
Informatics in Education, 2023, Vol. 22, No. 1, 45–69
© 2023 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2023.06

45

Leveraging the Pied Piper Effect –
The Case of Teaching Programming
to Sixth-grade Students Via Music

Ilana LAVY
Yezreel Valley College, ISRAEL
e-mail: ilanal@yvc.ac.il

Received: January 2022

Abstract. This paper describes a pilot study that explores students learning how to program via a
multi-disciplinary approach. The study participants were eleven 6th grade students who learned
programming fundamentals via music activities in a Scratch 3.0 environment. These activities
included the programming of familiar melodies and the development of suitable animations or
computer games. For that matter, a study unit termed MelodyCode was developed in the spirit of
the STEAM education approach and the spiral learning method and included exploration tasks
based on individual learning. Via the programming of familiar melodies, they became acquainted
with programming concepts such as functions, variables, repetition and control commands, par-
allel processes, and more. Competitions that win awards were held from time to time, which
prompted students to invest efforts in their projects to reach first place and gain the teacher
and classmates’ appreciation. The study was conducted in the form of action research. The data
analysis yielded references to the effect of MelodyCode on common stereotypes students hold
regarding programming (masculine profession, necessitates good mathematics knowledge), cog-
nitive aspects (cognitive load, linking music concrete use to abstract programming concepts), and
affective aspects (joyful and relaxing class atmosphere, motivation, curiosity, self-efficacy).

Keywords: music, programming fundamentals, spiral learning, Scratch environment, STEAM
education.

1. Introduction

Preparing today’s pupils for optimal functioning in the developing technological world
of tomorrow necessitates the expanding of the population (males and especially females)
of creative people with high cognitive abilities, analytic thinking, technological abilities,
and problem-solving skills (Yang et al., 2015). Even though programming is considered
a complex topic to perceive by beginner students (Margolis and Goode, 2016; Bosse and
Gerosa, 2017), efforts must be made to expand the group of programmers to keep the
momentum of meaningful technological development.

I. Lavy46

Delving into the meaning of programmers’ training reveals a resemblance between
learning how to program and acquiring a new language. Learning a new language and
programming learning are easy to perceive at a younger age (Papadakis et al., 2016).
Moreover, in addition to achieving the goal of expanding the programmer population,
during the programming studies, the students develop essential skills such as analyti-
cal thinking abilities, problem-solving skills, and creativity that might improve their
cognitive skills (White and Sivitanides, 2002; Thomas et al., 2007; Papadakis et al.,
2016; Kalelioğlu and Gülbahar, 2014). Developing problem-solving skills involves de-
veloping high-order thinking skills that help people face cognitive challenges. Through
finding an algorithm that solves the problem, skills such as analytic thinking and cre-
ativity are required (White and Sivitanides, 2002). According to Neo-Piagetian theories
of cognitive development, people, regardless of their age, develop abstract abilities as
they gain expertise in a specific domain. Thus, a novice in one domain will exhibit less
abstract abilities than that person will exhibit in a domain where he/she is an expert
(Morra et al., 2007). The exposure of 6-grade students to programming learning is
relatively low. Hence, students of this age can be considered novices. As such, they do
not possess the necessary abstract abilities required to understand abstract program-
ming concepts. Having that in mind, a concrete mediation of the programming abstract
concepts is required for novice programmers. Within this study, the selected concrete
mediation is via music. As described in the Pied Piper legend and stated by researchers,
music induces magic in people (Gold et al., 2013; Zhu et al., 2005); music listening
frequently has a more immediate outcome than using a program and often affects emo-
tions (Koelsch, 2010; Zentner et al., 2008). Hence, the idea to mediate the abstract pro-
gramming concepts via exciting concrete music activities was raised. Using music as
a mediator serves two purposes, to create a situation in which a need for programming
will stem from the students and provide students with immediate outcomes that might
increase their motivation to cope with programming.

Music’s role is to bring a joyful, concrete meaning to abstract programming con-
cepts. Making the connection between programming and music also stems from em-
bracing the STEAM education approach that integrates Science, Technology, Engineer-
ing, Arts, and Mathematics disciplines (or part of them) (Kim et al., 2012). STEAM
programs aim to teach students innovation, think critically, and use technology in imag-
inative designs or creative approaches to real-world problems. It also nurtures curiosity,
creativity, and flexibility and fosters self-regulated learning skills (Thomas et al., 2007;
Papadakis et al., 2016).

One of the teaching methods that has evolved over the years to handle complex con-
cepts is the spiral method (Bruner, 1960). In this approach, topics or skills are revisited
while their level of complexity increases (Takaya, 2008). First, the subject is taught
on a basic level, followed by several iterations, adding more complexity to the topic,
and reinforcing previously discussed principles. This teaching method facilitates the
establishment of the learning topic thoroughly. The spiral learning approach enables a
gradual learning process (Johnston, 2012) and is suitable for teaching young students
programming principles.

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 47

To employ the MelodyCode learning unit the blocks-based Scratch 3.0 environment
was chosen. The Scratch environment is already applied in elementary schools in our
country but on a small scale. It should be specified that the teaching focus in Melody-
Code differs from the methods usually used. Via the programming of familiar songs, a
need for learning fundamental programming concepts will rise. In addition, the teach-
ing/learning process follows the constructivist theory so that the students will engage in
personal exploration tasks. In the last fifteen minutes of each lesson, a class discussion
will take place in which new concepts will be summarized, and students will be able to
share their gained insights.

This study is part of a broader study that explores various aspects of learning to
program via music on different research populations. Lavy’s pilot study (2021) presents
findings regarding the effect of using music on learning the basics of programming of
seventh- and 8th-grade students. The current pilot study examines whether the above
idea is also suitable for younger students. To this end, the study units have been rewrit-
ten and modified to fit 6th-grade learning level. The present study examines the effect
of learning programming via music on 6th-grade students’ perceptions regarding pro-
gramming studies.

2. Theoretical Background

In what follows, presented a brief theoretical background on the following issues: music
for the sake of programming, STEAM education, the spiral curriculum, cognitive load
theory, and developing programming self-efficacy.

2.1. Music for the Sake of Programming

Music, in its universality, plays a meaningful role in both human society and well-being
(VanderArk and Ely, 1991). Music offers a unique perspective on life and on studying
as well. The influence of music on people led to the development of legends describ-
ing its impact on living beings, such as the Pied Piper of Hamlin. Music engagement
nurtures problem-solving, critical, and higher-order thinking skills (Bamberger, 1982;
2000; Powers, 2011). Higher-order thinking, including analysis, synthesis, and evalu-
ation (Bloom, 1956), provides a theoretical basis for critical thought (Topoğlu, 2014;
Olson, 2000) that is not domain-specific.

A link between music practice and the development of critical thinking that is not
domain-specific was observed (Johnson, 2011; Zellner, 2011; Bamberger, 2000; Olson,
2000). These researchers found that engaging in music requires listening, detecting
incorrect musical notes, identifying musical structures, harmonies, and more. These
actions help develop skills such as problem-solving and critical thinking. Engaging
in music involves thinking about cognitive processes, in which the learners develop
their understanding of music and become active problem-solvers (Bell and Bell, 2018;
Zellner, 2011).

I. Lavy48

The research literature comprises a considerable body of studies concerned with
learning and creating music using programming (Baek and Taylor, 2020; Manaris and
Kohn, 2016; Petrie, 2022). Other researchers reported on developing computational
thinking among primary school students as a byproduct of music engagement (Guzdial,
1991). Research was carried out to foster the development of both coding and music
skills in young students (Ludovico and Mangione, 2015; Barmpoutis, 2018). Research
was also carried out to exploit the musical media to promote aspects of computational
thinking among pupils of 6th to 8th grades (Barate et al., 2017). The present study
explores the teaching of programming through music activities. Through the pursuit
of music, the need for programming knowledge will rise from the students’ behalf.
The music activities consist of the programming of familiar songs through which an
experiential connection is created between the musical structures and the abstract pro-
gramming structures, enhancing their understanding. Music activities were chosen
since music also has a set of rules and structure that must be followed to play it and an
abstract component in delivering the music. The creativity of music is similar to aspects
of programming (hacking, algorithms, design, etc.). In addition, music frequently has
a more immediate outcome than programming and frequently an effect on emotions
(Koelsch, 2010; Zentner et al., 2008).

