JPlag
with cut-off thresholds between 10% and 90% (at 5% steps). Subsequently, they
identified SCDSD had optimal accuracy between thresholds of 35% to 50%, while
JPlag had high accuracy between thresholds of 30% to 60%. Ragkhitwetsagul et al.
[Ragkhitwetsagul et al.(2018)] applied threshold values of 19% for JPlag, 19% for Plag-
gie, 6% for Sherlock-S, and 16% for Sim in an evaluation of source code similarity.
These values were identified in advance to produce the best possible results on their
evaluation data sets.
The problem with these approaches is that, as the SCPDTs do not indicate what

scores are suspicious, different cut-off values need to be identified ahead-of-time. This
then results in a wide range of selected cut-off values being used for different SCPDTs
and data sets. In experimental scenarios with pre-assessed evaluation data sets, an
optimal x or r value can be identified ahead of time to identify known suspicious scores.
However, in a real world scenario, a reviewer using a SCPDT will not know in advance
what submissions are suspicious, or how similar any suspicious submissions will be in
terms of similarity score. It also needs to be considered that there is great variability
in the scores reported by individual SCPDTs for the same data set. Fig. 1 exemplifies
this on a set of undergraduate assignment submissions. Sherlock-S (Fig. 1b) reports
considerably lower-valued similarity scores than evaluated by JPlag (Fig. 1a). However,
within the scores reported by both tools, two outliers can be identified: scores above

6

Similarity (%) Similarity (%)
(a) Scores evaluated with JPlag (b) Scores evaluated with Sherlock-S

Fig. 1. An example of variability in similarity score distribution for a single data set when
evaluated with different SCPDTs. JPlag (left) places most scores in the 20% to 50% range,
with outliers at approx. 70% and 80%. Sherlock-S (right) places most scores below 20%,
with 2 outliers above 30%.

H. Cheers, Y. Lin, W. Yan8

3. Proposed Approach

The proposed approach is underpinned by considering source code similarity to be a
milti-dimensional value. Source code can be compared with different methods measur-
ing different types of similarity, then a combined multi-dimensional representation of
similarity can be derived. Each individual type of similarity (structural, semantic and
behavioural) is considered an axis of similarity, each being referred to as an ‘aspect of
similarity’. The similarity of two programs is then considered to be a value that encom-
passes these aspects, to express a more inclusive and broader interpretation of similarity.
Fig. 2 provides a graphical overview of how two programs can be considered similar
using these three aspects. The approach uses this interpretation of similarity to analyse
the results of different SCPDTs in order to indicate program pairs that are suspicious of
plagiarism. It achieves this by identifying consensus amongst the tools for program pairs
that are consistently measured with high similarity values in all aspects.

To derive consensus amongst the SCPDTs for what program pairs appear suspicious
of plagiarism, the approach first needs to determine what are high similarity scores. As
mentioned, there are no unambiguous criteria for what is a high similarity score. Hence,
a limiting criteria must be applied. For the purpose of this work, the threshold % and
top  cut offs are used. Following the identification of high similarity scores, consensus
is identified as an intersection of the highest limited similarity scores reported by the
SCPDTs. Two different intersections are used as part of this approach, each of which
provides a different level of confidence in the scores they suggest. The first consensus
criterion is referred to as the ‘High Confidence’ consensus criterion. It is identified as
the intersection of scores reported by all three SCPDTs, calculated as  ∩  ∩  (or
shorthand ∩3). This criterion requires that for a similarity score to be considered suspi-
cious, it must be within the highest scores reported by each SCPDT. This ensures that all
indicated program pairs are: highly structurally similar, highly semantically similar, and
highly behaviourally similar. The second consensus criteria is referred to as the ‘Broad’
consensus criteria. It is defined as the intersection of scores as reported by any two
SCPDTs, calculated as ( ∩ B) ⋃ ( ∩ ) ⋃ ( ∩ ) (or shorthand ∩2). This allows

���������

�����������������

���������

Fig. 2. The three aspects of source code similarity.

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 9

for identifying cases when a program has plagiarism-hiding source code modifications
applied. However, this also has the potential for false positives. Hence, the term ‘Broad’
is used to describe this criterion. When both a score cut-off and consensus criteria are
applied, it allows for a sub-set of similarity scores that consistently score highly to be
identified for investigation.

