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Abstract. Prior programming knowledge of students has a major impact on introductory pro-
gramming courses. Those with prior experience often seem to breeze through the course. Those 
without prior experience see others breeze through the course and disengage from the material or 
drop out. The purpose of this study is to demonstrate that novice student programming behavior 
can be modeled as a Markov process. The resulting transition matrix can then be used in machine 
learning algorithms to create clusters of similarly behaving students. We describe in detail the 
state machine used in the Markov process and how to compute the transition matrix. We compute 
the transition matrix for 665 students and cluster them using the k-means clustering algorithm. 
We choose the number of cluster to be three based on analysis of the dataset. We show that the 
created clusters have statistically different means for student prior knowledge in programming, 
when measured on a Likert scale of 1–5.

Keywords: machine learning, higher education, programming skill.

1. Introduction

Programming education is often started already in primary school in various ways. This 
education given from kindergarten to the 12th grade is called K-12 and involves teaching 
primary school children programming concepts such as basic control structures, often 
with graphical programming (e.g., Naz et al., 2017). Computational and algorithmic 
thinking (Grover and Pea, 2013) are often covered as well. Because of this, program-
ming courses given at the university level often face the problem of possibly drastically 
different beginning skill levels in programming (Strong et al., 2017). 
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The terminology for student skill levels in this paper is as follows: Beginners are 
those who are completely new to programming. Novice programmers are those who 
have some experience with programming, but still struggle occasionally when creating 
small programs. Novice programmers are sometimes called ineffective novices (Robins 
et al., 2003). Advanced novices are “someone who no longer makes the basic novice 
error such as missing guards or input/output statements” (Yarmish and Kopec, 2007). 
Robins et al. (2007) call this type of novice effective novices. The different levels of 
knowledge and needs induce several problems, both in course design as well as student 
motivation-wise.

Firstly, the course structure must be designed such that all levels of novice pro-
grammers, as well as absolute beginners find the course engaging and become better 
programmers. On one hand, if the course is catered towards the advanced novices, the 
beginners might lose motivation and drop out. On the other hand, if the course is catered 
towards the absolute beginners, the advanced novices feel the course has nothing to 
offer them and effectively waste their time. Secondly, the different skill levels present 
on the student cohort may possibly lead to a situation, where the beginners notice the 
advanced novices performing better on the course, thus causing the beginners feelings 
of self-doubt and loss of motivation. 

In light of these problems, identifying those students with prior programming knowl-
edge is crucial for introductory programming courses. Traditionally this has been done 
with pre-course surveys (Strong et al., 2017; Smith et al., 2019). However, the problem 
with surveys is that not everyone answers them. Additionally, of those who answer, 
a percentage may not answer truthfully. Thus, being able to automatically determine 
students with prior programming knowledge from their course activities (in this case, 
programming) is vital to the educator, who can then give students appropriately chal-
lenging exercises. 

This study sets out to contribute in the following ways:
Provide a model to cluster students solely based on their submission history from 1. 
small coding assignments.
Prove that the produced clusters are distinct in terms of previous programming 2. 
knowledge
Demonstrate that the found clusters can be labeled by data inferred from the sub-3. 
mission history alone, without requiring surveys or other additional data.

2. Related Work

Machine learning algorithms in clustering students has been on the rise since the early 
2000s. Lahtinen (2007) clustered novice programmers using an administered test. She 
was able to find six distinct clusters: competent, practical, unprepared, theoretical, mem-
orizing and indifferent students. The clusters were discovered using the k-means cluster-
ing algorithm, which was first described in MacQueen (1967).

Novais et al. (2017) introduced a tool they call the Programmer Profiler (PP). The 
tool only analyzes Java code and attempts to determine the programmer’s skill level 
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from static features found from the code. They defined four distinct types of program-
mers: novice, advanced beginner, expert, and proficient. The PP does not use machine 
learning methods, instead is searching for static features regarding skill (ability to 
write code) and readability (coding convention) and scores them according to a pre-
defined ruleset.