2.2. STEAM Education

 The STEM education approach was developed, integrating the Science, Technology,
Engineering, and Mathematics disciplines (or part of them) to address global mission-
oriented projects had to be addressed (Kim, et al., 2012). The integration of the above
academic disciplines was originated when projects such as brain research, sophisticated
applications, finding a cure to an epidemic, and more had to be developed. Later, the ‘A’
was added, which stands for the arts disciplines. Among the above disciplines’ integra-
tion goals is to develop skills necessary for functioning in the developing technologi-
cal world (Quigley et al., 2017). Liao (2016) claimed that the above disciplines could
improve student engagement, creativity, and problem-solving skills and improve skills
required for vocation and economic advancements, such as collaboration, communica-
tion, and adaptability. The integration creates opportunities for handling a problem from
different points of view and thus nurtures creativity abilities and develops higher-order
thinking and problem-solving skills.

Technological disciplines (such as programming) should be taught to students starting
from an early age to prepare future citizens for the challenges of a technology-oriented
world. Students develop problem-solving abilities, analytic thinking abilities, creative
thinking, and computer literacy via learning programming. However, programming is
perceived as a difficult task (Hava & Koyunlu Unlu, 2021) since it requires abstraction
abilities that beginner students in programming do not possess yet. There should find a
way to mediate these concepts via enjoyable and stimulating activities such as music
that will attract their attention to be engaged in it. The MelodyCode learning unit was
designed to achieve the above goal and applies the STEAM education approach by inte-

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 49

grating music, which belongs to the Art disciplines, with programming, which belongs
to the Technologies disciplines.

2.3. The Spiral Learning Approach

The term ‘spiral curriculum’ was coined by Bruner (1960), who asserted that any
subject could be taught in some intellectually honest form to any child at any stage
of development. Meaning that even complex concepts, if presented at a level appro-
priate to the learner’s age, can be understood by him. The main ideas underlying the
spiral curriculum based on Bruner’s work are: (A) Students revisit a topic, theme, or
subject several times throughout their school studies; (B) The complexity of the topic
or theme increases with each revisit; and (C) Revisiting a topic or theme solidifying
of the learned subject matter while the student revisits it. Spiral learning refers to be-
ginning with basic ideas and ending with complicated ones (Harden, 1999; Johnston,
2012).

Shneiderman (1977) used the spiral teaching approach to teach novice programmers
claiming that this approach makes programming education more natural to students,
alleviates ‘computer shock,’ and promotes the development of computer literacy. He
(ibid) also asserted that the spiral approach is the parallel acquisition of syntactic and se-
mantic knowledge in sequence, which increases student motivation by using meaningful
examples, builds on previous knowledge, suits the student’s cognitive skills, provides
an understanding of recently acquired material, and develops confidence throughout the
completing of increasingly complex tasks.

2.4. Cognitive Load Theory

Cognitive load refers to the load created on the learner’s working memory resources
while performing a particular learning task (Sweller, 1988). Memory resources are
short-term memory (working memory) and long-term memory. When one faces new
information, the working memory is limited in capacity and time. On the other hand,
the capacity of long-term memory is unlimited. The information stored in it is orga-
nized in cognitive knowledge structures termed “schemas.” Cognitive load can be
diagnosed in two dimensions: causal and evaluation. The first represents the interac-
tion between the task and the learner’s characteristics, while the second represents
the measurable characteristics of three aspects of cognitive load: extraneous, intrinsic
cognitive, and actual.

Extraneous cognitive load refers to the load created by the task and the environmen-
tal requirements in which the task is performed. This load results from the interaction
between the task and the learner’s characteristics.

Intrinsic cognitive load refers to the amount of effort invested by the learner in
performing a particular task, and therefore, this aspect represents the learner’s cog-

I. Lavy50

nitive load. This effort is measured while the learner is busy performing the task or
learning.

The germane cognitive load refers to schemas processing, construction, and auto-
mation of knowledge (García et al., 2011). Studies have shown that cognitive load is
affected by the learner’s age (Gathercole et al., 2004) and socioeconomic status (Siegler,
and Wagner, 2005). They found an inverse relationship between economic status and
age and the cognitive load created in the learning process. Measuring methods were
developed to estimate cognitive load (Paas et al., 2003), and one of them is based on the
self-report of the learner in a retrospective reporting manner. In the present study, where
students are exposed to abstract learning concepts while they are beginners at program-
ming and, according to Neo-Piagetian cognitive theories, can not demonstrate abstract
abilities to cope with programming (Morra et al., 2007) (Epstein, 1980), to reduce the
cognitive load, this exposure is done through the mediation of music, which provides a
concrete use for the abstract programming concepts.

2.5. Developing Programming Self-efficacy

A positive correlation between students’ beliefs regarding their academic abilities
and their motivation to achieve was detected by educators (Metallidou and Vlachou,
2007). Self-efficacy is a good predictor of students’ motivation and learning (Zimmer-
man, 2000). The concept of “self-efficacy” was coined by Bandura (1977), and the term
“sense of self-efficacy” refers to the level to which the learner believes in his ability to
successfully perform a task at a given condition to achieve the desired results. Bandura
(1986) stated that this belief influences the behavior of the individual, her preferences,
the efforts she invests in tasks, and her persistence in pursuing the goals she sets for
herself. Studies showed that a sense of self-efficacy stems from the learner’s perception
of his knowledge, personal ability, performance, and control (Linnenbrink and Pintrich,
2010; Goddard et al., 2004; Zimmerman, 2000).

For many, this belief serves as a guideline for life and a basis for action, influenc-
ing the individual’s decision to behave in different situations and determining her or his
ability to persist in stressful situations. People with a high sense of self-efficacy tend
to respond to challenges and persevere to achieve their goals, believing that it depends
solely on them and their determination. Self-efficacy has a significant impact on motiva-
tion and performance. Self-efficacy influences and is affected by the level of expertise
a person demonstrates in a particular field. The higher the person’s self-efficacy in the
field, the more his motivation to become an expert in it increases. On the other hand,
expertly in a particular field yields a sense of high self-efficacy regarding one’s ability to
deal with the field’s challenges.

To raise students’ sense of self-efficacy regarding their ability to cope with program-
ming, and according to Neo-Piagetian theories of cognitive development to bring them
to a state where they become experts in the field (Morra et al., 2007), a learning environ-
ment should be developed to nurture this process.

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 51

3. The Study

Lavy’s pilot study (2021) presents findings regarding the effect of using music on
learning the basics of programming of seventh- and 8th-grade students. The current
pilot study examines whether the above idea is also suitable for younger students. To
this end, the study units have been rewritten and were modified to fit 6th-grade learn-
ing levels.

In what follows, information about the study participants, the course of the study,
data resources, and analysis tools will be presented.

3.1. The Study Participants

Eleven 6th grade students (eight male and three female) from a regional rural elemen-
tary school participated in this study. Only four students (two male and two female)
had previous music knowledge. Each of them plays a musical instrument and is profi-
cient in reading notes. However, all the other participants or the researcher herself had
no prior music knowledge. The study was conducted in weekly meetings of two les-
sons each at the school’s computer laboratory. Participation was voluntary. The num-
ber of participants was decided according to the number of computers in the school
laboratory. In April 2020, the course of the study was stopped due to the Covid19
pandemic. At that time, all schools were closed, and the students were sent home for
distance learning.

3.2. The Course of the Study

First, it is essential to specify that although the researcher is fond of music very much,
she has no musical education. Hence, to develop the MelodyCode study unit, she was
assisted by a music teacher, from whom she learned the music notes so she could convert
them to their representation in Scratch. It should also be noted that most of the study
participants had no prior musical education. Hence, the second lesson was dedicated
to teaching the students to convert music notes into their Scratch representation. The
conversion was necessary since the songs’ notes were taken from the website https://
www.zemereshet.co.il, in which they appear in their formal representation. By the
end of that lesson, the students could successfully program one of the songs from the
above website.

