
Informatics in Education, 2023, Vol. 22, No. 2, 277–294
© 2023 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2023.15

277

Automatically Detecting Previous Programming
Knowledge from Novice Programmer Code
Compilation History

Erno LOKKILA1,2, Athanasios CHRISTOPOULOS2,
Mikko-Jussi LAAKSO2

1University of Turku, Faculty of Technology, Department of Computation Turku, Finland
2University of Turku, Faculty of Natural Sciences, Turku Research Institute of Learning Analytics
 Turku, Finland
e-mail: eolokk@utu.fi, atchri@utu.fi, milaak@utu.fi

Received: May 2022

Abstract. Prior programming knowledge of students has a major impact on introductory pro-
gramming courses. Those with prior experience often seem to breeze through the course. Those
without prior experience see others breeze through the course and disengage from the material or
drop out. The purpose of this study is to demonstrate that novice student programming behavior
can be modeled as a Markov process. The resulting transition matrix can then be used in machine
learning algorithms to create clusters of similarly behaving students. We describe in detail the
state machine used in the Markov process and how to compute the transition matrix. We compute
the transition matrix for 665 students and cluster them using the k-means clustering algorithm.
We choose the number of cluster to be three based on analysis of the dataset. We show that the
created clusters have statistically different means for student prior knowledge in programming,
when measured on a Likert scale of 1–5.

Keywords: machine learning, higher education, programming skill.

1. Introduction

Programming education is often started already in primary school in various ways. This
education given from kindergarten to the 12th grade is called K-12 and involves teaching
primary school children programming concepts such as basic control structures, often
with graphical programming (e.g., Naz et al., 2017). Computational and algorithmic
thinking (Grover and Pea, 2013) are often covered as well. Because of this, program-
ming courses given at the university level often face the problem of possibly drastically
different beginning skill levels in programming (Strong et al., 2017).

E. Lokkila, A. Christopoulos, M.-J. Laakso278

The terminology for student skill levels in this paper is as follows: Beginners are
those who are completely new to programming. Novice programmers are those who
have some experience with programming, but still struggle occasionally when creating
small programs. Novice programmers are sometimes called ineffective novices (Robins
et al., 2003). Advanced novices are “someone who no longer makes the basic novice
error such as missing guards or input/output statements” (Yarmish and Kopec, 2007).
Robins et al. (2007) call this type of novice effective novices. The different levels of
knowledge and needs induce several problems, both in course design as well as student
motivation-wise.

Firstly, the course structure must be designed such that all levels of novice pro-
grammers, as well as absolute beginners find the course engaging and become better
programmers. On one hand, if the course is catered towards the advanced novices, the
beginners might lose motivation and drop out. On the other hand, if the course is catered
towards the absolute beginners, the advanced novices feel the course has nothing to
offer them and effectively waste their time. Secondly, the different skill levels present
on the student cohort may possibly lead to a situation, where the beginners notice the
advanced novices performing better on the course, thus causing the beginners feelings
of self-doubt and loss of motivation.

In light of these problems, identifying those students with prior programming knowl-
edge is crucial for introductory programming courses. Traditionally this has been done
with pre-course surveys (Strong et al., 2017; Smith et al., 2019). However, the problem
with surveys is that not everyone answers them. Additionally, of those who answer,
a percentage may not answer truthfully. Thus, being able to automatically determine
students with prior programming knowledge from their course activities (in this case,
programming) is vital to the educator, who can then give students appropriately chal-
lenging exercises.

This study sets out to contribute in the following ways:
Provide a model to cluster students solely based on their submission history from 1.
small coding assignments.
Prove that the produced clusters are distinct in terms of previous programming 2.
knowledge
Demonstrate that the found clusters can be labeled by data inferred from the sub-3.
mission history alone, without requiring surveys or other additional data.

2. Related Work

Machine learning algorithms in clustering students has been on the rise since the early
2000s. Lahtinen (2007) clustered novice programmers using an administered test. She
was able to find six distinct clusters: competent, practical, unprepared, theoretical, mem-
orizing and indifferent students. The clusters were discovered using the k-means cluster-
ing algorithm, which was first described in MacQueen (1967).

Novais et al. (2017) introduced a tool they call the Programmer Profiler (PP). The
tool only analyzes Java code and attempts to determine the programmer’s skill level

Automatically Detecting Previous Programming Knowledge from Novice Programmer ... 279

from static features found from the code. They defined four distinct types of program-
mers: novice, advanced beginner, expert, and proficient. The PP does not use machine
learning methods, instead is searching for static features regarding skill (ability to
write code) and readability (coding convention) and scores them according to a pre-
defined ruleset.

Rubio et al. (2019) used a variation of k-means clustering, called k-medioids cluster-
ing, wherein the cluster centroids are created from the median of the data points instead
of the means. Instead of a completely data driven and automatic clustering, they ad-
ministered a test and created the clustering based on the results of the test. The optimal
number of clusters was discovered to be three. Three was also deemed the best number
of clusters best fit for clustering students on a MOOC (Moubayed, 2020).

Jian et al. (2022) used machine learning methods, namely the Ward agglomerative
clustering algorithm, to create a dendrogram from which four clusters were deemed
optimal. The found clusters were representative of different styles of approaching prob-
lems: quitters, approaches, solvers, and knowers. The clustering was based on a history
of edits to the program code, computed from an abstract syntax tree representation of
the code.