The two consensus criteria have different purposes in what type of plagiarised pro-
gram pairs are detected. The high confidence criterion is intended to identify the simplest
verbatim or copy-and-paste cases of plagiarism. This is where there are few plagiarism-
hiding modifications applied to the source code, and hence, the plagiarised programs are
almost identical to their sources. This criterion will then indicate program pairs that are
highly similar, and as such, have a high chance on being plagiarised. However, when
plagiarism-hiding modifications are applied, it is expected that this criterion may miss
plagiarised program pairs due to decreases in the measurement of similarity by the indi-
vidual SCPDTs. To accommodate for this, the broad consensus criterion does not provide
the same level of confidence of the high conference criterion that indicated program pairs
are plagiarised. This is as any indicated pairs may be coincidentally similar, and therefore
require further investigation before cases of pla giarism can be determined. In such cases,
the individual similarity values need to be considered. For example, when the structure
of the source code is pervasively trans formed (e.g. by shuffling method declarations
and statements), but the semantics and behaviour of the program remain relatively un-
changed from its source. Such a case would be detected as having a high behavioural and
semantic similarity, but mid or possibly low structural similarity (Cheers et al., 2020).

The result of using this approach is that a subset of the program pairs selected using
the applied cut-off will be indicated as being suspicious of plagiarism. Hence, by finding
consensus amongst different SCPDTs, a semi-automatic method of indicat ing suspicious
similarity scores is provided. This is an improvement over the current static cut-offs as
it allows for suggesting out of a subset of scores, those that appear to be most suspicious
without inaccuracies caused by limiting analysis to only a single tool. However, this
approach is also expected to allow the ability to accurately indi cate suspicious program
pairs by selecting arbitrarily high cut-off values. This is as only a sub-set of similarity
scores that are indicated as being suspicious, where those indicated must be consistently
scored highly by each SCPDT. Hence, assuming each SCPDT is largely accurate on its
own and the selected cut-offs are not exceedingly high, only a correctly suspicious sub-
set of program pairs will be indicated. This will be demonstrated in the following case
study, where the proposed approach is applied to detect known cases of plagiarism in
undergraduate programming assignments.

4. Case Study

The purpose of this case study is to demonstrate that the proposed approach is capable
of accurately identifying assignment submissions that are suspicious of plagiarism by
applying arbitrarily selected score cut-off values. In order to demonstrate the use of the
proposed approach, it is applied to two data sets of undergraduate programming submis-

H. Cheers, Y. Lin, W. Yan10

sions, which both have known cases of plagiarism that were manually identified (with
help from JPlag) and later confirmed by an impartial reviewer. This allows for provid-
ing a partial ground truth in this experiment, in that there are a fixed set of known and
verified cases of plagiarism in the data set. Note, the term “partial ground truth” is used
as there is the potential for cases of plagiarism that were unnoticed during the original
assessment of the assignments.

The first data set (DS1) contains 84 assignment submissions, with 9 confirmed cases
of plagiarism. The second data set (DS2) contains 76 assignment submissions, with 5
confirmed cases of plagiarism. None of the known cases of plagiarism are a result of
students directly collaborating with peers in the same course offering. Instead, all of the
known cases of plagiarism are a result of students basing their works on prior year as-
signments that were sourced from GitHub (note the GitHub sources were for prior year
assignment specifications that were similar, but not identical). From DS1, it was found
there were 7 submissions that were based on the same project found on GitHub, with the
remaining two using other GitHub sources (i.e. a total of 3 GitHub sources of plagia-
rism). From DS2, it was found there were 4 submissions that were all based on the same
GitHub source, with one more using a distinct source (i.e. a total of 2 GitHub sources of
plagiarism). This is summarised in Table 1.

The use of ‘external’ sources of plagiarism resulted in very interesting characteristics
in terms of how the assignments were plagiarised, and how the indications of plagia rism
are manifested in the similarity scores. In the simplest cases, the plagiarised assign-
ments were almost verbatim copy-and-paste style plagiarism, with few modifi cations.
However, in the more complex cases, the plagiarism was manifested as the paraphrasing
of source code. This is where the plagiarised work is close to functionally identical to
the GitHub source, but pervasively modified such that the programs look significantly
different. When the data sets were analysed with JPlag, the submissions that were based
on the same GitHub source would evaluate with low-to-mid levels of similarity (ap-
proximately 30% to 50% similar), ultimately causing doubt if or if not plagiarism was
present. With human review, the submissions did look similar, how ever, without enough
confidence to refer for academic misconduct on the grounds of collaboration. It was only
after an extensive search of GitHub (using a custom-built web crawler that searched for
keywords related to the course name and assignment specification), that the original
source found, providing sufficient proof to make suc cessful cases of plagiarism. By
using these data sets, this case study will allow for evaluating the proposed approach
in identifying known cases of plagiarism, that were difficult to initially identify and
subsequently prove.

