
Informatics in Education, 2017, Vol. 16, No. 1, 121–140
© 2017 Vilnius University
DOI: 10.15388/infedu.2017.07

121

Algorithm Animations for Teaching and
Learning the Main Ideas of Basic Sortings

Ladislav VÉGH1, Veronika STOFFOVÁ2

1Department of Mathematics and Informatics, J. Selye University, Komárno, Slovakia
2Department of Mathematics and Informatics, Trnava University in Trnava, Slovakia
e-mail: veghl@ujs.sk, veronika.stoffova@truni.sk

Received: November 2016

Abstract. Algorithms are hard to understand for novice computer science students because they
dynamically modify values of elements of abstract data structures. Animations can help to under-
stand algorithms, since they connect abstract concepts to real life objects and situations. In the past
30–35 years, there have been conducted many experiments in the field of usage of animations and
visualizations in education, but they showed mixed results. In this paper, we review past research
within the field and summarize recommendations regarding the graphic design and interactivity of
the animations. In the second part of the paper, we present our interactive card sorting animations
with conceptual views. The goal of these animations is to help students understand the main ideas
and differences between basic sorting algorithms. In a pedagogical experiment related to these
animations, 92 first-year computer science students of J. Selye University in Komarno (Slovakia)
were asked to fill in a pre-test, experiment with the interactive animations, and fill in a post-test.
The results showed that animations helped students to understand essential aspects of sorting al-
gorithms. However, the participants were not able to understand the sorting algorithms in detail,
so other types of animations are needed to teach algorithms in-depth.

Keywords: multimedia learning, interactive algorithm animations, teaching algorithms.

1. Introduction

To learn programming and understand algorithms is one of the hardest tasks for first-
year computer science students. To acquire skills necessary for programming, four types
of knowledge are needed (Bellstrom and Thoren, 2009):

Basic mathematical knowledge of solutions to the problem. ●
Knowledge of the programming environment (IDE), e.g. how to write and edit the ●
source code, how to compile and run the program, how to add breakpoints and use
the watch window.

L. Végh, V. Stoffová122

Programming language, e.g. knowledge about the data structures, functions, pro- ●
cedures, and syntax of the selected programming language.
Transforming the knowledge into the logic of the program, e.g. combining the ●
data structures, functions and control structures in a program to solve a specified
task. This knowledge also includes the understanding of a given program code and
different algorithms, as well as adopting them into own applications.

Students usually have the most problems with the fourth type of knowledge. It might
be helpful for novice programmers to get to know common algorithms, e.g. calculat-
ing the sum or average of numbers, different operations on arrays, sorting algorithms,
and basic recursive algorithms. These algorithms can be used as templates and building
blocks for solving more complex problems. However, it is not easy for the first-year
computer science students to comprehend these algorithms. The computer science al-
gorithms usually use abstract data structures, and they dynamically change data. Ani-
mations and visualizations can create a bridge between abstract concepts and real-life
situations (Rudder, Bernard and Mohammed, 2007).

2. How to Create and Use Algorithms Animation in Education –
Literature Review

Animations and visualizations illustrate data structures in a graphical form, and they use
dynamic graphics to show processes. Students like learning with animations, but using
them in education is not effective in every case. The experiments in this field showed
mixed results in the last 30–35 years (Byrne et al., 1999; Hansen et al., 2002; Hund-
hausen and Douglas, 2000; Hundhausen et al., 2002; Kann et al., 1997; Kehoe, 2001).

There are two broad categories of tools used in the studies of educational algorithm
animations.

Some of the experiments used visualization systems, like JHAVÉ, Jeliot, BlueJ, ●
ALVIS Live!, Balsa-II, Polka. These systems are similar to a debugging mode of
development environments, but in addition they contain a graphical representa-
tion of the data structures (Fleischer and Kucera, 2002). This kind of tools usu-
ally visualize the processes and data structures using the source code written by
students (Lattu, Meisalo, and Tarhio, 2003). The main advantage of these tools
is that students can write and modify their own code. The disadvantage of these
visualizations is that the data structures and processes are displayed in the same
form for every algorithm and the visualization does not take into the consideration
the typical characteristics of the visualized algorithms.
The second group of the studies used animations which were made in order to ●
demonstrate only one type of algorithms or only a specific algorithm. Creating
this kind of educational animations require more time and effort, but in return the
animations better highlight the individual characteristics of algorithms, they may
be focused on the important steps in the algorithms, and they can contain more
interactive elements. These features of the animations help students to understand

Algorithm Animations for Teaching and Learning the Main Ideas ... 123

the visualized processes better (Fleischer and Kucera, 2002; Kann et al., 1997).
Nowadays, these types of animations are developed in Adobe Flash or HTML5/
JavaScript.

2.1. Principles of Multimedia Learning

Many research papers suggest that educationally effective animations need to be graphi-
cally well-designed, following the principles of the multimedia learning (Mayer, 2009;
Rudder et al., 2007). Besides the appropriate graphical representation of the data struc-
tures and processes, animations should be interactive; thus, students can actively partici-
pate in the visualization processes instead of passive observations (Grissom, McNally,
and Naps, 2003; Katai and Tóth, 2010; T. L. Naps et al., 2002).

To design educationally effective animations, creators should be familiar with May-
er’s cognitive theory (see Fig. 1) and principles of multimedia learning (Mayer, 2009).
The cognitive theory describes how the human mind works.

While applicating this theory and some pedagogical experiments, Mayer defined
twelve principles of multimedia learning grouped into the following three categories:

Principles of reducing extraneous processing in multimedia learning (coherence ●
principle, signaling principle, redundancy principle, spatial contiguity principle,
temporal contiguity principle).
Principles of managing essential processing in multimedia learning (segmenting ●
principle, pre-training principle, modality principle).
Principles of fostering generative processing in multimedia learning (multimedia ●
principle, personalization principle, voice principle, image principle).