Rubio et al. (2019) used a variation of k-means clustering, called k-medioids cluster-
ing, wherein the cluster centroids are created from the median of the data points instead 
of the means. Instead of a completely data driven and automatic clustering, they ad-
ministered a test and created the clustering based on the results of the test. The optimal 
number of clusters was discovered to be three. Three was also deemed the best number 
of clusters best fit for clustering students on a MOOC (Moubayed, 2020).

Jian et al. (2022) used machine learning methods, namely the Ward agglomerative 
clustering algorithm, to create a dendrogram from which four clusters were deemed 
optimal. The found clusters were representative of different styles of approaching prob-
lems: quitters, approaches, solvers, and knowers. The clustering was based on a history 
of edits to the program code, computed from an abstract syntax tree representation of 
the code. 

Eloy et al. (2022) describe a data driven model using students’ scratch projects to 
determine their determine their programming ability. They performed a static analysis 
of the code to quantify the scratch code’s seven coefficients (such as events, loops, con-
ditionals and operators). While the model was not used to directly determine students’ 
previous programming experience, the same model may well be applied to this task. The 
goal of Eloy et al. was to quantify the computational thinking abilities of the student. 
They achieved this by applying a k-nearest neighbors clustering algorithm to the coeffi-
cients computed for each student. They were able to determine a typical project for each 
edition of the course, given on different years to different students.

Previous programming experience has been proven to have an effect on the per-
ception and performance of students on introductory programming courses (Nowaczyk, 
1984; Hagan and Markham, 2000; Gjelsten et al., 2021). Hagan and Markham (2000) 
show that prior programming experience is best defined as the number of programming 
languages studied or used, whereas no significance was found in the number of language 
paradigms known. However, Ahadi et al. (2015) built a predictive model using a ran-
dom forest and found that previous programming experience is not a significant feature 
when predicting students’ final grade on introductory programming courses. However, 
their dataset consisted of answers to programming exercises, which naturally offer more 
information to the machine learning algorithm. Conversely, Lister et al. (2010) demon-
strate that previous programming experience correlates strongly with tracing code.

Prior programming knowledge has traditionally been identified in students with sur-
veys (Strong et al., 2017; Smith et al., 2019). More modern approaches to prior pro-
gramming experience identification is using the keypresses produced by students in the 
code editor (Leinonen et al., 2016). Prior experience is often used as a predictive tool 
for the student’s course grade. The effect of prior knowledge is not straightforward, as 
some studies (Nowaczyk, 1984; Hagan and Markham, 2000; Gjelsten et al., 2021) show 
significance, whereas others show no significance (Bergin and Reilly, 2005). 
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In addition to being used mainly in predicting course grades, identifying prior 
programming knowledge also allows pedagogical affordances in course design. One 
important such method is differentiation, wherein students of differing skill level are 
offered exercises suitable to their skill level (Mok, 2011). This is in hopes of reach-
ing and placing the student firmly in their zone of proximal development (ZPD). The 
ZPD is the contextual space, wherein the student’s proficiency increases (Vygotsky, 
1978). 

Proficiency in natural languages consist of four main skills: reading, writing, speak-
ing and listening (Sadiku, 2015). It is not difficult to think of analogies in the program-
ming world for the first two, as they are the written skills. The latter two can be thought 
of as speaking and listening to other programmers. Novice programmers lack all these 
skills, and must learn them. Venables et al. (2009) suggest there is a hierarchy in the 
acquisition of these skills. Nevertheless, novices perform poorly in tracing code (Lister 
et al., 2004; Vainio and Sajaniemi, 2007). They are unable to write programs effectively 
(Perkins et al., 1986). They are also unable to explain verbally what a piece of code 
does (van der Werf, 2021). To our knowledge, no research has been done on how begin-
ning programmers understand problems when explained by another programmer, but 
presumably they are unable to effectively do so.

Most research on measuring programmer skill has been done on measuring the skill 
of writing code. Metrics such as the Error Quotient (Jadud, 2006) and the Watwin score 
(Watson et al., 2013) have been used to measure the code producing capabilities of 
students. The other skills rarely produce artefacts which could be studied, thus different 
methods must be used, such as interviews or analyzing video recordings. 