Table 1
Overview of evaluation data set characteristics

Data Set DS1 DS2

Submissions 84 76
Plagiarised 9 (11%) 5 (7%)
GitHub Sources 3 2

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 11

4.1. Identification Process

The process to identify assignment submissions that are suspicious of plagiarism using
the proposed approach is broken into four steps:

Data collection. (1)
Similarity evaluation. (2)
Suspicious score analysis. (3)
Accuracy evaluation. (4)

Firstly, the two data sets were collected from our institutions learning management
system. As identified, the sources of plagiarism were not internal to the data sets, but
hosted in GitHub in public repositories. Hence, in order to retrieve the known sources
of the plagiarised works, a web crawler was used to search for GitHub repositories that
included keywords related to the course code and assignment specification. For DS1,
a total of 29 GitHub repositories matched the search criteria, while for DS2, a total of
111 GitHub repositories matched the search criteria. In both cases, the sources for the
plagiarised assignment submissions were included in the matches, as well as many other
unrelated repositories.

Secondly, the similarity scores of all assignment submissions compared to the
repos itories identified from GitHub are evaluated using all three tools. As the ap-
proach requires a structural, semantic and behavioural SCPDT, for the purpose of this
case study, JPlag (Prechelt and Malpohl, 2003) is used as the structural tool, Graph ED
(Cheers et al., 2021b) is used as the semantic tool, and BPlag (Cheers et al., 2021a) is
used as the behavioural tool. This will provide three distinct perspectives of how each
pair of submissions may be considered similar, that can be then used to find plagiarism
from the consensus amongst the tools. Furthermore, it will also allow for identifying
cases of plagiarism that may exist in the data set during the initial assessment and
detection. Using these 3 SCPDTs, each is invoked comparing all of the collected as-
signment submissions with all collected GitHub repository pairs. This overall resulted
in 7,308 similarity scores for DS1 (84 × 29 × 3), and 25,308 (76 × 111 × 3) similarity
scores for DS2.

Thirdly, the similarity scores are analysed using the proposed approach. Initially
three score cut-offs are applied as limiting criteria to the evaluated similarity scores.
These three limiting criteria consist of the aforementioned similarity threshold of %,
the top  scores, as well as a variation of top  referred to as the top %. The top % is
applied by taking the top % of ordered similarity scores. The score cut-offs are applied
with increasing ,  and  values to demonstrate the affect of using different arbitrarily
selected configuration values. The two consensus criteria (∩2 and ∩3) are then applied
to each set of limited scores, with the resultant similarity scores each being considered
to be indicative of potential plagiarism.

The applied score cut-off configuration values differ for each data set. For DS1, 
values of 10, 15, 20, 25 are applied;  values of 10%, 15%, 20%, 25% are applied; and

 values of 45%, 50%, 55%, 60% are applied. For DS2,  values of 5, 10, 15, 20, are
applied;  values of 10%, 15%, 20%, 25% are applied; and  values of 40%, 45%,

H. Cheers, Y. Lin, W. Yan12

50%, 55% are applied. The  values are selected based on the known number of cases of
plagiarism is each data set. The closest multiple of 5 is selected as the first configuration
value. Considerably greater  values then also applied to demonstrate that even with
an arbitrarily selected large configuration value (compared to the known number of
cases) there is little to no decrease in accuracy. The  values are largely based on prior
experience in academic marking and detecting cases of plagiarism. It is not unexpected
that approximately 10% of assignment submissions are plagiarised, or have some other
form of academic misconduct present in their development (as an upper bound); and is
similar to the number of cases of plagiarism in the utilised data sets. The  value is then
greatly increased to 25% to again demonstrate there is little to no decrease in accuracy
by arbitrarily selecting a large score limit. The  values were selected arbitrarily from
a low similarity score value.

Finally, the accuracy of the consensus-based approach for all configurations is eval-
uated. For the purpose of this case study, accuracy is reflected through the number of
errors made when indicating plagiarised assignment submissions. An error is made when
either the approach indicates a (presumably) innocent submission pair as plagia rised
(i.e. FP or ‘False Positive’ error), or plagiarised similarity score as not plagiarised, (i.e.
FN or ‘False Negative’ error), or TP (i.e. True Positive which are plagiarised sim ilarity
score is indeed plagiarised). The error count is calculated for each SCPDT as well as the
proposed approach for each selected limiting configuration. This will allow for demon-
strating the increased accuracy provided by the proposed approach for each arbitrarily
selected limiting configuration.