All these principles describe how, when, and in which manner should be texts,
sounds, voices, and images used in multimedia learning materials. Experiments show
that these principles are helpful especially for students with a low level of knowledge
(Kehoe et al., 2001; Mayer, 2009).

Fig. 1. Mayer’s cognitive theory of multimedia learning.

L. Végh, V. Stoffová124

2.2. Design of Algorithm Animations

Recommendations regarding the design of computer science algorithm animations are
following:

The right model should be chosen for representing the data structures. ● Be-
cause the algorithms work with abstract data structures, it is important to choose
the right model representing these data structures (Esponda-Arguero, 2010; Fleis-
cher and Kucera, 2002; Végh, 2011) – e.g. the values of elements in an array can
be represented by the heights of columns, lightness of balls, or values of playing
cards (see Fig. 2).
Algorithms should be demonstrated on small data set. ● Previous studies sug-
gest only 6–8 elements to use for a demonstration of algorithms (Fleischer and
Kucera, 2002). In our opinion, a small number of elements may not be suf-
ficient to illustrate the properties of more complex algorithms e.g. quicksort.
We recommend using rather 8 or 16 elements for quicksort algorithm. It is also
important to choose the adequate values of items in the input data set. For many
algorithms, it is satisfying to pick random numbers, however, for the first pre-
sentation of algorithms like quicksort it is better to carefully choose the input
values to be the data set divided into two equal parts during the running of the
sorting algorithm.
Animations should be completed with explanations. ● Explanations may help
students to understand the visualized data and processes easier. They can be in the
form of text, or in the form of voice. The explanation does not need to be necessar-
ily part of the animation. It can be an oral implementation of a teacher during the
lecture or textual explanation right before the animation in a textbook (Fleischer
and Kucera, 2002; Mayer, 2009; Naps et al., 2002).

When the explanation is in textual form, it is important to give students enough time
to read and comprehend it. According to the principles of Mayer’s multimedia learning,

Fig. 2. Representation of array using different models.

Algorithm Animations for Teaching and Learning the Main Ideas ... 125

it is not recommended to show the text and animate the objects on the screen at the same
time. It is better to let students start the animation themselves after reading and under-
standing the explanation. Another possible solution could be to use narration during the
animation instead of textual explanation (Mayer, 2009).

The results of several experiments emphasized that the animations may be used more
efficiently when they are not displayed alone, but when they are part of a learning envi-
ronment (Kann et al., 1997; Kehoe et al., 2001; Rudder et al., 2007). This environment
could be an electronic textbook with hypertext structure, enriched with embedded ani-
mations, diagrams, and examples (Hansen et al., 2002). In these cases, it is vital, how-
ever, that the explanatory texts should correspond with the diagrams and animations, e.g.
in a quicksort algorithm the pivot should be chosen using the same method. Otherwise,
the animations will not help, but they will confuse students (Naps and Grissom, 2002).

Different views of algorithm animations enhance understanding of the visual- ●
ized processes. Students may observe the animation in different ways; they can
concentrate on the animated objects, examine the sequence of commands in the
source code and watch the control variables of cycles. It might be useful if the ani-
mations contain different views, e.g. in one part of the visualization are shown the
animated columns with control variables of cycles under them while in the other
part is shown the source code with the highlighted lines of current steps (Naps and
Grissom, 2002).
Showing the source code or pseudocode of the visualized algorithms might ●
be useful. By showing the code with the highlighted lines of the current steps,
students may connect the lines of the code with the events in the animation (Fleis-
cher and Kucera, 2002; Naps et al., 2002). The source code in a programming
language is recommended to be shown only in programming courses. While
teaching algorithms, it is better to show a pseudocode instead of the source code,
because the pseudocode describes the algorithm at a higher level. Thus, students
may learn the algorithm in abstract level, independently of any programming
language; and they will not get lost in the details of the source code (Fleischer
and Kucera, 2002).
The graphics should be simple, the colors and sounds should also carry infor- ●
mation. It is important to use simple graphic elements in the animations, which
do not draw attention from the visualized processes. Colors and sound effects can
also carry information (Fleischer and Kucera, 2002). In our applications of sorting
algorithm, red color means that the elements are not sorted, yellow color is the
color of the comparison or swap while green color may be used to visualize the
sorted part of the array.
Showing information about the correctness and effectiveness of the algo- ●
rithms might be helpful. Showing the correctness and the effectiveness of the
visualized algorithm in some form may be valuable for students when they try to
understand and compare different algorithms solving similar problems (Fleischer
and Kucera, 2002). Displaying the number of comparisons or swaps in sorting al-
gorithms might give useful information especially for advanced students. A more
descriptive solution can be a visualization of different sorting algorithms at the

L. Végh, V. Stoffová126

same time (Naps et al., 2002). Such examples can be found at www.sorting-
algorithms.com and www.sorting.at websites.
Using animations with similar look and control buttons within the same ●
course may help students. A computer science course devoted to the field of al-
gorithms contains lots of animations. Using same models, views, and control but-
tons in animations might help students. If visually different kinds of animations
with different control buttons were used in a course, students would need more
time to comprehend the visualized processes and acquire the control of every ani-
mation (Fleischer and Kucera, 2002).

2.3. Educational Perspective

Bloom’s taxonomy of educational objectives (Bloom et al., 1956) also should be taken
into consideration when developing any learning material. The revised Bloom’s tax-
onomy (Anderson et al., 2001) contains six cognitive process dimensions (see Fig. 3).

