
Informatics in Education, 2024, Vol. 23, No. 1, 57–99
© 2024 Vilnius University
DOI: 10.15388/infedu.2024.05

57

Empirical Evaluation of a Differentiated
Assessment of Data Structures:
The Role of Prerequisite Skills

Marjahan BEGUM1, Pontus HAGLUND2, Ari KORHONEN3,
Violetta LONATI4,5, Mattia MONGA4,5, Filip STRÖMBÄCK2,
Artturi TILANTERÄ3
1City, University of London, London, UK
2Linköping University, Linköping, Sweden
3Aalto University, Helsinki, Finland
4Università degli Studi di Milano, Milan, Italy
5Laboratorio Nazionale CINI ‘Informatica e Scuola’, Rome, Italy
e-mail: marjahan.begum@city.ac.uk, pontus.haglund@liu.se, archie@cs.hut.fi,
lonati@di.unimi.it, mattia.monga@unimi.it, filip.stromback@liu.se, artturi.tilantera@aalto.fi

Received: April 2023

Abstract. There can be many reasons why students fail to answer correctly to summative tests
in advanced computer science courses: often the cause is a lack of prerequisites or misconcep-
tions about topics presented in previous courses. One of the ITiCSE 2020 working groups in-
vestigated the possibility of designing assessments suitable for differentiating between fragili-
ties in prerequisites (in particular, knowledge and skills related to introductory programming
courses) and advanced topics. This paper reports on an empirical evaluation of an instrument
focusing on data structures, among those proposed by the ITiCSE working group. The evalua-
tion aimed at understanding what fragile knowledge and skills the instrument is actually able to
detect and to what extent it is able to differentiate them. Our results support that the instrument
is able to distinguish between some specific fragilities (e.g., value vs. reference semantics),
but not all of those claimed in the original report. In addition, our findings highlight the role
of relevant skills at a level between prerequisite and advanced skills, such as program com-
prehension and reasoning about constraints. We also suggest ways to improve the questions
in the instrument, both by improving the distractors of the multiple-choice questions, and by
slightly changing the content or phrasing of the questions. We argue that these improvements
will increase the effectiveness of the instrument in assessing prerequisites as a whole, but also
to pinpoint specific fragilities.

Keywords: data structures and algorithms, prerequisite skills, prerequisite knowledge, miscon-
ceptions, CS2, computer science education, qualitative content analysis.

M. Begum et al.58

1. Introduction

Many students of Computer Science (CS) programs often struggle with courses focused
on programming, algorithms, or data structures and sometimes fail to achieve desired
learning outcomes (Zingaro et al., 2018). Teachers have a responsibility to assess and
investigate why their students possibly fail. However, there are numerous different rea-
sons why students fail to answer an assessment question correctly including a slip or,
more fre quently, lack of prerequisites, misconceptions (i.e., incorrect or incomplete
mental model of the related topics, see Qian and Lehman (2017); Margulieux et al.
(2021)), or not having internalized the topic to a high enough level. In this paper, we
call all of these fragilities, or more specifically fragile knowledge and skills, follow-
ing the terminology proposed by Perkins and Martin (1985). They claim that students’
difficulties in programming “stem from knowledge that is fragile in several ways, i.e.,
partial knowledge, inert knowledge, lack of a critical filter, misplaced knowledge, and
conglomerated knowledge” (ibid. p. 1).

Considering all these reasons why a student may answer incorrectly, understand-
ing why a student is struggling is a challenging proposition. Even more so in advanced
courses, when the cause for wrong answers could be unrelated to the new topics, and
instead con cern topics covered in previous programming courses. This is illustrated by
Valstar et al. (2019) who found a correlation between a student’s score on the final exam
in an upper-level data structures course, and their ability to answer questions on point-
ers and trac ing recursion. This observation shows that it is also important to consider
the impact of knowledge and skills from previous programming courses, which we will
refer to as pre requisites.

To explore this, a 2020 ITiCSE working group (Nelson et al., 2020) explored what
programming-related prerequisites a student needs to be proficient with in order to cor-
rectly answer questions in a latter course. The working group focused on questions that
involve some amount of code (i.e., not purely theoretical questions), and concluded that
many require proficiency with both prerequisites and the topics of the current, advanced,
course (advanced topics). This means that if a student answers a question incorrectly, it
is difficult to locate the cause (or causes) of the incorrect answer. To address this prob-
lem, the working group (Nelson et al., 2020) proposed assessments which are able to
differentiate between weaknesses with programming prerequisites and with advanced
topics. They also discussed a collection of design principles and strategies that can be
used to construct differentiated assessments.

In this paper, we empirically evaluate one of the differentiated assessment proposed
in Nelson et al. (2020), which the authors claim is able to differentiate between weak-
nesses in programming prerequisites and weaknesses related to advanced topics in a
data struc tures and algorithms course. Specifically, the assessment (Nelson et al., 2020,
Appendix M.1.4) consists of the listing of a program and a set of related questions, con-
cerning the implementation of a queue as an expandable circular array. More precisely,
here we con sider a slightly modified version (henceforth referred to as “the Instrument”,
see Section 3) of that set of questions.

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 59

To empirically evaluate the Instrument, we conducted semi-structured interviews
and analyzed them with qualitative content analysis – following the methodology de-
scribed in Schreier (2014). We pose the following research questions:

RQ1 What fragile knowledge and skills is the Instrument able to detect?
RQ2 To what extent is the Instrument able to differentiate between fragilities, both

between prerequisites and advanced topics, and among specific prerequi-
sites?

Note that instead of the term weakness, used by Nelson et al. (2020), we use the term
fragile in accordance with the terminology of Perkins and Martin (1985).

In order to address these RQs, we administered the Instrument to 18 students at two
institutions in two different countries, and interviewed them with the aim of uncovering
fragilities related to their incorrect answers. Relevant transcribed excerpts both from
the interviews and the written answers were then analyzed. The findings show that the
In strument is able to detect most of the “weaknesses” (fragilities) expected by Nelson
et al. (2020), though not all of them. Hence we advise some changes to improve the
Instrument.

For many questions from the Instrument, the cause of wrong answers can be tracked
back to difficulties in high-level skills such as program comprehension and reasoning
about constraints. Indeed they are typically not well developed at the end of introduc-
tory programming course(s) or sometimes not explicitly taught at the introductory
level (Lis ter et al., 2006a). Yet, they are typically not considered to be advanced topics
either. They could therefore be seen as middle-ground skills. Even though such skills
were discussed by Nelson et al. (2020) among the prerequisites, our findings show that
they clearly have a different role than the knowledge of basic programming, such as
control flow constructs or arrays. Overall, our findings about the role of these middle-
ground skills suggest that they should be more explicitly recognized, and incorporated
into the CS curriculum.

The remainder of this paper is structured as follows: Section 2 presents related
work, Section 3 introduces the Instrument in detail, and Section 4 presents the methods
used. After that, Section 5 presents the results from the written answers as well as the
findings from the interviews, and Section 6 relates them to each other and discusses our
findings. Finally, we conclude the paper in Section 7.

2. Related Work

In this section, we consider previous work related to this study. In Section 2.1 we ex-
plore differentiated assessments. Then, we present prerequisite skills that students learn
during introductory programming courses in Section 2.2, and how these relate to the
concept of abstraction in Section 2.3. Finally, we present research done on data struc-
tures and algorithms courses in Section 2.4.

M. Begum et al.60

2.1. Differentiated Assessments

In previous ITiCSE Working Groups, at least two approaches to differentiated assess-
ments have been explored. In this context, a differentiated assessment is an assessment
that aims to identify whether or not a student understands all topics in addition to
providing a sum mative score. One of these approaches was explored by Luxton-Reilly
et al. (2018), who aimed to create a set of small and self-contained questions that could
be used together to explore a student’s understanding of individual concepts. Another
approach was explored by a 2020 Working Group (Nelson et al., 2020). Rather than
creating small self-contained questions, the 2020 Working Group examined to what
extent it would be possible to iden tify individual areas of fragile knowledge from in-
correct answers to questions that cover larger combinations of topics. The report first
considers several CS questions on advanced CS topics, including the questions from the
BDSI, which is a validated concept inventory on data structures (Porter et al., 2019),
and studies which prerequisite skills these questions depend on and whether they can
diagnose difficulties with prerequisite skills. Principles are then discussed that help de-
sign differentiated assessments. Finally, examples of dif ferentiated assessments are de-
veloped based on those principles. All such examples can be seen as applied questions
(similar to our research), as they include a piece of code related to the advanced topics
to be assessed, and they ask students to answer questions based both on the analysis of
the code and their knowledge of advanced topics. For these reasons, these assessments
are suitable to expose possible fragilities in prerequisites.

2.2. Prerequisites from Basic Programming Courses

In this paper we empirically evaluate the Instrument, therefore this section introduces
re search on prerequisites from basic programming courses and defines those prerequi-
sites. Even though there is no clear definition of what introductory programming courses
should cover (e.g., the inclusion of object-orientation is often debated), there is a general
consen sus that they should include basic knowledge of programming constructs. This is
reflected in the list of prerequisites proposed by Nelson et al. (2020), which is based on
the ACM 2013 Curriculum Guide (Joint Task Force, 2013) and the list of core concepts
taught in CS1 by Goldman et al. (2008).

Difficulties related to these skills can be explained by misconceptions, for example
“er rors in conceptual understanding” of programming constructs (Qian and Lehman,
2017). Misconceptions in introductory programming have been studied extensively
(see e.g., Fisler et al., 2017; Sorva, 2013; Qian and Lehman, 2017). One particular
finding by Fisler et al. (2017) is that some of these misconceptions are not overcome
by students them selves, thus highlighting the importance of teaching them continuous-
ly throughout the education. However, as not all errors made by students are caused by
a specific incorrect mental model, we use the more generic expression fragile knowl-
edge suggested by Perkins and Martin (1985). The authors use the term to add nuance
about students’ knowledge in programming. The idea is that it is not necessarily clear

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 61

cut whether students know or do not know something in the realm of programming,
rather they may “sort of know” some thing, but not enough to solve a problem. They
define fragile knowledge as knowledge that is partial, hard to access, and that is often
misused. Specifically the authors present four categories of frailties. First is partial
knowledge, where students’ knowledge gaps impair their functioning. Second is inert
knowledge, which is knowledge that the students possess but fail to muster when they
need it. Third is misplaced knowledge, where the students’ knowledge of something
that is unsuitable for the current task impairs the students’ ability to solve the current
problem. Fourth is conglomerated knowledge, where the students’ fail to follow the
strict semantic and syntactic rules for the programming language, treating it more like
a natural language.

Besides the skills that specifically relate to some programming construct, Nelson
et al. (2020) identified also some broader skills related to reading and understanding
code:

Tracing ● is the ability to trace a piece of code, that is to simulate its execution, step
by step, on a given input/instance, while keeping track of the state of the computa-
tion. This can be done with the support of some external representation such as a
trace table to keep track of the variable values. Tracing requires correct knowledge
of the programming language syntax and semantics of the constructs used in the
code to be traced, that is, it requires an accurate mental model of the machine
(Izu et al., 2019). Moreover this skill includes the ability to rigorously follow the
steps as specified by the program, without skipping parts, guessing the outcome or
jumping to hasty conclusions.