3. Research Methodology

The work is a continuation of the authors work from Lokkila et al. (2022), which ap-
plied the same method to determine engagement with course material from the submis-
sion histories of students in introductory programming courses. The basis for the model 
described in this paper is a transition matrix, also known as a right stochastic matrix 
(Asmussen, 2003). The matrix is built from a state machine, by calculating the probabil-
ity of moving from one state to another. This matrix is unique to every student and can 
be used with machine learning algorithms to e.g., create clusters from the matrices.

The state machine contains eight different states, and the states are connected as a 
directed graph (Fig. 1). The states themselves are as follows:

 1. Met success. This state is entered on the first successful attempt after an error. The 
student continues to work on the exercise.
 2. Met error. This state is entered on the first compilation error after a successful 
attempt.
 3. Repeated error. This state is entered when the student receives a compilation er-
ror after one or more compilation errors
 4. Repeated success. This state is entered when the student submits non-erroneous 
code after one or more non-erroneous code submissions.
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 5. Runtime error. This state is entered whenever the code begins to execute, but 
fails to complete successfully.
 6. Unmodified error submission. Student resubmits the previous non-working code 
with no changes.
 7. Unmodified success submission. The student resubmits the previous working 
code with no changes.
 8. Completion on first attempt. The student successfully completes the program-
ming assignment on the first submission with full points and moves to a different 
exercise.

The algorithm for creating a transition matrix for a student is as follows:
 1. Collate. Consider all n submissions from a given student. Order then by date. 
Label them 
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 2. Aggregate. For each pair in the list L, determine which state transition occurred 
and increase the count in the corresponding cell in the transition matrix, T. 
 3. Normalize. For each row in T, divide the vales in the cells by the sum of the 
row.
 4. Finalize Compute the ratio of successes on first attempt to all exercises attempted 
and store this value for state 8.

Acceptable exercises for this model are those wherein the student has written code. 
The exercises on the courses were short code writing exercises, where the student wrote 
methods according to specification. The course and its exercises are described in more 
detail in Section 4. In case of exercises containing multiple files, step one should be done 
for each individual file. The output of the algorithm is the transition matrix for the given 
student. This method is completely data driven, as its accuracy increases with more data. 
The accuracy of the transition matrix here refers to its capability of predicting the next 

Fig. 1. The state machine. Start states are indicated with stronger borders.
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state transition the student will take, given a starting state. Essentially, a transition matrix 
models the studied behavior as a Markov chain (Gagniuc, 2017).

The transition matrix is perfectly suited for machine learning applications. It produc-
es a 29-dimensional variable space, which we only cluster in this study. The variables 
are the state transition possibilities from the transition matrix itself, as well as the eighth 
state (completion on first attempt). Because only 29 variables are involved, we sidestep 
the curse of dimensionality (Bellman, 1966).

An additional data point can be computed from the transition matrix itself. By label-
ing states 1, 4, 7 and 8 as success states and the other states as error states, the transi-
tion matrix will contain four distinct transitions: Error to error (EE), Error to success 
(ES), Success to error (SE) and Success to success (SS). Table 1 contains the adjacency 
mtatrix for the state machine as well as the transitions between error and non-error 
states. Then, by summing all transition probabilities to erroneous states and subtracting 
that from the sum of the transition probabilities to error-free states (including state 8), 
we have derived a simplistic value for the skill level of the student. We call this value 
the Syntactic Score. If we denote the transition matrix as T, the transitions ending in 
a success state (columns 1, 4, 7 and state 8) as P and the transitions ending in an error 
state (columns 2, 3, 5 and 6) as N, we arrive at the following formula for calculating 
the Syntactic Score: 

Continued on next page 
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The Syntactic Score is an estimate of how likely the student is to create working 
code. It is a rough metric on how well a student is likely to perform: a strong negative 
correlation exists with student submission amounts (Spearman’s correlation coefficient 
ρ = –.68, p < .001), as well as error rates of the student (Spearman’s correlation coef-
ficient ρ = –.72, p < .001). This means that high values for the Syntactic Score mean they 
are more likely to create working code with less attempts, whereas low values indicate 
a student who struggles, as they need more attempts and create more errors to create 
working code. 