Using this taxonomy, we can assign the results of cognitive activities observed during
learning algorithms and data structures to six cognitive process dimensions in Bloom’s
revised taxonomy (Naps et al., 2002):

Remembering1. : Students know the names of data structures (e.g. array, tree, graph,
heap etc.) and the names of the algorithms (e.g. insertion sort, quicksort).
Understanding2. : They know the steps of algorithms; they are able to explain the
algorithms using images and words. They are able to rewrite the algorithms in the
same programming language they learned; they are able to run and test the pro-
grams. They are able to understand and repeat the analysis of the best and worst
case of the algorithms.
Applying3. : Students are able to apply the previously learned algorithms for solv-
ing similar problems, in different programming environments, or using special
input data. They are able to carry out the analysis of the best and worst case of
simple algorithms.

Fig. 3. Bloom’s original and revised taxonomy of educational objectives.

Algorithm Animations for Teaching and Learning the Main Ideas ... 127

Analyzing4. : Students understand the differences and relations of algorithms solv-
ing the same or similar problems. They are able to support their arguments and/
or prove the correctness of algorithms. They are able to analyze more complex
problems, identify important objects needed for solutions and divide the problems
into smaller, manageable problems.
Evaluating5. : Students are able to discuss the advantages and disadvantages of dif-
ferent algorithms solving same or similar problems. They are able to think about
how to modify or combine the algorithms to solve new, more complex problems.
Creating6. : Students are able to solve complex problems, where different data
structures, algorithms and techniques are needed to use simultaneously.

Bloom emphasized that it is important to acquire the knowledge connected to these ac-
tivities gradually, from the first cognitive process dimension (remembering) to the last one
(creating). The algorithm animations may be used successfully especially in the first two
cognitive process dimensions (remembering, understanding). Despite this fact, it is recom-
mended to use animations in education, since students may understand the basics quicker
and deeper. Later, it would be easier for them to reach higher cognitive process dimensions
and more time would remain for those activities in the classrooms (Grissom et al., 2003).

2.4. Interactivity

Interactivity is another important factor in the field of educational animations. Many re-
search results suggest that animations are considerably helpful in teaching and learning
algorithms only if students are active participants of visualized processes (Furcy et al.,
2008; Grissom et al., 2003; Hundhausen and Douglas, 2000; Hundhausen et al., 2002;
Kuk et al., 2012; Naps et al., 2002; Patwardhan and Murthy, 2015; Stoffa, 2003). Vi-
sualized simulation experiment has to be planned, controlled and implemented in order
to serve to the acquisition and discovery of new knowledge for the user – the student –
based on their own observations (Stoffa, 2004).

Hundhausen et al. (2002) compared the results of 21 experiments: nine of the experi-
ments were focusing on the graphical design of the animations while twelve experiments
were focused on the interactivity of the animations. The meta-analysis showed that only
33% of the results focused on the graphical design were significant; however, among
results focusing on the interactivity of the animations, 83% were significant. The study
also emphasizes that students’ active participation is usually more important in the learn-
ing process than the graphical design of the animations. This observation is in line with
the theory of constructive learning (Hundhausen and Douglas, 2000; Hundhausen et al.,
2002; Naps et al., 2002).

The level of interactivity in animations may differ: from a simple observation,
through a modification of animated objects to a development of one’s own animations.
Animations with a low level of interactivity are focusing on the behaviorist-style of
learning while animations with a high level of interactivity result in a higher conceptual
and procedural learning (Patwardhan and Murthy, 2015). Especially the second learning
styles lead to cognitive processes and active learning (Urquiza-Fuentes and Velazquez-

L. Végh, V. Stoffová128

Iturbide, 2013). These examinations also emphasize that interactivity should have a ma-
jor role in educational animations and visualizations.

Students’ participation in visualization processes may differ as well: viewing, re-
sponding, changing, constructing or presenting (Furcy et al., 2008; Grissom et al., 2003).
The connection between these types of participation is shown in Fig. 4; the viewing fills
the whole space in the Venn diagram since this activity is present in every other activity
(Naps et al., 2002).

Regarding the interactivity of computer science algorithm animations, there were
made following recommendations:

The control of the animations should be flexible. ● Except the controls for start-
ing and stopping the animations, it is suggested to add control buttons for stepping
forwards or backwards in the visualization (Fleischer and Kucera, 2002; Naps and
Grissom, 2002; Naps et al., 2002). Mayer also emphasized the importance of the
possibility to stop the animation. The default time between the logically related
parts of the visualized processes may not be enough for every student: some stu-
dents need more time to think over and comprehend the steps of the algorithms.
Even better solution is when the animations automatically stop after few logically
related steps. Students can think of the visualized processes and continue observ-
ing the next steps of the animations by pressing a control button. In this case,
students do not have to think about the moments, when it is worth to stop the
animations, thus they can concentrate more on the visualized processes (Hansen
et al., 2002; Mayer, 2009).
The speed of the animations should be varying, or should the user be able to ●
change the speed. Different parts of the animations require different speed, e.g.
in sorting algorithms the most important parts are the comparisons and swaps so
the animations should be displayed in a slower speed, or they should be stopped
during these steps. When we try to watch the control variables of cycles during the
sorting algorithms, the first few changes of these variables are the most important
to understand the main ideas of the algorithms so later the animations can be dis-
played at a higher speed (Fleischer and Kucera, 2002). It is also a good solution if
students can change the speed of the animations.
Modifying or changing the input data in the animations helps students to bet- ●
ter understanding of the behavior of the algorithms. Entering their own input
data encourages students to participate more actively. By modifying data in the

Fig. 4. Possible overlapping of different types of participations in visualized processes.