The goal of MelodyCode was that via the programming of simple songs, the need
for programming structures and concepts would be created by the students. Therefore,
the first task in each study unit was to select a song from the above website and program
it in Scratch. The level of complexity of music demands increased from unit to unit. In
addition, after programming the song, the students were asked to develop an animation
or game that would suit the spirit of the song. During the students’ engagement with the
song programming, a need for programming constructs was created. These needs have

I. Lavy52

discoursed during the class discussions, and the researcher introduced the relevant pro-
gramming structures and concepts to address these needs. For example, when students
were tackled with the problem of finding an incorrect note among a long list of notes,
they suggested dividing the whole list of music notes into groups. At this point, the con-
cept of function (Block in Scratch terminology) was presented. The next raised question
was, what would be the logical division into blocks of the whole list. They suggested that
each line of musical notes be converted into one block.

In the design phase of MelodyCode, a match between music elements and corre-
sponding programming constructs and concepts was performed (Table 1). As was pre-
viously mentioned, the music involved in the MelodyCode concerned popular songs.
The popular songs selected were Jewish holidays songs. The reasons for choosing
music related to Jewish holidays are related to the study participants’ age and the de-
sire to connect the learning process to traditional and cultural experiences. The Jewish
holidays have memorable songs, foods, and customs and have an essential role in the
students’ social and traditional life, and as such, have an integral part in the elementary
school curriculum in our country. Therefore, it seems appropriate to focus the learning
of programming fundamentals around a central theme that deals with the music of the
Jewish holidays that have been familiar to students since the dawn of their childhood.
Via the programming of the songs, the need for programming constructs and concepts
such as variables, functions, repetitive commands, parameters, parallel processes, and
more was raised. During two Jewish holidays, the students were engaged in develop-
ing a project that included programming one of the near holiday songs accompanied
by a suitable animation or a game to fit the chosen song. Nearby the holiday date, a
competition that win awards was held to rate the best three projects according to the
pre-selected criteria list. The students decided on the criteria list and the relative weight
adjusted to each criterion in a class discussion devoted to this purpose. The competi-
tions allowed the students to demonstrate their abilities and significantly contributed to
shaping students ’social status. The research literature indicates a positive effect of aca-
demic competition on the learning process (Burguillo, 2010; Fülöp et al., 2007; Sheri-
dan and Williams, 2011). It was found that friendly competitions enhance students’

Table 1
Mapping corresponding elements of music and programming concepts

Music Programming

Playing a specific note for a specific duration Using the concept of variable
Writing song notes according to its verses Using the concept of function
Replaying of the same music segment Using the concept of a simple loop
Playing the same music with various instruments Using the concept of objects and parallel processes
Playing the same music segment in different octaves Using the concept of variable and a parameter and

parallel processes
Polyphonic music Parallel processes
Playing a music canon Using the ‘broadcast’ block command
Writing music chords and merging them into a melody Structured programming
Adding the accompaniment of a drum to a song Nesting loops

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 53

motivation to learn and help in increasing their learning performances. Fülöp (2004)
defined constructive competition as a social and cultural phenomenon that enhances
children’s abilities, develops their ambitions, and motivates their learning.

The best three projects won small prizes representing the holiday spirit, while the
rest of the students received consolation prizes to avoid disappointment. The projects’
requirements became more complex from one holiday to the next. The last project was
carried out in teams to enable the students to experience teamwork. This project was
interrupted near its end due to the Covid19 pandemic.

The Scratch environment was presented to the participants in the first lesson focus-
ing on the music blocks. Each block command was explained, followed by a demon-
stration of its use.

Table 2
Schematic description of the contents of the weekly lessons

Les-
sons

Jewish
holiday

Music Programming
concepts

Tasks The average level
of difficulty (1–9)
Program-
med
melody

Anima-
tion/
game

1–4 Rosh
Hashanah1
– Jewish
new year

Notes, duration
playing of a no-
te, tempo, music
segment, music
instruments

The Scratch
block of a music
note, function,
simple loop

Writing the script of one of
“Rosh Hashanah” songs from:
https://www.zemereshet.
co.il and design a simple
animation to fit the melody

5.1 6

6–10 Hanukkah2 Playing the me-
lody in diffe-
rent octaves

Functions, loops,
variables,parallel
processes

Writing a script of one of “Ha-
nukkah” songs and playing
it in two different octaves in
concert, and designing a suit-
able animation or a simple
game

4 5.5

11–14 Tu
BiShvat3

Playing a melo-
dy with two
hands

Functions, loops,
variables Parallel
processes

Writing a script of “Tu Bi-
Shvat” song played with two
hands in concert and design-
ing a suitable game for two
players

4.2 5.8

16–19 Purim4 Playing Song
String and
Adding drums
accompaniment

Use the “launch”
command, nest-
ing loops

Writing two scripts of two dif-
ferent “Purim” songs, played in
concert, adding drums accom-
paniment, and designing a sui-
table animation or a game

4.1 5.6

1 “Rosh Hashanah“ meaning “head of the year”, is the Jewish New Year.
2 “Hanukkah” is a Jewish festival commemorating the recovery of Jerusalem and subsequent rededication of

the Second Temple at the beginning of the Maccabean revolt against the Seleucid Empire in the 2nd century
BCE.

3 “Tu BiShvat” is a Jewish holiday occurring on the 15th day of the Hebrew month of Shevat. It is also called
the ‘New Year of the Trees’. In contemporary Israel, the day is celebrated as an ecological awareness day,
and trees are planted in celebration.

4 “Purim” is a Jewish holiday which commemorates the saving of the Jewish people from Haman, an Achae-
menid Persian Empire official who was planning to kill all the Jews at the 5th century BCE.

I. Lavy54

The students were handed a study unit that included several exploration tasks from
the second meeting and on. Each study unit contained four to eight exploration tasks
with an increasing level of complexity. The MelodyCode is designed according to spi-
ral learning, meaning that concepts and programming structures were revisited several
times at an increased complexity level. The students worked individually on the explo-
ration tasks and could turn to the researcher when he/she tackled difficulties. The last
fifteen minutes of each session were dedicated to a class discussion in which the new-
ly learned concepts were summarized, and insights gained during the activities were
shared. In addition, the students were asked to provide feedback on the study units,
refer to the clearness/ comprehension, and whether extra explanations were needed. It
was made clear to them that they could express their opinion freely. Table 2 shows a
schematic description of the weekly lessons, including the average value of their self-
reported level of difficulty they experienced in each project (programmed melodies,
animation/game development).

3.3. Research Aim and Derived Questions

This pilot study aims to explore the effectiveness of MelodyCode for learning program-
ming fundamentals among 6th-grade students. The derived research questions are:

What were the students’ preconceptions regarding programming, and how were 1.
they influenced (if any) by the learning via MelodyCode?
How does learning via MelodyCode influence students’ self-concept regarding 2.
their ability to cope with programming?

3.4. Data Resources and Analysis Tools

The study is exploratory, and it is part of broader research that explores the effectiveness
of developed study units for teaching mid-school and elementary school students how to
program via music. The data resources of the present study were:

 a) In-depth semi-structured pre and post-interviews: to follow the change in
perceptions regarding programming, pre and post semi-structured interviews
were conducted with all the study participants. In the pre-interviews that were
conducted at the beginning of the course, there were four leading questions:
(1) what do you think about programming; (2) what are the required skills to
be able to be a good programmer; (3) why did you choose to join the course;
(4) express your opinion regarding the following: I think I can succeed in getting
mastery of programming.