Table 1
The adjacency matrix for the state machine behind the transition matrix. States are classified 
either as a success state (S) or an error state (E). Transitions happen along the rows

1 (S) 2 (E) 3 (E) 4 (S) 5 (E) 6 (E) 7 (S)

1 (S) SE SS SE SS
2 (E) ES EE EE EE
3 (E) ES EE EE EE
4 (S) SE SS SE SS
5 (E) ES EE EE EE
6 (E) ES EE EE EE
7 (S) SE SS SE SS
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The value for the Syntactic Score is bound in the range [–1,2], but typical values are 
between [0,1]. The value of negative one can be achieved only by students who never 
succeed in creating error-free code. Values above one can only be achieved if a student 
never does a single error and succeeds in most of the exercises on the first attempt (i.e. 
state 8 in the state machine). Notably, in the case of the student succeeding immedi-
ately, the Syntactic Score remains exactly one. In order for the Syntactic Score to go 
above one, the student must succeed in most exercises with the first attempt and only 
create non-erroneous code in the remaining exercises. In this study, the Syntactic Score 
is clipped to the range [–1,1], as all values over one mean the student never submits er-
roneous code.

4. Data 

The data was collected at the University of Turku and consists of two courses: an in-
troduction to Java, given in fall 2017 as well as an introduction to Python, given in fall 
2021. The dataset contains a total of 665 students and 376 475 submissions to 192 cod-
ing exercises. The data is described in more detail in Table 2. The courses also contained 
non-coding exercises, such as multiple-choice questions and Parsons problems, which 
were excluded from this dataset. The students were also given a pre-course question-
naire, which asked their previous programming experience on a Likert scale of 1 to 5 as 
well as a list of any programming languages they had used to write more than 200 lines 
of code. For the Java course, the mean and median self-reported prior programming 
experience was 2.326 and 2, respectively. For the Python course, the mean and median 
values were 1.821 and 2. Standard deviations were 1.018 for Java and 0.941 for Python. 
Thus, on average, the Java course had a slightly higher mean in self-estimated program-
ming knowledge than Python. However, the medians of the courses were the same at 2 
(on a scale of 1 to 5). 

The courses were given using ViLLE (Laakso et al., 2018). The course contained 
multiple types of questions, such as multiple-choice questions, Parsons problems, visu-
alization exercises and short coding exercises. The short coding exercises on the course 
tasked the student to complete a method (or several) according to the problem statement. 
Most of the exercises offered a template, which included the calls to the student-written 
methods, so students had context on how the methods were used (Fig. 2). Some exer-Fig. 2). Some exer-). Some exer-
cises only gave the student a blank coding area, with no template, to create code accord-
ing to specification. We made no distinction between these two types of programming 
exercises in the data.

Table 2
Description of the data used in the study

Course Language Students Submissions Assignments

Course 1 Java 279 105 356   53
Course 2 Python 386 271 119 139



E. Lokkila, A. Christopoulos, M.-J. Laakso284

 The correctness of the code submitted by the student is done by comparing the 
output of the model answer and the student’s code. Each submission collected by the 
system contains the following data points: Timestamp, the student’s code, maximum 
points for the exercise and points awarded to the student. From these data points, fur-
ther data can be inferred, such as any compilation errors or whether the submission 
contained an infinite loop. The Learning Management System detected infinite loops 
by giving the program two seconds of run time, after which the program was forcefully 
terminated.

The course structure was remarkably similar between both courses. The Python 
course focused slightly more on the practicalities of programming, whereas the Java 
course was slightly more theoretical. However, both courses aimed to bring students to 
the advanced novice level. This means that at the end of the course, the students were 
expected to be able to write small programs that solve an immediate need, such as filter-
ing a text file for specific information. 

Both courses begun with basic programming concepts: variables and control struc-
tures. The Java course went deeper into the theoretical aspects of computer science in 

Fig. 2. An example exercise where the student codes according to specification.