Algorithm Animations for Teaching and Learning the Main Ideas ... 129

animations, students can experiment with the visualization and observe different
behaviors of the algorithms (Fleischer and Kucera, 2002; Furcy et al., 2008; Han-
sen et al., 2002; Naps et al., 2002). The results of pedagogical experiments show
that students who may enter own input data or modify data in the animations get
significantly better results in tests (Hundhausen et al., 2002). Experimenting with
the animations may be even more intriguing when not only the input data can be
modified, but the values of the variables can be changed during the animations.
Animations should adapt to students’ knowledge level, or different anima- ●
tions of the same algorithms are recommended to use. For novice students,
it might be hard to understand the algorithms, if the animations are too detailed,
they contain many windows, or there are too many options to be set up. For begin-
ners, it is better to use simple animations with predefined data sets. However, for
advanced students, it might be valuable if they can enter their own data, modify
some options, or observe detailed views of the animations (Fleischer and Kucera,
2002; Naps et al., 2002).
Questioning students during the animations might be useful. ● Asking questions
related to the steps of the animations encourages students to pay more attention
(Fleischer and Kucera, 2002; Furcy et al., 2008; Hansen et al., 2002; Naps et al.,
2002). On the other hand, examinations during the animations might distract at-
tention from the visualized processes. This is the reason why it is important to
choose the right moment and the right form of the questions. Students may be
asked by the animation software, they can get questions on papers, in voice by a
lecturer, or the questions can be part of electronic textbooks containing the anima-
tions (Grissom et al., 2003). To get the answers to the questions is not important
in every case, sometimes it is enough if students start thinking about the possible
solutions (Hansen et al., 2002).
Animations should be entertaining. ● Students learn easier if the animations en-
tertain them from the beginning until the end. It is not practical to repeat con-
secutively the same, long steps (Fleischer and Kucera, 2002). During their experi-
ments, Rudder et al. (2007) inserted game elements into the animations, e.g. game
activities like “spot the error”, “predict the output” and “sort in order”. All these
activities improve students’ level of critical thinking.

2.5. Types of Algorithm Animations

Hansen et al. (2002) proposes to use three different types of animations successively. All
three animations should demonstrate the same algorithm in a different form. The recom-
mended types of animations are following:

The first types of animations show the main ideas of the algorithms – they do not 1.
go into the details. On the one hand, these animations establish the understanding
of abstract elements using real-life examples, on the other they serve as a motiva-
tion (Bernát, 2014; Hansen et al., 2002). Real-life examples help students to un-
derstand and apply abstract concepts in learning programming and algorithms – in

L. Végh, V. Stoffová130

this way students are encouraged to connect real life with logical programming
from the beginning when they only start to be familiar with the first algorithms
(Rudder et al., 2007). Examples of these types of animations can be found at our
website: http://anim.ide.sk/sortingcards.php.
The second types of animations are the micro-level animations. These anima-2.
tions go into the details and show the operations made during the execution of
the algorithms. Micro-level animations use a small data set of 6 to 8 elements to
demonstrate the algorithms. The animations usually contain pseudocode or source
code of the algorithms, where the lines of the actual steps are highlighted (Hansen
et al., 2002). Examples of these types of animations can be found at http://
anim.ide.sk/sorting_algorithms_1.php web page.
The third types of animations are macro-level animations, where 40–50 elements 3.
are used to demonstrate the algorithms. These animations illustrate the features
related to the effectiveness of the algorithms, many of the details of the algorithms
are hidden (Hansen et al., 2002). Examples of this type of animations can be found
at http://www.sorting-algorithms.com/ website.

In the next sections of this paper, we focus on the first type of animations. In our
interactive animations, we use playing cards to demonstrate the essential aspects of non-
recursive sorting algorithms.

In summary, to develop effective educational animations, it is important to take into
consideration the principles of multimedia learning. The appropriate usage of images,
texts, and sounds can reduce extraneous processing and increase essential and genera-
tive processing (Mayer, 2009). Furtermore, visualizations should be enriched by inter-
activity. Educational animations become efficient only when students are engaged with
the visualizations beyond passively viewing them (Furcy et al., 2008; Grissom et al.,
2003; Hundhausen et al., 2002). Finally, interactive animations for teaching and learning
should be based on pedagogical considerations (Lee and Rossling, 2010). It is important
to acquire the knowledge gradually following Bloom’s revised taxonomy (Anderson
et al., 2001). In algorithm animations, it is recommended to use tree types of animations
successively: animations with conceptual view, detailed view, and populated view (Han-
sen et al., 2002). During the last 30–35 years, there were many suggestions regarding
the graphical design and interactivity of educationally effective algorithm animations,
which we tried to summarize in this literature review, and use them for developing our
interactive algorithm animations.

3. Materials and Methods

Principles of multimedia learning, recommendations for the design of algorithm ani-
mations, educational perspective, and interactivity providing the student activity are
very important factors for the creation of educational visualized simulation models. Our
many years of experiences in implementing and using interactive animation and didactic
simulation models in education, strongly confirm these facts and are consistent with the
results of above-cited authors.

Algorithm Animations for Teaching and Learning the Main Ideas ... 131

Considering the research results from literature review and our own experiences, we
tried to develop interactive playing card animations to illustrate the main ideas and differ-
ences between some of the non-recursive sorting algorithms. The collection contains five
algorithm animations: simple exchange sort (see Fig. 5), bubblesort, insertion sort, minsort
and maxsort. The animations are available at http://anim.ide.sk/sortingcards.php
web page. Our goal was to create game-based animations with a high level of interactivity
where students have to sort the cards in ascending order by using drag-and-drop operations,
but strictly following the rules of the sorting algorithms.

The animations were developed in HTML5 using JavaScript technologies. We also
used the CreateJS libraries (www.createjs.com) for animating the objects. For a better
understanding of algorithms, we used the same color for all cards, which was selected
from four different colors at the beginning of the animation. Cards J, Q, K, and A were
not used to avoid any confusion.

3.1. Participants

In the experiment, there were involved all 92 first-year computer-science students of J.
Selye University who have attended the “Introduction to programming and algorithms”
course during the academic year 2014/15 and 2015/16. Our goal was to determine if stu-
dents can recognize the essential aspects of illustrated sorting algorithms and the main
differences between them.