They conducted the post-interviews to reveal the qualitatively different ways
the participants experienced, perceived, and understood the learning to program
via music. The leading questions in the post-interviews were based on Ornek’s
study (2008) and were modified to suit the present study. In addition, they were
asked to rank the level of difficulty they had experienced after each project,

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 55

referring separately to the music programming and the animation/game devel-
opment. The ranking varied from 1 to 9, while 1 indicates very low cognitive
load, and 9 indicates a very high cognitive load. They were also asked to justify
their ranking. The self-esteem index questionnaire is based on Paas et al. (2003)
to estimate the cognitive load students experience while coping with different
tasks. Due to the Covid-19 pandemic, the interviews were conducted using the
Zoom platform.
 b) The students’ feedback: The students were asked to provide feedback regard-
ing the study units, including positive and negative reviews, and email it to the
researcher. The students’ feedback is intended to improve the following study
units.
 c) The student outcomes: Tracing the students’ design and development of
their projects could shed light on their curiosity, enjoyment, and motivation to
learn.
 d) The researcher’s reflective journal: After each lesson, the researcher docu-
mented episodes during the meetings and the insights she gained.
 e) Transcripts of informal talks conducted with the Computer Lab Director.
She was present in most lessons to provide technical problems. She provided an
additional point of view on the learning process.

The present research was designed to suit action research (Stringer, 2013), which
aims to learn from the feedback received from the study participants and from the
researcher’s insights to improve the following study units (Denscombe, 2014). Action
research includes the following stages: (1) detect a change; (2) examine the present
situation; (3) design different interventions; (4) apply the intervention; (5) examine the
impacts of the intervention; (6) assess against initial goals; and (7) distribute findings.

In the current study, the understanding that traditional methods used to teach pro-
gramming deter students (predominantly female ones) from choosing programming
studies has led to the development of a different learning approach that integrates two
disciplines: music and programming (addressing stages 1–3). In a weekly two lessons
session, the students were engaged with a MelodyCode learning unit. (stage 4). In each
session, participant observation was conducted by the researcher and was documented
in detail in the researcher’s reflective journal. The insights gained by the researcher
and the students’ feedback were analyzed and evaluated (stages 5 and 6). The in-
sights gained from the previous stage were implemented in the following study unit
(stage 7).

The Phenomenography method (Marton, 1986) was the most suitable for the data
analysis. This method suits educational research that aims to discover the qualitatively
different ways students experience, perceive, and understand various aspects of a new
phenomenon (Bowden et al., 1992) that, in the present study, refers to learning how
to program via music. According to Sjöström and Dahlgren (2002), phonomyography
analysis includes the following steps: (1) familiarization of the researcher with the
research data. It is done using reading through the transcripts of the gathered data;
(2) compilation of responses from participants to a particular question. The researcher
should identify the most significant elements in responses given by participants; (3) a

I. Lavy56

preliminary grouping or classification of similar responses; (4) a preliminary compari-
son of categories; (5) naming of categories; and (6) a contrastive comparison of catego-
ries. It includes the categories’ descriptions and similarities between them.

Analysis of the data revealed references to two main issues – views related to pro-
gramming and views related to the learner’s self-ability to cope with learning program-
ming and how the music affected these views (Fig. 1). In the following section, elabora-
tion on these issues will be presented and discussed.

3.5. Ethical Issues

Since the researcher and the study participants had an authority relationship (teacher-
student), prior to the study conduction, the participants were informed about the re-
searcher’s intention to conduct a study that would follow their experiences using the
data from their interviews and learning products to receive their consent to the process.
The study received the school principal and the students’ parents’ approval. The stu-
dents were free to choose whether to participate in the study. All the study participants
expressed their consent to take part in the study. Pseudonyms were used for all the study
participants to keep their privacy and confidentiality.

Fig. 1. Schematic description of data organization.

Music
Cognitive

aspects

Discipline

Masculine profession

Difficult to understand Common
stereotypes

Necessitates good
mathematics knowledge

Experiencing cognitive load

Making connections

Learner Joyful and relaxing class
atmosphere

Raise of motivation

Create curiosity

Development of self-perception
regarding learning abilities

Affective
aspects

Fig. 1. Schematic description of data organization.

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 57

4. Results and Discussion

As was previously mentioned, analysis of the data revealed references to two main is-
sues – views related to programming as a discipline and views related to the learner’s
prior self-perception regarding her or his ability to cope with learning programming
and how MelodyCode affected these views. Before elaborating on the results, It should
be specified that all the presented results should be treated with caution because of the
small sample size.

As to programming, students referred to common stereotypes such as a complex
topic to understand; being a good programmer necessitates good mathematics knowl-
edge and a masculine profession. From the learner’s point of view, there are references
to cognitive and emotional aspects (Fig. 1). The quotes of the students presented below
were translated from Hebrew. However, an effort was made to present a translation that
expresses their ideas most reliably.

4.1. Students’ Preconceptions Regarding Programming

Elementary school students would have preconceptions about programming even if they
did not learn it yet. These preconceptions result from socialization and their own experi-
ences (if any) (Geldreich et al., 2019).

To address the first part of the research question, and as was stated earlier, in a pre-
interview conducted with all the study participants, they were asked to relate to the fol-
lowing questions: (1) what do you think about programming; (2) what are the required
skills to be able to be a good programmer; (3) why did you choose to join the course;
(4) express your opinion regarding the following: I think I can succeed in mastering
programming.

Analysis of the pre-interviews revealed the following: Regarding the first question,
all the students said in similar words: “We did not learn to program yet, but my brother,
who is in eleventh grade, told me it is a complicated subject.”; “My dad works in high-
tech, and he told me that I should strive to study how to program because it is a lucra-
tive profession.”; “In this subject [programming], one can learn to communicate with
the computer and create interesting games, similar to the ones that we play with.”; “On
TV, it is constantly said that this profession is in great demand and lacks many workers,
especially girls.”

Students’ preconceptions regarding programming are created from the information
they receive at home from parents, relatives, and the media (Geldreich et al., 2019). As
a result, these preconceptions affect their learning preferences on whether to choose pro-
gramming studies or not. Kong et al. (2018) referred to the phenomenon that elementary
school boys are more interested in computer programming than girls and attributed it to
widespread media stereotypes. Boys’ interest in programming came to fruition in their
relatively high percentage of study participants (eight out of 11 students). The wide-
spread media stereotype of male computer specialists serves as role models for boys.
However, it negatively influences girls when other considerations are involved (Master

I. Lavy58

et al., 2016; Ensmenger, 2010). In recent years, the above situation has changed, and a
higher percentage of women can be found in programming professions, especially when
they start this career before starting a family (Buhnova and Prikrylova, 2019). On the
other hand, there is a tension between these preconceptions and the social message that
programming is a lucrative profession (Ensmenger, 2010); hence one should invest ef-
forts to become a programmer.

As to the second question, all the students said in similar words: “To be a good pro-
grammer, you have to be good at math and know English as well.”; “You need to be smart
and ready to spend many hours solving problems.” Similar results were found among sev-
enth and eighth-grade students (Lavy, 2021). Attributed traits to good programmers are
derived from the traits of famous key figures in computer science (Master et al., 2016).

As to the third question, male students’ answers in similar wording were: “l enjoy
playing computer games. I want to learn how to design games by myself”. Female stu-
dents’ answers in similar wording were: “You told us that the learning includes music;
this raised my curiosity because I like music very much.” “The only reason I joined the
course was the music. I hope it will be interesting”. In the answers to this question, one
can discern the difference between boys’ and girls’ preconceptions regarding program-
ming. While the boys expressed their wish to develop computer games independently,
the girls come from an apologetic stance saying they joined the course because of the
music and not necessarily because of the programming and expressed a wish that the
lessons would be engaging. Similar results were found by Master et al. (2016).

As to the fourth question, male students said in similar wording: “I managed to
develop simple computer games before. I want to improve these games and raise their
complexity”; “I want to be a developer, but I have some concerns because I am not that
good in mathematics”. On the other hand, female students said in similar wording the
following: “I hope that the music will ease the learning of the programming.”;”I want
to believe I can, but I am not sure.” Similarly to the third question, the students’ reac-
tions differ according to their gender. While most male students demonstrated self-con-
fidence in their ability to cope with programming, a minority expressed concerns about
encountering difficulties since they are not very good at mathematics. On the other hand,
the female students expressed low self-confidence regarding their ability to handle pro-
gramming (Ensmenger, 2010), hoping the music would make a difference. Although the
above results reflect the study participants’ views, they should be referred to cautiously
due to the small sample of the research group.

4.2. The Effect of MelodyCode on Common Stereotypes

In what follows, results regarding the second part of the first research question are pre-
sented and discussed. During the post-interviews conducted via the Zoom platform, most
of the students referred to the effect of MelodyCode on their views regarding program-
ming that stemmed from common stereotypes.