Table 3
The weekly themes for both courses

Java Python

Week1 Introduction Intro, selection
Week2 Variables and selection Loops
Week3 Loops Methods
Week4 Methods Data structures (list)
Week5 Data structures (Arrays) Data structures (dict)
Week6 Existing classes (Lists, StringBuilder, BigInteger, etc.) Files and exceptions
Week7 Revision Libraries and ‘pythonese’ (slices, 

list comprehensions)
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terms of how data is stored in memory, as well as the stack and the heap. The Python 
course was more practical and the focus was on how the demonstrated constructs are 
used when programming. The Java course was given before the pandemic, and utilized 
weekly in-person pair programming sessions called tutorials. The Python course was 
given during the pandemic, so such sessions were not possible. However students were 
offered virtual office hours, when they were able to ask for assistance from the course 
staff. The weekly topics are summarized in detail in Table 3.

5. Results

The transition matrices for each student on a programming course were used as input for 
unsupervised machine learning. This study chose the k-means clustering algorithm. In 
order to determine the correct number of clusters, we computed the inertia of different 
number of clusters (Fig. 3, left frame). There was no apparent elbow joint or other sharp 
change in the derivative of the plotted inertia, but the rate of change seems to slow down 
after around 10 clusters. This seems to suggest a suitable number of clusters to be less 
than ten. In order to determine the number of clusters more accurately, we also computed 
the silhouette score for a number of clusters under 10. Namely the score was computed 
for 2, 3, 6 and 8 clusters (Fig. 3, right frame). 

The silhouette score describes the fit for each data point within the cluster. Thus, 
clusters with a sharp drop indicate a distinct cluster, whereas a cluster with a gentle slope 
indicate a cluster with more diverse data points. Negative scores indicate a possibly 
misclustered data point. Based on the inertia and silhouette score, we choose the number 
of clusters to be three. For the Python course, this produces one distinct cluster and two 
other clusters with a fuzzier border. The java clusters are more homogenous. Three clus-
ters are also easily explainable: one cluster of capable students, one of average students, 
and one of struggling students.

We clustered the transition matrices created for each student on both courses sepa-
rately. We used the k-means clustering algorithm with k = 3, which was deemed the most 

Fig. 3. The inertia of the clusters on the left and silhouette score (Python course) on the right.
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appropriate number of clusters based on cluster inertia and silhouette score analysis. 
After clustering, we had clusters C1, C2 and C3. We then computed the average self-
reported prior programming experience for each cluster. We denote C1 as the group with 
the least (or none) prior programming experience, C2 with some prior experience and 
C3 with the most (Fig. 4).

For the Python course, the clustering was indeed as indicated by the silhouette score 
(Fig. 3, right frame). One cluster was distinct and the other two were more similar; 
the distinct cluster was the one with the least prior programming experience. The Java 
course clustering had a similar trend, but the differences were not as dramatic.

 To determine whether the clustering had produced statistically distinct clusters, 
we performed a one-way analysis of variance on the created clusters. We applied the 
Kruskal-Wallis H-test, as the data was not normally distributed (Shapiro-Wilk W = 0.87, 
p < .001). The non-normality of the data lead us to apply the Kruskal-Wallis test by 
ranks. Statistically significant differences (p < .05) were found for all weeks except the 
two last weeks. To determine specifically which groups differed in their prior program-
ming knowledge, we did a post-hoc Dunn’s test. 

For both courses, we found statistically significant differences in means of prior 
programming experience between clusters for weeks 1 through 5 (Table 4). After the 
fifth course week, the statistical differences vanish between clusters. For the weeks 
with differences, the comparison between the weakest cluster and the strongest cluster 
was always significantly different, albeit the last two weeks were nearly significant. An 
exception to this is the sixth week of the Python course, where the clustering produced 
practically no differences. We postulate this is because the week’s theme – files and 
exceptions – is conceptually difficult, so all students struggle equally.