Eloy et al. (2022) describe a data driven model using students’ scratch projects to
determine their determine their programming ability. They performed a static analysis
of the code to quantify the scratch code’s seven coefficients (such as events, loops, con-
ditionals and operators). While the model was not used to directly determine students’
previous programming experience, the same model may well be applied to this task. The
goal of Eloy et al. was to quantify the computational thinking abilities of the student.
They achieved this by applying a k-nearest neighbors clustering algorithm to the coeffi-
cients computed for each student. They were able to determine a typical project for each
edition of the course, given on different years to different students.

Previous programming experience has been proven to have an effect on the per-
ception and performance of students on introductory programming courses (Nowaczyk,
1984; Hagan and Markham, 2000; Gjelsten et al., 2021). Hagan and Markham (2000)
show that prior programming experience is best defined as the number of programming
languages studied or used, whereas no significance was found in the number of language
paradigms known. However, Ahadi et al. (2015) built a predictive model using a ran-
dom forest and found that previous programming experience is not a significant feature
when predicting students’ final grade on introductory programming courses. However,
their dataset consisted of answers to programming exercises, which naturally offer more
information to the machine learning algorithm. Conversely, Lister et al. (2010) demon-
strate that previous programming experience correlates strongly with tracing code.

Prior programming knowledge has traditionally been identified in students with sur-
veys (Strong et al., 2017; Smith et al., 2019). More modern approaches to prior pro-
gramming experience identification is using the keypresses produced by students in the
code editor (Leinonen et al., 2016). Prior experience is often used as a predictive tool
for the student’s course grade. The effect of prior knowledge is not straightforward, as
some studies (Nowaczyk, 1984; Hagan and Markham, 2000; Gjelsten et al., 2021) show
significance, whereas others show no significance (Bergin and Reilly, 2005).

E. Lokkila, A. Christopoulos, M.-J. Laakso280

In addition to being used mainly in predicting course grades, identifying prior
programming knowledge also allows pedagogical affordances in course design. One
important such method is differentiation, wherein students of differing skill level are
offered exercises suitable to their skill level (Mok, 2011). This is in hopes of reach-
ing and placing the student firmly in their zone of proximal development (ZPD). The
ZPD is the contextual space, wherein the student’s proficiency increases (Vygotsky,
1978).

Proficiency in natural languages consist of four main skills: reading, writing, speak-
ing and listening (Sadiku, 2015). It is not difficult to think of analogies in the program-
ming world for the first two, as they are the written skills. The latter two can be thought
of as speaking and listening to other programmers. Novice programmers lack all these
skills, and must learn them. Venables et al. (2009) suggest there is a hierarchy in the
acquisition of these skills. Nevertheless, novices perform poorly in tracing code (Lister
et al., 2004; Vainio and Sajaniemi, 2007). They are unable to write programs effectively
(Perkins et al., 1986). They are also unable to explain verbally what a piece of code
does (van der Werf, 2021). To our knowledge, no research has been done on how begin-
ning programmers understand problems when explained by another programmer, but
presumably they are unable to effectively do so.

Most research on measuring programmer skill has been done on measuring the skill
of writing code. Metrics such as the Error Quotient (Jadud, 2006) and the Watwin score
(Watson et al., 2013) have been used to measure the code producing capabilities of
students. The other skills rarely produce artefacts which could be studied, thus different
methods must be used, such as interviews or analyzing video recordings.

3. Research Methodology

The work is a continuation of the authors work from Lokkila et al. (2022), which ap-
plied the same method to determine engagement with course material from the submis-
sion histories of students in introductory programming courses. The basis for the model
described in this paper is a transition matrix, also known as a right stochastic matrix
(Asmussen, 2003). The matrix is built from a state machine, by calculating the probabil-
ity of moving from one state to another. This matrix is unique to every student and can
be used with machine learning algorithms to e.g., create clusters from the matrices.

The state machine contains eight different states, and the states are connected as a
directed graph (Fig. 1). The states themselves are as follows:

 1. Met success. This state is entered on the first successful attempt after an error. The
student continues to work on the exercise.
 2. Met error. This state is entered on the first compilation error after a successful
attempt.
 3. Repeated error. This state is entered when the student receives a compilation er-
ror after one or more compilation errors
 4. Repeated success. This state is entered when the student submits non-erroneous
code after one or more non-erroneous code submissions.

Automatically Detecting Previous Programming Knowledge from Novice Programmer ... 281

 5. Runtime error. This state is entered whenever the code begins to execute, but
fails to complete successfully.
 6. Unmodified error submission. Student resubmits the previous non-working code
with no changes.
 7. Unmodified success submission. The student resubmits the previous working
code with no changes.
 8. Completion on first attempt. The student successfully completes the program-
ming assignment on the first submission with full points and moves to a different
exercise.

The algorithm for creating a transition matrix for a student is as follows:
 1. Collate. Consider all n submissions from a given student. Order then by date.
Label them

Continued on next page

Table 5 – continued from previous page

𝑠� to

Continued on next page

Table 5 – continued from previous page

𝑠� 𝑠� . Then, build the list L of n – 1 pairs such that
L =

Continued on next page

Table 5 – continued from previous page

𝑠� 𝑠� [(𝑠�, 𝑠�), (𝑠�, 𝑠�), … , (𝑠���, 𝑠�)] .
 2. Aggregate. For each pair in the list L, determine which state transition occurred
and increase the count in the corresponding cell in the transition matrix, T.
 3. Normalize. For each row in T, divide the vales in the cells by the sum of the
row.
 4. Finalize Compute the ratio of successes on first attempt to all exercises attempted
and store this value for state 8.

