
Informatics in Education, 2022, Vol. 21, No. 4, 605–634
© 2022 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2022.25

605

Adapting Scrum for Software Capstone Courses

Hung-Fu CHANG, Mohammad SHOKROLAH SHIRAZI
R.B. Annis School of Engineering, University of Indianapolis
Indianapolis, United States
e-mail: hchang@uindy.edu, shirazim@uindy.edu

Received: April 2022

Abstract. Scrum is a widely-used framework in industry, so many schools apply it to their soft-
ware engineering courses, particularly capstone courses. Due to the differences between students
and industrial professionals, changing Scrum is necessary to fit capstone projects. In this paper,
we suggest a decision-making process to assist instructors in developing a strategy to adapt Scrum
for their course. This framework considers critical differences, such as student’s workloads and
course schedules, and keeps the Agile principles and Scrum events. To evaluate the adapted Scrum,
we investigated student’s learning experiences, satisfaction, and performance by quantitatively
analyzing user story points and source codes and qualitatively studying instructor’s evaluations,
student’s feedback, and Sprint Retrospective notes. Our two case studies about adapted Scrum
showed that having daily stand-up meetings in every class was not helpful, student’s satisfaction
positively correlated to the difficulty of the task they tackled, and the project provided good learn-
ing experiences.

Keywords: Scrum, software engineering, Agile software development, software engineering edu-
cation.

1. Introduction

University software engineering courses mainly focus on building up student’s theoreti-
cal foundation and technical knowledge. Students learn theories and techniques through
assignments within a limited problem scope. Although these assignments could be cre-
ated by dividing a project into smaller pieces where students finally can see the entire
project outcome, it is difficult for students to acquire the real-world project experiences.
These courses emphasize teaching hard skills rather than developing student’s soft skills.
When students enter the industry, soft skills in project development and management,
which the industry needs, are lacking (Begel et al., 2008).

To respond to this, universities embrace capstone projects in software engineering
education (Mahnic et al., 2008). These projects usually involve real-world domain ex-
perts as clients who bring practical needs with actual project timelines to students. Such
courses address an opportunity to offer students industry-like software development ex-

H.-F. Chang, M. Shokrolah Shirazi606

periences. Students can deepen their theoretical understanding of software engineering
practices through the process of solving the problems given by the industrial experts
and develop their teamwork, communication, and management skills during the project
execution (Coppit et al., 2008; Paasivaara et al., 2013; Kamthan et al. 2016).

With the widespread usage of the Agile process in many organizations, Scrum,
which is presented by Ken Schwaber (1997), has become a trendy framework in Agile
software development approaches. When Scrum is incorporated in the software cap-
stone project in the classroom, how to employ Scrum to ensure the quality of assess-
ments on student’s theoretical understandings of the software development practices
and their applications in solving the real-world problem and maintaining student’s
learning experiences becomes critical. Hence, modifying Scrum to fit a classroom is
usually required because literature emphasizes the importance of understanding the
differences between student projects in the classroom setting compared to industry,
for example, student versus professional expertise, academic calendar, and student’s
limited project working time versus a 40-hour work per week (Hoskey et al., 2016;
Mahnic, 2012). Research indicated the need for an adaptive approach tailored to the
limited time and resources available in an academic setting (Wagh, 2012; Baird et al.,
2012). At the same time, the change should not compromise its core belief and prin-
ciples when adaption happens.

Since Agile development processes encourage finding solutions according to the
given circumstances instead of blindly adhering to a prescribed process (Beck et al.,
2001), we can develop a method to adapt Scrum to a software capstone course. One ob-
vious challenge is student’s learning assessment. In comparing the capstone course with
regular teaching, assignment or exam problems are designed and controlled in a way that
can facilitate student’s understanding of assessments. It is not easy to monitor the qual-
ity of activities and student’s learning experiences in a software project. Among various
methods, such as only assessing student’s learning at the end of the project or treating
students as laboratory members to examine progress and solutions in a laboratory set-
ting, the ultimate strategy requires teaching staff to accompany students while they are
working throughout the entire project to ensure that what students learn is correctly
applied (Matthies et al. 2016). Rather than applying these approaches, we mimic how
companies evaluate project development when Scrum is used. We assess student’s learn-
ing at Scrum events, but we alter the frequency of the Scrum events to fit our course.
More importantly, at these points, we observe the performance of the students, provide
feedback after each event, and guide students if they do not properly apply what they
learn. At the same time, we want to reduce interference when we observe these Scrum
events. In other words, we aim to maintain this freedom while creating comparable in-
sights into the process.

To understand student’s learning experiences on our adapted Scrum, we conduct
quantitative analysis on source codes and user story data along with a qualitative study
on evaluation notes and surveys. The quantitative and qualitative analyses of the two
selected teams can cross-validate our findings. Our main contribution is that these study
results and lessons learned will benefit those who carry out Scrum in capstone projects
in software engineering courses.

Adapting Scrum for Software Capstone Courses 607

In this paper, we discuss related work in section 2. In section 3, two student teams,
course settings, and capstone projects are presented. Then, we discuss how we change
Scrum to use it in the team’s capstone projects. Section 4 introduces our Scrum adaption
decision process and discusses the research method, data collection, and measurements.
Then, we show our case study results and discuss our findings in section 5. Finally, we
conclude our work in section 6.

2. Literature Review

Our research focuses on applying Scrum in the classroom and how to assess its imple-
mentation in courses. We would like to discuss related works in the following three
categories and conclude the need for investigating Scrum adaption in the engineering
courses.

2.1. Evaluations and Feedback on Agile and Scrum Implementation

Many previous studies investigated using Agile or Scrum in the software engineering
context. Umphress et al. (2002) studied 49 capstone projects and concluded that Agile
approaches assist student team in meeting customer expectations in the final software
product. More recent work described student feedback from Agile or Scrum implemen-
tations in various courses, including capstone projects and web programming courses
(Mahnic, 2012; Baird et al., 2012; Weber et al., 2016). Mahnic (2012) reported over-
whelmingly positive perceptions from students about introducing Scrum in an under-
graduate capstone course in software engineering and similar results were also found in
other research like (Scharf et al., 2013; Magana et al., 2018; Christov et al., 2019; Khari-
tonova et al., 2019; Ju et al., 2020). These positive experiences showed that using Scrum
in the classroom offered students to develop better skills (e.g., social and technical skills)
in preparation for the industry although intensive efforts are required from students.

Many studies analyzed evaluations, student interviews, or teachers’ reflections at the
end of a course for their main purpose – improving the course design (Christov et al.,
2019; Kharitonova et al., 2019; Ju et al., 2020). However, these studies also suggested
that deepening our understanding beyond effective implementation and positive percep-
tion were needed. Research should move towards understanding what happens inside
Scrum teams, observing the dynamics between team members, and investigating what
students learn. Studies can be done from student perspectives, specifically on how teams
manage software projects and how they reflect on the development process.

2.2. Scrum Adaptions in Classrooms

Modifications on Scrum to fit the classroom are usually required because literature em-
phasizes the importance of understanding the differences between student projects in

H.-F. Chang, M. Shokrolah Shirazi608

the classroom setting compared to industry, for example, student versus professional ex-
pertise, academic calendar, and student’s limited project working time versus a 40-hour
work week (Mahnic, 2012; Hoskey et al., 2016). When adaption happens, the change
should not compromise its core belief and principles. Baird et al. (2012) integrated plan-
driven and Scrum approaches by excluding Sprint Reviews and Sprint Retrospectives.
Wagh (2012) mentioned the need for an adaptive approach that can be tailored to the
limited time and resources available in an academic setting. Baham (2019) discussed
using Scrum to fit software development life cycle principles to provide students with an
example of how all the roles and ceremonies work. Masood et al. (2018) highlighted the
effectiveness of specific adaptations to agile practices in a university context and recom-
mended conducting face-to-face events, supporting teams with experienced tutors and
training, and using online tools for team communication.

Some recent studies discussed how Scrum was implemented in various courses
or emphasized techniques for teamwork under the Agile theme. Jiménez et al. (2016)
discussed their Scrum implementation experiences in software engineering, computer
game, and human-computer interface design courses. Kropp et al. (2016) focused on
collaboration skills in the Agile development process. May et al. (2016) used a ball
game to let students experience the effect of a self-organizing team – an expectation to a
Scrum team. Jurado-Navas et al. (2017) discussed that students had positive Scrum team
experiences in the English classroom. Hence, these related Scrum application or modi-
fication works followed the Scrum philosophy and mainly focused their analysis on a
particular aspect. However, they do not strictly follow Scrum event execution principles
as what the industry does.