Most of the students learned about the sorting algorithms before the experiment in
high school or itself, but some students did not know anything about the sorting algo-
rithms. All of the students solved programming problems using arrays before the ex-
periment, e.g. finding the minimum or maximum, counting selected elements, adding
the values of elements together, mirroring the array. They were also able to read and
understand pseudocode.

Fig. 5. Interactive game-based animation of simple exchange sort algorithm.

L. Végh, V. Stoffová132

3.2. Procedure

Because students had different knowledge about the sorting algorithms, we asked stu-
dents to fill in a pre-test before the experiment. Afterwards, they had 1 hour to experi-
ment with the game-based sorting algorithm animations and fill in a post-test. Because
there were students with no previous knowledge about the sorting algorithms, we asked
them to mark only those answers in both tests they knew. Thus, we tried to diminish the
number of students’ guesses.

3.3. Data collection instruments

Both paper questionnaires (pre-test and post-test) contained a same table (see Fig. 6),
where students had to decide which statement-algorithm combinations are true, mark-
ing the corresponding cells in the table (for easier referring to the cells, we added letters
to the columns and numbers to the rows – these marks were not included in students’
tests).

In the second part of the pre-test and post-test, students were asked to match names
of the sorting algorithms to their pseudocodes. Using this assignment we tried to deter-
mine whether students were able to understand the sorting algorithms in more details.

A
. S

im
pl

e
ex

ch
a-

ng
e

so
rt

B
. B

ub
bl

es
or

t

C
. I

ns
er

tio
n

so
rt

D
. S

el
ec

tio
n

so
rt

:
M

in
so

rt
E

. S
el

ec
tio

n
so

rt
:

M
ax

so
rt

The algorithm always compares two neighboring elements in 1.
the array.
The algorithm compares every element with all elements lo-2.
cated behind it.
First, the algorithm chooses one element from the unsorted 3.
part; next, the algorithm exchanges the selected element with
the first or last element of the unsorted part.
In the unsorted part of the array, 4. the smallest element is al-
ways moved to the beginning (the sorted sequence is starting
to form in the beginning of the array).
In the unsorted part of the array, 5. the largest element is always
moved to the end (the sorted sequence is starting to form in
the end of the array).
Elements in the sorted part of the array (in the beginning or 6.
the end of the array) are not modified (not moved) during
the sorting.
Elements in the sorted part of the array (in the beginning or 7.
at the end of the array) can be modified (moved) during the
sorting.

Fig. 6. Test for understanding the main differences between the sorting algorithms.

Algorithm Animations for Teaching and Learning the Main Ideas ... 133

4. Results and Discussion

After the experiment, we counted the number of correctly and incorrectly marked an-
swers in every cell of the table in Fig. 6. The differences in the number of marks during
the pre-test and post-test are shown in Table 1 (the right answers are marked with “X”,
the disputable answers are marked with “?”).

After the experiment, we noticed that there were two disputable statements (C1, C4)
for insertion sort algorithm:

C1: “The algorithm always compares two neighboring elements in the array”. ●
This statement is true for simple insertion sort algorithm. However, it is false for
the improved insertion sort algorithm. Because the animation focuses only on the
main idea of the sorting algorithm, it does not define which type of insertion algo-
rithm students have to think about.
C4: “In the unsorted part of the array, the smallest element is always moved to the ●
beginning (the sorted sequence is starting to form in the beginning of the array)”.
The first part of the statement is not true for the insertion sort algorithm because
the smallest element is not moved to the beginning of the unsorted part, but it is
inserted into the right place in the sorted part. However, the second part of the
statement in the parenthesis it true, because the sorted sequence is starting to form
in the beginning of the array.

Because either true or false answers may be acceptable for C1 and C4 algorithm-
statement combinations, we did not take into account the results of these cells.

Fig. 7 shows the percentage of correctly marked true algorithm-statement combina-
tions and incorrectly marked false algorithm-statement combinations. The number of
correctly marked true algorithm-statement combinations increased by 53.1% during the
experiment, from 645 marks (54.7%) to 1001 marks (83.7%). This increase suggests that
interactive game-based animations helped students to recognize the main ideas of the
sorting algorithms. The graph also indicates that the number of incorrectly marked false
algorithm-statement combinations decreased by 39.7% during the experiment, from 335
marks (18.2%) to 202 marks (11.0%).

To determine, whether these changes are significant or not, we made several paired
sign tests. We have chosen sign tests instead of paired-samples t-tests or Wilcoxon

Table 1
Differences in the number of marked algorithm-statement combinations during the pre-test and post-test

A B C D E

1st statement: –46 +18 X –4 ? –5 –4
2nd statement: +28 X –12 +14 –7 –10
3rd statement: +14 –5 –5 +21 X +15 X
4th statement: +40 X –4 +26 ? +8 X –1
5th statement: +4 +48 X +4 –4 +1 X
6th statement: +33 X +33 X –16 +34 X +32 X
7th statement: –13 –18 +36 X –11 –8

L. Végh, V. Stoffová134

signed-rank tests because the assumptions of the latter tests were violated – the data
were not normally nor symmetrically distributed.

First, we measured the increase in the correctly marked true algorithm-statement
combinations. Out of the 92 participants involved in the experiment, 81 students marked
more true algorithm-statement combinations, 5 students marked fewer true algorithm-
statement combinations, and 6 students marked the same number of algorithm-statement
combinations in the post-test compared to the pre-test. Overall, participants marked
more true algorithm-statement combinations in the post-test (median: 11 marks) than in
the pre-test (median: 7 marks), the statistically significant increase in the median of the
differences is 4 marks, z = 8.087, p < 0.0005.