In addition to Tracing, there are other skills that still relate to reading and under-
standing code, but further demand a high-level cognitive effort. They could thus be
placed at the Analyze or Evaluate levels in the revised Bloom’s taxonomy (Anderson
et al., 2001). They are as follows:

Metatracing ● refers to the ability of realizing when tracing some specific por-
tions of code, on some specific input, would be helpful in order to understand
the code’s be havior and purpose (Nelson et al., 2020). In some ways it is hy-
pothesis/goal driven tracing, either by a weak or strong hypothesis or goal. Iden-
tifying relevant and signifi cant inputs for an algorithm/function/method is also
covered by this skill. Although metatracing clearly requires tracing skills, it
goes further than that. We consider trac ing to be located in the Apply level and
metatracing at the higher Evaluation level in the revised Bloom’s taxonomy
(Anderson et al., 2001). Therefore, metatracing also has a crucial role in pro-
gram comprehension tasks.
Program comprehension ● is defined as the “process in which an individual con-
structs their mental model of a program” (Izu et al., 2019, p. 28). As such, it is a
broad and articulate process, which requires various skills (including basic knowl-
edge of pro gramming language syntax, tracing, and metatracing skills). However,
in this paper we use program comprehension to refer specifically to the higher
level skills that en ables a student “to see the forest, not only the trees” (Lister

M. Begum et al.62

et al., 2006b, p. 122). In other words, to put together many single pieces of un-
derstanding into a consistent integrated model of what the program does and how
it does it.
Reasoning about constraints ● is the last prerequisite skill mentioned by Nelson
et al. (2020). It refers to the ability of distinguishing what is known and what
is not known about the program or its specification, identifying properties (e.g.,
invari ants, pre/post-conditions) and relationships among different parts of the pro-
gram, and considering their implications on its behavior.

One of the main differences between basic prerequisite skills and these higher cogni-
tive levels skills (metatracing, program comprehension, reasoning about constraints) is
that such tasks involve some sort of abstract thinking.

2.3. Prerequisite Skills and Abstraction

While conducting research into differentiated assessments, especially when using the
type of questions examined by Nelson et al. (2020), it is important to take abstraction
into account due to the complexity in the questions. The role of abstraction in CS educa-
tion is broadly acknowledged (Mirolo et al., 2021; Aharoni, 2000). However, this is a
complex “soft concept” that is hard to define formally, and which is difficult to charac-
terize in this context, making it difficult to understand how to teach and assess it (Haz-
zan, 2008). Re lating to programming and algorithms, Perrenet et al. (2005) proposes a
hierarchy (called PGK hierarchy) of four abstract levels for the concept of algorithms:
understanding the execution on particular inputs on a specific machine (Execution level);
grasping the algo rithm as described in a programming language by a program (Program
level); envisioning the algorithm as an abstract object independent from any specific
language (Object (al gorithm) level); and finally perceiving the algorithm as a strategy to
solve the implied problem (Problem level). In the program comprehension process, all
these levels need to be considered. For instance, tracing pertains to the Execution level,
abstract tracing to the Program level, describing what a method does is at the Object
level, whereas summarizing the purpose of a program is at the Problem level.

Statter and Armoni (2020) explored abstraction in programming education further.
Based on the PGK hierarchy, they have identified six operational dimensions that define
CS abstractions: 1) the use of an algorithm, 2) working only at the algorithmic level (Ob-
ject level), 3) using black boxes, 4) the ability to distinguish between different levels of
CS abstraction, 5) the ability to move freely between different levels of CS abstraction,
and 6) the ability to decide at which levels of CS abstraction to work. They conclude
that since ab straction is a fundamental idea of CS, it should probably be reflected in the
learning goals of CS curricula. However, teaching CS abstractions is a very challeng-
ing task. Students tend to perceive problems and solutions at the lower levels of PGK
hierarchy, and they of ten have problems working on higher levels such as black boxes.
Further, several authors identify the need for computer scientists to work with creating
abstractions at different levels (Hartmanis, 1994) and being able to think at different
levels of abstraction (Wing, 2006).

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 63

2.4. Research on Data Structure Courses

Students’ performance in data structure courses have been investigated previously. Cor-
ney et al. (2014) asked students in their second programming course to explain in plain
En glish object-oriented data structures problems that involve recursion. The results
showed that many students struggle with this task, and the authors found a strong cor-
relation be tween students’ ability to read and explain code at abstract level and their
performance in writing code on data structures. While this study did not investigate
the causes of such difficulties, results from a study conducted by Valstar et al. (2019)
reported a strong cor relation between answering questions on prerequisite knowledge
and the students’ scores on the final exam. More than 30% of students could not answer
questions on pointers and trace recursion, which underlines the importance of creating
differentiated assessments.

Students’ performance has also been investigated without focusing on the impact
of prerequities (Danielsiek et al., 2012; Tenenberg and Murphy, 2005; Zingaro et al.,
2018). Student misconceptions concerning heaps, hashtables, and with recursive struc-
tures (e.g., linked lists, trees, and binary search trees) (Danielsiek et al., 2012; Zingaro
et al., 2018). Further, Tenenberg and Murphy (2005) found issues with students grasp of
tracing recur sive algorithms and computing the run-time efficiency of algorithms. They
also found that students performed best on questions related to the interface of stacks,
queues, and trees.

Aharoni (2000) took a qualitative approach, investigating students’ cognitive pro-
cesses through semi-structured interviews. The author investigated their perception of
data struc tures (e.g., arrays), arguing that understanding develops over a continuum of
levels of ab stractions, which is rooted in constructivism, and introduces the concept
of programming-context thinking vs. programming-free thinking. Programming-con-
text refers to levels of abstractions that are closely aligned to the underlying notional
machine, hence explicitly linked to the programming language. In other words, un-
derstanding occurs with the refer ence to implementation. Instead, programming-free
thinking occurs when understanding refers to the abstract form of a data structure
without reference to any particular imple mentation. This paper, like the aforemen-
tioned research, also uses a qualitative approach, but with the aim of exploring fragile
knowledge in the context of a data structures, rather than their perception of the data
structure.

3. The Instrument

In this section we describe the Instrument under evaluation, which can be found in its
entirety in Appendix A. The Instrument is a slightly varied version of the one proposed
by Nelson et al. (2020, Appendix M.1.4). It consists of the listing of a Java program and
a questionnaire of related questions.

The Instrument’s program (identical to the original by Nelson et al. (2020)) imple-
ments a queue as an expandable circular array, equipped with two indices, lo and

M. Begum et al.64

hi, that identify the head and tail of the queue respectively. The variables are partially
ob scured, and the circular nature of the data structure means that lo is sometimes a
number higher than hi. An integer N keeps track of the number of items currently in
the queue. Hence, the circular distance between hi and lo is always equal to N.
The class contains two methods (insert and remove) that implement the typical
operations of the queue, and a rebuild method that is used by insert to double
the size of the circular array whenever it is filled. Hence, the array length is always
greater than the queue size, and is always a power of two. The rebuild method
also rearranges all the elements that are currently in the queue so that, after the method
is executed, they are all placed at the beginning of the array. To implement this, the
method uses modulo operator.

The Instrument’s questionnaire contains seven multiple-choice questions (Q1–Q3,
Q6, Q8–Q10). In addition, there are two open-ended questions (Q4a and Q11) that ask
students to write their answers in natural language . The rest of the questions require to
trace a frag ment of code that calls methods defined in the listing and to provide some
representation of the resulting state of the data structure (Q4b, Q5, and Q7). Questions 1
to 7 aim at assess ing the students’ comprehension of the given code. In order to answer
correctly, students need to understand both the mechanics of the implementation (i.e.,
the circularity of the array and the rebuild strategy) and to comprehend the resulting be-
havior (i.e., the FIFO policy). The first question asks the student to identify which data
structure is implemented by the class. Questions 2–6 aim at verifying that the answer
to the first question was not a guess, as well as the student’s understanding of various
details of the implementation. Question 6 was not present in the original assessment
proposed in Nelson et al. (2020), but we added it to address the circularity of the queue
and the fact that the size of the array is always a power of two.

In the context of the PGK hierarchy (Perrenet et al., 2005) described in Section 2.3,
questions Q1 to Q7 can be situated at different levels. For instance, Q1 (identifying
that the code implements a FIFO data structure) is at the Problem level, Q4b (trace the
rebuild method) is at the Execution level, and Q6 (which states are possible?) is at
the Object (algorithm) level.

The remaining questions 8–11 focus on algorithm analysis, which is an advanced
topic in this context. Thus, in this study, we focus on questions 1–7 that we hypothesize
are able to reveal fragile knowledge in prerequisites.

3.1. Prerequisite Skills Assessed by Each Question

Nelson et al. (2020) discusses the prerequisites and advanced skills assessed by each
ques tion, and which individual fragilities would be made visible from the students’
answers. This is done in two separate parts of the WG report, namely Appendix M.1.2
and M.1.5. We summarize here the claims related to questions 1–5 and 7 for future
reference in the rest of the paper. It is worth mentioning that no formal empirical evalu-
ation was carried out by Nelson et al. (2020), and the claims are based on the authors’
argumentation.

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 65

 Q1 A wrong answer could be attributed to bad knowledge of advanced topics (un-
derstanding data structures and ability to distinguish them) or to bad program
com prehension skills. However, the correct answer could be guessed by doing
cursory examination of the code since the wrong options can be excluded easily
(Nelson et al., 2020, p. 38).
 Q2 A student who does not understand the circular nature of this queue implementa-
tion might wrongly choose option (d). The question, however, does not assess
circularity explicitly and the correct answer might also be guessed by looking
at some surface features of the code. The question also addresses the possible
confusion between the length of the array and the number of elements currently
in the queue.
 Q3 Understanding the circularity and the rebuilding strategy are essential for an-
swering this question (with full awareness). A student who does not understand
the circular nature of this queue implementation might wrongly choose option
(b). However, as for Q2, this question does not assess circularity explicitly and
the correct answer might also be guessed by looking at some surface features of
the code.
 Q4 Part (a) requires students to reason about constraints. A relevant observation to
an swer this question is that N should always be equal to the circular distance
between hi and lo, which does not hold in the state given in the question. Part
(b) assesses knowledge on operators (modulus) and arrays, and requires tracing
code on a specific instance.
 Q5 Understanding the circularity and the rebuild strategy are essential for answer-
ing this question as well. Different approaches can be used to answer the ques-
tion. One could trace the code line by line (but it would be a long, tedious, and
possibly error-prone task), or trace the code at a higher level, relying on their
understanding of how the queue is implemented. The second part of the question
(how many times the rebuild method has been called) also assesses prerequisite
knowledge on conditionals, and ascertains that the rebuild strategy has been un-
derstood. To understand the rebuild strategy, one needs knowledge about condi-
tionals and arrays.
 Q7 This question assesses knowledge about values and references.