Acceptable exercises for this model are those wherein the student has written code.
The exercises on the courses were short code writing exercises, where the student wrote
methods according to specification. The course and its exercises are described in more
detail in Section 4. In case of exercises containing multiple files, step one should be done
for each individual file. The output of the algorithm is the transition matrix for the given
student. This method is completely data driven, as its accuracy increases with more data.
The accuracy of the transition matrix here refers to its capability of predicting the next

Fig. 1. The state machine. Start states are indicated with stronger borders.

E. Lokkila, A. Christopoulos, M.-J. Laakso282

state transition the student will take, given a starting state. Essentially, a transition matrix
models the studied behavior as a Markov chain (Gagniuc, 2017).

The transition matrix is perfectly suited for machine learning applications. It produc-
es a 29-dimensional variable space, which we only cluster in this study. The variables
are the state transition possibilities from the transition matrix itself, as well as the eighth
state (completion on first attempt). Because only 29 variables are involved, we sidestep
the curse of dimensionality (Bellman, 1966).

An additional data point can be computed from the transition matrix itself. By label-
ing states 1, 4, 7 and 8 as success states and the other states as error states, the transi-
tion matrix will contain four distinct transitions: Error to error (EE), Error to success
(ES), Success to error (SE) and Success to success (SS). Table 1 contains the adjacency
mtatrix for the state machine as well as the transitions between error and non-error
states. Then, by summing all transition probabilities to erroneous states and subtracting
that from the sum of the transition probabilities to error-free states (including state 8),
we have derived a simplistic value for the skill level of the student. We call this value
the Syntactic Score. If we denote the transition matrix as T, the transitions ending in
a success state (columns 1, 4, 7 and state 8) as P and the transitions ending in an error
state (columns 2, 3, 5 and 6) as N, we arrive at the following formula for calculating
the Syntactic Score:

Continued on next page

Table 5 – continued from previous page

𝑠� 𝑠� [(𝑠�, 𝑠�), (𝑠�, 𝑠�), … , (𝑠�−�, 𝑠�)]

𝑆𝑆 = �𝑃−�𝑁

The Syntactic Score is an estimate of how likely the student is to create working
code. It is a rough metric on how well a student is likely to perform: a strong negative
correlation exists with student submission amounts (Spearman’s correlation coefficient
ρ = –.68, p < .001), as well as error rates of the student (Spearman’s correlation coef-
ficient ρ = –.72, p < .001). This means that high values for the Syntactic Score mean they
are more likely to create working code with less attempts, whereas low values indicate
a student who struggles, as they need more attempts and create more errors to create
working code.

Table 1
The adjacency matrix for the state machine behind the transition matrix. States are classified
either as a success state (S) or an error state (E). Transitions happen along the rows

1 (S) 2 (E) 3 (E) 4 (S) 5 (E) 6 (E) 7 (S)

1 (S) SE SS SE SS
2 (E) ES EE EE EE
3 (E) ES EE EE EE
4 (S) SE SS SE SS
5 (E) ES EE EE EE
6 (E) ES EE EE EE
7 (S) SE SS SE SS

Automatically Detecting Previous Programming Knowledge from Novice Programmer ... 283

The value for the Syntactic Score is bound in the range [–1,2], but typical values are
between [0,1]. The value of negative one can be achieved only by students who never
succeed in creating error-free code. Values above one can only be achieved if a student
never does a single error and succeeds in most of the exercises on the first attempt (i.e.
state 8 in the state machine). Notably, in the case of the student succeeding immedi-
ately, the Syntactic Score remains exactly one. In order for the Syntactic Score to go
above one, the student must succeed in most exercises with the first attempt and only
create non-erroneous code in the remaining exercises. In this study, the Syntactic Score
is clipped to the range [–1,1], as all values over one mean the student never submits er-
roneous code.

4. Data

The data was collected at the University of Turku and consists of two courses: an in-
troduction to Java, given in fall 2017 as well as an introduction to Python, given in fall
2021. The dataset contains a total of 665 students and 376 475 submissions to 192 cod-
ing exercises. The data is described in more detail in Table 2. The courses also contained
non-coding exercises, such as multiple-choice questions and Parsons problems, which
were excluded from this dataset. The students were also given a pre-course question-
naire, which asked their previous programming experience on a Likert scale of 1 to 5 as
well as a list of any programming languages they had used to write more than 200 lines
of code. For the Java course, the mean and median self-reported prior programming
experience was 2.326 and 2, respectively. For the Python course, the mean and median
values were 1.821 and 2. Standard deviations were 1.018 for Java and 0.941 for Python.
Thus, on average, the Java course had a slightly higher mean in self-estimated program-
ming knowledge than Python. However, the medians of the courses were the same at 2
(on a scale of 1 to 5).