4.2. Results

Tables 2, 3 and 4 display the results of this case study using the selected score limit
values. For comparison purposes, the error counts of applying the score cut-offs to the
results of each individual SCPDT are displayed, followed by the results of applying the
consensus criteria. An interesting trend can be seen for both data sets when using the top
 and top % score limits. Initially at cut-offs close to the actual number of cases of pla-
giarism in each data set (9 for DS1, 5 for DS2), both the tools alone and the consensus-
based approach report a noticeable (but not overly high) number of errors. However, as
the cut-off values increase an interesting observation can be made. The error counts of
the SCPDTs increase as expected, as more FP indications are being reported. However,
for the proposed consensus based approach, the error counts tend to drop for ∩3 and
remain stable for ∩2; but also change from being initial FN to FP errors. This is impor-
tant as a FN indicates a student not being detected for plagiarism, while a FP indicates a
presumably innocent student requires their work to be reviewed for indications of aca-
demic misconduct. Hence, when a consensus criterion is applied, a very low error count
is evaluated even when the selected score limit is much greater than the known number
of cases of plagiarism in each data set.

The decreasing error counts for the proposed approach is a result of the SCPDTs
consistently evaluating the known plagiarised submissions with relatively high similar-

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 13

ity scores. This results in the plagiarised submissions being above the score cut-offs,
even when there are other presumably innocent submissions being reported by the tools.
As the consensus-based approach requires two or three SCPDTs to indicate a submis-
sion as suspicious, this results in a much lower error count, especially when us ing
relatively high score cut-offs. This implies that when using both consensus criteria, the
most accurate indications of plagiarism can be found when using a much higher than
expected score cut-off. And furthermore, the number of errors even with a high cut-off
are similar to that of the number of errors made by the tools alone at the low est recorded
cut-offs. This further emphasises the benefit of using the consensus-based approach for
identifying submissions that are suspicious of plagiarism.

The results of the % threshold provide very different results compared to the top 

or % thresholds. This is caused by the number of indicated submissions being a func-
tion of the similarity scores, and not a fixed value. As the similarity score dis tribution
evaluated by each tool differs, this results in a dramatic difference in the number of indi-
cated submissions. As indicated by the results, BPlag and Graph ED have a much higher
average similarity score, and hence, initially record many errors compared to JPlag when
using the same % threshold. However, as the threshold value increases, the error counts
decrease quickly. Notably, while the ∩2 consensus criteria reports many errors (due to

Table 2
Error counts of each tool with different limiting criteria r for DS1 and DS2.
TP: True Positive, FP: False Positive, FN: False Negative, Error: FP + FN

(a) Error Count for DS1 (b) Error Count for DS2
 = Tool/Int. TP FP FN Error  = Tool/Int. TP FP FN Error

10 BPlag 7 3 2 5 5 BPlag 3 2 2 4
JPlag 8 2 1 3 JPlag 4 1 1 2
G. ED 6 4 3 7 G. ED 2 3 3 6
∩2 7 2 2 4 ∩2 3 0 2 2
∩3 6 0 3 3 ∩3 2 0 3 3

15 BPlag 9 6 0 6 10 BPlag 4 6 1 7
JPlag 9 6 0 6 JPlag 5 5 0 5
G. ED 8 7 1 8 G. ED 3 7 2 9
∩2 9 3 0 3 ∩2 4 2 1 3
∩3 8 1 1 2 ∩3 3 0 2 2

20 BPlag 9 11 0 11 15 BPlag 5 10 0 10
JPlag 9 11 0 11 JPlag 5 10 0 10
G. ED 9 11 0 11 G. ED 4 11 1 12
∩2 9 5 0 5 ∩2 5 3 0 3
∩3 9 1 0 1 ∩3 4 0 1 1

25 BPlag 9 16 0 16 20 BPlag 5 15 0 15
JPlag 9 16 0 16 JPlag 5 15 0 15
G. ED 9 16 0 16 G. ED 4 16 1 17
∩2 9 5 0 5 ∩2 5 4 0 4
∩3 9 1 0 1 ∩3 4 0 1 1

H. Cheers, Y. Lin, W. Yan14

the high average similarity of BPlag and Graph ED), the ∩3 consensus criteria consis-
tently reports a low error count. This indicates the ∩3 consensus criteria has merit is use
with a % threshold score cut-off.

Notably when errors occur, the ∩2 consensus criteria typically reports FP errors, while
the ∩3 method reports FN errors. Of the reported FP errors, many appear to be a result of
missed indications of plagiarism. Apart from the very large FP error counts when using
the % score cut-off (that are simply a result of bad configuration values), many of the
FP errors are a result of assignment submissions that have very similar designs as their
presumed sources, and may in fact be a result of inappropri ately using online resources to
implement an assignment. Of the reported FN errors, this is typically where plagiarism-
hiding source code modifications are applied to the plagiarised works. Hence, typically
one tool will report a lower similarity score and hence not all tools will be in agreement
that an indication of plagiarism is present.