Beside the above remarks on specific questions, the WG report (Nelson et al., 2020,
p. 23) claims that questions 1, 2, 3, and 4 “require close inspection of the code to figure
out how the data structure works, which in turn require skills related to code comprehen-
sion” (Nelson et al., 2020, p. 23). The WG report further claims Q2, Q3, and Q4 to be
connected, in that answering correctly to Q2 and Q3 is a “good step toward” answering
Q4 correctly (Nelson et al., 2020, p. 38).

Many of the claims reported above state that understanding both the circular nature
of the array and the rebuilding strategy are important steps towards answering the ques-
tions correctly. It is not clear, however, whether these skills are considered prerequisites
(related to code comprehension) or as advanced skills related to data structure knowl-

M. Begum et al.66

edge. Nevertheless, since there was not any specific question to assess circularity, as
also noted by Nelson et al. (2020), we added a new question for this, with the following
rationale:

 Q6 This question assesses the understanding of circularity. It also relates to the pos-
sible length of the circular array implementing the queue. Answering the ques-
tion requires reasoning about constraints.

In this paper, we evaluate the Instrument’s validity according to Kane’s framework
(Kane and Bejar, 2014). We do this by using the questions in actual learning settings in
an empir ical study. Thus, we not only used the question set in actual courses, but also
interviewed the learners to understand how well the questions are able to differentiate
between prereq uisite skills and advanced skills. We did this by probing on students ap-
proach to solving the problems in the Instrument.

4. Study Methods and Design

Section 4.1 describes how students were invited to participate in the study, how the
written answers were collected, and how the interviews were collected. Section 4.2 then
describes the theory and details behind Qualitative Content Analysis (QCA) (Schreier,
2014), which was used to analyze the collected data. After that, Section 4.3 provides
background infor mation about the learners and the learning context used in the study,
and finally Section 4.4 describes the modifications made to the Instrument in order to
make it suitable for the learners.

4.1. Data Collection

We collected data from a total of three courses, two held in Sweden and one in Finland.
Students were invited to participate in the study by an e-mail sent to their university
e-mail account 2–3 weeks before the final exam in each course. The invitation instruct-
ed students to answer the questions of the Instrument (attached to the e-mail), and send
back their answers (either typed, or handwritten and scanned) along with any notes.
Students who did so within the 7 allotted days were invited to an interview.

In the e-mail, students were informed that participation was voluntary and would not
affect their grading of the final exam. Students were motivated to participate in the study
by highlighting that the participation would be helpful to prepare for the final exam, as
they would get feedback on their answers.

Before the interviews, we marked students’ written answers either as correct or
incor rect. If a written answer included incorrect reasoning, it was graded as incorrect to
support investigating the student’s reasoning further in the interview. Fig. 1 (in the Ap-
pendix) shows an overview of the written answers.

Interviews. A total of 18 students were interviewed as depicted in Table 1. An ad-
ditional 10 students submitted solutions, but were either unavailable for interview, or

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 67

submitted their answers too late. The interviews were conducted by a teacher at the same
institution as the course was given, in the local language. Since interviews were con-
ducted before the final exam, we ensured that students were interviewed by a teacher that
was not involved in the course the student was taking. This is to avoid a situation where
students are hesitant to express their uncertainties due to fear of affecting their grade.
Before each interview, the interviewee’s answers were graded in order to identify ques-
tions that were answered incorrectly. The interviewees were not informed of whether
their answers were correct or not until after the interview, at which point they received
written feedback to their answers. Each interview lasted for about 30 minutes, and was
recorded with the consent of the interviewees.

In order to explore students’ approach to answering the questions, the interviews
were conducted as semi-structured interviews (Adams, 2015). As such, the interviews
were structured around a set of pre-determined questions with the aim of leading the
intervie wee into the right topic. For each question, the interviewer asked the student to
describe how the interviewee arrived at their answer (reminding them of their written
answer if necessary). Depending on the interviewee’s answer, the interviewer then asked
follow-up questions with the goal of identifying any fragile knowledge or skills the
student had. As we were particularly interested in any fragilities that caused incorrect
answers, the in terviewer focused on questions where the student answered incorrectly.
Thus, questions with incorrect answers were discussed more in depth during interviews,
while questions answered correctly were sometimes skipped altogether due to a lack
of time. During the interview, interviewers were careful not to reveal correct answers
or otherwise influence participants’ thinking for subsequent questions. As some of the
questions depend on each other, the questions were discussed in the order they appear
in the Instrument.

As previously stated, the follow-up questions aimed at clarifying students’ reason-
ing and at uncovering misconceptions. This follows the guidelines mentioned in Adams
(2015). To illustrate these follow-up questions, we provide some examples:

“What is the difference between a queue and a priority queue?” – Question 1 ●
“Why did you choose this option and none of the others?” – Question 3 ●
The interviewer shares a notepad and writes the initial state given in the question. ●
“Please write below, if you executed rebuild step by step, what would hap-
pen?” – Question 4b
“What operations lead to this particular case?” – Question 6 ●
“On which line does the length of the array ● A increase?” – Question 6

Table 1
Details of the three courses examined in this paper

Sweden Finland
Course
Programming language

A
C++

B
Java

C
Python

Completed the Instrument
Interviewed

8
7

4
1

16
10

M. Begum et al.68

4.2. Qualitative Content Analysis

To analyze the interviews, we used QCA as described in Schreier (2014). The purpose of
the method is to systematically describe the meaning of qualitative interview data. Re-
searchers split the data into mutually exclusive segments. Each segment is given a single
code, which represents one particular meaning. Moreover, the codes form a hierarchy (a
coding frame), typically with two main groups. The analysis is conducted by following
a predefined series of steps. The objective of the analysis is to describe the data through
coding in a compact way. The results of qualitative analysis may include representation
of code frequencies, but the coding frame might be the end result as well. Like quanti-
tative content analysis, QCA uses a systematic approach to content analysis. However,
instead of merely coding segments based on objective criteria, QCA also considers the
latent and context-dependent meaning of the content (i.e., the researcher’s interpreta-
tion) (Schreier, 2014). Note that onwards, we use the terms label and codebook for the
corresponding terms code and coding frame introduced by Schreier (2014). This is to use
the words code and coding only in the connotation of program code.

Codebooks in QCA have three main requirements (Schreier, 2014). Unidimensional-
ity means that one codebook, the hierarchical category of labels, should cover only one
con cept. Mutual exclusiveness has two subrequirements: the labels of the same code-
book must be mutually exclusive, and one segment can have only one label from the
same codebook. This is to ensure that a segment is not assigned two opposite meanings.
Exhaustiveness means that all relevant aspects of the material are covered by a label.

In our work, the codebook requirements of QCA are met as follows. Unidimensional-
ity is met, because we have only one main concept: the fragility, meaning the hierarchy
of skills and knowledge. Mutual exclusiveness of labels is taken as an assumption,
starting with the deductively predesigned codebook in Nelson et al. (2020). Mutual ex-
clusiveness of segments means that a student’s answer to a particular Instrument ques-
tion can have multiple labels only if the answer is split into different segments, each
labeled as a dif ferent fragility. As each segment is given only one label, we are able to
pinpoint which exact pieces of the interview recordings are the supporting evidence for
one specific label. Moreover, by mutual exclusivity we ensure that two labels indeed
represent different phe nomena. Finally, we assume that the predesigned codebook is
designed to be exhaustive, but we reserve the right to modify the codebook to fulfil this
requirement.

We believe QCA is a suitable method for analyzing the Instrument empirically for the
first time while being open for alternative hypotheses. In our research setting, the code-
book is needed to represent students’ different fragilities with prerequisite and advanced
skills. Moreover, latent and context-dependent analysis of meaning, in other words, in-
terpretation of students’ answers, is needed for two purposes. First, the initial codebook,
proposed by the designers of the Instrument (Nelson et al., 2020), describes fragilities
on a generic level, which requires situation-dependent interpretation, i.e., there are no
objec tive decision rules for labelling categories. Second, the initial codebook does not
yet have empirical support for its labels and structure. Thus, the qualitative evidence in
our work would support quantitative testing of the Instrument later.

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 69

The steps of our analysis process are described below and correspond to those de-
scribed in (Schreier, 2014). The process itself is divided into two consecutive phases.
The pilot phase tests the codebook with a subset of the material, while the main
phase ana lyzes all the material with an established codebook. While the order of
the steps describes a deductive process, some steps were iterated to utilize inductive
reasoning.

Selecting material. ● A diverse subset of data was selected to build an initial
codebook in the pilot phase. Each team of two researchers in Sweden and Finland
selected three interviews in the local language for the pilot phase. At least one of
these interviews were used by both researchers in the team.
Building a codebook. ● This involves building the hierarchy of categories
which are used to describe the pieces of the material. As Nelson et al. (2020)
had proposed a codebook for general prerequisite skills, the goal was to build a
codebook for frailties that were excluded by Nelson et al. (e.g., related to data
structures and algorithms). Our hierarchy is made of the frailties that students
display, i.e., we build the codebook in a concept-driven way similarly to the
method explicitly proposed by Nelson et al. (2020). At this point, the research-
ers from Sweden and Finland discussed their proposed additions to the code-
book from the previous phase, so that they could be merged into one.
Segmentation. ● The two teams of researchers from Sweden and Finland each
analyzed the previously selected set of interviews independently. They selected
segments, i.e., pieces of discussion and activity, so that each segment could later
be assigned a single label. The Swedish pair selected segments from transcribed
interviews. The Finnish pair instead viewed their video recordings and noted
quotes, descriptions of activities, and short hypotheses in the local language
along with timestamps. Due to mutual exclusiveness, the segments could not
overlap. The length of a single segment varied from a single phrase to a couple
of lines of dialogue. Primarily, we used a thematic criterion for segmentation: a
student’s written or spoken answer to each question of the Instrument formed a
segment. If a segment seemed to contain evidence for multiple labels, the seg-
ment was further split to indicate which phrases or passages of dialogue represent
a single label.
Trial labelling. ● After segmenting the interviews, the researchers indepen-
dently labelled each segment with a single label from the codebook. This was
done in the pilot phase to study to which extent the original codebook by Nel-
son et al. (2020) with the pro posed additions could be applied to the interview
material. To verify the consistency of the labelling, the researchers in each pair
compared their labelling and discussed any discrepancies until an agreement
was reached. These discussions were partially conducted in-person in Sweden,
but both countries relied heavily on online meetings.
Evaluating and modifying the codebook. ● The codebook was evaluated
against the following criteria: A codebook should be consistent so that two la-
belers assign the same label to the same segment. Moreover, the validity of
the codebook means ex haustiveness (extensive coverage of the material) and

M. Begum et al.70

relevance to the research ques tions. In this phase, the main analysis phase, the
Swedish and Finnish researchers discussed together how well the given code-
book (Nelson et al., 2020), with the pro posed additions, applied to the data and
which cases (segments) were difficult to as sign a label. All of these discus-
sions were conducted through a series of online meet ings. The labelling was
also available to all researchers through shared documents. Recordings were,
however, not shared outside of the country they were recorded in for privacy
reasons. As a result of this phase, the codebook was revised to meet the above-
mentioned criteria.
Main analysis. ● In the main phase, the rest of the material was labeled with the
revised codebook. We used two labelers per interview similarly to the trial label-
ling. The Swedish and Finnish results were then combined for the next step.
Presenting and interpreting the findings. ● The labeled segments from all stu-
dents were translated in to English, and sorted first by the question, and second by
the label (specific fragility). Then, the codebook was presented with illustrative
quotes forming a text matrix. Each column of the matrix was a student’s interview
answers to a particular Instrument question. Correspondingly, rows corresponded
to labels and each cell contained the English-translated segment (direct quote or
description of ac tivity) that acts as evidence for the label. All 7 researchers in the
team examined the text matrix, and discussed the contents through online meet-
ings until an agreement was reached. In particular, the focus of these discussions
was if a segment contains enough evidence for the assigned label and whether or
not the label was correctly assigned. In some cases, these discussions led to fur-
ther revisions of the codebook, which meant that this and the previous step had to
be re-visited iteratively.