Fig. 4. The mean of prior programming knowledge for each weekly cluster.
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A possible explanation for these results is that the subject matter of the courses pro-
gressively increases in difficulty. At some point any prior programming knowledge held 
by students will have been covered by the course material and all further material will be 
new for all students. This is especially apparent in week 6 of the Python course, wherein 
the difference between the two strongest clusters effectively disappears when the course 
material moves to files, exceptions and ‘pythonese’, which here includes list comprehen-
sions, slicing and other ways of writing idiomatic Python code.

We found significant differences between the weakest cluster and the strongest for 
all weeks except the last two. This implies that the proposed method is indeed capable 
of clustering students into clusters, one of which is the group of students without any 
prior programming knowledge and two groups wherein students have at least some prior 
experience in programming. We identified the clusters by their mean of self-reported 
programming experience. One question thus remains: how to identify the clusters with-
out data from a survey?

We provide two ways of identifying the clusters: the number of submissions and the 
Syntactic Score. C1, being the cluster with the least programming experience, will have 
the lowest Syntactic Score and highest average number of submissions. C3, being the 
cluster with the most programming experience, will have the highest Syntactic Score 
and lowest number of average submissions. C2 will have values between these two 
clusters (Fig. 5). 

While these two metrics generally agree with self-reported previous programming 
skill, several anomalous weeks exist: Week3 (Java), Week6 (Java) and the last week for 
both courses.

Week3 in Java (loops) is odd, because C2 performed the worst in terms of the Syn-
tactic Score. This may, however, be explained by the fact that most students on the Java 
course had reported their previous programming experience to be in Python, which has 
markedly different for-loops. This forced the students in C2 to learn the syntax of the 
Java for-loop and do all the mistakes involved in the learning process in addition to ‘un-
learning’ the Python syntax. Possibly, this anomaly may also be attributable to the Dun-
ning-Kruger effect, where initiated novices overestimate their skills (Dunning, 2011). 

Table 4
p-values of cluster-wise comparisons of prior programming knowledge using Dunn’s test 
with Bonferroni correction. Significance (p < .05) in bold

Java Python

Comparison C1, C2 C1, C3 C2, C3 C1, C2 C1, C3 C2, C3

Week 1  .361 <.001  .108 <.001 <.001  .053
Week 2  .793   .008  .161   .026 <.001  .088
Week 3  .883   .002  .062 <.001 <.001 1
Week 4  .041   .005 1   .151 <.001  .06
Week 5  .006   .031 1   .013   .003 1
Week 6  .103   .18 1  1  1 1
Week 7 1   .096  .826   .108   .322 1
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Week6 (existing classes) in Java was anomalous in that C2 made the most submis-
sions on average. We believe this was the point where the students’ existing skill ran out 
and they were unable to apply their knowledge from Python to the Java course. Another 
possible explanation is that the weakest cluster, C1, felt the topic too difficult for them 
and did not even attempt to do the exercises for that week.

Week7 shows anomalous values across the board when compared to the previous 
weeks. We believe this is because the students did not put as much effort into the remain-
ing programming exercises. As week7 is the week before exams, other coursework and 
exam preparations evidently were prioritized over the programming exercises. 

We performed our analysis on clusters generated from each week’s data. To deter-
mine the stability of the clusters, we followed the procedure outlined by Henning (2007), 
which uses the Jaccard coefficient as a similarity measure between clusters. To compute 
the similarity, we computed the Jaccard coefficient for each cluster for one week and the 
next one, found the most similar one and then computed the average of the found values. 
We found the clusters to be relatively stable, with nearly 40% of the students remaining 
in the same cluster from one week to the next for the Python course and nearly one third 
for Java (Table 5). 

We also examined how reliable only the students’ own declaration of known pro-
gramming languages is in terms of prior programming knowledge. We first checked the 
data for internal validity, using Cronbach’s alpha and found it to be good for both the 
Python course (α = 0.834) and the Java course (α = 0.735). We then analyzed the cor-
relation between self-reported prior programing knowledge and self-reported number of 
languages proficient in. We found the number of previous programming languages used 
had a medium correlation with the self-reported general programming experience the 

Fig. 5. The average submissions (left) and Syntactic Score (right) for each weekly cluster.