David: “Most computer games involve battles that usually attract boys while girls
are reluctant to play these games. As a result, the programming profession is

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 59

perceived as a male profession, and most of the girls I know do not play these
games. The need to develop an animation or computer game that a certain
holiday song will accompany raised the need to think of other options besides
characters fighting on screen.”

Noga: “Learning programming is difficult because it is different from spoken lan-
guage in which one can understand your idea even if you expressed it implicit-
ly. Here, if you don’t write the correct command and refer to all possible cases,
your solution is not complete and correct. Also, to be able to write a correct
computer program, you need to think of the relevant concepts that fit the task
needs but were unknown to us at this time. The engagement in music program-
ming allowed us to practice it in an attractive way.”

Jonathan: “I used to think that you must be very clever and be good in mathematics to
become a good programmer. My views were based on information I absorbed
at home. MelodyCode presented us with other alternatives besides program-
ming solutions to mathematical problems. You can learn programming through
music engagement. Tell it to the potential students for the next course; many of
my classmates wanted to join the course but were afraid that they have to be
very good at mathematics as well.”

Before relating to David’s excerpt, it should be noted that he had no prior music
education before joining the course. We can learn one of the underlying reasons pro-
gramming is considered a masculine profession. Many boys have been more attracted to
battle computer games from childhood than girls. Following the evolution of program-
ming reveals that this profession requires many working hours. It is perceived as a male
profession (Ensmenger, 2010) since, in most cases, women take responsibility for taking
care of the family children cannot afford the investment of many hours to develop and
advance in this profession (Ensmenger, 2015).

In her excerpt, Noga refers to the difference between the spoken language and pro-
gramming in that the programmed solution must be both accurate and comprehensive in
the sense that it must address all the possibilities embedded in the problem. To be able
to do so, one should demonstrate analytical thinking skills and abstraction skills (Tsala-
patas et al., 2011; Kramer, 2007; Bennedsen and Caspersen, 2006). Moreover, being
beginners in programming, the study participants are expected to demonstrate abilities
that do not fit Neo-Piagetian cognitive theories(Morra et al., 2007). According to these
theories, people can demonstrate abstract abilities only when they become experts in a
particular field.

Noga refers to music engagement’s contribution to coping with the situation de-
scribed above, saying that through the music programming, the need for the program-
ming concepts emerged, which eventually helped her understand these concepts (White
and Sivitanides, 2002).

As to Jonathan’s excerpt, research showed that students’ mathematics ability was
strongly related to their programming performance (Qian and Lehman, 2016). However,
no indication regarding the potential of being a good programmer with average math-
ematical ability was detected (Pianta et al., 2008). In the above excerpts, Jonathan de-

I. Lavy60

scribes how MelodyCode changed his views regarding programming saying that learn-
ing programming through music encourages the student to discover various ideas for
games and animations that do not necessarily require mastery of mathematical knowl-
edge. Finally, Jonathan urged the researcher to share the change in his preconception
regarding the need to be good at mathematics with other students who think the same
and, as a result, avoid learning to program.

4.3. The Effect of MelodyCode on Cognitive Aspects

The study participants were asked to rank the degree of difficulty they experienced while
working on the projects with separate reference to music programming and application/
game development (Table 2). The degree of difficulty can serve as an indicator of the
cognitive load they experience (Paas et al., 2003; Paas et al., 1994). They were also
asked to justify their ranking. The data obtained show that the students’ self-reported
level of difficulty regarding the music programming was lower than the one regarding
the development of application/game in all the projects. The justifications attached to
the ranking relating to the music programming related mainly to affective issues such
as “The fun pursuit of music made up for the difficulty, so overall I was not left with an
experience of great difficulty.” However, the justifications attached to the programming
of the animation/game referred mainly to cognitive aspects. In what follows, elaboration
on cognitive aspects is presented and discussed.

Yoav: “I hesitated a lot before I joined the lessons because I was sure that I would
not be able to cope with programming. My concerns stemmed from rumors that
programming is difficult to learn and understand. When I successfully pro-
grammed a song’s melody, these concerns faded from the first lesson. As if the
focus of learning moved to the joyful part – the music while the programming
became the tool to achieve it.”

Interview segment:

Researcher: “Could you please describe your working process on a project?”

Mika: “The assignments regarding the music programming in the MelodyCode units
enabled a sense of success right after you finished the task. You could hear the
success since it meant that your programmed melody was correct. This success
motivated me to pursue the development of a suitable animation or game.”

Researcher: “Can you give an illustration from the course?”

Mika: “Yes. While working on the Rosh Hashanah project, we selected a song and
programmed its script. After running each stanza of the song, it was possible
to determine if the notes were correct or not. Once the song was ready, I began
to think of an animation that would suit it and reflect the holiday spirit. Dur-

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 61

ing writing the music script, a need to use the concept of function [block in
Scratch] emerged. This concept was unfamiliar to me before. Linking between
the programming concept and its musical concrete use helped me understand
and remember it.”

Researcher: “What programming concept reminds you of drum accompaniment?”

Mika: “It is easy. Nesting loops.”

Researcher: “What programming concepts remind you of playing in different octaves?”

Mika: “Variables and parameters.”

Among other students who expressed the same ideas in similar words, Mika re-
ferred to the assignments’ structure they had to cope with, which was modular and
enabled focusing on one mission at a time and receiving immediate feedback on their
performances. Beginning first with the task of music programming provided students
with immediate feedback (correct melody) and created motivation to learn program-
ming structures that would help them advance in the task. In addition to being a fun
pursuit, the music programming engagement revealed a concrete use of abstract pro-
gramming structures. Driven by their success in the music task, the students success-
fully developed an animation/game that would suit the music they had created. When
developing an animation/game, they were already familiar with the required program-
ming structures. Nevertheless, they reported experiencing a greater difficulty than they
had experienced in the music task since they had to cope with developing an animation
or a game that suits the holiday spirit, which requires creative abilities. According to
the research literature, the cognitive load that might develop while engaging in complex
topics such as programming is higher among beginner students than in novice ones
(Gathercole et al., 2004).

In terms of cognitive load theory (Sweller, 1988; Sweller et al., 1998), we might
say that according to Yoav and Mika, learning via MelodyCode enabled the students’
coping with the intrinsic cognitive load created during the learning process. The in-
trinsic cognitive load refers to the cognitive efforts associated with a specific topic,
which in our case, is the learning of abstract programming concepts and structures that
are not familiar to them. The exposure to the abstract programming concepts via mu-
sic programming engagement enabled the students successfully cope with the abstract
concepts (Epstein, 1980).

The germane cognitive load refers to processes in working memory, leading to the
construction and automation of cognitive knowledge structures (schemas) (Sweller,
1988; Sweller et al., 1998; García et al., 2011). These processes do not happen auto-
matically but depend on the learner’s motivation (Sweller et al., 1998). Via the learn-
ing using the MelodyCode, links were created between exciting activities such as drum
accompaniment and abstract concepts such as nesting loops. These links might initiate
the construction of knowledge schemas that would develop in future engagements with
these abstract concepts.

I. Lavy62

4.4. The Effect of MelodyCode on Emotional Aspects

Data and discussion regarding the second research question are presented in what fol-
lows. In the interviews, the students referred to the following emotional aspects: joyful
and relaxing class atmosphere, raising motivation, creating curiosity, developing self-
perception regarding learning abilities. Herein are representative excerpts from the stu-
dents’ interviews:

Yuval: “When you [the researcher] came to our class and explained to us how we
would learn to program through music, I imagined joyful lessons in the sense
that music will be heard from all computers. I must admit that my hopes were
fulfilled”.

Mika: “The lessons were totally different from the lessons of other subjects we learn.
At what lesson can one hear her programmed music? We did not feel that we
were coping with a difficult topic. If we were learning only the programming,
I’m not sure I would feel the same way. The music made the difference and
changed everything.”

Gal: “I felt thrilled when the song’s melody, whose notes I programmed, sounded
correct and without mistakes. This joy spurred me to invest efforts in a com-
puter game that would suit the music. It was important to me to develop a game
that attracts classmates’ desire to play.”