2.3. Course Project Assessment

Another primary reason for adapting Scrum is how and when instructors conduct their
project performance assessments. One work studied a laboratory-like setting. It allowed
students to almost manage the project fully themselves and guidance was provided
when students asked. This way potentially reduced the learning experience for students
(Devedzic et al., 2011). Matthies et al. (2016) used surveys and tutors along with Scrum
events to understand how students implemented Scrum in this course and which ele-
ments require further teaching in later iterations. A common practice from Kropp and
Meier (2013) is to perform post-hoc oral or written exams to judge the project’s success
and student’s learning outcomes.

Unlike industrial assessment practice that uses Scrum burndown chart to gain in-
sight of the project performance, measuring student’s performance in the classroom also
needs to be changed. Mahnic (2010) applied a technique called the Earned Value meth-
od (EVM) and its associated performance indexes to project management. In the same
study, he also used a series of surveys to determine if his course learning targets were
met. Igaki et al. (2014) used an approach named Ticket Driven Development (TiDD)
that gained substantial insights of Scrum teams. However, the ticket creation of the
TiDD added overhead and reduced the freedom in adapting Scrum to the team’s needs.

Adapting Scrum for Software Capstone Courses 609

2.4. Summary

Even though past research discussed Scrum adaptation and approaches for project as-
sessments, many studies encouraged deepening our understanding beyond effective im-
plementation. Therefore, research should move towards investigating what happens in-
side Scrum teams, observing the dynamics between team members, and understanding
what students learn. Studies can be done from student perspectives, especially on how
teams manage software projects and reflect on the development process. In addition,
previous studies have applied Scrum in the course, but most executed Scrum events
without strictly following the suggested frequency. Moreover, no Scrum implementa-
tions simultaneously considered student’s working hours and class schedules – two
critical factors about how to handle course projects as professional ones. As a result, we
present a new approach to adapt Scrum for classroom usage, study its influences on the
undergraduate course, and examine the detailed team dynamics to know how it impacts
student’s competencies.

3. Research Context

3.1. Scrum Framework Explained

The Scrum workflow contains a sequence of iterations named Sprints. Its duration is
decided by the team and should be from one to four weeks. The team in Scrum includes
the following roles: Product Owner, developers, and a Scrum Master to manage the
project. When the product starts, the team specifies the functionalities that system should
have and puts them into a list, called product backlog item list. In other words, a product
backlog item is a system functionality that can contain vague or very specific descrip-
tion. Each Sprint is a development cycle, and the to-be-developed tasks will move from
the product backlog item list to the Sprint backlog item list. So, at each Sprint, the team
performs requirement analysis, design, task planning, and implementation and testing
according to the Sprint backlog item and is required to meet in four timeboxed events,
which are daily stand-ups, Sprint plannings, Sprint reviews, and Sprint retrospectives.
We describe Scrum roles and events in details in the following.
Accountabilities in a Scrum Team

Scrum Master (SM): ●
This role is mandatory and not concurrent with other roles to ensure the job is car-
ried with full attention. The primary responsibility of SM is to facilitate events to
remove the possible blocks of the progress.
Product Owner (PO): ●
PO acts like an advocator for customer’s voices and is responsible for creating and
maintaining Product Backlog priorities.
Developers: ●

H.-F. Chang, M. Shokrolah Shirazi610

Responsible for development tasks in each Sprint.
Scrum Events

Sprint Planning: ●
The entire Scrum team must attend the Sprint Planning. During the meeting, the
Scrum team plan for which product backlog items will be fulfilled in the follow-
ing Spring. The outcome of the planning meeting is a Sprint backlog item list that
serves as an agreement among team members.
Daily Stand-up Meeting: ●
This is a time-boxed event that will be held every day. The Scrum team uses this
meeting to synchronize individual status and discusses what has been done and
what needs to be done. Due to the time limit, technical discussions are suggested
to be avoided in this meeting.
Sprint Review: ●
This meeting is conducted at the end of the Spring. The attendees of this meeting
are the Scrum team members and associated stakeholders. All the stakeholders in
the meeting provide feedback for completed Sprint backlog items.
Sprint Retrospective: ●
The Scrum team assesses the performance of the Sprint. It is a mandatory event
for the entire team, and the Sprint is closed with a Sprint Retrospective.

A popular solution to describe the product backlog item is the user story. User sto-
ries are designed based on software requirements. Every user story contains one or
more tasks that need to be completed by the Scrum team in a Sprint. In practice, when
a user story cannot provide sufficient details, this type of user story is called epic. In
real-world Scrum practices, depending on the project, the team can decide whether
a separate meeting, called Scrum grooming, is needed to conduct each Sprint to let
the team fine-tune the product backlog. Some Scrum teams can also use the partial
Scrum planning meeting time to refine backlog. Grooming is a critical activity because
it makes engineers dig into the analysis and design and enables a smooth Sprint plan-
ning meeting. In our study, we combined the grooming activities with Sprint planning
because it is challenging to distribute too many separated meetings in the classroom.

3.2. Course

SWEN400 Software Project Management at the University of Indianapolis is a one-
semester course that teaches general software project management techniques and
practices Scrum in a capstone project. The course was taught during a 15-week se-
mester and required team-based work, three individual assignments, one mid-semester
exam and a final exam. These exams tested student’s understanding of software project
management, like various development processes, measurement, and planning. The
teaching materials covered traditional plan-driven and Agile software development
approaches and techniques.

Adapting Scrum for Software Capstone Courses 611

Before the semester started, software projects were collected from industrial part-
ners. After course projects were assigned to student teams, several client interviews were
held for teams to understand the project scope and customer needs. During this period,
high-level software architecture, requirements, and work breakdown were also given as
assignments and then discussed during the class.

Students received Agile and Scrum training in the first three weeks of the course
to ensure that students had sufficient knowledge to execute their projects before they
started development. Students learned how to write user stories through several as-
signments and in-class discussions. Students practiced user story point estimation by
playing Scrum (Agile) Poker to reach a team consensus; that is, all team members must
agree upon the story points for a user story during the Sprint planning meeting. The
user story points followed the Fibonacci sequence numbers. Team members understood
that they estimated the complexity of the user story rather than the time spent on the
task completion.

After the project started, teaching and team project discussions went parallelly. In
other words, some lecture time is reserved for student’s project. Student’s performance
during the Scrum events will be evaluated by an instructor in the class. After each Scrum
event, the meeting notes must be submitted for evaluation. In the middle of the semester,
there were a midterm project review and a course survey. At the end of the semester, the
final project review and survey were executed.

3.3. Teams and Project Background

Among fourteen registered senior software engineering students, which formed four
student teams, two student teams joined our case study. We call these two teams, A and
B, and students in both teams are considered to have sufficient training in some software
development skills. Prior to taking this course, students were required to complete the
prerequisite courses like programming language, database, operating systems, introduc-
tion to software engineering, software testing, and software architecture courses. Part of
the students gained team development experiences from their internship or other engi-
neering project courses. Since the user interface design and web development courses
are selective, only a few students took them (see Table 1).

Team A and B worked on two different types of software systems. Team A built a
brand new online real-time chatting system. Team B took over an incomplete online
classroom system, so customers expected new functionalities and improvements from
the team’s development. Therefore, the common skills for both systems are web tech-
nology, database, software architecture, and user interface (see Table 2). Both teams
need different project specific techniques in addition to the understanding of the do-
main business (see Table 3). For team A, students need to understand real-time systems.
Team B students must know Google Cloud Services. Because both teams had poor
understandings about project specific technologies, around the beginning of the project,
students were asked to research those technologies and discuss with instructors about
their understandings.

H.-F. Chang, M. Shokrolah Shirazi612

Table 1
Team formation and project

Team A Team B

Software System Online real-time chatting system Online classroom
System Type Brand new system Existing system
Team Members Four senior software engineering students Four senior software engineering students
Project Experiences Three team members have leadership ex-•	

periences in other engineering courses.
Two team members have Agile •	
development experiences.