The courses were given using ViLLE (Laakso et al., 2018). The course contained
multiple types of questions, such as multiple-choice questions, Parsons problems, visu-
alization exercises and short coding exercises. The short coding exercises on the course
tasked the student to complete a method (or several) according to the problem statement.
Most of the exercises offered a template, which included the calls to the student-written
methods, so students had context on how the methods were used (Fig. 2). Some exer-Fig. 2). Some exer-). Some exer-
cises only gave the student a blank coding area, with no template, to create code accord-
ing to specification. We made no distinction between these two types of programming
exercises in the data.

Table 2
Description of the data used in the study

Course Language Students Submissions Assignments

Course 1 Java 279 105 356 53
Course 2 Python 386 271 119 139

E. Lokkila, A. Christopoulos, M.-J. Laakso284

 The correctness of the code submitted by the student is done by comparing the
output of the model answer and the student’s code. Each submission collected by the
system contains the following data points: Timestamp, the student’s code, maximum
points for the exercise and points awarded to the student. From these data points, fur-
ther data can be inferred, such as any compilation errors or whether the submission
contained an infinite loop. The Learning Management System detected infinite loops
by giving the program two seconds of run time, after which the program was forcefully
terminated.

The course structure was remarkably similar between both courses. The Python
course focused slightly more on the practicalities of programming, whereas the Java
course was slightly more theoretical. However, both courses aimed to bring students to
the advanced novice level. This means that at the end of the course, the students were
expected to be able to write small programs that solve an immediate need, such as filter-
ing a text file for specific information.

Both courses begun with basic programming concepts: variables and control struc-
tures. The Java course went deeper into the theoretical aspects of computer science in

Fig. 2. An example exercise where the student codes according to specification.

Table 3
The weekly themes for both courses

Java Python

Week1 Introduction Intro, selection
Week2 Variables and selection Loops
Week3 Loops Methods
Week4 Methods Data structures (list)
Week5 Data structures (Arrays) Data structures (dict)
Week6 Existing classes (Lists, StringBuilder, BigInteger, etc.) Files and exceptions
Week7 Revision Libraries and ‘pythonese’ (slices,

list comprehensions)

Automatically Detecting Previous Programming Knowledge from Novice Programmer ... 285

terms of how data is stored in memory, as well as the stack and the heap. The Python
course was more practical and the focus was on how the demonstrated constructs are
used when programming. The Java course was given before the pandemic, and utilized
weekly in-person pair programming sessions called tutorials. The Python course was
given during the pandemic, so such sessions were not possible. However students were
offered virtual office hours, when they were able to ask for assistance from the course
staff. The weekly topics are summarized in detail in Table 3.

5. Results

The transition matrices for each student on a programming course were used as input for
unsupervised machine learning. This study chose the k-means clustering algorithm. In
order to determine the correct number of clusters, we computed the inertia of different
number of clusters (Fig. 3, left frame). There was no apparent elbow joint or other sharp
change in the derivative of the plotted inertia, but the rate of change seems to slow down
after around 10 clusters. This seems to suggest a suitable number of clusters to be less
than ten. In order to determine the number of clusters more accurately, we also computed
the silhouette score for a number of clusters under 10. Namely the score was computed
for 2, 3, 6 and 8 clusters (Fig. 3, right frame).

The silhouette score describes the fit for each data point within the cluster. Thus,
clusters with a sharp drop indicate a distinct cluster, whereas a cluster with a gentle slope
indicate a cluster with more diverse data points. Negative scores indicate a possibly
misclustered data point. Based on the inertia and silhouette score, we choose the number
of clusters to be three. For the Python course, this produces one distinct cluster and two
other clusters with a fuzzier border. The java clusters are more homogenous. Three clus-
ters are also easily explainable: one cluster of capable students, one of average students,
and one of struggling students.

We clustered the transition matrices created for each student on both courses sepa-
rately. We used the k-means clustering algorithm with k = 3, which was deemed the most

Fig. 3. The inertia of the clusters on the left and silhouette score (Python course) on the right.

E. Lokkila, A. Christopoulos, M.-J. Laakso286

appropriate number of clusters based on cluster inertia and silhouette score analysis.
After clustering, we had clusters C1, C2 and C3. We then computed the average self-
reported prior programming experience for each cluster. We denote C1 as the group with
the least (or none) prior programming experience, C2 with some prior experience and
C3 with the most (Fig. 4).

For the Python course, the clustering was indeed as indicated by the silhouette score
(Fig. 3, right frame). One cluster was distinct and the other two were more similar;
the distinct cluster was the one with the least prior programming experience. The Java
course clustering had a similar trend, but the differences were not as dramatic.

 To determine whether the clustering had produced statistically distinct clusters,
we performed a one-way analysis of variance on the created clusters. We applied the
Kruskal-Wallis H-test, as the data was not normally distributed (Shapiro-Wilk W = 0.87,
p < .001). The non-normality of the data lead us to apply the Kruskal-Wallis test by
ranks. Statistically significant differences (p < .05) were found for all weeks except the
two last weeks. To determine specifically which groups differed in their prior program-
ming knowledge, we did a post-hoc Dunn’s test.

For both courses, we found statistically significant differences in means of prior
programming experience between clusters for weeks 1 through 5 (Table 4). After the
fifth course week, the statistical differences vanish between clusters. For the weeks
with differences, the comparison between the weakest cluster and the strongest cluster
was always significantly different, albeit the last two weeks were nearly significant. An
exception to this is the sixth week of the Python course, where the clustering produced
practically no differences. We postulate this is because the week’s theme – files and
exceptions – is conceptually difficult, so all students struggle equally.