Overall these results demonstrate the benefit of using the proposed consensus-based
approach. By using the results of only a single SCPDT, one has to be lucky to de-
termine the correct score cut-off. By using the proposed consensus-based approach of
multiple SCPDTs, by selecting an arbitrarily high cut-off, the provided results indicate

Table 3
Error counts of each tool with different limiting criteria p for DS1 and DS2.
TP: True Positive, FP: False Positive, FN: False Negative, Error: FP + FN

(a) Error Count for DS1 (b) Error Count for DS2
 = Tool/Int. TP FP FN Error  = Tool/Int. TP FP FN Error

10%
(r=9)

BPlag 6 3 3 6 10%
(r=4)

BPlag 2 2 3 5
JPlag 8 1 1 2 JPlag 4 0 1 1
G. ED 6 3 3 6 G. ED 2 2 3 5
∩2 7 2 2 4 ∩2 2 0 3 3
∩3 5 0 4 4 ∩3 2 0 3 3

15%
(r=13)

BPlag 8 5 1 6 15%
(r=9)

BPlag 4 5 1 6
JPlag 9 4 0 4 JPlag 5 4 0 4
G. ED 7 6 2 8 G. ED 3 6 2 8
∩2 8 3 1 4 ∩2 4 1 1 2
∩3 7 1 2 3 ∩3 3 0 2 2

20%
(r=18)

BPlag 9 9 0 9 20%
(r=13)

BPlag 5 8 0 8
JPlag 9 9 0 9 JPlag 5 8 0 8
G. ED 9 9 0 9 G. ED 3 10 2 12
∩2 9 4 0 4 ∩2 5 3 0 3
∩3 9 1 0 1 ∩3 3 0 2 2

25%
(r=22)

BPlag 9 13 0 13 25%
(r=18)

BPlag 5 13 0 13
JPlag 9 13 0 13 JPlag 5 13 0 13
G. ED 9 13 0 13 G. ED 4 14 1 15
∩2 9 5 0 5 ∩2 5 3 0 3
∩3 9 1 0 1 ∩3 4 0 1 1

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 15

a remarkably high accuracy in indicating assignment submissions suspicious of plagia-
rism. Hence, with the proposed approach of combining the results of multiple SCPDTs
and identifying SCPDT-based consensus, an accurate semi-automatic method of iden-
tifying assignment submissions that are suspicious of plagiarism is achieved.

5. Discussion and Conclusion

This work has proposed and evaluated a semi-automatic approach for indicating as-
signment submissions that are suspicious of plagiarism. This is through the described
method of applying a score cut-off and finding consensus amongst the results of multi ple
SCPDTs. The selected SCPDTs each measure a distinct type of similarity, allowing for a
multi-dimensional comparison of programs in terms of how they are similar.

From the results of the case study, the proposed approach appears to be less sensitive
to selection of a score cut-off for identifying submissions with high similarity scores.
Without using the consensus-based approach, typically the least errors would be found
by using a cut-off that includes all plagiarised assignment submissions. However, this

Table 4
Error counts of each tool with different limiting criteria x for DS1 and DS2.
TP: True Positive, FP: False Positive, FN: False Negative, Error: FP + FN

(a) Error Count for DS1 (b) Error Count for DS2
 = Tool/Int. TP FP FN Error  = Tool/Int. TP FP FN Error

45% BPlag 9 252 0 252 40% BPlag 5 1040 0 1040
JPlag 9 5 0 5 JPlag 5 3 0 3
G. ED 9 91 0 91 G. ED 5 2777 0 2777
∩2 9 12 0 12 ∩2 5 438 0 438
∩3 9 3 0 3 ∩3 5 2 0 2

50% BPlag 9 106 0 106 45% BPlag 5 733 0 733
JPlag 8 2 1 3 JPlag 5 1 0 1
G. ED 9 32 0 32 G. ED 5 1197 0 1197
∩2 9 6 0 6 ∩2 5 168 0 168
∩3 8 1 1 2 ∩3 5 0 0 0

55% BPlag 9 24 0 24 50% BPlag 5 362 0 362
JPlag 7 1 2 3 JPlag 4 0 1 1
G. ED 9 14 0 14 G. ED 5 371 0 371
∩2 9 3 0 3 ∩2 5 48 0 48
∩3 7 0 2 2 ∩3 4 0 1 1

60% BPlag 8 4 1 5 55% BPlag 5 139 0 139
JPlag 7 1 2 3 JPlag 3 0 2 2
G. ED 8 7 1 8 G. ED 5 99 0 99
∩2 9 2 0 2 ∩2 5 9 0 9
∩3 5 0 4 4 ∩3 3 0 2 2