Table 5
Average similarities of clusters between consecutive weeks

Weeks 1 & 2 2 & 3 3 & 4 4 & 5 5 & 6 6 & 7

Python 39.7 % 36.1 % 38.7 % 40.4 % 37.6 % 29.3 %
Java 29.7 % 27.4 % 26.6 % 30.8 % 27.4 % 29.4 %
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students had on the Java course (Spearman’s correlation coefficient ρ = 0.552, p < .001) 
and a stronger correlation on the Python course (Spearman’s correlation coefficient 
ρ = 0.65, p < .001). Most of the students had little to no previous programming experi-
ence (Fig. 6).

Because the number of programming languages and previous programming experi-
ence were strongly correlated, our model managed to capture also this aspect (Table 6). 
This gives indications that a very rough estimate of students’ programming skill can be 
achieved by merely asking how many languages the student has experience with.

6. Discussion 

We interpret our results as a success in creating a clustering using the k-means clustering 
algorithm. The generated clusters, C1, C2 and C3 were indeed distinct in terms of self-
reported previous programming experience; C3 had the highest mean, C1 the lowest and 
C2 between the other two. We also provided two ways to identify these clusters: 1) from 

Fig. 6. A scatterplot (with added jitter) of students’ previous programming knowledge  
to the number of languages they are familiar with. 

Table 6
Average number of self-reported programming languages for clusters,  

when clustered using whole course data

Java Python

C1 0.631 0.936
C2 0.991 1.162
C3 2.289 1.486
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the average number of submissions of each cluster and 2) from a value derived from the 
transition matrix itself, the Syntactic Score.

This work provides some practical benefits to educators. For instance, clustering 
students into groups with much, some and little prior programming experience en-
ables educators to differentiate students. Differentiation then enables better learning 
outcomes, as students are given exercises in their own skill level instead of those too 
easy or too difficult. Mok (2011) has tentatively shown improved student engagement 
and motivation using three tiers of differentiation: exercises for little, moderately and 
high skilled students.

Achieving these benefits, does, unfortunately require the educator to be able to collect 
data and train this model from the collected data. Currently there is no publicly avail-
able tool to easily use the model. Plans for integrating this into the LMS of the authors, 
ViLLE (Laakso et al., 2018) are underway. Regardless, once the model has been trained 
on one instance of the programming course, it can be used on subsequent instances. Ad-
ditionally, as is with machine learning models, as more and more data is collected and 
added to the model, the model should become more and more accurate. As long as the 
exercises on the course remain of similar difficulty and the student demography remains 
the same (beginners or novices with little programming experience), the model should 
remain relevant. However, proving this claim is planned as future work.

This work also provides theoretical benefits to the programming education commu-
nity. We demonstrate that student programming behavior can be modeled using a Mark-
ov process and creating a transition matrix. This matrix captures features outside the data 
from which it was created (the submission history), as we demonstrated by clustering the 
transition matrices intro three distinct groups which had a statistically different average 
of prior programming knowledge. 

Our work also provides one way to measure student current skill in programming. 
Unlike many metrics in use today, such as the EQ (Jadud, 2006), Watwin score (Watson 
et al., 2013), the model described in this study generates a 29-dimensional variable 
space which can easily be clustered using modern machine learning techniques. The 
generated clusters contain similar students, thus if one student is identified as skilled, 
the other students in the same clusters may also be inferred to be skilled. To this end, 
we also introduced the Syntactic Score is a simple metric and similar to the EQ and 
Watwin score.

Because of the application possibilities of the transition matrix with modern machine 
learning methods, other machine learning methods, such as dimensionality reduction or 
deep learning may also be utilized. Lu and Hsiao (2019) were successful in detecting 
students in need of help during a long programming exercise using deep learning. We 
believe the transition matrix, and especially how it changes over time could identify 
students in need of help during an entire course.