Finally, a note about transcription. In Sweden, one interviewer transcribed the inter-
views fully in the local language as intelligent verbatim transcription. The transcripts
contained literal meaning of the dialogue between the interviewer and the interviewee,
omitting nonverbal communication and utterances, with timestamps locating discussion
on each Instrument question. In Finland, transcription was done selectively after the
analyzing pair agreed on interview quotes that represent the evidence for a single label.
However, when one research team member requested more information on a labeled
segment in the Evaluating and modifying the codebook step, another team member re-
viewed the video or transcript representing the segment, and provided longer translation
with more context.

4.3. Context

As mentioned previously, data was collected from three courses, two held in Sweden
and one in Finland. All three courses were large programming courses with 85–250
students attending each one. The courses were all given during the second year of
their programs, and aimed at teaching data structures and algorithms to students who
already knew pro gramming from a previous CS1 course. The textbook for the courses

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 71

was OpenDSA (Shaf fer et al., 2011), an open, online textbook for Data Structures and
Algorithms. In addition to textual descriptions of the material, OpenDSA also contains
interactive components such as detailed visualizations and animations of many data
structures and algorithms. In particular, OpenDSA covers queues, both at an abstract
level (i.e., the details of the ADT), and different implementations of this ADT. One of
the implementations covered in detail is a circular array implementation that is simi-
lar to the one in the Instrument. In addition to the material covered by OpenDSA, the
courses also involve a number of computer lab assignments where students implement
and use various data structure. While none of the assignments require students to imple-
ment a circular queue like the one in the Instrument, there are assignments that require
utilizing queues (e.g., for graph traversals). All courses ended with a final exam.

Even though one course was given for CS programs, and the remaining two were
given for non-CS programs, all courses focus on introducing data structures and al-
gorithms so that students can select and use appropriate data structures in their work.
They also focus on the ability to reason about the time-and space-complexity of pro-
grams. As a way to reach these goals, the courses expose students to various imple-
mentations of common data structures. This serves two purposes: first, they are used
as examples to practice algorithm analysis, and second, a rough understanding of the
implementation makes it easier to re member the characteristics of the data structure,
which in turn makes it easier to reason about them in the context of larger programs.
For this reason, the Instrument is relevant to the courses, even though none of them
have the explicit goal that students need to know how to implement a circular queue.
Rather, the Instrument is relevant because it focuses on analyzing a small implementa-
tion of an ADT (a queue) that should be familiar to the students. The focus is thus on
the analysis and reasoning, rather than having previously memorized the implementa-
tion of a circular queue.

Sweden. Course A in Sweden is given early in the second year for two bachelor CS
programs. Students from both programs have studied programming for a year before the
course. Students from one of the programs start out programming in Python, transition
to C++, and later work in other languages such as Ruby during their first year. Students
from the other program are initially taught Ada, but quickly transition to C++ and con-
tinue working with C++ during the remainder of their first year. As all students have
worked with C++, the course is taught in C++.

Course B is similar to course A, but is given for non-CS majors attending a five year
program. These students have previously taken two introductory courses in Java, and
this course is therefore taught in Java. Apart from this difference, the courses are very
similar in nature, including the final exam. Both courses are given in Swedish. The final
grade in both courses is entirely based on the result from the final exam.

Finland. The course in Finland is targeted to the second year students in several
five year non-CS bachelor engineering programs. All students have previously taken
at least one introductory programming course in Python, and therefore the course is
taught in Python. The final grade is the weighted average of weekly assignments and
the final exam.

M. Begum et al.72

4.4. Adapting the Instrument to Different Programming Languages

The questions were translated into the local spoken languages of the two institutions
and the original Java program was translated into C++ (see Appendix B) for course A in
Swe den, and into Python (see Appendix C) for the course in Finland to correspond the
pro gramming language used in the courses.

The C++ and Python implementations were not designed to exploit all the features
of a specific language or even to be idiomatic for the target language. Instead we tried,
in each language, to preserve the abstract description we presented in Section 3. The
given implementation should present to the student a clear model of the mechanics of
the data structure, without resorting to language features not necessarily known to be-
ginners. We deliberately avoided using any high level features available to professional
programmers, which might obscure the educational goals (namely, analyzing a specific
implementation of the queue ADT).

C++ version. Although the C++ translation almost directly maps to the Java implemen-
tation, there are three significant differences:

The Java version makes explicit that the 1. Key parameter for the generic type
refers to a Comparable type, which is not possible in C++ (prior to C++20).
This is not utilized in the Java implementation, but it suggests the data structure is
a container for ordered objects, thus making it superficially suitable for a priority
queue.
Similarly to the Java version, the C++ version uses a fixed size array (allocated 2.
using new) to implement the circular array. Contrary to the Java version, however,
this requires storing the length of the array separately. This is done in a variable
called A_length.
The C++ version explicitly frees the memory in the rebuild, where the Java ver-3.
sion relies on the implicit garbage collector.

Python version. The Python translation was intended to reproduce the mechanics of
the data structure in the syntax most familiar with the students, even though a profes-
sional Python programmer would likely have used a different approach. It has three
significant differences:

Python has no syntactic way to reduce the visibility of methods, thus the rebuild 1.
method is not different in any way from the insert and remove operations. We
decided not to use the conventional naming with the underscore (_rebuild)
because, even if it is an explicit convention of the language1, it could be a source
of confusion for Python novices.
Python does not have static typing, thus the methods have a signature which does 2.
not explicitly state the intended type of the parameters and return values. We avoid-
ed the use of type hints since this aspect was considered not relevant for the Instru-
ment (it concerns a generic collection of data) and their use is still uncommon.

1 https://docs.python.org/3/tutorial/classes.html#tut-private

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 73

The underlying array of values was implemented by using a Python list, a basic 3.
data type in that language, but in fact a dynamic structure in itself. Using actual
(statically allocated) array types would have increased the complexity of the code,
possibly obscuring the key parts. The explicit allocation of the slots of the array
was simulated by using None elements.

5. Results

This section presents the results of the analysis conducted as described in Section 4. The
first subsection presents an overview of the written answers to the Instrument. This is
then followed, in the second subsection, by the results of the qualitative analysis of the
interviews.

The remainder of this paper refers to individual students using a single letter fol-
lowed by an integer. The letter corresponds to the programming language used in the
course that the student attended (C for C++, J for Java and P for Python). As differ-
ent programming languages were used in all three courses, this uniquely identifies the
course that the student attended. The integer then identifies individual students within
each course. For example, C2 is student number 2 in the course that used C++ (i.e.,
course A in Sweden).

5.1. Written Answers

Table 2 presents the written answers to questions 1–7 of the Instrument, given by the
18 students that were interviewed. The answers from the 10 students that were not inter-
viewed are left out due to space limits. Only 4 students answered questions 4b and 6 cor-
rectly. The other questions mostly got correct answers. We next summarize the mistakes
found in the written answers, question by question.

Each of Q1, Q2, and Q3 had a frequent incorrect answer. In Q1, the only incor-
rect answer which the interviewed students selected was option (c), that is, the data
structure would be a priority queue. In the answers for the 10 students who were not
interviewed, one picked (option a, Stack) and another picked (option d, Union find).
Similarly, all incorrect answers to Q2 indicated that the number of elements in the data
structure was given by the length of the array (option b), rather than the value of the
variable N (option a). For Q3, all students who answered incorrectly were interviewed,
and all incorrect answers are thus present in Table 2. Three of these answers incorrectly
established lo < hi as an invariant (option b), one believed hi == N to be an
invariant (option d), and another answered that none of the proposed options were an
invariant.

In Q4a, most students correctly found that the state was invalid by counting the
number of non-zero elements in the array. Some students (e.g., C7) also identified that
the modular difference between lo and hi did not match the value of N. Inter-
estingly enough, three students provided a sequence of insertions and removals that

M. Begum et al.74

allegedly would produce the state in the question. In the second part of the question,
Q4b, most students failed to trace the behavior of rebuild from the (invalid) state
presented in the first part. Only six out of the 28 students answered the question cor-
rectly. All the incorrect answers failed to compute the contents of the array, but most
managed to predict the values of lo and hi. A number of patterns are visible from
the contents of the array. Some students (e.g., C1 and P3) answered with an array with
less than eight elements. Some students copied three (e.g., P5) or four (e.g., C2) rather
than two elements. Finally, some students (e.g., C6 and P6) reordered the elements ac-
cording to the logic in rebuild, while others (e.g., C2 and P9) incorrectly preserved
the original order.

While Q4a seems easier than Q4b (11 vs. 4 correct written answers), one student’s
answer was graded as incorrect for Q4a but correct for Q4b. P1 identified an incorrect
invariant lo < hi in Q3. Superficially, they answered correctly in Q4a that the state
is impossible, but used two arguments, the first false and the second true: (i) the invariant
lo < hi does not hold for the state, and that (ii) the value of N should be 4, not 2,

Table 2
Written answers to the questions 1–7 of the Instrument, given by the 18 students that were
interviewed. The line in italic contains the correct answer to each question and the last line
contains the total number of correct answers. The other rows represent each interviewed
student. Notation: ✓ correct answer (otherwise student’s answer); ∅ none of the options in a
multiple-choice question; ✗ incorrect reasoning; * answer matches closely the indicated item

1 2 3 4a 4b 5 6 7
A lo hi A lo hi N rebuild A B

Correct b a a - 1, 3, 0, 0, 0, 0, 0, 0 0 2 3 0 1 1 1 a, c 3 2

J1 c b ✓ - - - - 3 ✓ ✓ ✓ 3 a 1 ✓
C1 ✓ ✓ ✓ ✓ 1, 3 ✓ ✓ ✓ ✓ ✓ ✓ - a, b, c, d ✓ ✓
C2 ✓ ✓ ✓ ✓ 3, 8, 4, 1, 0, 0, 0, 0 ✓ 4 ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓
C3 ✓ ✓ ✓ ✗ unclear ✓ ✓ ✓ ✓ ✓ ✓ ✓ a ✓ ✓
C4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C5 c b ✓ ✗ 3, 8, 4, 1 ✓ 4 ✓ ✓ ✓ ✓ ✓ e* 1 ✓
C6 c ✓ ✓ ✓ 1, 3, 8, 4 ✓ ✓ 3 ✓ 3 ✓ ✓ c, d, e ✓ ✓
C7 ✓ ✓ ✓ ✓ 1, 3, 8, 4, 0, 0, 0, 0 ✓ 4 ✓ ✓ ✓ ✓ ✓ a, b, c, d ✓ ✓
P1 ✓ ✓ b ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∅ ✓ ✓
P2 ✓ ✓ ✓ ✓ 1, 3, 8, 4, 0, 0, 0, 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P3 c ✓ d ✓ 8, 4, 3, 1 ✓ ✓ 3 ✓ ✓ ✓ 3 a, b, e [3] []
P4 ✓ ✓ ∅ ✗ 3, 8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ a 1 ✓
P5 ✓ ✓ ✓ ✗ 8, 3, 8, 0, 0, 0, 0, 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ a, b 1 ✓
P6 c ✓ b ✓ 1, 3, 8, 0, 0, 0, 0, 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ c ✓ ✓
P7 ✓ ✓ ✓ ✓ 1, 3, 8, 0, 0, 0, 0, 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ a, b, c, d 1 ✓
P8 ✓ b ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ a, b, c, d 1 ✓
P9 ✓ b b - 3, 8, 4, 0, 0, 0, 0, 0 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ None None

P10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ c ✓ ✓

Total 13 14 13 11 4 14 4 9

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 75

because it is the number of elements. Because the student’s answer included incorrect
reasoning, it was graded as incorrect. For Q4b, P1 only provided the correct end state.