H. Cheers, Y. Lin, W. Yan16

is of course difficult to select in a real world scenario. But by applying the consensus-
based approach of combining the results of multiple SCPDTs, indications of plagia-
rism can be accurately found by using arbitrarily selected and often high score cut-off
values. Hence, when using this approach, it can be suggested that a reasonably high
cut-off value can be used with a satisfactory level of confidence. In terms of specific
reusable cut-off criteria, arguably, the top % cut-off is a more generic approach that
can be reused on different data sets. This is as the score cut-off is not limited to a fixed
number of submissions, and is determined by the data set size. In general, when using
this cut-off, while it may be expected to use a  value of 5–10 (roughly correlating to a
reasonable upper bound of the number of assignments that may be plagiarised in a data
set), the results of the case study indicate when using the proposed consensus criteria,
accurate results can be found using a  value at 20–25.

Of the two utilised consensus criteria (∩3 and ∩2), ∩3 typically produced the least
errors. This is a result of the criteria only indicatingsubmissions that are evaluated with
a high similarity score by all three tools, and hence are consistently suspicious of plagia-
rism. Hence it is referred to as the ‘high confidence’ consensus criteria. However, it was
not free of either FP or FN errors. The ∩2 criteria always reported some errors with all
limiting criteria, however, this is a result of it being a ‘broad’ consensus criteria where
it is intended to indicate any submission that is evaluated with a high similarity score by
any two tools. It is not designed to be completely accurate, but to be less restrictive in
order to accommodate for plagiarism-hiding transformations.

When applying either criteria results in errors, they are typically FP errors. This is a
result of a program pair not part of the partial ground truth being indicated as suspicious.
It is important to emphasise the importance of ‘partial ground truth’ here. Upon review
of the FP results, some but not all of the indicated assignment submissions are worth
investigation for potential academic misconduct. However, as no formal investigation
of plagiarism has been undertaking for such submissions, they cannot be conclusively
indicated as being a true FP or a TP that is missing from the ground truth. However, it
must also be considered that the consensus-based approach cannot accommodate for
the limitations and inherent inaccuracy of individual tools. Each tool provides its own
independent indication of plagiarism through the evaluation of similarity. Hence, if one
or more tools are inaccurate and miss reporting a high similarity score for a plagiarised
assignment, an error will still occur due to it being missed via consensus.

As future work, it is planned to further this work in three directions. Firstly, it will
be explored how to remove the dependency on applying a score cut-off to identify
submissions with high similarity scores. This will be preliminary by applying cluster-
ing to the scores of each individual aspect to identify outlying high similarity scores,
to ultimately provide an automatic approach for suggesting similarity scores that are
suspicious of plagiarism. Secondly, further research into the meaning of different com-
binations of high similarity scores across the three aspects of similarity, i.e., what is the
impact of an assignment pair having a high similarity across two aspects of simi larity,
but a low score in the remainder. This is largely to reduce FN errors, to ensure the pro-
posed approach is accurate. And finally, to further evaluate the approach using diverse
data sets from students of different year levels to empirically demonstrate its benefit.

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 17

References

Ahadi, A. and Mathieson, L. (2019). A comparison of three popular source code similarity tools for detecting
student plagiarism. In: Proceedings of the Twenty-First Australasian Computing Education Conference,
ACE’19, 112–117.

Ahtiainen, A., Surakka, S., Rahikainen, M. (2006). Plag gie: GNU-licensed source code plagiarism detection
engine for Java exercises. In: Pro ceedings of the 6th Baltic Sea Conference on Computing Education
Research: Koli Calling 2006, Baltic Sea’06, 141–142.

Allyson, F.B., Danilo, M.L., José, S.M., and Giovanni, B.C. (2019). Sherlock N-overlap: Invasive normal-
ization and overlap coefficient for the similarity analysis between source code. IEEE Transactions on
Computers, 68(5), 740–751.

Anjali, V., Swapna, T., Jayaraman, B. (2015). Plagiarism de tection for Java programs without source codes.
Procedia Computer Science, 46, 749–758.

Anzai, K. and Watanobe, Y. (2019). Algorithm to de termine extended edit distance between program codes.
In: 2019 IEEE 13th Inter national Symposium on Embedded Multicore/Many-core Systems-on-Chip (MC-
SoC), 180–186.

Bertran, M., Babot, F.X., Climent, A. (2005). An in put/output semantics for distributed program equivalence
reasoning. Electronic Notes in Theoretical Computer Science, 137(1), 25–46, Proceedings of the Fourth
Spanish Conference on Programming and Computer Languages (PROLE 2004).

Burrows, S., Tahaghoghi, S.M.M., Zobel, J. (2007). Efficient plagiarism detection for large code repositories.
Software: Practice and Experi ence, 37(2), 151–175.