Next, we tried to measure the decrease in the incorrectly marked false algorithm-
statement combinations. Out of the 92 participants involved in the experiment, 61 stu-
dents marked fewer false algorithm-statement combinations, 23 students marked more
algorithm-statement combinations, and 8 students marked the same number of algo-
rithm-statement combinations in the post-test compared to the pre-test. Overall, partici-
pants marked fewer false algorithm-statement combinations in the post-test (median: 2
marks) than in the pre-test (median: 4 marks), the statistically significant decrease in the
median of the differences is –1 marks, z = –4.037, p < 0.0005.

These first results prove that interactive card animations helped students to under-
stand the main ideas of sorting algorithms. This finding supports many research studies
that recommend the usage of animations with conceptual view and real-life objects for
establishing the understanding of abstract elements (Bernát, 2014; Hansen et al., 2002;
Rudder et al., 2007).

After these positive results, we examined students’ answers more deeply. Fig. 8
shows the percentage of correctly marked true statements (green columns) and incor-

54
,7

%

18
,2

%

83
,7

%

11
,0

%

0,0%

20,0%

40,0%

60,0%

80,0%

100,0%

True algorithm-statement
combinations

False algorithm-statement
combinations

Pre-test Post-test

Fig. 7. Percentage of the correctly marked true algorithm-statement combinations and
incorrectly marked false algorithm-statement combinations in pre-test and post-test.

Algorithm Animations for Teaching and Learning the Main Ideas ... 135

rectly marked false statements (red columns) in the pre-test and post-test for every sort-
ing algorithm.

To determine if these changes in the correctly marked true statements (green col-
umns in Fig. 8) are significant, we made several paired sign tests. The results are shown
in Table 2. We can see that there are significant increases of correctly marked true
algorithm-statement combinations.

We made also paired sign tests to determine if the changes in the incorrectly marked
false statements (red columns in Fig. 8) are significant. The results are shown in Table 3.
We can see that there are some significant results for incorrectly marked false algorithm-
statement combinations.

43
%

47
%

51
%

 63
%

66
%

 80
%

83
%

90
%

86
%

83
%

21
%

19
%

22
%

16
%

13
%

10
%

8%
 21

%

8%

7%

0%

20%

40%

60%

80%

100%

Simplesort Bubblesort Insertion sort Minsort Maxsort

Pre-test (correctly marked) Post-test (correctly marked)
Pre-test (incorrectly marked) Post-test (incorrectly marked)

Fig. 8. Percentage of the correctly marked true algorithm-statement combinations (green)
and incorrectly marked false algorithm-statement combinations (red) in pre-test and post-

test for every sorting algorithm.

Table 2
Results of the sign tests (correctly marked true algorithm-statement combinations)

To
ta

l N

Po
si

tiv
e

D
iff

er
en

ce
s

(p
os

t-t
es

t –
 p

re
-te

st
)

N
eg

at
iv

e
D

iff
er

en
ce

s
(p

os
t-t

es
t –

 p
re

-te
st

)

N
um

be
r o

f T
ie

s
(p

os
t-t

es
t –

 p
re

-te
st

)

M
ed

ia
n

in
 P

re
-te

st

M
ed

ia
n

in
 P

os
t-t

es
t

M
ed

ia
n

of

D
iff

er
en

ce
s

St
an

da
rd

iz
ed

 T
es

t
St

at
is

tic

A
sy

m
pt

ot
ic

 S
ig

.
(2

-s
id

ed
 te

st
)

Simplesort 92 65 11 16 1 3 1 6.080 < 0.0005
Bubblesort 92 67 6 19 1 3 1 7.022 < 0.0005
Insertion sort 92 41 5 46 1 1 0 5.160 < 0.0005
Minsort 92 49 8 35 2 3 1 5.298 < 0.0005
Maxsort 92 45 11 36 2 3 0 4.410 < 0.0005

L. Végh, V. Stoffová136

Next, we examined the number of marks for every true algorithm-statement combi-
nation in pre-test and post-test (see Fig. 9). We can see on the chart that students marked
more correct answers in post-test than in pre-test.

Similarly, we examined the number of marks for every false algorithm-statement
combination in pre-test and post-test (see Fig. 10). As we can see on the graph, students
marked fewer incorrect answers in post-test than in pre-test. However, for algorithm-
statement combinations A3 and C2, we can see increases of incorrect marks, and the
decrease for algorithm-statement combination C3 is not as expected.

 A3 is the following statement for simple exchange sort algorithm: “First, the algo-
rithm chooses one element from the unsorted part; next, the algorithm exchanges the
selected element with the first or last element of the unsorted part”.

Table 3
Results of the sign tests (incorrectly marked false algorithm-statement combinations)

To
ta

l N

Po
si

tiv
e

D
iff

er
en

ce
s

(p
os

t-t
es

t –
 p

re
-te

st
)

N
eg

at
iv

e
D

iff
er

en
ce

s
(p

os
t-t

es
t –

 p
re

-te
st

)

N
um

be
r o

f T
ie

s (
po

st
-

te
st

 –
 p

re
-te

st
)

M
ed

ia
n

in
 P

re
-te

st

M
ed

ia
n

in
 P

os
t-t

es
t

M
ed

ia
n

of

D
iff

er
en

ce
s

St
an

da
rd

iz
ed

 T
es

t
St

at
is

tic

A
sy

m
pt

ot
ic

 S
ig

.
(2

-s
id

ed
 te

st
)

Simplesort 92 15 43 34 1 0 0 –3.545 < 0.0005
Bubblesort 92 11 39 42 1 0 0 –3.818 < 0.0005
Insertion sort 92 26 26 40 1 1 0 0.000 1.000
Minsort 92 10 31 51 0 0 0 –3.123 0.002
Maxsort 92 10 29 53 0 0 0 –2.882 0.004

0

20

40

60

80

100

A2 A4 A6 B1 B5 B6 C7 D
3

D
4

D
6 E3 E5 E6

Pre-test Post-test

Fig. 9: Number of correct marks in pre-test and post-test for every true algorithm-statement
combination.