Two team members have leadership ex-•	
periences in other engineering courses.
Only one has Agile development •	
experience.

Table 2
Evaluation of the team A and B common skill set

Skills Team Evaluations Comments

Web
Technology

A Good Three team members know to write a web application in the
Python Flask framework.

B Excellent All team members know how to write JavaScript programs and
can use ReactJS framework. They also know about Python Flask
web framework.

Database A Relational: Average
NoSQL: Poor

All team members know about relational databases but have
limited understanding about NoSQL databases.

B Relational: Good
NoSQL: Average

All team members understand the relational database well and
have limited programming experience in NoSQL databases.

Software
Architecture

A Poor All team members have limited understanding about software
modeling and design.

B Average Two members know how to design a system and analyze the
architecture.

User Interface
(UI) Design

A Average Three team members have experiences in wireframe and UI
design.

B Average All team members have the experiences in wireframe and UI
design.

Domain
Knowledge

A Average All team members know the workflow of the website message
and interaction between two users on the chatting system.

B Good One team member worked on a similar online lesson system
before. The rest of the team members understand the features an
online learning system has.

Table 3
Evaluation of the team A and B skill sets about specific technologies

Skills Team Evaluations Comments

Real-time System A Very poor No team members equip the knowledge of a real-time
system.

Google Cloud Technology
(Firebase)

B Poor All team members have limited understanding about
Google Cloud Services.

Adapting Scrum for Software Capstone Courses 613

3.4. Tools

ClickUp (see Fig. 1) was used to manage the project. The tool provides a columnized
Scrum board, which allows users to define various states of a user story (e.g., open,
in-progress, and close). Its user interfaces and operations are similar to most industrial
tools.

Other software development tools are also introduced to students for managing the
software project. Both teams saved their codes in Gitlab repositories and used Miro
(https://miro.com/) to create their user interface wireframe. To help the system
deployment, Amazon Web Service (AWS) and Google Cloud Platform are clearly ex-
plained to team A and B, respectively.

One primary purpose of using these tools, particularly ClickUp, to student learning
experiences is to let them understand how the industry handles Scrum in product de-
velopment. Also, saving notes and source codes in Gitlab lets us easily collect data for
obtaining insightful information.

4. Method

Our proposed adapted Scrum decision process can assist course instructors to change
their Scrum event schedules according to their settings. To investigate the proposed
adapted Scrum decision process, two case study teams followed our adapted Scrum and
then we analyzed team dynamics and performance. The following sections discuss our
framework, research questions, data collection, and analysis procedure.

Fig. 1. User Interfaces of the ClickUp.

H.-F. Chang, M. Shokrolah Shirazi614

4.1. Scrum Adaptation Decision Process

Our decision process considers the differences between students and industrial workers.
It listed the following aspects to help instructors specify how Scrum should be adapted
for classroom usage. At the same time, we also believe that our adapted Scrum decision
process not only follows the principles stated in the Agile Manifesto (Beck et al., 2001)
but also closely aligns with what Scrum framework requests. In Fig. 2, we show how
Scrum event execution recommendations are associated with considerations of practitio-
ners’ differences in the decision process.
Decide Number of Teams
We suggest that evaluators monitor all the Scrum meetings and one evaluator (i.e., in-
structor or teaching assistant) helps at most two teams. This number is also influenced
by how many projects the course has.
Team Size
Team size is related to the team number and the Scrum best practice. In the industrial
best practices, the range of team size is from six to eight people. We think having a
large team may discourage team communication and participation and further impacts
student’s learning. We also suggest that the minimum number of team members is three

Fig. 2. Scrum Adaptation Decision Process.

Adapting Scrum for Software Capstone Courses 615

because one team member has his/her own role and Scrum roles include product owner,
developers, and Scrum master.
Assigning Team Roles
We can fix the role for individual members throughout the entire course or let members
rotate some roles. This decision is made according to whether we want to enhance cer-
tain role’s expertise and experiences for all students. For example, if we would like to
encourage all the students to exercise Scrum master, the instructor can consider rotating
Scrum master role-play among students.
Team Project Assignment
The project assignment to a team depends on team member’s learning goals and skills.
The team can express their strong desire to learn some technologies when they do not
have any background. This risk must be evaluated and communicated between the in-
structor and students.
Determine Sprint Time
One or two weeks for a Sprint is suggested in practice. More than two weeks should not
be considered because the development team wants quick customer feedback and then
improve the progress or adjust the implementation when the situation changes. How-
ever, one week for the class setting is too short because students do not have enough time
to make sufficient progress on the project. To note that, when we consider classes, we
include both lectures and labs (exercises). We also need to consult with our customers
about their schedules because Scrum review requires customer participation.
Get Daily Stand-up Interval
This interval considers two factors: student working hours and the number of classes in
a Sprint. We do not encourage students to hold stand-up meetings without the teaching
staff’s participation. The teaching staff can provide feedback to students after the stand-
up meeting so that students can learn how to handle the stand-up meeting efficiently.

Student Working Hours ●
Industrial professionals work eight hours per day. In other words, the interval
between two daily stand-up events for eight working hours maps to 24 hours. If
students can work on the project for two hours per day. Daily stand-up should be
changed to at least every four days (i.e., 8/2 = 4).
Number of Classes in a Sprint ●
Holding daily stand-up meetings in class time is a straightforward way because
we want teaching staff to accompany student teams. If the daily stand-up meet-
ing interval is four days and the weekly schedule of the class time is Monday,
Wednesday, and Friday, the daily stand-up time should be every Friday or two
consecutive classes closest to the computed interval. However, one disadvantage
of picking class time for daily stand-up meeting is that the regular lecture time
decreases. If the teaching staff can reserve another time for the stand-up meeting,
this factor is not considered.

Determine Scrum Planning Schedule
With the same consideration regarding the teaching staff’s participation, we suggested
the Scrum planning meeting should be held in the class. Because product backlog item

H.-F. Chang, M. Shokrolah Shirazi616

grooming meeting is very critical for task estimations, it must be before the planning.
If the time permits, grooming and planning can be combined. However, if the teaching
staff can use other time for planning, using class time is not necessary.
Determine Scrum Review and Retrospective Schedules
The review schedule needs to take the client’s schedule into account. It occurs at the
end of the Sprint and the team expects the client’s feedback in the meeting. We insist
on teaching staff’s participation so using class time is suggested. The same suggestion
also applies to retrospectives. One can combine both review and retrospective at the end
of the Sprint but keep in mind that the client cannot join the Scrum retrospective event.
Again, if other time can be reserved for review or retrospective events, using class time
is not required.

Table 4 justifies why our adapted Scrum decision process preserves the spirit of Ag-
ile and the key elements of Scrum, except for one major difference regarding stand-up
meeting frequency. We argue that violating daily stand-up principle is inevitable because
students cannot meet daily to synchronize their individual status. To understand the im-
pact of this change, we will investigate it in our case study.

4.2. Role Play in The Team

There are two reasons for us to determine the role play in the team. First, undergraduate
students did not have sufficient experience in requirement specification and software
architecture to handle complex design problems. To help students learn about them and

Table 4
Adapted Scrum justifications

Sprints Duration Adapted Scrum
1 to 2 weeks

Scrum
1 to 4 weeks

Events Daily stand-up Frequency – not daily.
Adjusted frequency based
on working hours
(Note: see potential issue)

Frequency – Daily

Retrospective Same as Scrum Duration – Timeboxed
Handling – Three questions:
(1) What did you do well in the Sprint?
(2) What didn’t you do well in the Sprint?
(3) What will you do to improve it in the next Sprint?

Review Same as Scrum Demo to stakeholders (including customers). Review
the finished work.

Planning Same as Scrum Assign user stories and tasks.

Roles Responsibilities Same as Scrum Scrum master, product owner, and developers have
their responsibilities described in the Scrum guide
(Schwaber et al., 2020)

Note: potential violation on the Agile principle – Business people and developers must work
together daily throughout the project.

Adapting Scrum for Software Capstone Courses 617

make the project handle smoothly, the instructor provided the least technical support to
students for playing the product owner role but did not directly guide how to write user
stories, work breakdowns, and task assignments. In other words, the instructor played
the part of the product owner role. Second, one learning objective is to let students be fa-
miliar with the responsibilities of the Scrum master. In both Team A and B, each student
plays the Scrum master role each Sprint.