Chae, D.K., Ha, J., Kim, S.W., Kang, B., Im, E.G. (2013). Soft ware plagiarism detection: A graph-based
approach. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Man-
agement, CIKM’13, 1577–1580.

Cheers, H., Lin, Y., Smith, S.P. (2020). Detecting pervasive source code plagiarism through dynamic pro-
gram behaviours. In: Proceedings of the Twenty-Second Australasian Computing Education Conference,
ACE’20, 21–30.

Cheers, H., Lin, Y., Smith, S.P. (2021a). Academic source code plagiarism detection by measuring program
behavioral similarity. IEEE Ac cess, 9, 50391–50412.

Cheers, H., Lin, Y., Smith, S.P. (2021b). Evaluating the robustness of source code plagiarism detection tools
to pervasive plagiarism-hiding modifications. Empirical Software Engineering, 26(5), 1573–7616.

Chen, R., Hong, L., Chunyan Lü, C., Deng, W. (2010). Au thor identification of software source code with
program dependence graphs. In: 2010 IEEE 34th Annual Computer Software and Applications Confer-
ence Workshops, 281–286.

Cosma, G., Joy, M. (2008). Towards a definition of source-code plagiarism. IEEE Transactions on Education,
51(2), 195–200.

Cosma, G., Joy, M. (2012). An approach to source-code pla giarism detection and investigation using Latent
Semantic Analysis. IEEE Trans actions on Computers, 61(3), 379–394.

Curtis, G., Popal, R. (2011). An examination of factors related to plagiarism and a five-year follow-up of
plagiarism at an Australian university. International Journal for Educational Integrity, 7(1), 30–42.

Durić, Z., Gašević, D. (2013). A source code similarity system for plagiarism detection. The Computer Jour-
nal, 56(1), 70–86.

Evans, J. (2020). This university couldn’t work out which students cheated, so it punished them all. Accessed:
2021-05-01, https://www.abc.net.au/news/2020-12-22/anu computer-science-students-

penalised-over-alleged-plagiarism/13004718

Faidhi, J., Robinson, S. (1987). An empirical approach for detecting program similarity and plagiarism within
a university programming environment. Computers & Education, 11(1), 11–19.

Ferrante, J., Ottenstein, K.J., Warren, J.D. (1987). The program dependence graph and its use in optimization.
ACM Transactions Pro gramming Languages and Systems, 9(3), 319–349.

Fu, D., Xu, Y., Yu, H., Yang, B. (2017). WASTK: A weighted abstract syntax tree kernel method for source
code plagiarism detection. Scientific Programming, 2017(1), 103–126.

Gitchell, D., Tran, N. (1999). Sim: A utility for detecting similarity in computer programs. SIGCSE Bull.,
31(1), 266–270.

Grune, D., Huntjens, M. (1989). Het detecteren van kopieën bij informatica-practica. Informatie (in Dutch),
31(11), 864–867.

H. Cheers, Y. Lin, W. Yan18

Jhi, Y., Wang, X., Jia, X., Zhu, S., Liu, P., Wu, D. (2011). Value-based program characterization and its appli-
cation to software plagiarism de tection. In: 2011 33rd International Conference on Software Engineering
(ICSE), 756–765.

Joy, M., Luck, M. (1999). Plagiarism in programming assign ments. IEEE Transactions on Education, 42(2),
129–133.

Karp, R.M., Rabin, M.O. (1987). Efficient randomized pattern-matching algorithms. IBM Journal of Re-
search and Development, 31(2), 249–260.

Lancaster, T., Codrin, C. (2021). Contract cheating by STEM students through a file sharing website: a
Covid-19 pandemic perspec tive. International Journal for Educational Integrity, 17(1), 1833–2595.

Li, S., Xiao, X., Bassett, B., Xie, T., Tillmann, N. (2016). Mea suring code behavioral similarity for program-
ming and software engineering edu cation. In: Proceedings of the 38th International Conference on Soft-
ware Engineering Companion, ICSE’16, 501–510.

Li, X., Zhong, X.J. (2010). The source code plagiarism de tection using AST. In: 2010 International Sympo-
sium on Intelligence Information Processing and Trusted Computing, 406–408.

Liu, C., Chen, C., Han, J., Yu, P.S. (2006). GPLAG: Detection of software plagiarism by program dependence
graph analysis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD’06, 872–881.

Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S. (2017). Semantics-based obfuscation-resilient binary code similar-
ity comparison with applications to software and algorithm plagiarism detection. IEEE Transactions on
Software Engineering, 43(12), 1157–1177.

Martins, V.T., Fonte, D., Henriques, P.R., da Cruz, D. (2014). Plagiarism Detection: A Tool Survey and Com-
parison, 3rd Symposium on Languages, Applications and Technologies, Dagstuhl, Germany: Schloss Dag-
stuhl – Leibniz-Zentrum fuer Informatik. OpenAccess Series in Informatics (OASIcs), vol. 38, 143–158.