Algorithm Animations for Teaching and Learning the Main Ideas ... 137

C2 is the following statement for insertion sort algorithm: “The algorithm compares
every element with all elements located behind it”.

C3 is the following statement for insertion sort algorithm: “First, the algorithm
chooses one element from the unsorted part; next, the algorithm exchanges the selected
element with the first or last element of the unsorted part”.

All these statements are false for the given algorithms, but the statements might seem
to be true if someone does not think them over. The reason why students marked these
statements true might be that they did not think in detail. However, thinking in detail was
not the goal of these animations. For understanding the algorithms in depth, micro-level
animations are recommended to use (Bernát, 2014; Hansen et al., 2002).

In the last part of the experiment, we wanted to determine if students comprehended
the algorithms in detail. For this reason, we used an assignment where participants had
to match the names of the algorithms to their pseudocodes. The percentages of correctly
assigned pseudocodes to the algorithms are shown in Table 4.

Because we got dichotomous data in these assignments (0 = incorrectly paired
pseudocode to the algorithm, 1 = correctly paired pseudocode to the algorithm), we
used McNemar’s tests instead of the sign tests. The results did not show any significant
changes (simplesort: N = 88, χ2(1) = 2.370, p = 0.124; bubblesort: N = 89, χ2(1) = 0.000,

0

10
20

30

40

50

60

A1 A3 A5 A7 B2 B3 B4 B7 C2 C3 C5 C6 D
1 D2 D
5 D7 E1 E2 E4 E7

Pre-test Post-test

Fig. 10: Number of incorrect marks in pre-test and post-test for every false algorithm-
statement combination.

Table 4
Percentages of correctly marked pseudocodes to algorithms

Simple exchange
sort

Bubblesort Insertion sort Selection sort:
Minsort

Selection sort:
Maxsort

pre-test 64% 58% 66% 68% 67%
post-test 72% 58% 67% 67% 66%

L. Végh, V. Stoffová138

p = 1.000; insertion sort: N = 87, exact p = 1.000; minsort: N = 88, exact p = 1.000;
maxsort: N = 89, exact p = 1.000).

This result also supports the fact, that animations with conceptual view are not suf-
ficient to learn the sorting algorithms in detail. In the educational process, micro-level
animations with detailed view should follow our interactive card animations, where
the loop control variables, pseudocode and other details of the algorithm are visualized
(Végh, 2016). The usage of animations with different level of details is also recom-
mended by (Hansen et al., 2002).

5. Conclusion

In conclusion, results show that interactive card animations helped students to under-
stand the algorithms. They were able to recognize the main ideas of sorting algorithms,
but they did not understand the algorithms in detail. The sign tests showed that partici-
pants were able to mark significantly more correct algorithm-statement combinations,
and fewer incorrect algorithm-statement combinations in post-tests than in pre-tests.
However, in the second part of the assignments, where students had to pair algorithm
names to their pseudocodes, the McNemar’s tests did not show any significant changes.
For understanding the algorithms in-depth, more detailed, micro-level animations should
follow the animations presented in this paper. Thus, students – after recognizing the es-
sential aspects and differences between the sorting algorithms – can easier start learning
algorithms in detail (Bernát, 2014; Hansen et al., 2002; Stoffa, 2004).

In our study, we proved that the interactive card animations with conceptual view
could be successfully used to understand the main aspects of basic sorting algorithms
and recognize the differences between them. However, we do not know yet, to what
extent they helped to acquire knowledge about the sorting algorithms compared to other
teaching methods and other educational materials – this could be a possible topic for our
future research.

References

Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., . . . Wittrock,
M.C. (2001). A Taxonomy for Learning, Teaching, and Assessing. A Revision of Bloom’s Taxonomy of Edu-
cational Objectives. USA: Addison Wesley Longman, Inc.

Bellstrom, P., Thoren, C. (2009). Learning how to program through visualization: A pilot study on the bubble
sort algorithm. 2009 Second International Conference on the Applications of Digital Information and Web
Technologies (Icadiwt 2009), 90–94. doi:10.1109/icadiwt.2009.5273943

Bernát, P. (2014). The methods and goals of teaching sorting algorithms in public education. Acta Didactica
Napocensia, 7(2), 10.

Bloom, B.S., Englehart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R. (1956). The Taxonomy of Educational
Objectives, The Classification of Educational Goals, Handbook I: Cognitive Domain (B.S. Bloom Ed.).
New York: David McKay Company, Inc.

Algorithm Animations for Teaching and Learning the Main Ideas ... 139

Byrne, M.D., Catrambone, R., Stasko, J.T. (1999). Evaluating animations as student aids in learning computer
algorithms. Computers & Education, 33(4), 253–278. doi:10.1016/s0360-1315(99)00023-8

Esponda-Arguero, M. (2010). Techniques for visualizing data structures in algorithmic animations. Informa-
tion Visualization, 9(1), 31–46.

Fleischer, R., Kucera, L. (2002). Algorithm animation for teaching. Software Visualization, 2269, 113–128.
Furcy, D., Naps, T., Wentworth, J. (2008). Sorting Out sorting – the sequel. In: Iticse ’08: Proceedings of the

13th Annual Conference on Innovation and Technology in Computer Science Education. 174–178.
Grissom, S., McNally, M.F., Naps, T. (2003). Algorithm visualization in CS education: comparing levels of

student engagement. Paper presented at the Proceedings of the 2003 ACM Symposium on Software Visual-
ization, San Diego, California.