Fig. 4. The mean of prior programming knowledge for each weekly cluster.

Automatically Detecting Previous Programming Knowledge from Novice Programmer ... 287

A possible explanation for these results is that the subject matter of the courses pro-
gressively increases in difficulty. At some point any prior programming knowledge held
by students will have been covered by the course material and all further material will be
new for all students. This is especially apparent in week 6 of the Python course, wherein
the difference between the two strongest clusters effectively disappears when the course
material moves to files, exceptions and ‘pythonese’, which here includes list comprehen-
sions, slicing and other ways of writing idiomatic Python code.

We found significant differences between the weakest cluster and the strongest for
all weeks except the last two. This implies that the proposed method is indeed capable
of clustering students into clusters, one of which is the group of students without any
prior programming knowledge and two groups wherein students have at least some prior
experience in programming. We identified the clusters by their mean of self-reported
programming experience. One question thus remains: how to identify the clusters with-
out data from a survey?

We provide two ways of identifying the clusters: the number of submissions and the
Syntactic Score. C1, being the cluster with the least programming experience, will have
the lowest Syntactic Score and highest average number of submissions. C3, being the
cluster with the most programming experience, will have the highest Syntactic Score
and lowest number of average submissions. C2 will have values between these two
clusters (Fig. 5).

While these two metrics generally agree with self-reported previous programming
skill, several anomalous weeks exist: Week3 (Java), Week6 (Java) and the last week for
both courses.

Week3 in Java (loops) is odd, because C2 performed the worst in terms of the Syn-
tactic Score. This may, however, be explained by the fact that most students on the Java
course had reported their previous programming experience to be in Python, which has
markedly different for-loops. This forced the students in C2 to learn the syntax of the
Java for-loop and do all the mistakes involved in the learning process in addition to ‘un-
learning’ the Python syntax. Possibly, this anomaly may also be attributable to the Dun-
ning-Kruger effect, where initiated novices overestimate their skills (Dunning, 2011).

Table 4
p-values of cluster-wise comparisons of prior programming knowledge using Dunn’s test
with Bonferroni correction. Significance (p < .05) in bold

Java Python

Comparison C1, C2 C1, C3 C2, C3 C1, C2 C1, C3 C2, C3

Week 1 .361 <.001 .108 <.001 <.001 .053
Week 2 .793 .008 .161 .026 <.001 .088
Week 3 .883 .002 .062 <.001 <.001 1
Week 4 .041 .005 1 .151 <.001 .06
Week 5 .006 .031 1 .013 .003 1
Week 6 .103 .18 1 1 1 1
Week 7 1 .096 .826 .108 .322 1

E. Lokkila, A. Christopoulos, M.-J. Laakso288

Week6 (existing classes) in Java was anomalous in that C2 made the most submis-
sions on average. We believe this was the point where the students’ existing skill ran out
and they were unable to apply their knowledge from Python to the Java course. Another
possible explanation is that the weakest cluster, C1, felt the topic too difficult for them
and did not even attempt to do the exercises for that week.

Week7 shows anomalous values across the board when compared to the previous
weeks. We believe this is because the students did not put as much effort into the remain-
ing programming exercises. As week7 is the week before exams, other coursework and
exam preparations evidently were prioritized over the programming exercises.

We performed our analysis on clusters generated from each week’s data. To deter-
mine the stability of the clusters, we followed the procedure outlined by Henning (2007),
which uses the Jaccard coefficient as a similarity measure between clusters. To compute
the similarity, we computed the Jaccard coefficient for each cluster for one week and the
next one, found the most similar one and then computed the average of the found values.
We found the clusters to be relatively stable, with nearly 40% of the students remaining
in the same cluster from one week to the next for the Python course and nearly one third
for Java (Table 5).

We also examined how reliable only the students’ own declaration of known pro-
gramming languages is in terms of prior programming knowledge. We first checked the
data for internal validity, using Cronbach’s alpha and found it to be good for both the
Python course (α = 0.834) and the Java course (α = 0.735). We then analyzed the cor-
relation between self-reported prior programing knowledge and self-reported number of
languages proficient in. We found the number of previous programming languages used
had a medium correlation with the self-reported general programming experience the

Fig. 5. The average submissions (left) and Syntactic Score (right) for each weekly cluster.

Table 5
Average similarities of clusters between consecutive weeks

Weeks 1 & 2 2 & 3 3 & 4 4 & 5 5 & 6 6 & 7

Python 39.7 % 36.1 % 38.7 % 40.4 % 37.6 % 29.3 %
Java 29.7 % 27.4 % 26.6 % 30.8 % 27.4 % 29.4 %

Automatically Detecting Previous Programming Knowledge from Novice Programmer ... 289

students had on the Java course (Spearman’s correlation coefficient ρ = 0.552, p < .001)
and a stronger correlation on the Python course (Spearman’s correlation coefficient
ρ = 0.65, p < .001). Most of the students had little to no previous programming experi-
ence (Fig. 6).

Because the number of programming languages and previous programming experi-
ence were strongly correlated, our model managed to capture also this aspect (Table 6).
This gives indications that a very rough estimate of students’ programming skill can be
achieved by merely asking how many languages the student has experience with.