Most students answered Q5 correctly. All six incorrect answers had an array with
an incorrect length (either 1, 3, or 4 elements instead of 2). Only five students in to-
tal an swered Q6 correctly. Here, students were asked to determine which of the five
states were possible after a partially unknown sequence of insertions and removals have
been exe cuted. Fourteen of the incorrect answers included one of the options where the
length of the array would not be possible (options b and d). A less frequent mistake was
not to se lect either option (a) (4 students) or (c) (6 students). Finally, student C5 found
no option to be viable and instead provided another state that was similar to option (e).
Student P1 believed that no option was reachable since elements are inserted in the
beginning of A.

Finally, for Q7, the most common answer (8 of 11 incorrect answers in total) was
that a == 1 (instead of a == 3) after executing the code. The remaining incor-
rect answers stated that a and b contains arrays (P3 and P16), or that a == b ==
None (P9).

5.2. Codebook of Fragilities

The labelling of the excerpts from the interviews resulted in seven labels describing dif-
ferent fragilities. Each label is based on the observations from previous work (Nelson
et al., 2020), with minor alterations to align with the data. We group the labels into three
major groups.

The first group consists of three labels that represent misconceptions about specific
aspects of the notional machine. Thus they cover skills that would be considered prereq-
uisites to a data structures and algorithms course. These closely match the codebook
from Nelson et al. (2020) and are defined as follows:

Operators ● Excerpts with this label show fragile “skills related to operators
[which] cover both being able to use arithmetic and comparison operators. Ex-
amples of these include questions related to operator precedence and Boolean
logic” (Nelson et al., 2020, Table 1).
Arrays ● Excerpts with this label show fragile knowledge about “declaring and
indexing arrays [including] what happens when the index is out of bounds” (Nel-
son et al., 2020, Table 3). The label also includes fragile skills in using “loops to
iterate arrays, either using regular loops and indices, or any dedicated syntax for
the task” (Nelson et al., 2020, Table 2).
References ● Excerpts with this label show fragile skills in differentiating “be-
tween val ues and references (or pointers) to values”, and identifying “differences
between mak ing copies of a value and a reference to a value” (Nelson et al., 2020,
Table 3).

The second group of two labels represent higher level skills. These are skills that
are in some way introduced early on in CS education, but which typically take time to
become proficient in. As described in Section 2.2, these are partially based on the higher-

M. Begum et al.76

level skills described in Nelson et al. (2020), but also on overarching statements made
by the authors of the Instrument. The labels are defined as follows:

Reasoning about constraints ● As defined in (Nelson et al., 2020), this label
describes fragile knowledge when reasoning (semi-formally) about constraints
enforced in the code. For example, the student may reason incorrectly, because
they fail to identify some constraint enforced by the code; fail to utilize identified
constraints; or establish contradictory or false constraints.
Program comprehension ● Excerpts with this label show fragile knowledge
when build ing a complete, consistent and integrated understanding of the behav-
ior of the pro gram by means of an accurate inspection of the code. In particular,
we use this label for claims of students who make an educated guess on a par-
ticular program behav ior without basing their argument on the program code, or
specifically motivates their claims. For example, a student may guess the pur-
pose of the program based on surface features, such as the names of functions or
variables. While this skill is not formally present in the codebook proposed by
Nelson et al. (2020), the authors in formally noted that program comprehension
was required to correctly answer some questions in the Instrument. As this label is
closely related to the previous one, we distinguish them based on the detail of the
observations. Detailed and more formal observations were tagged as Reasoning
about constraints, while informal observa tions (i.e., some level of guessing) were
tagged as Program comprehension.

The last group of two labels refer to concepts that are specific to the advanced topic
studied in this paper, data structures and algorithms. Therefore, these are not present in
(Nelson et al., 2020). The labels are defined as follows:

DS knowledge ● Excerpts with this label show fragile factual knowledge about
different Data Structures (DS), including their semantics or how they are imple-
mented. Dif ficulties in distinguishing between different data structures is also
marked with this label. The excerpts with this label typically show students mak-
ing incorrect state ments about some data structure. This was mentioned as an is-
sue in (Nelson et al., 2020), but not formally defined in detail, as the focus was on
the prerequisite skills and not on the advanced topics.
ADT vs. implementation ● Excerpts with this label show confusion between the
abstrac tion provided by an Abstract Data Type and its implementation. For ex-
ample, in the context of the Instrument, a student may confuse the queue (an
abstract container of elements) with the array (that is used to store the elements in
the queue). In partic ular, the former abstraction never contains “empty” elements,
while the latter has to deal with empty positions in the array.

5.3. Interview Excerpts Revealing Fragile Knowledge

Table 3 summarizes what fragilities were found for each of the 18 interviewed students.
The table is based on the text matrix discussed in Section 4.2. Notice that this table is a
high-level representation of the data: a single student’s answer to a single question may consist

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 77

of multiple segments, and thus have multiple labels (e.g., student C1 is labeled both Arrays
and Program comprehension in Q4b). The mutual exclusiveness requirement discussed in
Section 4.2 still holds, as each code was assigned to a different segment in the text matrix.

The remainder of this section contains a detailed description of the fragilities found,
and how they appeared in the interviews. The notation in the students’ quotes is as fol-
lows: square brackets [] denote transcriber’s clarification, dots [...] indicate omitted
speech, and the monospace font is our post-transcript choice to emphasize when the
student refers to the program code.

5.3.1. Basic Prerequisites: Operators, Arrays, and References

Two students showed fragile knowledge concerning Operators, and in particular the
mod ulo operator, when tracing the rebuild function in Q4b. This evidence is in the
form of students who made incorrect statements about the meaning of the operator,
which is illustrated by quotes from P4 and P9:

Isn’t that percent sign that the integer is taken into account, so that
when that becomes less than one then it is like zero. [Student P4]

Table 3
Outcome of the qualitative analysis of interviews and open answers. Labels 1–3, 4a, 4b,
and 6–7 indicate some fragility related to the respective question for a particular student.
Legend: * Python-specific issues with array iteration, † relying on the surface features of

the program, ‡ correct written answer.

Basic prerequisites High-level prerequisites Advanced topics
Student Op. Array Ref. Reasoning constr. Program compr. DS knowl. ADT vs. impl.

J1 – – 7 6 1†, 4b, 5† 1 2
C1 – 4b – 4a‡, 6 4b† – –
C2 – – 7 – 4b – 4a‡
C3 – – – 6 1‡†, 4a, 6† 1‡ –
C4 – – 7‡ – – – –
C5 – – 7 – 1†, 2, 4a, 6‡ – –
C6 – – – 6 1†, 4b 1 –
C7 – – – 6 – – –
P1 – 6* – 4a – – 6
P2 – 4b* – – – – –
P3 – 4b* – 3, 4b 1† – –
P4 4b – – – 6 – –
P5 – – 7 4a, 6 4b, 6 – –
P6 – 4b* – – 1† 1 2‡
P7 – 4b* 7 6 – – –
P8 – – 7 6 – – –
P9 4b 4b*, 7* – 3 – – 2, 3
P10 – – – 6 – – –

Total 2 7 7 12 10 4 5

M. Begum et al.78

I would remember that it [referring to the modulo operation] is a
truncating division. [Student P9]

The most common fragility among the basic prerequisites concerns Arrays, and was
found in seven students. One such issue was uncertainty about array indexing. For ex-
ample, P9 implied that in the assignment tmp[i] = A[j], that tmp[i] would
re main at its current value if A[j] is out of bounds. This is visible when the student
traces rebuild in Q7 during the interview. After loop iteration i == 1 the student
makes the following statement.

tmp = [3, None], because at that location in A [index 1 at
Python list A == [3]] there is nothing. [Student P9]

From Table 3 we can also see that many of the Finnish students had Python-specific
issues with arrays. One such an example is P1 who did not understand the syntax for
creating arrays in Python. When asked about the line: tmp = [None] * (2 *
len(self.A)) they answered:

Will that become like... it multiplies that None with that double
length. I’m not quite sure. [Student P1]

Aside from this occurrence, most of the language-specific issues with this label
belong to students who incorrectly assumed that the range statement in the for
loop, used for iterating through the array, would yield one extra iteration (i.e., three
instead of two). This is, for example, illustrated by P2 when asked about their answer
to Q4b:

I found right away a mistake I made, so it does not take the first four
values but two, no, three. [Student P2]

This issue was sometimes also visible in the written answers for Q4b. For example,
students P5, P6, P7, and P9 had three nonzero elements in their written answers to Q4b
in Table 2.

Finally, we found seven students who had fragile knowledge of References. This was
revealed by Q7, where variables w and z refer to the same instance of the queue. The
students failed to realize this, and instead believed that a copy was made:

When object z of class Y was made, then the z copied into the
variable w, then an insert was made on w, but it will not change
that z. [Student P7]

When w = z, I’m unsure whether z changes if w changes.
[Student P5]

w will be, like, a data structure that is assigned z’s contents, or
something like that. [Student J1]

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 79

5.3.2. Fragilities in Prerequisite High-Level Skills

From Table 3, we can see that having fragilities in high-level prerequisite skills were the
most common issues found in the interviews.