Our results show student programing performance evening out towards the end of 
the course. This is likely due to the course material increasing steadily in difficulty and 
at some point the difficulty of the course material reaches the level of the student’s prior 
programming experience. This is however, a welcome benefit, as it means the subse-
quent programming courses can then trust their student population to be of somewhat 
similar skill level.
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The last week of both courses were markedly different from the earlier ones: the 
Java course had a revision week with no new material and the Python course had an 
extremely difficult last week. The revision week for Java effectively measured learning 
over the course and those who had learned to program functioned effectively at the same 
level as those who had previous programming knowledge. The last week for Python 
seems to have been so difficult, that most of the students in C1 resigned after only a few 
attempts, as indicated by an extremely low average submission count (even lower than 
that of C3) and an extremely low Syntactic Score.

Hagan and Markham (2000) argue that the number of languages known by the stu-
dent is a valid metric for roughly measuring prior programming knowledge. Our results 
prove this by having the cluster with the most prior programming experience also had 
experience with the most number of programming languages. This seems to imply, 
that programming students should be introduced to multiple languages, at some point 
during their programming education. After all, the students with experience with the 
highest number of languages performed the best on both courses. According to some 
teachers, learning multiple programming languages adds excitement and motivation to 
studies (Tshukudu, 2021). However, a question remains: when to teach students their 
second programming language? The students without a firm grasp of their first pro-
gramming language are more likely to quit than find excitement and motivation in 
the second programming language. This metric, or other similar metrics, might be ap-
plicable to determining when a student is ready to be introduced to his or her second 
programming language. 

7. Conclusions and Future Work

This study presents a model for clustering students on an introductory programming 
course from only the generated submissions to short programming exercises. We used 
the k-means clustering algorithm to cluster students based on their transition matrices. 
We chose the number of clusters to be three based on analysis of the inertia and silhou-
ette score for the dataset. While similar clustering models have been described (ElGa-
mal, 2013; Ahadi et al. 2015; Rubio et al., 2019), they needed external data. The model 
in this study can be computed without the use of surveys or external tests using only the 
student’s submission history.

We can also conclude that previous programming experience has a marked effect on 
the performance of programming students on an introductory course. The cluster with 
the highest self-reported prior programing experience had the lowest number of submis-
sions and the least amount of errors (as indicated by the Syntactic Score). This difference 
in student skill should be taken into account when designing programming courses.

This study paves way for interesting future work. The transition matrix was cre-
ated from a normal Markov model. It would be interesting to see if the model could be 
improved by using a Hidden Markov Model, as it contains latent states, which could be 
used to determine attributes of the programmer, such as frustration or engagement. Aside 
from improving the model, we believe applying dimensionality reduction techniques to 
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the transition matrix data could reveal interesting combinations of state transitions. For 
instance a Principal Component Analysis (PCA) might provide new insights into model-
ling student behaviour, and this is planned as future work.

Because the model successfully creates clusters of students with similar prior pro-
gramming experience, the generated clusters may correlate well with other features of 
programmers as well. For instance, because skill in writing programs correlates strongly 
with tracing code (Lister et al., 2010), we strongly believe that C3, the cluster with the 
most self-reported programming experience, would score highly on both these aspects 
of programming. As such, future work could include using the model described in this 
study to directly determine students’ capabilities of tracing code. 

As with all machine learning, the training dataset should be chosen carefully. This 
model was created with a dataset containing students with prior programming knowl-
edge as well as those without. It is vitally important to have both groups when training 
the model, as otherwise the k-means clustering algorithm will not successfully place the 
cluster centroids and thus fail to create meaningful clusters.

This study contains some internal limitations. The study was performed on only two 
datasets from the same university. Different universities or educational level may pro-
duce different transition matrices, which may cluster differently in regards to previous 
programming skill. We also only used one clustering algorithm: k-means clustering. 
While we received good results, it may not be the optimal choice and better results 
are achievable with different algorithms. We also measured student prior programming 
knowledge using a survey, where students self-reported their programming experience. 
Self-reporting is subject to psychological effects, such as the Dunning-Kruger effect, 
where people with low skill overestimate their skill level and conversely, people with 
high skill underestimate their skill (Dunning, 2011).
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