Ziv: “As I was writing the code for the Rosh Hashanah song, I had questions like
How to find incorrect musical notes in the script easily? How to avoid repeating
the same segment of commands? How to easily change the melody octave? How
to program polyphonic music? I was so enthusiastic that I wanted to know the
answers to all of the above questions right from the beginning.”

David: “Even though each student worked individually on his tasks, you could not
avoid hearing other classmates’ melodies. This raised my curiosity regarding
computing commands used by other classmates, so I turned to ask for their help
to improve mine.”

Yuval: “During the lessons, we felt free to move around and learn from other class-
mates’ performances. Sometimes students helped me and sometimes I helped
them, and it allowed everyone to improve their projects.”

Jenkins (2002) said:

“Learning (or perhaps here ‘being taught’) programming can be very
dull. Lectures covering syntax details are never going to be especially
inspiring, and exercises that involve simple mathematical manipula-
tions of collections of student marks, stock levels, baseball statistics,
or bank account details are never going to set the pulse racing. Yet a
glance in many programming texts will yield many turgid examples of
each of these.” (p. 56)

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 63

As to experiencing feelings of enjoyment and interest, he (Jenkins, 2002) added:

“At its best programming can be an enjoyable, creative activity, and
many students derive great enjoyment from their programming. They
enjoy it even more (and learn more) when they can work on assign-
ments that inspire them. It is a shame that so few assignments do in-
deed inspire” (p. 56)

From the above excerpts and the evidence from the researcher’s reflective journal, it
might be said that learning programming via music made it happen.

From Yuval’s excerpt, we can learn that his expectations from the course are not
typical. In general, students’ expectations of a new learning method refer to cogni-
tive aspects such as facilitating the learning process and enabling them to acquire new
knowledge and understand the material being taught rather than encounter difficul-
ties (Jin and Hill, 2001; Littlejohn et al., 2010). In the case of the learning using the
MelodyCode, emotional expectations were also raised. The expectation of enjoying the
learning process stems from integrating music into the learning process since music
serves as one of the primary sources of enjoyment (Batt-Rawden and DeNora, 2005).
When MelodyCode was introduced to the students, they expected the music to change
the usual learning routine.

Referring to Mika’s and Gal’s excerpts, a reference to creating two kinds of the joy of
learning, active and passive, is detected. The passive joy of learning means contentment
with a pleasant state. The learner’s immediate reaction is issued by an external factor
beyond one’s control. The active joy of learning is a state that results from the students’
effort. The emotion of achievement results from sudden and surprising success (Varila
and Viholainen, 2000; Rantala and Maatta, 2012). Learning how to program via music
nurtured both kinds of joy. MelodyCode was designed as a collection of engaging activi-
ties, which added to the passive joy, while the students’ success in creating animation
or a computer game to accompany their programmed music added to the active joy. It
is also in line with research findings that using untraditional approaches in learning and
incorporating engaging activities such as games positively affect the class atmosphere
(Yu, 2005).

Referring to Ziv’s excerpt, he describes the effect of music engagement on his curios-
ity to pursue the learning of programming structures and concepts to address the musi-
cal issues he tackled. Curiosity can be articulated as the tendency to inquire, explore,
or pursue knowledge. It is simply the frame of mind in which one wants to learn more
about something. Curiosity can be viewed as a source of internal motivation that encom-
passes the foundation of education (Binson, 2009). The motivational fuel for learning at
each step of the educational process is driven mainly by curiosity. Curiosity motivates
students to learn more and more about their world, and as a result, a deeper understand-
ing of the interactions and the relationship between the various elements is achieved
(Loewenstein, 1994; Binson, 2009).

To illustrate students’ eagerness to learn new programming concepts. Students were
asked to create a drum accompaniment to one of the songs they had programmed. They

I. Lavy64

had to begin with performing an accompaniment of only two drums. The researcher
demonstrated drum accompaniment using the concept of nesting loops. Right after that,
they turned to the computers to practice it. Some (the students with prior music knowl-
edge) asserted that different songs have different rhythms, requiring different drum ac-
companiment rhythms. The enthusiasm was high among all students, which yielded pro-
grammed drum accompaniments to all the songs they had programmed so far without
being asked to do so.

As to the development of self-perception regarding learning abilities, representative
excerpts are presented:

Noga: “I’m not very good at mathematics, so I had concerns that I will encounter
difficulties. I joined the course because of the music and stayed because of the
programming. I belong to the music class at school and hoped that my music
specialty would help me cope with programming. When I finished codding the
melody successfully, it raised my self-confidence that I would also be able to
overcome the programming of the animation. After finishing the animation to
my satisfaction, I was proud of myself, even more, when classmates asked for
my help.”

Ziv: “My success in programming the song gave me a good feeling regarding my
ability to cope with the following task. This feeling influenced my willingness
to cope with the programming of the animation. If it was the other way around,
I am not sure I would have acted the same.”

From the above quotes, it can be concluded that learning via MelodyCode played
an essential role in affecting the students’ self-perception regarding their ability to cope
with programming tasks. The student’s engagement in programming a familiar song
provided positive feedback that helped increase their self-perception regarding their
ability to cope with the following task involving programming an animation/computer
game. The task design in MelodyCode was meant to build their self-confidence in cop-
ing with programming gradually. Success and a sense of self-efficacy are interrelated
(Bandura, 1977). Success increases a sense of self-efficacy, and a high sense of self-
efficacy affects the behavior of the individual, her motivation, her choices, the efforts
she invests, her ability to cope with different situations, and her perseverance in pursu-
ing the goals she sets for herself (Bandura, 1986). Hence, we may conclude that learn-
ing programming fundamentals via MelodyCode provided the students with success
opportunities, increasing their self-efficacy to cope with programming.

4.6. Concluding Remarks

As in the Pied Piper legend where the music had its magic influence on the city rats
and then on the children of Hamelin to follow the flutist outside of the city, the music
role in the MelodyCode study unit is to raise students’ motivation and curiosity to be
acquainted with programming structures and concepts. The music induced a relaxed
class atmosphere and provided a kind of “softened covering” to programming, which

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 65

is considered a complex and challenging topic to cope with (Bosse and Gerosa, 2017;
Derus and Ali, 2012).

Data analysis revealed that learning via MelodyCode changed the students’ ste-
reotypes regarding programming. Stereotypes such as programming is a male pro-
fession requiring mathematics excellence and more. The data analysis also revealed
that learning using MelodyCode affected both the students’ cognitive and emotional
perspectives.

As to cognitive perspectives, the students were exposed to attractive situations that
evoked the use of programming structures and concepts, raising their motivation to un-
derstand and use them. Making connections between music structures and programming
structures also affected the cognitive load (Sweller, 1988) the students experienced dur-
ing their engagement in the tasks.

As to emotional perspectives, references to a pleasant class atmosphere during
lessons, raising motivation and curiosity, and increasing self-perception in their abil-
ity to cope with the difficulty of learning how to program was detected. There is a
reciprocal relation between self-efficacy and motivation. High sense of self-efficacy
in one’s ability results in an increase in her or his motivation and vice versa (Bandura,
1986). The learning via MelodyCode provided the students with opportunities to ex-
perience success (correct melody of the music programming) which raised their sense
of self-efficacy and motivated them to cope with the programming of animations or
games.

Analysis of the transcripts of informal talks conducted with the Computer Lab Di-
rector revealed that some students experienced a positive change in their social status
in the class. From being socially isolated to a state where all students seek their friend-
ship, asking for their advice and help. There is a well-known problematic phenomenon
in which some students experience social isolation in school, and many efforts are in-
vested in minimizing this phenomenon (London and Ingram, 2018). In the first project
competition, a student with problematic social status won. After winning, all students
sought his company, and the positive change in his social status was observable. The
competitions allowed the students to present their abilities and, hence, made a signifi-
cant contribution to shaping students’ social status. Studies examining the relationship
between classroom social status and academic achievement have shown that low social
status is associated with low achievement (Destin et al., 2012; Van Laar and Sidanius,
2001). They found that students perceived to be at higher social status levels were
among the high scores achievers in class. In our case, we notice a situation where aca-
demic success improves students’ social status in the classroom. The change in their
social status in class has also contributed to raising their motivation to develop exciting
games that will be perceived as popular among classmates, and the number of class-
mates playing with those games will increase.