We found evidence that 11 students had issues related to Reasoning about constraints
in Questions 3, 4a, 4b, and 6. For example, students have difficulties in recognizing that
hi can be less than lo, as illustrated by P1 when asked about their answer to Q3, and
C1 when asked about their answer to Q4a:

lo should be less than hi [Student P1]

I thought that they were linked, that hi was always going to be a
higher position [Student C1]

Another example from Q3 is P3, who concluded that hi equals N is an invariant
since rebuild assigns hi to N:

I have looked at that point that always if one adds something there
it will do that rebuild [...] In rebuild it sets self.hi to
self.N. [Student P3]

The question with most evidence of fragility in reasoning about constraints was Q6.
The excerpts show that students incorrectly conclude that the inserted elements need to
be consecutive:

The only thing I know is that 1, 2 and 3 should be after each other.
[Student C3]

[...] and the three were after each other, then we should have a se-
quence of 1, 2, 3. [Student J1]

there couldn’t be empty slots between the elements. [Student P5]

So I arrived at the conclusion that it should be possible to have empty
slots in the middle, but not in the beginning. [Student C6]

Another property that was problematic in Q6 was the length of the array A. In particu-
lar, some students believed that the number of elements in the queue had to coincide with
the variable A_length:

Its size should be dependent on the A_length variable.
[Student C6]

Others failed to consider that the length had to be a power of two due to the fact that
rebuild always doubles the size of the array:

So the size... These three must follow each other, regardless of size, as
long as the size is larger than three values. [Student C1]

M. Begum et al.80

We found evidence that 11 students had fragile knowledge and skill in Program
com prehension. As described above, excerpts in this category indicate that students
did not conduct a careful analysis of the code necessary to understand its behavior, but
drew in correct conclusions based on some amount of guessing. The following excerpts
illustrate these kinds of statements, which all led to some kind of incorrect conclusion
about the data structure:

I didn’t feel it was relevant [...] It looked like a stack [Student C6]

I answered to this by quite a gut feeling [Student P5]

I was very uncertain here. [...] So I think I guessed if it was that [...]
[Student C4]

I thought it may [...] I might not understand exactly what the code
does in detail but I kind of know [...] [Student J1]

Furthermore, for the cases marked with a dagger (†) in Table 3, we have evidence
that the observations are based on surface level features of the code, such as names of
functions and variables. In this case, the names insert and remove lead to cor-
rect conclusions regarding the functionality of the respective functions, as illustrated
by J1:

We have an insert function and a remove function. And it
stands to rea son that they should insert and remove. [Student J1]

However, the conclusions drawn from the name rebuild were often not correct:

I thought it may be a priority queue and that’s why rebuild is
there. [Student J1]

I think that the rebuild function changes the structure according
to when some new element is added, so that it changes the order ac-
cording to that priority. [Student P3]

Similarly, the presence of None (in the Python version) was incorrectly seen as
indi cating leaves in a tree structure:

[...] a data structure which is built in a tree-like way and because
there were those None values, I thought that they are those kinds of
branches. [Student P6]

As for tracing and metatracing, some students mentioned in the interview that they
did trace (or tried to trace) the code. In particular this occur for questions Q4b, which
asks the state of variables after the execution of rebuild. It was difficult to identify
clearly when students have difficulties in tracing or meta-tracing. When scaffolded to
trace the code closely during the interviews, all students were able to simulate the step-
by-step execution of code while keeping track of the state of the computation. When

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 81

errors occurred, they were due to slips, or to specific misconceptions, e.g, relating to the
Python range.

Finally, there was one inconclusive segment, P1’s interview answer to Q3. It was ex-
cluded from Table 3, because we could label it both as Reasoning About Constraints and
Program Comprehension, which would have violated the mutual exclusiveness criteria:

I kind of deduced that lo would be the smallest, or first element in the
list, for example, zero or whatever it usually is; and then ..., or the first
location where there is not None. So, for example, if there is None,
if the list is None, 1, 2, None, then the first would be zero, then
lo would be 1 and hi would then be 3. So hi depicts the the first
None in the list, its location in there, and lo depicts the first actual
element. [Student P1]

To illustrate qualitative content analysis in detail, we have provided a further exam-
ple of segmenting and labeling an interview excerpt. Table 4 shows a piece of dialogue:
seg ments S0, S1, and S2 are adjacent in the interview transcript. The interviewer asks
student P6’s reasoning behind their answer to Q1. The interviewer’s question deliber-
ately asks to elaborate the difference between the correct answer (queue) and the answer
option that the student selected (priority queue). Segments S1 and S2 form together the
student’s entire answer to the interviewer’s question.

P6’s interview answer in Table 4 is an example of interview data which has multiple
student’s claims open to interpretations. In S1, the student implies that a priority queue
is a tree, although it is actually an abstract data type. Based on this observation, we have
labeled it as a fragility in Data structure knowledge. An alternative interpretation is that
the student tries to explain an implementation of a priority queue, a binary heap, which
is indeed based on a binary tree. This interpretation would give the possibility to code
S1 as an ADT versus implementation issue. However, it is equally possible that by “tree-
like way”, the student means any tree structure they have encountered on their course.
Therefore the alternative interpretation is weaker.

To illustrate how a single answer to a single question can be labelled with multiple
labels, consider student P6’s answer in Table 4. Segment S2 shows the student’s further
confusion. One could speculate that by tree branches and None values, the student

Table 4
An example of segment splitting in qualitative content analysis

Segment Label

Context: Student P6’s written answer to Q1 is “priority queue”

S0 Interviewer: “What do you think is the difference between a queue and a priority queue?”

S1 Student: “A priority queue is a data structure which is built in a tree-like way ...” DS knowl.

S2 “...and because there were those None values, I thought that they are those kinds of
branches. When I thought about how it could be a queue, somehow those None values
made me think about the queue, that can it be a queue.”

Program
compr.

M. Begum et al.82

had meant a binary tree with some children set to None (similar to null pointers in
C++). However, the evidence here is too scarce for us to pinpoint a confusion between
certain data structures. The stronger evidence we see here is more implicit. When they
try to recognise the data structure, they are relying on surface features of the program
code, that is, the None values. It is likely that when answering the first Instrument
question, the student has not traced the code at all. Therefore, S2 is labeled as Program
comprehension. As such, using this approach we never had a case where we wished to
assign more than one label to a single segment.

5.3.3. Fragile Knowledge of the Advanced Topics

From Table 3, we can see that the first seven questions also revealed fragile knowledge
of the advanced topics assessed by the Instrument, that is data structures and algo-
rithms.

We found evidence of fragilities with data structure knowledge, and we thus used
the label DS Knowledge to mark excerpts that show lack of factual knowledge of data
struc tures. As can be seen in Table 3, the evidence for this was only found in answers
to Question 1. This evidence was mostly regarding the union-find data structure. For
example, J1 did not know what union-find was, while C3 believed it to be an algorithm
instead of a data structure:

About union-find, I was like, no. I haven’t even encountered that one.
[Student J1]

I can see right away that it can’t be union-find, since that is an algo-
rithm. [Student C3]

A number of students also confused the common illustration of a data structure and
its typical implementation. For example, union-find is often illustrated as a graph where
nodes have a single link to a parent node, but is implemented as an array:

[...] and I don’t know, union find [...] I think union find has something
to do with graphs, so I didn’t feel it was relevant. [Student C6]

Similarly, a priority queue is often implemented as a heap, but it has other implemen-
tations as well. Furthermore, heaps are typically illustrated as trees, but they are typi-
cally stored in an array as the heap property allows that efficiently. This confused C3 and
P6 in different ways:

Then we have a priority queue, that is, I think it’s the same thing as a
heap. Since it has nodes and pointers and such. So it’s either a stack
or a queue. [Student C3]

A priority queue is a data structure that is built in kind of tree-like
way, so that when there was those None values, I though that they
are like branches. [Student P6]

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 83

We found seven students who showed confusion with ADT vs. implementation. For
example, in Q2, some students confused the length of the array with the length of the
data structure (queue):

Return A.length, right. I thought that since, well, I thought of A
as the data structure itself. [Student J1]

I think the command takes the length of A, that is, how many elements
there are in the list. [Student P9]

When asked, P9 also revealed that they were aware that such an answer would in-
clude the None elements in the underlying Python list. Another such example is P6
who was unsure what elements are supposed to be included in the data structure in the
interface:

I was not sure whether all elements here are wanted, that could it
only be those values given by the user. I was not sure which one it was
meant. [Student P6]

A similar confusion was also visible in Q4a, where the students were asked if a par-
ticular state is possible:

A holds four elements, but N only holds the value two, and I thought
that should not be possible. [Student C2]

5.4. Programming Language Specific Issues

We also detected three language-specific issues in the interviews. The issue with the
range keyword in Python was already described above, as it is closely related to ar-
rays. The remaining issues are described here, as they are not entirely in line with the
research objective of the Instrument, and we do not have much conclusive evidence for
them.

The first such example is a student who incorrectly believed that the expression
[None] * 8 in Python would create 8 separate lists (P3). This is not something that
was covered in detail earlier the data structures and algorithms course. Similarly, some
students (e.g., P4) did not understand what public and private functions mean in the con-
text of an object. Again, this is at least partially due to not covering these topics in detail
in prior courses, and since Python does not differentiate between public and private
functions apart from naming conventions.

A similar issue emerged for students taking the C++ version of the Instrument. In this
particular case, student C5 expressed that they did not know the meaning of the state-
ment delete []tmp:

And then that delete operation came, that I did not entirely... un-
derstand what I should do. [...] [Student C5]

M. Begum et al.84

Again, it is likely that the student has not seen that particular syntax for a delete
op eration before, as modern C++ recommends working with higher level abstractions
rather than arrays in the style of the C programming language.

6. Discussion

In this study, a theoretically designed Instrument (described in Section 3) is evaluated
empirically for the first time. The research questions in Section 1 reflect the following
hy potheses. First, if a student answers incorrectly to the Instrument questions related to
data structures and algorithms, they have fragile knowledge or skills relating to prerequi-
sites and/or to data structures and algorithms topics. Second, the questions in the Instru-
ment can detect particular fragilities based on a student’s answer. To test the hypotheses,
we used qualitative content analysis introduced by Schreier (2014).

In this section we discuss the results presented in Section 5. First, we consider each
In strument’s question in lights of Research Question 1: “What fragile knowledge and
skills is the Instrument able to detect?” and discuss how this compares to the prior analy-
sis by Nelson et al. (2020). In addition, we give suggestions about what changes are
advisable to further improve the ability of individual questions to detect fragile knowl-
edge of prereq uisites. In Section 6.2 we address Research Question 2: “To what extent
is the Instrument able to differentiate between fragilities, both between prerequisites and
advanced topics, and among specific prerequisites?” Finally, in Section 6.3 we discuss
threats to validity, and the extent to which the results presented in this paper apply.

6.1. Analysis of Instrument Questions

Q1–Q4a. First, some options of these multiple-choice questions worked as was ex-
pected. The most common incorrect answer in Q1 was that the class behaved like a
prior ity queue. Interviewed students with this answer showed fragile knowledge with
program comprehension. Q2 revealed either difficulties with program comprehension
or confusion between an ADT and its implementation when a student answers (b) there.
This was con firmed in four interviews. Four interviewed students answered Q3 incor-
rectly, and three of them had fragile skills when reasoning about constraints. Similarly,
an incorrect answer to Q4a reveals mostly fragile skills in reasoning about constraints.
These findings were consistent with the design intention (Nelson et al., 2020).