4.3. Research Questions

Rather than measuring our adapted Scrum classroom application by examining grades,
customer satisfaction, or assignment achievement, we particularly want to understand
what happened inside the team. By studying team dynamics, we can understand whether
our adapted Scrum can bring similar effects or benefits as original Scrum. If our adapted
Scrum is against the original Scrum principles or cannot be as effective as the original
one, such as increasing communication to promote collaboration or offering flexibility
to address changes, team collaboration and performance will be impacted. Moreover,
we want to understand if the adapted Scrum promotes student learning and team experi-
ences. Hence, we ask questions to examine member satisfaction and team improvement.
Therefore, we decide on the following research questions by extending the proposed
criteria from past research (Song et al., 2015).

Scrum Learning: ●
RQ1: How well do students learn about Scrum from the adapted Scrum?
RQ2: How do the adapted Sprint events impact the student team?
Team Performance: ●
RQ3: What makes the student team increase or decrease product development

performance?
Member Satisfaction: ●
RQ4: What makes team members feel satisfied?
Team Improvement: ●
RQ5: What parts of the team experiences enhance each member’s capability to

work and learn together?
RQ1 investigates if our adapted Scrum can enable the understanding of Scrum. It is

also used for understanding the impact of our adaptation. Since we know the violation
of the Agile principle occurs at the stand-up meeting interval, in our case study (see
Table 5), we asked team A to perform a stand-up meeting every class and team B to fol-
low our adjusted frequency calculated based on their working hours. Therefore, in RQ2,
we can examine the team activities to know how much impact the stand-up meeting
frequency brings to the project.

RQ4 analyzes what contributes to their satisfaction. Because we think improvements
in individuals or teams and project achievement should also be a factor of satisfaction,
RQ4 looks at what RQ5 analyzes from another angle.

H.-F. Chang, M. Shokrolah Shirazi618

Offering realistic project experiences is one primary purpose of the capstone project
course. It is crucial to understand how much influence the industrial partner provides.
Therefore, in addition to investigating the research questions above, we also want to ex-
amine the following three things: (1) how students view the support from the industrial
partner, (2) how the industrial partners assess the student team’s performance, and (3)
what specific help is provided by the industrial partner.

4.4. Procedure and Data Collection

Case study is our research method that is used to investigate the above research ques-
tions. It is a methodology conducted by giving special attention to completeness in ob-
servation, reconstruction, and analysis of the cases under study (Zonabend, F., 1992)
and is recommended for exploratory, explanatory, and descriptive studies (Yin, 2012;
Yin, 2009; Stake, 1995). With the consideration on exploring, observing, and analyzing
the team under the adapted Scrum, we believe the case study method will offer us the
significant details that can be used effectively to enhance learning.

Table 6 displays how we prepare for the case studies, how the adapted Scrum is
handled in the class, and how data is collected. At each Sprint, in addition to entering
the user stories in ClickUp, the Scrum master also needs to write a report to summarize
each finished Scrum event. Since the instructor was with the team at every event, stu-
dent’s activities were recorded and evaluated. Then, the feedback of the overall Sprint
execution was shared with student teams after Sprint was finished. The data collection
does not include server course outcomes. Development-related materials such as client
interview notes, requirement analysis reports, and UI design wireframes are not col-

Table 5
Compare daily stand-up events and roles

Adapted Scrum in the class Scrum

Daily
Scrum

Frequency Team A:
Course days
(i.e., Monday, Wednesday, and Friday)

Everyday

Team B:
Every Wednesday

Duration 15 minutes 15 minutes
Format The same as the original Scrum Three questions to synchronize the

project progress
When The beginning of every class The beginning of every working day

Role Scrum master Each student will practice Scrum master
role in one Sprint.

The Scrum team has a designated Scrum
master

Development
team

Based on the task assignments and
student’s skill sets, developer and tester
roles could be changed between Sprints

The developer and tester roles are
fixed according to the employee’s job
description

Product Owner Student (with instructor’s supports) Designated product owner

Adapting Scrum for Software Capstone Courses 619

lected for case studies. However, they served as references for data analysis, mostly
used for instructor’s evaluations. The client evaluation is not included in the data col-
lection because it is mostly about their satisfaction with the product, which has no
observations on teams.

4.5. Measurement

The qualitative analysis is applied to all the Scrum reports, instructor’s evaluation, and
some survey questions. We used quantitative analysis on source codes and the result is
for validating our observations. We will calculate the number of line changes by com-
bining added and deleted lines in each Sprint and normalizing the changes to help us
validate our observations of the team’s activities (see Eq. (1)). We also look at commit
history in a Sprint to know student’s work patterns.

Nikolaus et al. (2009) stated that measuring changing lines of code is a useful metric
for software evolution. The evolution includes structure changes, bug fixes, and new fea-
ture implementation. To know what students learned results in causing the code modifi-
cation, counting line changes is used. If we pair the results with our qualitative analysis,
it should increase the confidence level of our conclusion and the findings on our qualita-
tive analysis.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 =
(𝐴𝑑𝑑𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 + 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 + 𝐷𝑒𝑙𝑒𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠)

𝑀𝑎𝑥 (𝐴𝑑𝑑𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 + 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 + 𝐷𝑒𝑙𝑒𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 = (𝐴𝑑𝑑𝑒𝑑 𝐿𝑖𝑛𝑒𝑠+𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑠+𝐷𝑒𝑙𝑒𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠)
𝑀𝑎𝑥 (𝐴𝑑𝑑𝑒𝑑 𝐿𝑖𝑛𝑒𝑠+𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑠+𝐷𝑒𝑙𝑒𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠) (1)

Other quantitative measurements follow the burndown chart within a Sprint, which
is often suggested in practice. We examine the completeness rate of each Sprint because
finished tasks or user stories is often updated during or after daily stand-up meetings in
practice and our stand-up meetings do not happen every day.

Table 6
Data collections at each stage

Stages Activities Data Collection

Pre-Sprint User story trainings, client interviews, require-
ment analysis and design discussions

No data collection at this stage

Scrum
Execution

Iterative development from Sprint 1 to 5•	
Mid-term project review•	

Scrum master planning report(1)
Scrum master review report(2)
Scrum master retrospective report(3)
Scrum master stand-up meeting report(4)
Instructor’s evaluation (and feedback) note(5)

Final Final project review Two surveys:(1)
Self and peer reviews-
Learning reflection-

All source codes (2)
All the user stories(3)
Instructor’s evaluation (and feedback) note(4)

H.-F. Chang, M. Shokrolah Shirazi620

We learned from the software engineer competencies suggested by Turley and Bei-
man (1994, 1995) and developed our assessment matrix (see Table 7). This assessment
matrix uses a scale from 0 to 10 to evaluate each competency for each student. The
value from 10 to 8 means exceptional, from 8 to 6 means good, from 6 to 4 indicates
development, and below 4 means under-development. As experts, instructors can assess
individual problem-solving abilities from every Scrum review event and all the code
review activities.

5. Results and Discussions

In this section, our discussions include the investigations on our research questions, the
evaluations on the industrial partner’s involvement, the scalability of our proposed ap-
proach, and additional findings along with our case study.

5.1. Research Question Investigation

The research questions are listed under four different aspects. In the following sections,
we will discuss each aspect our case study investigates.

5.1.1. Scrum Learning
We selected some questions from the student’s final survey (see Table 8) to analyze the
student’s learning about Scrum. From the answers to question 1, 2, and 5, we discovered
student feedback regarding Scrum events. First, students learned most from the review
and demo. We believed that working with industrial partners indeed brought different
perspectives from their teaching staff. Students did not know their misinterpretation on
the business needs until they released some wireframes or prototypes to the client in the
demonstration. Industrial partners often provided end-user viewpoints on student’s user

Table 7
Instructor’s assessments on competencies

Category Instructor’s (Expert’s) Assessment on Competencies

Problem-Solving Skills Using knowledge
Researching, Investigating, Problem-Solving
Developing solutions

Contribution and Attitude Taking initiative and responsibility
Their planning and response to schedule pressures

Ability to Communicate Communicating with team members
Interacting and presenting with the client

Fulfillment Understanding of main duties and responsibilities and fulfill them

Accountability and Commitment Their most important achievements of the phase of development

Adapting Scrum for Software Capstone Courses 621

interface implementations. Students were often encouraged by the client when they had
done something right. These were situations that we noticed from the demo and review
events. Second, students claimed to learn a lot from planning and retrospective. The
planning event forced team members to have internal discussions on whom to work what
and examine everyone’s responsibilities and the retrospective event led the team to have
reflections on how to improve the process or development. These events also promote
team collaboration through communication.