As mentioned earlier, the researcher had no prior music knowledge, and assistance
from a music teacher enabled the development of the MelodyCode units. This fruitful
collaboration is at the heart of the STEAM education approach and the multi-discipli-
narity approach, particularly encouraging cooperation between different domains. In
addition to gaining programming knowledge, during the students’ engagement with the

I. Lavy66

MelodyCode units, they also become acquainted with music education, such as octaves,
chords, drum accompaniment, polyphonic music, and more.

As was previously mentioned, neither the teacher nor the students need to possess
prior music knowledge to benefit from the learning via MelodyCode. Fruitful collabo-
ration with music teachers might yield additional ideas to incorporate into the study
units. Hence, the course will be repeated in the following academic year with several
classes of six-grade students after upgrading the study units. In addition to exposing
6th-grade students to programming through music, the learning of programming in the
following learning years should be continued while adjusting the level of learning to
the student’s cognitive abilities. Efforts should be made to Increase the students’ inter-
est in programming studies by incorporating activities like dancing and/or reality topics
popular among students at these ages.

References

Baek, Y., Taylor, K. (2020). Not just composing, but programming music in group robotics. Music Education
Research, 22(3), 315–330.‏

Bamberger, J. (1982). Revisiting children’s drawings of simple rhythms: A function for reflection-in-action. In:
S. Strauss (Ed.), U-shaped Behavioral Growth (pp. 191–226). New York, NY: Academic Press.

Bamberger, J. (2000). Developing Musical Intuitions. New York, NY: Oxford University Press
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review,

‏.191 ,(2)84
Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs,

NJ: Prentice-Hall.
Barate, A., Formica, A., Ludovico, L.A., Malchiodi, D. (2017). Fostering Computational Thinking in Second-

ary School through Music.‏
Barmpoutis, A. (2018, March). Integrating algebra, geometry, music, 3D art, and technology using emoticod-

ing. In 2018 IEEE Integrated STEM Education Conference (ISEC) (pp. 30–33). IEEE
Bell, J., Bell, T. (2018). Integrating Computational Thinking with a Music Education Context. Informatics in

Education – An International Journal, 17(2), 151–166.
Batt-Rawden, K., DeNora, T. (2005). Music and informal learning in everyday life, Music Education Re-

search, 7(3), 289–304.‏
Bennedsen, J., Caspersen, M.E. (2006). Abstraction ability as an indicator of success for learning object-

oriented programming? ACM Sigcse Bulletin, 38(2), 39–43.‏
Binson, B. (2009). Curiosity-based Learning (CBL) Program, Online Submission, 6(12), 13–22.‏
Bitner, B.L. (1991). Formal operational reasoning modes: Predictors of critical thinking abilities and grades

assigned by teachers in science and mathematics for students in grades nine through twelve. Journal of
Research in Science Teaching, 28(3), 265–274.‏

Bloom, B.S. (1956). A Taxonomy of Educational Objectives. New York, NY: Longmans.
Bosse, Y., Gerosa, M.A. (2017). Why is programming so difficult to learn? Patterns of Difficulties Related to

Programming Learning Mid-Stage. ACM SIGSOFT Software Engineering Notes, 41(6), 1–6.‏
Bowden, J., Dall’Alba, G., Martin, E., Laurillard, D., Marton, F., Masters, G., ... Walsh, E. (1992). Displace-

ment, velocity, and frames of reference: Phenomenographic studies of students’ understanding and some
implications for teaching and assessment. American Journal of Physics, 60(3), 262–269.‏

Bruner, J.S. (1960). The Process of Education. Cambridge MA, Harvard University Press.
Buhnova, B., Prikrylova, D. (2019, May). Women want to learn tech: Lessons from the Czechitas education

project. In 2019 IEEE/ACM 2nd International Workshop on Gender Equality in Software Engineering (GE)
(pp. 25–28). IEEE.‏

Burguillo, J.C. (2010). Using game theory and competition-based learning to stimulate student motivation and
performance. Computers & Education, 55(2), 566–575.‏

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 67

Denscombe, M. (2014). The Good Research Guide: For Small-scale Social Research Projects. McGraw-Hill
Education (UK).‏

Derus, S.R.M., Ali, A.Z.M. (2012). Difficulties in learning programming: Views of students. In 1st Interna-
tional Conference on Current Issues in Education (ICCIE 2012) (pp. 74–79).‏

Destin, M., Richman, S., Varner, F., Mandara, J. (2012). “Feeling” hierarchy: The pathway from subjective
social status to achievement. Journal of Adolescence, 35(6), 1571–1579.‏

Ensmenger, N. (2010). Making programming masculine. Gender Codes: Why Women are Leaving Computing,
‏.141–115

Ensmenger, N. (2015). Beards, Sandals, and Other Signs of Rugged Individualism: Masculine Culture within
the Computing Professions. Osiris, 30(1), Scientific Masculinities (January 2015), 38–65.

Epstein, H. (1980). Some biological bases of cognitive development. Bulletin of the Orton Society, 30, 46–
52.

Epstein, H. (1990). Stages in human mental growth. Journal of Educational Psychology, 82, 876–880.
Fülöp, M. (2004). Competition as a culturally constructed concept. In C. Baillie, E. Dunn, Y. Zheng (Eds.),

Travelling Facts: The Social Construction, Distribution, and Accumulation of Knowledge (pp. 124–128).
Frankfurt/New York: Campus Verlag.

Fülöp, M., Ross, A., Pergar Kuscer, M., Razdevsek Pucko, C. (2007). Competition and cooperation in schools:
An English, Hungarian and Slovenian comparison. In F. Salili & R. Hoosain (Eds.), Culture, Motivation,
and Learning: A Multicultural Perspective (pp. 235–284). Charlotte, NC: IAP.

García, M., Llinares, S., Sánchez-Matamoros, G. (2011). Characterizing thematized derivative schema by
the underlying emergent structures. International Journal of Science and Mathematics Education, 9(5),
‏.1045–1023

Gathercole, S.E., Pickering, S.J., Ambridge, B., Wearing, H. (2004). The Structure of Working Memory From
4 to 15 Years of Age. Developmental Psychology. 40(2), 177–190.

Goddard, R.D., Hoy, W.K., Woolfolk-Hoy, A. (2004). Collective efficacy: Theoretical developments, empiri-
cal evidence, and future directions. Educational Researcher, 33, 3–13.

Geldreich, K., Simon, A., Starke, E. (2019, October). Which Perceptions Do Primary School Children Have
about Programming?. In Proceedings of the 14th Workshop in Primary and Secondary Computing Educa-
tion (pp. 1–7).‏

Gold, B.P., Frank, M.J., Bogert, B., Brattico, E. (2013). Pleasurable music affects reinforcement learning ac-
cording to the listener. Frontiers in Psychology, 4, 541.‏

Guzdial, M. (1991). Teaching Programming with Music: An Approach to Teaching Young Students about
Logo. Logo Foundation.‏

Harden, R.M. (1999). What is a spiral curriculum? Medical Teacher, 21(2), 141–143.
Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of The 3rd Annual Conference of

the LTSN Centre for Information and Computer Sciences, pp. 53–58.‏
Jin, L., Hill, H. (2001). Students’ expectations of learning key skills and knowledge. International Journal of

Language & Communication Disorders, 36(1), 333–338.‏
Johnson, D.C. (2011). The effect of critical thinking instruction on verbal descriptions of Music. Journal of

Research in Music Education, 59(3), 257–272.‏
‏.Johnston, H. (2012). The Spiral Curriculum. Research into Practice. Education Partnerships, Inc‏
Kalelioğlu, F., Gülbahar, Y. (2014). The Effects of Teaching Programming via Scratch on Problem Solving

Skills: A Discussion from the Learners’ Perspective. Informatics in Education, 13(1), 33–50.
Kim, S.W., Chung, Y.L., Woo, A.J., Lee, H.J. (2012). Development of a theoretical model for STEAM educa-

tion. Journal of the Korean Association for Science Education, 32(2), 388–401.‏
Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3),

‏.137–131
Kong, S.C., Chiu, M.M., Lai, M. (2018). A study of primary school students’ interest, collaboration atti-

tude, and programming empowerment in computational thinking education. Computers & Education, 127,
‏.189–178

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50(4), 36–42.‏
Lavy, I. (2021). Learning programming fundamentals via music. The International Journal of Information and

Communication Technology Education (IJICTE), 17(2), 68–86
Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin,

‏.75 ,(1)116

I. Lavy68

Liao C., (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education.
Art Education, 69(6), 44–49.