6. Discussion

We interpret our results as a success in creating a clustering using the k-means clustering
algorithm. The generated clusters, C1, C2 and C3 were indeed distinct in terms of self-
reported previous programming experience; C3 had the highest mean, C1 the lowest and
C2 between the other two. We also provided two ways to identify these clusters: 1) from

Fig. 6. A scatterplot (with added jitter) of students’ previous programming knowledge
to the number of languages they are familiar with.

Table 6
Average number of self-reported programming languages for clusters,

when clustered using whole course data

Java Python

C1 0.631 0.936
C2 0.991 1.162
C3 2.289 1.486

E. Lokkila, A. Christopoulos, M.-J. Laakso290

the average number of submissions of each cluster and 2) from a value derived from the
transition matrix itself, the Syntactic Score.

This work provides some practical benefits to educators. For instance, clustering
students into groups with much, some and little prior programming experience en-
ables educators to differentiate students. Differentiation then enables better learning
outcomes, as students are given exercises in their own skill level instead of those too
easy or too difficult. Mok (2011) has tentatively shown improved student engagement
and motivation using three tiers of differentiation: exercises for little, moderately and
high skilled students.

Achieving these benefits, does, unfortunately require the educator to be able to collect
data and train this model from the collected data. Currently there is no publicly avail-
able tool to easily use the model. Plans for integrating this into the LMS of the authors,
ViLLE (Laakso et al., 2018) are underway. Regardless, once the model has been trained
on one instance of the programming course, it can be used on subsequent instances. Ad-
ditionally, as is with machine learning models, as more and more data is collected and
added to the model, the model should become more and more accurate. As long as the
exercises on the course remain of similar difficulty and the student demography remains
the same (beginners or novices with little programming experience), the model should
remain relevant. However, proving this claim is planned as future work.

This work also provides theoretical benefits to the programming education commu-
nity. We demonstrate that student programming behavior can be modeled using a Mark-
ov process and creating a transition matrix. This matrix captures features outside the data
from which it was created (the submission history), as we demonstrated by clustering the
transition matrices intro three distinct groups which had a statistically different average
of prior programming knowledge.

Our work also provides one way to measure student current skill in programming.
Unlike many metrics in use today, such as the EQ (Jadud, 2006), Watwin score (Watson
et al., 2013), the model described in this study generates a 29-dimensional variable
space which can easily be clustered using modern machine learning techniques. The
generated clusters contain similar students, thus if one student is identified as skilled,
the other students in the same clusters may also be inferred to be skilled. To this end,
we also introduced the Syntactic Score is a simple metric and similar to the EQ and
Watwin score.

Because of the application possibilities of the transition matrix with modern machine
learning methods, other machine learning methods, such as dimensionality reduction or
deep learning may also be utilized. Lu and Hsiao (2019) were successful in detecting
students in need of help during a long programming exercise using deep learning. We
believe the transition matrix, and especially how it changes over time could identify
students in need of help during an entire course.

Our results show student programing performance evening out towards the end of
the course. This is likely due to the course material increasing steadily in difficulty and
at some point the difficulty of the course material reaches the level of the student’s prior
programming experience. This is however, a welcome benefit, as it means the subse-
quent programming courses can then trust their student population to be of somewhat
similar skill level.

Automatically Detecting Previous Programming Knowledge from Novice Programmer ... 291

The last week of both courses were markedly different from the earlier ones: the
Java course had a revision week with no new material and the Python course had an
extremely difficult last week. The revision week for Java effectively measured learning
over the course and those who had learned to program functioned effectively at the same
level as those who had previous programming knowledge. The last week for Python
seems to have been so difficult, that most of the students in C1 resigned after only a few
attempts, as indicated by an extremely low average submission count (even lower than
that of C3) and an extremely low Syntactic Score.

Hagan and Markham (2000) argue that the number of languages known by the stu-
dent is a valid metric for roughly measuring prior programming knowledge. Our results
prove this by having the cluster with the most prior programming experience also had
experience with the most number of programming languages. This seems to imply,
that programming students should be introduced to multiple languages, at some point
during their programming education. After all, the students with experience with the
highest number of languages performed the best on both courses. According to some
teachers, learning multiple programming languages adds excitement and motivation to
studies (Tshukudu, 2021). However, a question remains: when to teach students their
second programming language? The students without a firm grasp of their first pro-
gramming language are more likely to quit than find excitement and motivation in
the second programming language. This metric, or other similar metrics, might be ap-
plicable to determining when a student is ready to be introduced to his or her second
programming language.

7. Conclusions and Future Work

This study presents a model for clustering students on an introductory programming
course from only the generated submissions to short programming exercises. We used
the k-means clustering algorithm to cluster students based on their transition matrices.
We chose the number of clusters to be three based on analysis of the inertia and silhou-
ette score for the dataset. While similar clustering models have been described (ElGa-
mal, 2013; Ahadi et al. 2015; Rubio et al., 2019), they needed external data. The model
in this study can be computed without the use of surveys or external tests using only the
student’s submission history.

We can also conclude that previous programming experience has a marked effect on
the performance of programming students on an introductory course. The cluster with
the highest self-reported prior programing experience had the lowest number of submis-
sions and the least amount of errors (as indicated by the Syntactic Score). This difference
in student skill should be taken into account when designing programming courses.