Novak, M., Joy, M., Kermek, D. (2019). Source-code similar ity detection and detection tools used in aca-
demia: A systematic review. ACM Transactions Computing Education, 19(3).

Parker, A., Hamblen, J.O. (1989). Computer algo rithms for plagiarism detection. IEEE Transactions on Edu-
cation, 32(2), 94–99.

Pierce, J., Zilles, C. (2017). Investigating student plagia rism patterns and correlations to grades. In: Pro-
ceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE’17,
471–476.

Pike, R. (n.d.). Sherlock plagiarism detector. Accessed: 2021-05-01:
https://web.archive.org/web/20150323030146/http://rp www.cs.usyd.edu.au/scilect/sherlock/

Prado, B., Bispo, K., Andrade, R. (2018). X9: An obfusca tion resilient approach for source code plagiarism
detection in virtual learning environments. In: Proceedings of the 20th International Conference on En-
terprise Information Systems – Volume 1: ICEIS, 517–524, Funchal, Madeira, Portugal.

Prechelt, L., Malpohl, G. (2003). Finding plagiarisms among a set of programs with JPlag. Journal of Uni-
versal Computer Science, 8.

Ragkhitwetsagul, C., Krinke, J., Clark, D. (2016). Similarity of source code in the presence of pervasive
modifications. In: 2016 IEEE 16th International Working Conference on Source Code Analysis and
Manipula tion (SCAM), 117–126.

Ragkhitwetsagul, C., Krinke, J., Clark, D. (2018). A comparison of code similarity analysers. Empirical
Software Engineering, 23(4), 2464–2519.

Ramírez-de-la Cruz, A., Ramírez-de-la Rosa, G., Sánchez-Sánchez, C., Jiménez-Salazar, H. (2014). On the
importance of lexi con, structure and style for identifying source code plagiarism. In: Proceedings of the
Forum for Information Retrieval Evaluation, FIRE’14, 31–38.

Rani, S., Singh, J. (2018). Enhancing Levenshtein’s edit distance algorithm for evaluating document similar-
ity. Computing, Analytics and Networks, Singapore: Springer Singapore, 72–80.

Roy, C.K., Cordy, J.R., Koschke, R. (2009). Comparison and evaluation of code clone detection techniques
and tools: A qualitative approach. Science of Computer Programming, 74(7), 470–495.

Schleimer, S., Wilkerson, D.S., Aiken, A. (2003). Winnowing: Local algorithms for document finger printing.
In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIG-
MOD’03, 76–85.

Sraka, D., Kaucic, B. (2009). Source code plagiarism. In: Proceedings of the ITI 2009 31st International
Conference on Information Tech nology Interfaces, 461–466.

Yeo, S., (2007). First-year university science and engineering students’ un derstanding of plagiarism. Higher
Education Research & Development, 26(2), 199–216.

Identifying Plagiarised Programming Assignments with Detection Tool Consensus 19

Zhang, F., Wu, D., Liu, P., Zhu, S. (2014). Program logic based software plagiarism detection. In: 2014 IEEE
25th International Symposium on Software Reliability Engineering, 66–77.

Zhao, J., Xia, K., Fu, Y., Cui, B. (2015). An AST-based code plagiarism detection algorithm. In: 2015 10th
International Conference on Broadband and Wireless Computing, Communication and Applications (BW-
CCA), 178–182.

Zheng, M., Pan, X., Lillis, D. (2018). CodEX: Source code plagiarism detection based on abstract syntax
trees. In: Proceedings of the 29th Irish Conference on Artificial Intelligence and Cognitive Science (AICS
2018), Dublin, Ireland.

H. Cheers received a Ph.D. in Software Engineering from the University of New-
castle, Australia in 2021. He currently splits his time between work ing as a research
assistant at the University of Newcastle, Australia, and working as a senior soft-
ware engineer. His research interests include source code similarity,

Y. Lin received a B.Sc in Mathematics from Lanzhou Univer sity in China, and then
received his Ph.D. in Computer Science from The University of Newcastle (Austra-
lia) in 2004. Now he is an Associate Professor at the University of Newcastle. His
current research interests include discrete math, theoretical com puter science and
applied mathematics. Lin’s interdisciplinary research explores how mathematics
can be applied to real-world problems.

W. Yan received a Ph.D. in Mathematics from Xiamen Uni versity, China in 2003.
He is a professor in Jimei University in China. His research fields are combinato-
rics and graph theory, interested in enumeration of perfect matchings and spanning
trees of graphs.