Hansen, S., Narayanan, N.H., Hegarty, M. (2002). Designing educationally effective algorithm visualizations.
Journal of Visual Languages and Computing, 13(3), 291–317. doi:10.1006/s1045-926x(02)00027-7

Hundhausen, C., Douglas, S. (2000). Using visualizations to learn algorithms: Should students construct their
own, or view an expert’s? In: 2000 Ieee International Symposium on Visual Languages, Proceedings,
21–28.

Hundhausen, C.D., Douglas, S.A., Stasko, J.T. (2002). A meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing, 13(3), 259–290. doi:10.1006/s1045-926x(02)00028-9

Kann, C., Lindeman, R.W., Heller, R. (1997). Integrating algorithm animation into a learning environment.
Computers & Education, 28(4), 223–228. doi:10.1016/s0360-1315(97)00015-8

Katai, Z., Tóth, L. (2010). Technologically and artistically enhanced multi-sensory computer-programming
education. Teaching and Teacher Education, 26(2), 244–251. doi: http://dx.doi.org/10.1016/j.
tate.2009.04.012

Kehoe, C., Stasko, J., Taylor, A. (2001). Rethinking the evaluation of algorithm animations as learning aids:
an observational study. International Journal of Human-Computer Studies, 54(2), 265–284. doi:10.1006/
ijhc.2000.0409

Kuk, K., Jovanovic, D., Jokanovic, D., Spalevic, P., Caric, M., Panic, S. (2012). Using a game-based learning
model as a new teaching strategy for computer engineering. Turkish Journal of Electrical Engineering and
Computer Sciences, 20, 1312–1331. doi:10.3906/elk-1101-962

Lattu, M., Meisalo, V., & Tarhio, J. (2003). A visualisation tool as a demonstration aid. Computers & Educa-
tion, 41(2), 133–148. doi:10.1016/s0360-1315(03)00032-0

Lee, M.-H., Rossling, G. (2010). Integrating categories of algorithm learning objective into algorithm visu-
alization design: a proposal. In: Iticse 2010: Proceedings of the 2010 Acm Sigcse Annual Conference on
Innovation and Technology in Computer Science Education. 289–293.

Mayer, R.E. (2009). Multimedia Learning (second ed.). New York, USA: Cambridge University Press.
Naps, T., Grissom, S. (2002). The effective use of quicksort visualizations in the classroom. J. Comput. Sci.

Coll., 18(1), 88–96.
Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., . . . Velázquez-Iturbide, J.Á.

(2002). Exploring the role of visualization and engagement in computer science education. SIGCSE Bull.,
35(2), 131–152. doi:10.1145/782941.782998

Patwardhan, M., Murthy, S. (2015). When does higher degree of interaction lead to higher learning in visual-
izations? Exploring the role of ’Interactivity Enriching Features’. Computers & Education, 82, 292–305.
doi:10.1016/j.compedu.2014.11.018

Rudder, A., Bernard, M., & Mohammed, S. (2007). Teaching programming using visualization. In: Proceed-
ings of the Sixth IASTED International Conference on Web-Based Education, 487–492.

Stoffa, V. (2003). Computer-aided learning of programming. Paper presented at the Proceedings of the 4th
International Conference on Computer Systems and Technologies: e-Learning, Rousse, Bulgaria.

Stoffa, V. (2004). Modelling and simulation as a recognising method in the education. Educational Media
International, 41(1), 51–58.

Urquiza-Fuentes, J., Velazquez-Iturbide, J.A. (2013). Toward the effective use of educational program anima-
tions: The roles of student’s engagement and topic complexity. Computers & Education, 67, 178–192.
doi:10.1016/j.compedu.2013.02.013

Végh, L. (2011). Animations in Teaching Algorithms and Programming (Animácie vo vyučovaní algoritmov a
programovania). Paper presented at the Nové technologie ve vzdělávání, Olomouc, CZ.

Végh, L. (2016). Javascript library for developing interactive micro-level animations for teaching and learning
algorithms on one-dimensional arrays. Acta Didactica Napocensia, 9(2), 23–32.

L. Végh, V. Stoffová140

L. Végh is a PhD candidate in the Faculty of Informatics at Eötvös Loránd University
in Budapest (Hungary). He received his Mgr. degree in Teaching Mathematics and In-
formatics from the Constantine the Philosopher University in Nitra (Slovakia) in 1999,
and his PaedDr. degree in Teaching Informatics from the J. Selye University in Komárno
(Slovakia) in 2008. Between 2000 and 2005 he worked as a teacher of mathematics and
informatics in primary education, since 2005 he works as an assistant lecturer at J. Se-
lye University in Komarno (Slovakia). His main research interests include the usage of
algorithm animations, simulations, game-based learning, and virtual worlds in computer
science education. He is author of about 70 publications (articles in journals, proceed-
ings of conferences, parts of text books, etc.).

V. Stoffová is a university professor at Faculty of Education, Trnava University in Trnava
(Slovakia) and has a part time job at Palacký University in Olomouc (Czech Republic).
She received her Ing. degree (1974) and PhD. degree (1982) in Technical cybernetics at
Slovak Technology University in Bratislava. Degree of dr. hab. which she received in
Technical cybernetics at Army Academy in Brno (Czech Republic, 1984) and in Teach-
ing mathematics at Constantine the Philosopher University in Nitra (2000). She received
the degree of university professor after an inauguration process in Teaching mathemat-
ics at the last-mentioned university (2003). She worked as university teacher at Slovak
Technology University in Bratislava (1974–1981), at Army Academy in Liptovský Mi-
kulá (1981–1987), at Constantine the Philosopher University in Nitra (1997–2005) and
at J. Selye University in Komárno (2004–2015). Her main research interests are oriented
towards the computer modelling, simulation and visualisation of systems in different
fields of science. She is author or co-author of more than 250 publications (articles in re-
viewed journals, proceedings of conferences, chapters in monographs, text books, etc.).