This study paves way for interesting future work. The transition matrix was cre-
ated from a normal Markov model. It would be interesting to see if the model could be
improved by using a Hidden Markov Model, as it contains latent states, which could be
used to determine attributes of the programmer, such as frustration or engagement. Aside
from improving the model, we believe applying dimensionality reduction techniques to

E. Lokkila, A. Christopoulos, M.-J. Laakso292

the transition matrix data could reveal interesting combinations of state transitions. For
instance a Principal Component Analysis (PCA) might provide new insights into model-
ling student behaviour, and this is planned as future work.

Because the model successfully creates clusters of students with similar prior pro-
gramming experience, the generated clusters may correlate well with other features of
programmers as well. For instance, because skill in writing programs correlates strongly
with tracing code (Lister et al., 2010), we strongly believe that C3, the cluster with the
most self-reported programming experience, would score highly on both these aspects
of programming. As such, future work could include using the model described in this
study to directly determine students’ capabilities of tracing code.

As with all machine learning, the training dataset should be chosen carefully. This
model was created with a dataset containing students with prior programming knowl-
edge as well as those without. It is vitally important to have both groups when training
the model, as otherwise the k-means clustering algorithm will not successfully place the
cluster centroids and thus fail to create meaningful clusters.

This study contains some internal limitations. The study was performed on only two
datasets from the same university. Different universities or educational level may pro-
duce different transition matrices, which may cluster differently in regards to previous
programming skill. We also only used one clustering algorithm: k-means clustering.
While we received good results, it may not be the optimal choice and better results
are achievable with different algorithms. We also measured student prior programming
knowledge using a survey, where students self-reported their programming experience.
Self-reporting is subject to psychological effects, such as the Dunning-Kruger effect,
where people with low skill overestimate their skill level and conversely, people with
high skill underestimate their skill (Dunning, 2011).

References

Ahadi, A., Lister, R., Haapala, H., Vihavainen, A. (2015, August). Exploring machine learning methods to
automatically identify students in need of assistance. In: Proceedings of the Eleventh Annual International
Conference on International Computing Education Research (pp. 121–130).

Asmussen, S. (2003). Markov chains. Applied Probability and Queues, 3–38.
Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34–37.
Bergin, S., Reilly, R. (2005, February). Programming: factors that influence success. In Proceedings of the

36th SIGCSE Technical Symposium on Computer Science Education (pp. 411–415).
Dunning, D. (2011). The Dunning–Kruger effect: On being ignorant of one’s own ignorance. In: Advances in

Experimental Social Psychology (Vol. 44, pp. 247–296). Academic Press.
ElGamal, A.F. (2013). An educational data mining model for predicting student performance in programming

course. International Journal of Computer Applications, 70(17), 22–28.
Eloy, A., Achutti, C.F., Fernandez, C., de Deus Lopes, R. (2022). A Data-Driven Approach to Assess Compu-

tational Thinking Concepts Based on Learners’ Artifacts. Informatics in Education, 21(1).
Gagniuc, P.A. (2017). Markov Chains: from Theory to Implementation and Experimentation. John Wiley &

Sons.
Gjelsten, B.K., Bergersen, G.R., Sjøberg, D.I., Cutts, Q. (2021, November). No Gender Difference in CS1

Grade for Students with Programming from High School: An Exploratory Study. In: 21st Koli Calling
International Conference on Computing Education Research (pp. 1–5).

Grover, S., Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational
Researcher, 42(1), 38–43.

Automatically Detecting Previous Programming Knowledge from Novice Programmer ... 293

Hagan, D., Markham, S. (2000, July). Does it help to have some programming experience before beginning a
computing degree program?. In: Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE Conference on
Innovation and Technology in Computer Science Education (pp. 25–28).

Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics & Data Analysis,
52(1), 258–271.

Jadud, M.C. (2006). An Exploration of Novice Compilation Behaviour in BlueJ (Doctoral dissertation). Uni-
versity of Kent.

Jiang, B., Zhao, W., Zhang, N., Qiu, F. (2022). Programming trajectories analytics in block-based program-
ming language learning. Interactive Learning Environments, 30(1), 113–126.

Laakso, M.J., Kaila, E., Rajala, T. (2018). ViLLE–collaborative education tool: Designing and utilizing an
exercise-based learning environment. Education and Information Technologies, 23(4), 1655–1676.

Lahtinen, E. (2007, July). A Categorization of Novice Programmers: A Cluster Analysis Study. In: PPIG (Vol.
16, pp. 32–41).

Leinonen, J., Longi, K., Klami, A., Vihavainen, A. (2016, February). Automatic inference of programming
performance and experience from typing patterns. In: Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (pp. 132–137).

Lu, Y., Hsiao, I.H. (2019, March). Exploring programming semantic analytics with deep learning models.
In: Proceedings of the 9th International Conference on Learning Analytics & Knowledge (pp. 155–159).

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., ... Thomas, L. (2004). A multi-na-
tional study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4), 119–150.

Lister, R., Clear, T., Bouvier, D.J., Carter, P., Eckerdal, A., Jacková, J., ... Thompson, E. (2010). Naturally
occurring data as research instrument: analyzing examination responses to study the novice programmer.
ACM SIGCSE Bulletin, 41(4), 156–173.

Lokkila, E., Christopoulos, A., Laakso, M.J. (2022, July). A Clustering Method to Detect Disengaged Students
from Their Code Submission History. In: Proceedings of the 27th ACM Conference on on Innovation and
Technology in Computer Science Education Vol. 1 (pp. 228–234).

MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In: Pro-
ceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, No. 14, pp.
281–297).

Mok, H.N. (2011). Student usage patterns and perceptions for differentiated lab exercises in an undergraduate
programming course. IEEE Transactions on Education, 55(2), 213–217.

Moubayed, A., Injadat, M., Shami, A., Lutfiyya, H. (2020). Student engagement level in an e-learning environ-
ment: Clustering using k-means. American Journal of Distance Education, 34(2), 137–156.

Naz, A., Lu, M., Zackoski, C.R., Dingus, C.R. (2017, June). Applying Scratch programming to facilitate teach-
ing in k-12 classrooms. In: 2017 ASEE Annual Conference & Exposition.

Novais, D.J.F., Pereira, M.J.V., Henriques, P.R. (2017, September). Program analysis for clustering program-
mers’ profile. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS)
(pp. 701–705). IEEE.

Nowaczyk, R.H. (1984). The relationship of problem-solving ability and course performance among novice
programmers. International Journal of Man-Machine Studies, 21(2), 149–160.

Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., Simmons, R. (1986). Conditions of learning in novice pro-
grammers. Journal of Educational Computing Research, 2(1), 37–55.

Robins, A., Rountree, J., Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13(2), 137–172.

Rubio, M.A. (2019, May). Automatic Categorization of Introductory Programming Students. In: Internatio-
nal Joint Conference: 12th International Conference on Computational Intelligence in Security for Infor-
mation Systems (CISIS 2019) and 10th International Conference on EUropean Transnational Education
(ICEUTE 2019) (pp. 302–311). Springer, Cham.

Sadiku, L.M. (2015). The importance of four skills reading, speaking, writing, listening in a lesson hour. Eu-
ropean Journal of Language and Literature, 1(1), 29–31.

Smith IV, D.H., Hao, Q., Jagodzinski, F., Liu, Y., Gupta, V. (2019, May). Quantifying the effects of prior kno-
wledge in entry-level programming courses. In: Proceedings of the ACM Conference on Global Computing
Education (pp. 30–36).

Strong, G., Higgins, C., Bresnihan, N., Millwood, R. (2017, July). A survey of the prior programming ex-
perience of undergraduate computing and engineering students in ireland. In: IFIP World Conference on
Computers in Education (pp. 473–483). Springer, Cham.

Tshukudu, E., Cutts, Q., Goletti, O., Swidan, A., Hermans, F. (2021, August). Teachers’ Views and Experiences
on Teaching Second and Subsequent Programming Languages. In: Proceedings of the 17th ACM Confer-
ence on International Computing Education Research (pp. 294–305).

E. Lokkila, A. Christopoulos, M.-J. Laakso294

Vainio, V., Sajaniemi, J. (2007). Factors in novice programmers’ poor tracing skills. ACM SIGCSE Bulle-
tin, 39(3), 236–240.

van der Werf, V., Aivaloglou, E., Hermans, F., Specht, M. (2021, November). What does this Python code do?
An exploratory analysis of novice students’ code explanations. In: Proceedings of the 10th Computer Sci-
ence Education Research Conference (pp. 94–107).

Venables, A., Tan, G., Lister, R. (2009, August). A closer look at tracing, explaining and code writing skills
in the novice programmer. In: Proceedings of the Fifth International Workshop on Computing Education
Research Workshop (pp. 117–128).

Vygotsky, L.S. (1978). Mind in Society: Development of Higher Psychological Processes. Harvard university
press.

Watson, C., Li, F.W., Godwin, J.L. (2013, July). Predicting performance in an introductory programming
course by logging and analyzing student programming behavior. In: 2013 IEEE 13th International Confer-
ence on Advanced Learning Technologies (pp. 319–323). IEEE.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Yarmish, G., Kopec, D. (2007). Revisiting novice programmer errors. ACM SIGCSE Bulletin, 39(2), 131–137.

E. Lokkila (MSc, Computer Science) is a doctoral student in the Department of Com-
puting at the University of Turku, Finland. He is currently working as a university lec-
turer and teaches several first year computer science courses.His PhD thesis involves
improving programming education by identifying the students in need and providing
them with targeted assistance. His other research interest are gamification, learning ana-
lytics and programming language theory.

A. Christopoulos (Ph.D., Computer Science) is a Research Fellow in the Faculty of Sci-
ence at the University of Turku, Finland. Dr. Christopoulos is currently working for the
Turku Research Institute for Learning Analytics where he investigates matters related
to digital inclusion, educational technology advancement, immersive technologies and
learning analytics. The Institute is also developing ‘ViLLE’, a digital learning platform
that includes content and exercises for studying mathematics, programming, and lan-
guages.

M.-J. Laakso (Ph.D., Tech) is the director of the Turku Research Institute for Learning
Analytics at the University of Turku, Finland. His main research interests are Learn-
ing Analytics, Computer Assisted Learning, Math & Programming Education, Gami-
fication, Learning Design, Machine Learning & AI in Education. He has 20 years of
experience from university and research-based development of the education through
educational technology solutions. He has published more than 100 international peer-
reviewed articles, and collected more than 4M € in R&D projects. The centre is develop-
ing an UNESCO-awarded tool named ‘ViLLE’ – The collaborative education platform.
The system is utilized by 60% of schools in Finland and learners are doing more than
200.000.000 tasks annually.