Table 8
Feedback about Scrum events and learning from Team A and B

Question 1: What Scrum events did you learn most from the course? (Please select at most two)

Team A Most Retrospective
Planning

Second most Review and demo
Retrospective

Team B Most Daily stand-up
Planning
Grooming
Retrospective

Second most Review and demo
Retrospective

Question 2: What Scrum events did you think most useful for conducting your project in the course?
(Please select at most two)

Team A Most Daily stand-up
Planning
Grooming
Review and demo

Second most Daily stand-up
Planning

Team B Most Daily stand-up
Planning
Grooming
Review and demo

Second most Daily stand-up
Planning
Review and demo

Question 3: Do you also want to learn more about SCRUM?

Team A 100% Yes. Definitely
Team B 75% Yes. Definitely

 25% Maybe. I might be since I am not very
interested in.

Question 4: Maintaining a Product Backlog List is critical to me for the project?

Team A 50% Yes
 50% I consider to be a team job

Team B 75% Yes

 25% I consider to be a team job

Continued on next page

H.-F. Chang, M. Shokrolah Shirazi622

Table 8 – continued from previous page

Question 5: I reflect and think again about my project and work every time during and after the
Retrospective event

Team A 50% Yes, always
 25% Sometimes
 25% Occasionally

Team B 25% Yes, always
 50% Sometimes
 25% Depends on the issues or discussions

Question 6: Do you think the entire team user story point estimation is getting accurate after a couple
of Sprints?

Team A 75% Maybe yes (I feel like that)
 25% Yes

Team B 100% Maybe yes (I feel like that)

Question 7: Do you think that your user story point estimation skill improves (i.e., providing more
accurate points) after a couple of Sprint?

Team A 100% Maybe yes (I feel like that)
Team B 50% Yes

 50% Maybe yes (I feel like that)

Question 8: Do you think it is good to have two weeks for the Sprint?

Team A 100% Yes
Team B 100% Yes

Question 9: How effective was the Daily Scrum event?

Team A 50% It was good. That reminds me my job to be done.
 50% It was bad. Heavy loading.

Team B 50% It was okay. We are more like reporting, sometimes, we synchronize.
 25% It was good. That reminds me my job to be done.
 25% It was good. We synchronized with each other.

When we investigate the feedback on the product backlog item list, the user story,
and Sprint duration, we could justify that our adapted Scrum did not decrease the ef-
fectiveness of executing the Sprint, the product backlog maintenance, and the user story
point estimation. We believe that keeping the same recording format and Sprint practices
from the original Scrum in our adaption is the main reason. Repeating several times of
exercises made students improve these skills as well.

From question 3, students expressed their strong interest in learning Scrum. We could
also discover some details when students mentioned the three things they learned most
from the Scrum. These answers again enhanced our statements on student’s learning
about Scrum. Students applied every element of adapted Scrum and learned from them
very well. Overall, our adapted Scrum did help with the project development and did
encourage student’s learning on Scrum.

The key difference between our adapted Scrum and Scrum is the stand-up meeting
frequency and this changed frequency is also inevitable against the Agile principle. Un-
der the limitation caused by the course setting and instructor’s in-person participation,

Adapting Scrum for Software Capstone Courses 623

we can only make team A have a stand-up meeting every course day and team B have
every Wednesday as the meeting frequency.

From our observation, having a stand-up meeting every day is ineffective. Students
could not spend time working on the project between two consecutive meetings. In their
meeting notes, you can often see the following reasons or responses:

“What did you do yesterday? Worked on the database stuff some more.
What will you do today? Nothing. Cannot spend time on the task.”

“What did you do yesterday? hasn’t worked on the project yet this
week, too much other stuff to do”

Team A’s result tells us that students have their schedule to distribute their working
time for all their assignments, tests, readings, or work. It might not be reasonable to re-
quire them to work on the project almost every other day. In contrast, we do not find those
kinds of answers in their logs. We found that team B could reasonably distribute their per-
sonal time to work on the entire course works or tests so that students formed their project
working and collaboration pattern between two consecutive stand-up meetings.

After the team’s commit history is viewed, the consequences caused by the differ-
ence between student’s and industrial professional’s working patterns can be revealed.
Agile development claims a weekly 40-hour work; this is, professionals can work on
the development every weekday. From the commit histories of both teams, most of the
commits were on Friday, Saturday, and Sunday. That means that student teams mostly
do their system development around weekends. This implies that the weekend could
be their best time to work together because team members find available free time.
Their stand-up meeting and review notes also show the same pattern regarding their
working time.

Table 9
Selected feedback about Scrum learning through adapted Scrum

Question: List at least three things you learned most from the Scrum

Answers 1. Keeping up to date with teammates, 2. Staying organized on what I need to do and what
teammates are doing, 3. Reviewing and reevaluating process standards
Be flexible, communication is critical, don’t be afraid to discard work
Epics can be broken down and completed faster, team communicates more, user story points are
agreed upon among the team
Story points estimation, self-organization, Commitment to completing project, increased
productivity

Question: Overall, what do you think about the Scrum learning experience?

Answers I enjoy it and think it is a very useful software development framework.
It was very helpful as I know now how teams work under Scrum and will use it in the future.
Scrum was basically something new we learnt in thus course, although I have used SCRUM in
my internship, learning about it helped to understand why it is being done and I got to learn more
about it than you will learn when using it. I think the scrum learning should continue in future
sections of this course as to me, it seems to work very well.

H.-F. Chang, M. Shokrolah Shirazi624

However, from Table 10 where we gather student’s answers about the overall chang-
es to the original Scrum, regarding stand-up meeting frequency, the selected answers
show a controversial response. Students would like to have more stand-up meetings in
a Sprint to synchronize team member’s statuses, to remind individual’s responsibilities
(see question 9 in Table 8), and to learn more about Scrum, but they also understood
the limitation. This reminds us of a possible or flexible adjustment on stand-up meeting
frequency if students expect more face-to-face short meetings. To conclude the overall
experiences on the adapted Scrum, we think it did not impact project execution, and
students were satisfied with the overall outcomes.

Providing Scrum practices to students with industrial customers improved their un-
derstanding of the Scrum framework. Executing these events under the adapted Scrum
framework did not decrease understanding of Scrum. Table 11 shows that team A and B
improved their grades by 10.4% and 40.9%, respectively. The normalized grades were
scaled from 0 to 1 according to the results of students’ actual scores from all the Scrum-
related exam questions divided by the questions’ full scores.

The improvement can be validated on the Scrum-related exam questions. We particu-
larly estimate how much Scrum hands-on experience is accumulated at the time when
questions are asked. Students took the midterm exam around the end of Sprint 2 and took
the final exam after five Sprints. The timing indicates that practicing the adapted Scrum
multiple times aids in understanding Scrum better. Students knew the Scrum event du-
rations were modified in the classroom because both teams received high scores in the
Scrum execution questions.

We also want to know what competencies improve during or after the Scrum events
in addition to Scrum learning. Instructors also assessed student’s learning according to
our measured competencies. From the measurement results, instructors also know that
students improved competencies in the “ability to communicate” and “fulfillment” cat-

Table 10
Selected student’s feedback about Adapted Scrum practices and learning

Question: Given the course limitations (ex: time or course arrangement), do you think SCRUM is executed
properly in the course? (Please explain why whether YES or NO)

Answers Yes, it was fairly effective even though we weren’t able to daily standups. We were still able to
practice the 5 scrum events listed above at least once per sprint.
I think we could have spent a little more time doing stand ups, but given the time restrictions I
understand why we didn’t. I think more time on this would’ve helped us stay on the same page.
I think it is, since we were working on a website already created and planned out, it was easier
for us to do planning and reviews. Also the time worked well although it wasn’t enough because
of other classes and commitments. But the arrangement in general seemed to work for the class,
also with our class size, we were able to conduct meetings, reviews and planning in a specified
class time.
Yes, everyone worked in every role.