Second, Q1–Q4a had unreliability with the distractor options. Table 2 shows that some
answer options were rarely or never selected. In addition, the interviews indicate that if
a student answers Q1 correctly, they still might have difficulties with program compre-
hension or fragile data structure knowledge. The correct answer in Q3 seems too easily
identifiable as correct. A correct answer to Q4a may hide fragilities that a student has, be-
cause not all the invariants are needed to be identified to answer the question correctly.

We recommend altering these questions as follows. Q1 would have a free text answer
instead of multiple choices. Q2 and Q3 would ask selecting all options that apply. Fur-

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 85

thermore, convert option lo = hi to lo <= hi in Q3, as some students excluded
the original options due to equality, and option hi < N to hi < A.length, as
that is less obvious. Omitting the contents of A in Q4a might steer the students to think
about the circular distance.

Q4b: Trace rebuild. The interviews revealed fragile knowledge of operators, arrays,
and in program comprehension as expected in Nelson et al. (2020), as our program
compre hension label includes program tracing.

We discovered the following patterns between written answers and identified weak-
nesses. In Table 2, P6, P7 and P9 have copied three array elements due to an off-by-one
error with Python-specific range syntax, coded as array iteration. P4 and P9 have
dif ficulties with operators, typically the modulo operator, resulting in incorrect order
of ele ments. In contrast, P5, C2, and C5 have similar answers, but did not show fragile
knowl edge of operators in particular. It is possible that other issues masked this.

P1 is an outlier, as they answered correctly to Q4b, but incorrectly to Q4a. They
iden tified an incorrect invariant lo < hi in Q3. As mentioned in Section 5.3.2, it
is unclear whether this was caused specifically by a weakness in identifying program
constraints or more generally program comprehension, therefore P1 has no label for Q3
in Table 3. The student only provided the end state in Q4b, leaving the details of their
reasoning unknown. Unfortunately, the interviewer did not notify the student of the in-
consistency between their answers to Q3, Q4a, and Q4b. One explanation for the incon-
sistency is that the student answered the Instrument questions in numerical order, also
meaning Q4a before Q4ab. In Q4b, they began to apply detailed program tracing first
time. However, tracing only the rebuild function does not contradict with the assumed
lo < hi invariant. This lack of detail in the answers is a property of the instrument:
if the Instrument had requested a detailed answer to Q4b, that might itself give a hint to
apply program tracing, masking the fragility in metatracing.

Finally, some students found it confusing to trace rebuild from a state they had
found to be inconsistent in Q4a. Some of them tried to fix the state before tracing. Oth-
ers either could not, or did not trace the code closely enough, while others had issues
under standing the modulo operator. As such, we recommend providing a different state
for Q4b than the one used in Q4a, which students have already deemed to be invalid.

Q5: Trace insert + remove. Only three of 18 interviewed students answered incor-
rectly that the array A would have size of 1 and contain the value 3. Of those, two
students showed fragile skills in with program comprehension. J1 relied on the surface
features of the code, assuming the behavior of the data structure on the names insert
and remove. C5 was unsure what the code does, but managed to trace it correctly in the
interview. P3 was not asked about Q5 due to time constraints. These cases match Nelson
et al. (2020): students either trace the code in detail or at a high level. We suggest keep-
ing Q5 as is, because it explicitly assesses when the array is rebuilt.

Q6: Circularity. Students struggled with three aspects of Q6 in the interview. Three stu-
dents, C1, P7, and P8, included the options having an array length of five, indicating a
failure to identify the constraint that the size of the array is a power of two. Meanwhile,

M. Begum et al.86

excluding (c) [2, 3, -, 1] and (d) [2, 3, -, -, 1] likely indicates not having
understood the circularity: interviews of C3, P4, and P5 revealed a belief that the last three
elements should be located consecutively in the array. Finally, some students struggled
with how to approach the problem, because the unknown sequence could not be traced.

Q6 does not distinguish between the constraint cases 2k versus 2k for the length of
the array. We recommend adding an option with an array with length of 6. Also, as this
question was relatively difficult, some students might benefit from a hint that the un-
known sequence of operations only includes inserts and removes.

Q7: References. The major finding of Q7 supports the intended design that this ques-
tion would assess references. Eight of eleven incorrect answers to Q7 was that a =
1, b = 2. All seven corresponding interviews revealed issues with references. The
remaining students (3 incorrect answers, 2 interviewed) provided a nonnumerical an-
swer, suggesting other fragilities.

However, the authors of Nelson et al. (2020) also hypothesized that the answer a
= 3, b = 2 would indicate that students were unable to distinguish between dif ferent
instances of the data structure. We found no such answers in our data set, which could
simply mean that this fragility is rare among the students that answered the Instru ment.
Another possibility is that most students traced the code at a high-level (indicated in some
interviews), and since students did not need to trace the insert and remove opera-
tions in details, difficulties with separating different instances would not be visible.

Moreover, a student might arrive at the incorrect answer a = 1, b = 2 with a
cor rect understanding of references. This might happen if the student assumes that the
data structure is a minimum priority queue and traces insert and remove at a
high level. It might be useful to add an additional element to y in order to detect if this
is the case, as a similar issue would then be visible in the value of b.

6.2. Differentiated Assessment

Our findings suggest that the questions in the Instrument are indeed useful to differenti-
ate fragile prerequisite knowledge and skills from fragilities in advanced topics. The
incorrect answers to questions Q1 and Q3–Q7 were often caused by fragile prerequisite
knowledge, as can be seen in Table 3. Although the Instrument is able to distinguish
between prereq uisites and advanced topics, it cannot always differentiate among the
specific fragilities in prerequisites. For instance, Nelson et al. (2020) introduce the label
Basic Notational Machine that separate skills such as Array iteration and Arrays (de-
claring and indexing arrays). We were not able to differentiate these from each other.
Instead, the categories were merged to form a single fragility (Array).

In comparison, fragilities related to the advanced topic (data structures and algo-
rithms) were found to directly contribute to errors only for questions Q1 and Q2 (and,
in a single case, for Q3, Q4a, and Q6 each). In particular, students who struggled to
distinguish be tween abstract data types and their implementation failed either Q2 or Q3,
therefore these two questions together have the potential to highlight fragilities with data
structures and algorithms.

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 87

We found evidence that Q4b indicate fragile knowledge of operators (modulo in
partic ular), and two Python-specific issues: array iteration (off by one with range)
and creating an array with a predetermined number of empty cells. Nelson et al. (2020)
added Q7 (orig inally numbered in the paper as Question 6) to detect specific issues with
references. Our results support the claim that a particular incorrect answer to this ques-
tion does indeed reveal fragilities with values and references.

Fragile skills in reasoning about constraints were observed in Q3, Q4a and Q6. This
is not unexpected, since these are the three questions that, more evidently, address the
understanding of circularity and the rebuilding policy.

What is most evident from Table 3, however, is that due to fragile skills, 16 students
struggled with either program comprehension, reasoning about constraints, or both.
It can be argued that these high-level skills are not typically taught in an introductory
pro gramming course explicitly, as part of the syllabus, but these are still expected to be
learned (Izu et al., 2019). These prerequisites were those we qualified as being high-
level (Section 5.3.2), and were indeed grouped as such by Nelson et al. (2020), even
though they were still considered to be prerequisites. Regardless of this, our findings
show that they have a different role compared to the knowledge of basic programming
notions such as control flow constructions, operators, or arrays.

In this way, the aforementioned high-level skills are similar to the findings of Fisler
et al. (2017) regarding scope, aliasing and mutation. The authors observed that these
con cepts are expected to be taught in an introductory course, but yet students struggle
with them throughout their education. The authors hypothesize that this is because they
are not taught explicitly enough in the introductory course, and after that students are ex-
pected to learn the details themselves. As such, these high-level skills are not considered
to be ad vanced topics covered by the Instrument. Therefore, they might most appropri-
ately be seen as middle-ground skills, located between introductory programming and
advanced skills, as they represent skills that can not be expected to be fully developed
after an introductory programming course.

As discussed in Section 2.3, it is worth connecting these middle-ground skills to ab-
straction skills, which are notoriously difficult to teach and assess (Mirolo et al., 2021).
In particular, they align well with the higher levels of the hierarchy proposed by Perrenet
et al. (2005) and the operational dimensions of Statter and Armoni (2020), since they re-
quire understanding the code at a higher level, as understanding what the program does
for some particular input is not enough.

This ability to switch between different levels of abstraction (reasoning on high-lev-
el behaviors vs. tracing the code in detail) was also visible for students who struggled
to dif ferentiate between the ADT and its implementation. Abstraction has a significant
role also in relation with another high-level skill that was included by Nelson et al.
(2020) among the prerequisites skills, namely meta-tracing. See, e.g., Statter and Ar-
moni (2020) about the importance of knowing when it is feasible to use the high-level
reasoning, and when it is necessary to trace the code closely. From both the written
answers and the interviews, it is difficult to say whether the students were actually able
to trace the code autonomously when answering the questions, and whether or not they
even tried to trace it. The inter views did not help us understand which meta-tracing ac-

M. Begum et al.88

tivities students conducted: when, and on which inputs, they decided to trace portions
of code in order to understand its be havior. Nevertheless, the fact that students were
often found to guess what this behavior would be, lead us to hypothesize that they either
failed to recognize the need to trace the code closely, or did not have the skills to do it.
That is, even if we did not find ultimate ev idence for this, the impression is that there
are fragile meta-tracing skills besides program comprehension issues and the ability to
reason about constraints.

As has been shown in this paper, the Instrument seems to be able to reveal fragile
high-level skills as well as highlight some particular more fundamental fragilities (un-
less they are hidden by lack of high-level skills). Overall, our results emphasize the
importance of the high-level skills, and validate some of the hypotheses in Nelson et al.
(2020). We suggest modifications for the questionnaire, which could be then used as a
part of prelim inary test for a data structures and algorithms course. However, the Instru-
ment requires revisions and more empirical research to ensure its reliability. In addition,
we suggest that the skills labelled as high-level skills should be considered to be middle-
ground skills rather than prerequisites, and that the creators of assessments should dis-
tinguish them to better account for their importance.

6.3. Limitations

The sample size – 28 written answers and 18 interviews – was adequate for qualita tive
study. The limited number of subjects, however, have implications on what type of
conclusions can be drawn from the results. While the data shows fragile knowledge and
skills, it is not possible to interpret the absence of fragility for some question as a proof
that the particular question do not assess that fragility. A qualitative study design should
include a sampling strategy which evolves over time. In contrast to random sampling
used in quantitative research, qualitative research may aim collecting information-rich
samples which vary from each other, thus vastly representing the phenomenon to be
studied (Rap ley, 2014). Unfortunately, the study design did not include a choice of a
sampling strategy. Due to the small and self-selected group of students that were inter-
viewed, it is possible that a student with some particular fragility was not a part of the
group of interviewees.