Linnenbrink, E.A., Pintrich, P.R., (2010). The role of self-efficacy beliefs in student engagement and learning
in the classroom. Reading & Writing Quarterly, 19(2), 119–137.

Littlejohn, A., Margaryan, A., Vojt, G. (2010). Exploring Students’ Use of ICT and Expectations of Learning
Methods. Electronic Journal of e-learning, 8(1), 13–20.‏

London, R., Ingram, D. (2018). Social isolation in middle school. School Community Journal, 28(1), 107–
‏.127

Ludovico, L.A., Mangione, G.R. (2015). Music coding in primary school. In Smart Education and Smart e-
Learning (pp. 449–458). Springer, Cham.‏

Margolis, J, Goode, J. (2016). Ten lessons for computer science for all. ACM Inroads, 7(4), 52–56.
Manaris, B., Kohn, T. (2016, February). Making music with computers: creative programming in Python. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp. 711–711).‏
Marton, F. (1986). Phenomenography – A research approach investigating different understandings of reality.

Journal of Thought, 21, 28–49.
Master, A., Cheryan, S., Meltzoff, A.N. (2016). Computing whether she belongs: Stereotypes undermine girls’

interest and sense of belonging in computer science. Journal of Educational Psychology, 108(3), 424.‏
Metallidou, P., Vlachou, A. (2007). Motivational beliefs, cognitive engagement, and achievement in language

and mathematics in elementary school children. International Journal of Psychology, 42(1), 2–15.‏
Olson, I. (2000). The Arts and Critical Thinking in American Education. Westport, CT: Bergin & Garvey
Ornek, F. (2008). An overview of a theoretical framework of phenomenography in qualitative education re-

search: An example from physics education research. Asia-Pacific Forum on Science Learning and Teach-
ing, 9(2), 1–13.

Paas, F.G.W.C., Van Merriënboer, J.G., Adam, J. (1994). Measurement of cognitive load in instructional re-
search. Perceptual and Motor Skills, 79(1), 419–430.

Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W. (2003). Cognitive load measurement as a means to
advance cognitive load theory. Educational Psychologist, 38(1), 63–71.

Papadakis, S., Kalogiannakis, M., Zaranis, N. (2016). Developing fundamental programming concepts and
computational thinking with ScratchJr in preschool education: a case study. International Journal of Mo-
bile Learning and Organization, 10(3), 187–202.‏

Petrie, C. (2022). Programming music with Sonic Pi promotes positive attitudes for beginners. Computers &
Education, 179, 104409.

Pianta, R.C., Belsky, J., Vandergrift, N., Houts, R., Morrison, F.J. (2008). Classroom effects on children’s
achievement trajectories in elementary school. American Educational Research Journal, 45(2), 365–397.‏

Powers, K. (2011). Going mental: how music education can help develop critical thinking. Teaching Music,
‏ .45–40 ,(6)18

Qian, Y., Lehman, J.D. (2016). Correlates of Success in Introductory Programming: A Study with Middle
School Students. Journal of Education and Learning, 5(2), 73–83.‏

Quigley, C.F., Herro, D., Jamil, F.M. (2017). Developing a conceptual model of STEAM teaching practices.
School Science & Mathematics, 117(1–2), 1–12.

Rantala, T., Määttä, K. (2012). Ten theses of the joy of learning at primary schools. Early Child Development
and Care, 182(1), 87–105.‏

Sheridan, S., Williams, P. (2011). Developing Individual Goals, Shared Goals, and the Goals of Others: Di-
mensions of Constructive Competition in Learning Contexts. Scandinavian Journal of Educational Re-
search, 55(2), 145–164

Shneiderman, B. (1977). Teaching programming: A spiral approach to syntax and semantics. Computers &
Education, 1(4), 193–197.‏

Siegler, R.S., Wagner A.M. (2005). Children’s Thinking. Pearson Education/Prentice Hall.
Sjöström, B., Dahlgren, L.O. (2002). Applying phenomenography in nursing research. Journal of Advanced

Nursing, 40(3), 339–345.‏
Stringer, E. T. (2013). Action Research. Sage publications.‏
Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science. 12(2),

257–285.
Sweller, J.; van Merrienboer, J, J.G.; Paas, F.G.W.C. (1998). Cognitive Architecture and Instructional Design.

Educational Psychology Review, 10(3), 251–296.
Takaya, K. (2008). Jerome Bruner’s theory of education: From early Bruner to later Bruner. Interchange,

‏.19–1 ,(1)39

Leveraging the Pied Piper Effect – The Case of Teaching Programming ... 69

Thomas, T., Davis, T., Kazlauskas, A. (2007). Embedding critical thinking in IS curricula. Journal of Informa-
tion Technology Education: Research, 6, 327–346.‏

Topoğlu, O. (2014). Critical thinking and music education. Procedia-Social and Behavioral Sciences, 116,
‏.2256–2252

Tsalapatas, H., Heidmann, O., Alimisi, R., Tsalapatas, S., Florou, C., Houstis, E. (2011). Visual programming
towards the development of early analytical and critical thinking. In International Conference on Future of
Education, Konferansında Sunulan Bildiri. Florence, İtalya.‏

VanderArk, S. D., Ely, D. (1991). Teaching Music functionally: A sociobiologic approach. Triad, 56(2), 23–
25.

Van Laar, C., Sidanius, J. (2001). Social status and the academic achievement gap: A social dominance per-
spective. Social Psychology of Education, 4(3), 235–258.‏

Varila, J., Viholainen, T. (2000). Työnilo Tutkimuksen Kohteeksi [The joy of working to the target of research]
(Research reports 79). Joensuu: University of Joensuu.

White, G.L., Sivitanides, M.P. (2002). A theory of the relationships between cognitive requirements of com-
puter programming languages and programmers’ cognitive characteristics. Journal of Information Systems
Education, 13(1), 59–68.‏

Yang, T.C., Hwang, G.J., Yang, S.J. and Hwang, G.H. (2015). A two-tier test-based approach to Improving
students’ computer-programming skills in a web-based learning environment. Education Technology &
Society, 18(1), 198–210.

Yu, S.N.Y. (2005). The Effects of Games on the Acquisition of Some Grammatical Features of L2 German on
Students’ Motivation and on Classroom Atmosphere (Doctoral dissertation, ACU Research Bank.

Zellner, R.M. (2011). A Study of the Relationship Between Instrumental Music Education and Critical Think-
ing in 8th-and 11th-grade Students. Universal-Publishers.‏

Zhu, R., Meyers-Levy, J. (2005). Distinguishing between the meanings of music: when background music
affects product perceptions. Journal of Marketing Research, 42(3), 333–345.‏

Zimmerman, B.J. (2000). Self-efficacy: An Essential motive to learn. Contemporary Educational Psychology,
25, 82–91.

Zentner, M., Grandjean, D., Scherer, K.R. (2008). Emotions evoked by the sound of music: characterization,
classification, and measurement. Emotion, 8(4), 494.

I. Lavy is an associate professor with tenure at the Academic College of Yezreel Valley
and the department head of the Information Systems department. Her Ph.D. dissertation
(in the Technion – Israel Institute of Technology) focused on understanding basic con-
cepts in elementary number theory. After finishing a doctorate, she was a post-doctoral
research fellow at the Education faculty of Haifa University. Her research interests are in
pre-service and mathematics teachers’ professional development and the acquisition and
understanding of mathematical and computer science concepts. She has published about
a hundred and fifty papers and research reports (part of them is in Hebrew).