Question: What would be your suggestions on learning SCRUM?

Answers Maybe do a stand-up form on days that we can’t do it in class.
I will say, SCRUM is best learnt by doing it. My original exposure to SCRUM was confusing
for the first week because I did not understand why it was used even after explanations, but as I
continued to do it, I learnt it well and also the knowledge of why we use it.

Adapting Scrum for Software Capstone Courses 625

egories. We believe the improvements are earned from the lessons learned in the review
and retrospective in the first two or three Sprints because students realize that they need
to increase communication quality to reduce the overlapping work or misinterpretations.

Regarding “problem-solving” competency, we also found that students needed guid-
ance to lay out the software architecture so that they could divide the system into mod-
ules for an individual to work on. This deficiency was evident to us when we observed
student glooming activities. When students encounter a real-world project, how to de-
sign the architecture becomes very challenging. Once students worked on a module,
developed a piece of the system, or saw the skeleton codes for the system, they could
actively propose a proper solution and know what to research. These behaviors can be
easily seen during the planning and retrospective events.

5.1.2. Team Project Performance
Story point completion analysis (Fig. 3 and Fig. 4) provides insights into the team per-
formance. Both teams showed that all user stories were fulfilled in the first Sprint be-
cause teams started with user stories that they thought “they could finish” or were more
about research about the system or technologies. However, the first Sprint user stories
and task assignments are conservative. In Sprint 2, both teams had substantial unfinished
user stories. We think it is not a coincident phenomenon for both teams even though vari-
ous factors were causing this gap. Students tended to underestimate their task challenges
after a successful Sprint 1 and still learned how to estimate user stories. Then, those un-
finished tasks were carried over to Sprint 3 and the later Sprints. Team A finally finished
all the required functions at the end of the last Sprint. Team B’s unfinished user stories
became more in Sprint 4. According to our observations and discussions in the Sprint

Table 11
Student Grade Improvement on Scrum Related Questions

Team A Midterm Questions Continuous Improvement and Scrum Principles
Normalized Grades Average: 0.7785

Standard Deviation: 0.1075
Final Questions Scrum Planning and Execution Questions
Normalized Grades Average: 0.8705

Standard Deviation: 0.1645
Improvement Rate* 10.4%

Team B Midterm Questions Scrum Basics, Continuous Improvement, and
Scrum Pros and Cons

Normalized Grades Average: 0.63
Standard Deviation: 0.2732

Final Questions Scrum Planning and Execution Questions
Normalized Grades Average: 0.8875

Standard Deviation: 0.075
Improvement Rate 40.9%

Note*

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 =
(𝐴𝑑𝑑𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 + 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 + 𝐷𝑒𝑙𝑒𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠)

𝑀𝑎𝑥 (𝐴𝑑𝑑𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 + 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 + 𝐷𝑒𝑙𝑒𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 = (𝐴𝑑𝑑𝑒𝑑 𝐿𝑖𝑛𝑒𝑠+𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑠+𝐷𝑒𝑙𝑒𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠)
𝑀𝑎𝑥 (𝐴𝑑𝑑𝑒𝑑 𝐿𝑖𝑛𝑒𝑠+𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑠+𝐷𝑒𝑙𝑒𝑡𝑒𝑑 𝐿𝑖𝑛𝑒𝑠)

Improvement Rate = (Average Final Grades – Average Midterm Grades)
Average Midterm Grades

H.-F. Chang, M. Shokrolah Shirazi626

Retrospective, we knew one team member could not finish his job due to a personal is-
sue. As a result, the user story point gap could not be filled.

Moreover, according to the tasks specified in the first two Sprints, one important
factor that impacted the team performance is individual technical skill. Many user sto-
ries could not be finished due to working on the research on the required technologies.
However, learning new technologies also turned out to be the parts students like. We
can discover this impact in the following quotes from student’s reflections.

“I like it”
“Useful”
“Interesting”
“Getting better after a couple of practices or task implementations.”

Fig. 3. Team A Story Point Analysis.

 Fig. 4. Team B Story Point Analysis.

Adapting Scrum for Software Capstone Courses 627

The above findings in Sprint 3 to 5 can be cross-validated by looking at source code
analysis (see Fig. 5 and Fig. 6). We can see that a relatively large number of codes
changed during these Sprints. This also indicated that, after first few Sprints, both teams
had more confidence about what needed to be done and became more productive. Then,
individual commitments on user story completions slightly increase.

5.1.3. Member Satisfaction
Team B felt very satisfied during Sprint 4 and 5, although many unfinished user story
points existed. The main reason is that the team accomplished a couple of challenging
features such as online lessons and avatar talking beside the lecture playing video. Their
work and learning satisfaction can be found in their Sprint review and retrospective
notes. We can see the selected student’s statements from the following.

“What did we do well? Make progress on the lesson viewer and edi-
tor. Getting the database working without issues. Everyone can kind
of work on the job.”

The planning and grooming events enabled the team to have a modular design that
increased their confidence in their user story estimation. In Fig. 6, we also see many line

Fig. 5. Team A Code Analysis.

 Fig. 6. Team B Code Analysis.

H.-F. Chang, M. Shokrolah Shirazi628

changes in the repository in Sprint 4. This is also evidence of the difficult feature that
the team overcomes. In team B’s Sprint 5, the team worked on bug fixes and relatively
small improvements due to finishing a very productive Sprint, so the amount of code
changes is small.

In contrast, team A finished all the planned user stories at the end. We suspected it
was due to the time pressure on the project completion because many of their works
were done without good quality. We saw many defects or immature considerations, for
example, how real-time message was handled in their product, in the final project review.
Starting from Sprint 3, team A became productive to compensate for those carry-over
user stories. In their survey, all team members liked the problem domain of the project
because they learned the technologies (i.e., real-time message system) that they did not
know very well before this project. However, the complaints came from the project ex-
ecution. Two team members complained about insufficient exercises of being a Scrum
Master due to role rotation, and one team member thought the stand-up meeting added
substantial efforts to manage the project. This claim can also be referred to question 9’s
responses in Table 8 because 50% of responses pointed out the heavy loading. Therefore,
intensive stand-up meetings introduced some pressure on student’s work, which could
influence individual satisfaction.

5.1.4. Team Improvement
According to the Sprint event notes, team B enhanced the collaborations in Sprint 4
and 5. The team improvement happened after Scrum retrospective meetings. During
the meetings, team members discussed how to improve their process and collaboration.
The source code analysis on their repository also serves as referential support of this be-
cause individual changes were merged and deployed. Another individual improvement
happened after the Scrum review. The client provided experiences on online teaching
and tests to help students. Students worked together to study the way to satisfy the cus-
tomer’s needs. From peer reviews, we also saw students talked about their improvement
after using Scrum adaption (see their responses below). As a result, students felt that
they improved their capabilities in the end.

 “I have definitely gone beyond work done.”

“I think I have taken on several important tasks and delivered them on
time and in good quality. I learned a lot from that and knew better.”

On the other hand, team A’s programming tasks are mainly on two members. Al-
though the team does not have any complaints about their collaborations and workload
distribution for their peer review. It is suspicious that their peer reviews did not reflect
their true feeling about their team members. Scrum events also helped communication
and let team members know everyone’s status. In the class, technical tasks that required
more workloads would fall on those team members who were more capable of finishing
them to receive good grades. So, the way that team A collaborated seemed only benefi-
cial to those students who wanted to spend efforts on their skill improvement. These

Adapting Scrum for Software Capstone Courses 629

discoveries could also be found in the team’s peer reviews. This tells us that Scrum
events can bring team communications but individual commitments on tasks and shared
responsibilities bring individual improvements.

5.2. Evaluations on Industry Involvement

Recent studies such as Lundqvist et al. (2019), Linos et al. (2020), and Sroka (2020)
emphasized that having an information technology (IT) professional in Scrum is signifi-
cantly beneficial to student’s learning. These IT professionals become a stakeholder who
can mentor the students by bringing in possible solutions from an industrial perspective
and equip them with professionalism.

We want to argue that collaborating with technical mentors leads to putting our
eyes on the technical side of learning. Working with industry should let students not
only learn the method to deal with complex engineering problems but also understand
the business side of the project and know how to communicate with a non-technical
audience.

Hence, from the perspective of knowing the business, one might criticize that most
industry-provided projects in the course are not critical to their core business. There-
fore, students might not learn about the company’s actual business from the capstone
project. However, we believe students can still learn about the company’s business
through working on these projects. Often, conversations with the client reveal the
company’s important business problems. Students result in gaining business insights.
This is particularly valuable to students because they realize that the knowledge
learned from prior courses can be related to real-world business. In our case studies,
the online real-time chatting system developed by team A was just a side project to
the main business and the online classroom system built by team B was an additional
experiment for the company. But, team A ended up understanding how the traditional
customer service workflow and team B realized the critical elements for guiding stu-
dents to plan their careers.

Capstone projects need room for failure because students are not professional engi-
neers. Our industrial clients tended to compliment students even when students made
no promising progress in Sprints. They did not hold the same professional standard
to evaluate student’s performance. This kind of client attitude can be a double-edged
sword. On the one hand, students understand that they can make mistakes; on the other
hand, irresponsible behaviors are encouraged. As a result, this requires instructors to put
effort into holding students accountable.

Both teams gradually improved their communication competency when we saw that
they interacted with clients during the Sprint review events or the final product presenta-
tion. Having a non-technical client trains student’s communication skill. For example,
students realize the importance of visual aid. They learned to use a wireframe to get
feedback from the client. After the first two Sprints, both teams used the public testing
site on the cloud to discuss the increment deliverable with the client. This also encour-
aged students to do more tests to ensure the quality before the demo.

H.-F. Chang, M. Shokrolah Shirazi630

5.3. Scalability of the Adapted Scrum

We envision that scaling our adapted Scrum approach is a challenge because the given
condition of our proposed approach states that all the Scrum events should be handled
during class time. Adding more instructors or starting Sprint at a different time (day)
seems to be the intuitive choice. However, the assumption limits the scalability of the
approach.

Although students were asked to take notes in the Sprint event reports, we think hav-
ing a written notebook is insufficient. It is crucial to investigate student behaviors from
their face or body language during the Scrum events. Therefore, our proposed adjust-
ment is to ask the team to record the events handled in different places at the same class
time. The instructor attends one of his or her mentored teams in person and watches the
video afterward for evaluations.

5.4. Additional Discoveries

Retrospective meetings focus on good and poor practices about the process during the
Sprint. However, students were often confused about its purpose, so their discussions
were on personal performance instead of articulating the possible reason causing that
and potential solutions to be tried in the next Sprint. Another observation about Scrum
practices is student’s user story estimation. We found that both teams can form a pattern
to estimate story points after Sprint 4. The exercises of reaching the team consensus
about the user points in the previous Sprint did help them to understand and gauge their
user story in the later Sprints.

We noticed that students learned the importance of software architecture and de-
sign from our survey results. Having a software architecture lets them have an overall
view of the system. They figured out this is a critical design activity to refine the user
story. Students think a glooming is crucial for their task distributions, later system
integration, and testing. Finally, students gave positive feedback about their learning
experiences. They did not feel any inadequate handling regarding our adapted Scrum.
They claimed that they knew better about the Scrum framework, knew the differences
between adapted and original Scrum, and realized why Scrum needs to be changed in
our project management.

6. Conclusion

The Scrum adaptation decision process was applied well to our capstone projects. Based
on our discussions on various aspects, we know that students still practice Scrum events
and learn well from them. Both teams claimed they learned most from Scrum review and
retrospective events because industrial partners provided valuable comments to students
and the team could have meaningful communications and reflections. Industrial partners
provided helpful information to students. From another aspect, students improved their

Adapting Scrum for Software Capstone Courses 631

user story estimation after a few Sprints. More accurate estimation also made more task
completions in the later Sprints during the development.

Our adapted Scrum keeps original formats, suggested Sprint duration, and frequency
except for stand-up meetings. Therefore, from the final course surveys, student’s expres-
sions on Scrum learning also implied that students were encouraged to know more about
Scrum. The survey questions about the stand-up events and comparison between two
different frequencies showed that the events offer effective team synchronization and
reminders on personal tasks.

Along with the discoveries about applying adapted Scrum to the capstone project,
teams recognized the importance of the software architecture and design. Having an ef-
ficient glooming event is critical to product development and Scrum execution. To con-
clude the overall adapted Scrum experiences that we investigate from these two case
study groups, our proposed adapted Scrum can be used in the software product develop-
ment in the class to provoke team performance, student learning, team improvement,
and satisfaction. Our discovered insight can be a guide to other capstone courses.

6.1. Limitations

This section highlights some limitations of this work. We understand that case study
students from the same course might not allow us to generalize our findings. Students
only went through five Sprints. We could not have opportunities to observe the long-
term effects on the project development under adapted Scrum. The time limitation also
made the team ignore adding more integration tests to enhance the product quality.
Nevertheless, at the same time, both teams did not have absences of any member in
any Scrum event during the entire project development. This fact aids us in collecting
observations and evaluations on teams. We also knew that the two teams worked on two
different projects and different systems brought different challenges to students. So, we
only focused on teamwork and learning discussions. The evaluation was done only by
the instructor – that is why we need to use other notes to support our findings.

6.2. Future Work

Although our discoveries in the case study can help handle future capstone courses, we
also understood that our stand-up frequency required advanced research, particularly
about how flexible the interval can be. One discovery is that students need more time
to practice their Scrum planning and grooming. It is helpful in further specifying the
reasonable event duration according to the student’s need. In addition, we also want to
conduct a comparison experiment where one team will use regular Scrum and the other
will use Adapted Scrum to build a system under the same requirements so that we can
examine what competencies can be improved. Lastly, we want to study how software
architecture influences the student’s overall project experience and their competencies
when the Agile development process is employed.

H.-F. Chang, M. Shokrolah Shirazi632

References

Baer, N. & Zeidman, B. (2009). Measuring Software Evolution with Changing Lines of Code. Proceedings of
the ISCA 24th International Conference on Computers and Their Applications, CATA 2009. 264–170.

Baham, C. (2019). Teaching Tip: Implementing Scrum Wholesale in the Classroom. J. Inf. Syst. Educ., 30,
141–159.

Baird, A., Riggins, F.J. (2012). Planning and Sprinting: Use of a Hybrid Project Management Methodology
within a CIS Capstone Course. Journal of Information Systems Education, 23(3), 243–258.

Batra, D., Satzinger, J.W. (2006). Contemporary Approaches and Techniques for the Systems Analyst. Journal
of Information Systems Education, 17(3), 257–266.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, W., Cunningham, A., Fowler, M., Grenning, J., High-
smith, J., Hunt, A., Jeries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J.,
Thomas, D. (2001). Agile Manifesto.

Begel, A., Simon, B. (2008). Novice Software Developers, All Over Again.
Christov, S.C., Hoffman, M.E. (2019). Experiential learning of software project management and software

development via course collaboration. SIGCSE 2019 – Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, 160–166. https://doi.org/10.1145/3287324.3287457

Coppit, D., Haddox-Schatz, J.M. (2005). Large team projects in software engineering courses. SIGCSE Bull.,
37(1), 137–141.

Devedzic, V., Milenkovic, S.R. (2011). Teaching Agile Software Development: A Case Study. IEEE Transac-
tions on Education, 54, 273–278.

Devlin, M., Phillips, C. (2010). Assessing competency in undergraduate Software Engineering teams. 271–
278. 10.1109/EDUCON.2010.5492569.

Hoskey, C., Hoskey, A. (2016). Cultivating Sprightly Students: Using Agile Development in an Information
Systems Capstone Course. Information Systems Education Conference. Pittsburgh, PA..

Igaki, H., Fukuyasu, N., Saiki, S., Matsumoto, S., Kusumoto, S. (2014). Quantitative assessment with using
ticket driven development for teaching scrum framework. In: Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering, ICSE Companion 2014, pp. 372–381, New York, NY, USA.
https://doi.org/10.1145/2591062.2591162

Jiménez, O., Cliburn, D. (2016). Scrum in the undergraduate computer science curriculum. Journal of Com-
puting Sciences in Colleges, 31(4), 108–114.

Ju, A., Hemani, A., Dimitriadis Y., Fox, A. (2020). What agile processes shouldwe use in software engineer-
ing course projects? Annual Conference on Innovation and Technology in Computer Science Education,
ITiCSE, 643–649. https://doi.org/10.1145/3328778.3366864

Jurado-Navas, A., Munoz-Luna, R. (2017). Scrum Methodology in Higher Education: Innovation in Teaching,
Learning and Assessment. International Journal of Higher Education, 6(6), 1–18.

Kamthan, P. (2016). On the Nature of Collaborations in Agile Software Engineering Course Projects. Interna-
tional Journal of Quality Assurance in Engineering and Technology Education (IJQAETE), 5(2), 42–59.

Kharitonova, Y., Luo, Y., Park, J. (2019). Redesigning a software development course as a preparation for a
capstone: An experience report. SIGCSE 2019 – Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 153–159. https://doi.org/10.1145/3287324.3287498

Kropp, M., Meier, A. (2013). Teaching Agile Software Development at University Level: Values, Manage-
ment, and Craftsmanship. In: Software Engineering Education Conference, Proceedings, pages 179–188.

Kropp, M., Meier, A., Biddle, R. (2016). Teaching agile collaboration skills in the classroom. In: 2016 IEEE
29th international conference on software engineering education and training (CSEET) (pp. 118–127).
IEEE.

Linos, P.K., Rybarczyk , R., Partenheimer, N. (2020). Involving IT professionals in Scrum student teams: An
empirical study on the impact of students’ learning. 2020 IEEE Frontiers in Education Conference (FIE),
2020, pp.1–9.

Lundqvist, K., Ahmed, A., Fridman, D., Bernard, J. (2019). Interdisciplinary Agile Teaching. 2019 IEEE Fron-
tiers in Education Conference (FIE), Covington, KY, USA, pp. 1–8.

Magana, A.J., Seah, Y.Y., Thomas, P. (2018). Fostering cooperative learning with Scrum in a semi-capstone
systems analysis and design course. Journal of Information Systems Education, 29(2), 75–92.

Mahnic, V. (2010). Teaching Scrum through Team-Project Work : Students’ Perceptions and Teacher’s Obser-
vations. International Journal of EngineeringEducation, 26, 96–110.

Adapting Scrum for Software Capstone Courses 633

Mahnic, V. (2012). A capstone course on agile software development using scrum. IEEE Transactions on
Education, 55(1), 99–106. https://doi.org/10.1109/TE.2011.2142311

Masood, Z., Hoda, R., Blincoe, K. (2018). Adapting Agile Practices in University Contexts. Journal of Systems
and Software, 144, 501–510.

Matthies, C., Kowark, T., Richly, K., Uflacker, M., Plattner, H. (2016). How Surveys, Tutors and Software
Help to Assess Scrum Adoption in a Classroom Software Engineering Project, IEEE/ACM 38th Interna-
tional Conference on Software Engineering Companion (ICSE-C), pp. 313–322.

Matthies, C., Kowark, T., Richly, K., Uflacker, M., Plattner, H., (2016). How surveys, tutors, and software
help to assess Scrum adoption in a classroom software engineering project. In: Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE ‘16). Association for Computing
Machinery, New York, NY, USA, 313–322. https://doi.org/10.1145/2889160.2889182

May, J., York, J., Lending, D. (2016). Play ball: bringing scrum into the classroom. Journal of Information
Systems Education, 27(2), 87–92.

McAvoy, J., Sammon, D. (2005). Agile Methodology Adoption Decisions: An Innovative Approach to Teach-
ing and Learning. Journal of Information Systems Education, 16(4), 409–420.

Nadler, D., Hackman, J.R., Lawler, E.E. (1979). Managing organizational behavior.
Owens, D., & Shekhar, G. (2018). Using SCRUM principles to transform the classroom.
Paasivaara, M., Lassenius , C., Damian, D., Raty, P., Schroter, A. (2013). Teaching students global software

engineering skills using distributed scrum. In: Proceedings of the 2013 International Conference on Soft-
ware Engineering, ICSE ‘13, pages 1128–1137, Piscataway, NJ, USA. IEEE Press.

Rush, D. E., Connolly, A. J. (2020). An agile framework for teaching with scrum in the IT project management
classroom. Journal of Information Systems Education, 31(3), 196–207.

Scharf, A., Koch, A. (2013). Scrum in a software engineering course: An in-depth praxis report. Software
Engineering Education Conference, Proceedings, 159–168.
https://doi.org/10.1109/CSEET.2013.6595247

Schwaber, K. (1995). SCRUM Development Process. Proceedings of the 10th Annual ACM Conference on
Object Oriented Programming Systems, Languages, and Applications (OOPSLA).

Schwaber, K., Sutherland, J. (2020). The Scrum Guide – The Definitive Guide to Scrum: The Rules of the Game.
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=100

Sharp, J.H., Lang, G. (2018). Agile in teaching and learning: Conceptual framework and research agenda.
Journal of Information Systems Education, 29(2), 45–52.

Song, H., Chien, A. T., Fisher, J., Martin, J., Peters, A. S., Hacker, K., Singer, S. J. (2015). Development
and Validation of the Primary Care Team Dynamics Survey. Health Services Research, 50(3), 897–921.
DOI: 10.1111/1475-6773.1225

Sroka, C. (2020). The Importance of Agile Methodologies Within Student-led Industry Projects. June 13, 2017,
Center for Digital Media. Accessed Feb. 19, 2020. https://thecdm.ca/news/the-importance-ag-
ile-methodologies-within-student-led-industry-projects

Stake, R.E. (1995). The Art of Case Study Research. SAGE Publications.
Umphress, D.A., Hendrix, T.D., Cross, J.H. (2002). Software Process in the Classroom: The Capstone Project

Experience. IEEE Software, 19(5), 78–81.
Wagh, R. (2012). Using Scrum for Software Engineering Class Projects. AGILE India, 68–71, IEEE.
Weber, E. (2016). Performance Learning of Agile Methodology Using Paired Courses of Systems Analysis and

Design and Web / Mobile Programming. EDSIG Conference. Las Vegas, NV.
Yin, R.K. (2009). Case Study Research: Design and Methods. SAGE Publications.
Yin, R.K. (2012). Applications of Case Study Research. SAGE Publications.
Zonabend, F. (1992). The Monograph in European Ethnology. Current Sociology, 40(1), 49–54.

https://doi.org/10.1177/001139292040001005

H.-F. Chang, M. Shokrolah Shirazi634

H.-F. Chang (R.B. Annis School of Engineering, University of Indianapolis, Indianapo-
lis, Indiana, United States) holds a Ph.D. in Computer Science from the University of
Southern California, a M.S. in Computer-aided Engineering from Carnegie Mellon Uni-
versity, and a M.S. in Civil Engineering from National Taiwan University. He has more
than ten years of software development experience in the industry. His work involves
various software applications covering big data, the Internet of Things (IoT), recom-
mendation systems, embedded systems, natural language processing, and model-based
code generation. He developed an approach for designing complex software systems,
analyzed development through mining the source codes from multiple version control
repositories, and created IoT-based sensor devices and a cloud-based platform for real-
time monitoring. His research interests cover software engineering, learning technolo-
gies, computer science education, intelligent systems, and artificial intelligence. His
recent studies aim at the integration of these three fields. He is currently an assistant
professor in the R.B. Annis School of Engineering at the University of Indianapolis and
an Institute of Electrical and Electronics Engineers (IEEE) senior member.

M. Shokrolah Shirazi (R.B. Annis School of Engineering, University of Indianapolis,
Indianapolis, Indiana, United States) received his PhD degree in electrical and computer
engineering from University of Nevada, Las Vegas (2016). He received his BS degree in
computer engineering from Ferdowsi University of Mashhad (2005) and his MS degree
in computer architecture from Sharif University of Technology, Tehran, Iran (2007). Dr.
Shirazi in currently an Assistant Professor of R.B. Annis School of Engineering at Uni-
versity of Indianapolis. Prior to join Uindy, he worked as a visiting assistant professor at
Cleveland State University and he was the member of the “real-time intelligent systems
laboratory” at UNLV. Dr. Shirazi researches in computer vision, machine learning, em-
bedded systems and their applications in intelligent transportation systems, robotic and
health. His dissertation “Vision-based Intersection Monitoring: Behavior Analysis &
Safety Issues” received two awards as the second-winner place for UNLV, College of
Engineering and the IEEE ITSS Best Dissertation Award in 2016.