The study had differences in the ways of transcription for the two local interview lan-
guages (intelligent verbatim vs. selected quotes and descriptions). Verbatim transcripts
are not always necessary, if one can label a time segment in a digital recording that can
be easily retrieved (Barbour, 2014). Indeed, due to timestamps, it was possible to review
certain segments of our interview videos and produce as verbatim transcripts translated
in English. A greater concern is likely a case where the original analyzer of the inter view
produced too short a segment transcribed in English. We experienced the latter in the
Presenting and interpreting the findings phase of the analysis with the whole research
team (see Section 4.2), but if one researcher decided they need more context to verify
a segment, another researcher provided a longer transcript or description for them from
the original video recording.

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 89

Certain fragilities (e.g., program comprehension) seem to hide more fundamental
ones (e.g., knowledge of array indexing) during the interviews. For example, it is diffi-
cult to re liably assess whether a student who is unable to trace programs also has fragile
knowledge of the modulo operator or not. The small and self-selected data set could
therefore be the reason why some expected fragilities were not found. See, for instance,
the failure to dif ferentiate between different instances in Q7. Finally, the small sample
size might hide some infrequent patterns. A larger data set could give more insights on
how to interpret the results for Q4b.

Some of the fragilities were detected during the interviews, although the student
an swered correctly to the question. This was partially found to be due to inadequate
distrac tors. Some students might have guessed the answer, which is typical in multiple-
choice questions. The small data set limits our ability to evaluate the extent of this type
of issues.

Although the fact that the data set includes students from multiple countries and
in volve multiple programming languages is a strength of the data set, this does intro-
duce potential sources of errors. In particular, the different spoken languages means that
stu dents from different countries were interviewed by different interviewers. Further-
more, different spoken and programming languages may highlight the same concept
in differ ent lights, and for spoken languages, some of this nuance might be lost when
translated into English. In spite of these difficulties we found many similarities between
the different countries, which suggests that these potential problems were at least not
major enough to mitigate our conclusions, but the results are generalizable at least to in-
stitutions with sim ilar academic culture. As previously mentioned, the results show that
some of the fragili ties are specific to a particular programming language. This means
that, while many of the findings here are independent of the context, care needs to be
taken when translating the code in the Instrument into different programming languages,
as new types of problems may appear.

7. Conclusion

7.1. Program Comprehension and Reasoning about Constraints as
Key Middle-ground Skills

The empirical evaluation supports many, but not all of the claims by Nelson et al. (2020)
on the Instrument’s capability of differentiating between skills related to prerequisite
and advanced topics. We suggested ways to improve the Instrument’s questions, both by
im proving the distractors of the multiple-choice questions, and by slightly changing the
con tent or phrasing of the questions. Based on our data, we argue that these improve-
ments will increase the Instrument’s effectiveness in assessing prerequisites as a whole,
but also to pinpoint specific fragilities.

Our data shows that the skills previously labelled as high-level skills (such as pro-
gram comprehension and reasoning about constraints) seem to be the cause for many
students answering incorrectly to many of the questions in the Instrument: these skills

M. Begum et al.90

seem to bear a major responsibility in hindering the proficiency in more advanced skills.
Therefore we suggested adding the category of middle-ground skills to the framework of
Nelson et al. (2020), in order to highlight their special role. In fact these skills are often
considered to be prerequisites in latter courses and are not usually taught explicitly in
that context. However, our data shows that students still struggle with them in courses
on data structures and algorithms. As such, the situation for these skills is similar to what
Fisler et al. (2017) observed for concepts such as scope, mutation and aliasing. Latter
courses expect students to have familiarity with them, but the introductory courses do
not cover them explicitly enough. Our results highlight the importance of teaching these
middle-ground skills ex plicitly at an early stage in the education, and to continue teach-
ing them throughout the education to allow students to master them, as it is difficult to
fully develop them only in one introductory course. Exercises that ask to analyze a por-
tion of code and reflect on the behaviour that it determines, such as the ones proposed
by the Instrument, can be fruitfully used as learning tools or to provide formative assess-
ments for these middle-ground skills.

7.2. Future Work

Some of the fragile prerequisite skills that the Instrument was designed to identify, such
as tracing and meta-tracing, in this report were folded under the label Program compre-
hension. Part of the reason for this is the difficulty of identifying precisely what specific
fragility a student has, even when employing semi-structured interviews. Further stud-
ies are needed to address this finer level of granularity. A possible approach could be to
conduct a think-aloud study to follow students’ lines of reasoning, or to observe students
working in pairs on the Instrument’s questions, by analysing students’ strategies and
con versations during the problem solving process.

As already discussed, what we identified as middle-ground skills are in fact crucial to
progress further, but it may be unreasonable to expect wide proficiency with these skills
after introductory programming courses. However, how this should be dealt with within
the constraints of introductory and advanced courses needs further research.

Given the Instrument’s ability to differentiate between certain prerequisites, middle-
ground skills, and advanced skills, it would be interesting to explore integrating the
In strument into a learning management system. This would allow the learning manage-
ment system to tell the students not only if they passed or failed, but direct students
towards the most effective remediation. For example, if a student is identified as having
an issue with basic prerequisites about array indexing, they could be asked to review
relevant fun damentals or pointed to follow-up questions dealing with this issue.

Finally, in this work we focused on one of the questions proposed by Nelson et al.
(2020), but the report also discussed questions related to other advanced course topics.
More work would be needed to generalize our results to other contexts, however we
hy pothesize that middle-ground skills play again a major role, whenever students are
asked to answers questions and reflect about a given portion of code and the behaviour
that it determines.

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 91

References

Adams, W.C. (2015). Conducting Semi-Structured Interviews. John Wiley & Sons, Inc., New Jersey, USA, pp.
492–505. Chap. 19. 9781119171386. https://doi.org/10.1002/9781119171386.ch19

Aharoni, D. (2000). Cogito, Ergo Sum! Cognitive Processes of Students Dealing with Data Structures. In: Pro-
ceedings of the Thirty-First SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’00.
Association for Computing Machinery, New York, NY, USA, pp. 26–30. 1581132131.
https://doi.org/10.1145/330908.331804

Anderson, L.W., Krathwohl, D.R., Airasian, P.W. (2001). A taxonomy for learning, teaching, and assessing: A
revision of Bloom’s taxonomy of educational objectives. Longman, New York, NY, USA. 0321084055.

Barbour, R.S. (2014). Quality of Data Analysis. SAGE Publications, London. Chap. 34. 978-1-4462-0898-4.
https://doi.org/10.4135/9781446282243

Corney, M., Fitzgerald, S., Hanks, B., Lister, R., McCauley, R., Murphy, L. (2014). ’Explain in Plain English’
Questions Revisited: Data Structures Problems. In: Proceedings of the 45th ACM Technical Symposium on
Computer Science Education. SIGCSE ’14. ACM, New York, NY, USA, pp. 591–596. 978-1-4503-2605-6.
https://doi.org/10.1145/2538862.2538911

Danielsiek, H., Paul, W., Vahrenhold, J. (2012). Detecting and Understanding Students’ Misconceptions Relat-
ed to Algorithms and Data Structures. In: Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education. SIGCSE ’12. ACM, New York, NY, USA, pp. 21–26. 978-1-4503-1098-7.
https://doi.org/10.1145/2157136.2157148

Fisler, K., Krishnamurthi, S., Tunnell Wilson, P. (2017). Assessing and Teaching Scope, Mutation, and Alias-
ing in Upper-Level Undergraduates. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Com puter Science Education. SIGCSE ’17. Association for Computing Machinery, New York, NY, USA,
pp. 213–218. 9781450346986. https://doi.org/10.1145/3017680.3017777

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M.C., Zilles, C. (2008). Identifying
Important and Difficult Concepts in Introductory Computing Courses Using a Delphi Process. SIGCSE
Bull., 40(1), 256–260. https://doi.org/10.1145/1352322.1352226

Hartmanis, J. (1994). Turing Award Lecture on Computational Complexity and the Nature of Computer Sci-
ence. Commun. ACM, 37(10), 37–43. https://doi.org/10.1145/194313.214781

Hazzan, O. (2008). Reflections on Teaching Abstraction and Other Soft Ideas. SIGCSE Bull., 40(2), 40–43.
https://doi.org/10.1145/1383602.1383631

Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., Lonati,
V., Mirolo, C., Weeda, R. (2019). Fostering Program Comprehension in Novice Programmers -Learning
Activi ties and Learning Trajectories. In: Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education. ITiCSE-WGR ’19. Association for Computing Machinery,
New York, NY, USA, pp. 27–52. 9781450375672. https://doi.org/10.1145/3344429.3372501

Joint Task Force on Computing Curricula, Association for Computing Machinery (ACM) and IEEE Com-
puter Society (2013). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Pro grams in Computer Science. Association for Computing Machinery, New York, NY, USA.
9781450323093.

Kane, M.T., Bejar, I.I. (2014). Cognitive frameworks for assessment, teaching, and learning: A validity
perspec tive. Psicologia Educativa, 20(2), 117–123. https://doi.org/10.1016/j.pse.2014.11.006

Lister, R., Simon, B., Thompson, E., Whalley, J.L., Prasad, C. (2006a). Not Seeing the Forest for the Trees:
Novice Programmers and the SOLO Taxonomy. In: Proceedings of the 11th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education. ITICSE ’06. Association for Computing
Ma chinery, New York, NY, USA, pp. 118–122. 1595930558. https://doi.org/10.1145/1140124

Lister, R., Simon, B., Thompson, E., Whalley, J.L., Prasad, C. (2006b). Not Seeing the Forest for the Trees:
Novice Programmers and the SOLO Taxonomy. SIGCSE Bull., 38(3), 118–122.
https://doi.org/10.1145/1140123.1140157

Luxton-Reilly, A., Becker, B.A., Cao, Y., McDermott, R., Mirolo, C., Mühling, A., Petersen, A., Sanders, K.,
Simon, Whalley, J. (2018). Developing Assessments to Determine Mastery of Programming Fundamentals.
In: Proceedings of the 2017 ITiCSE Conference on Working Group Reports. ITiCSE-WGR ’17. Association
for Computing Machinery, New York, NY, USA, pp. 47–69. 9781450356275.
https://doi.org/10.1145/3174781.3174784

Margulieux, L., Denny, P., Cunningham, K., Deutsch, M., Shapiro, B.R. (2021). When Wrong is Right: The In-
structional Power of Multiple Conceptions. In: Proceedings of the 17th ACM Conference on International
Computing Education Research. ICER 2021. Association for Computing Machinery, New York, NY, USA,

M. Begum et al.92

pp. 184–197. 9781450383264. https://doi.org/10.1145/3446871.3469750
Mirolo, C., Izu, C., Lonati, V., Scapin, E. (2021). Abstraction in Computer Science Education: An Overview.

Informatics in Education, 20(4), 615–639. https://doi.org/10.15388/infedu.2021.27
Nelson, G.L., Strömbäck, F., Korhonen, A., Begum, M., Blamey, B., Jin, K.H., Lonati, V., MacKellar, B.,

Monga, M. (2020). Differentiated Assessments for Advanced Courses That Reveal Issues with Prerequisite
Skills: A Design Investigation. In: Proceedings of the Working Group Reports on Innovation and Technol-
ogy in Computer Science Education. ITiCSE-WGR ’20. Association for Computing Machinery, New York,
NY, USA, pp. 75–129. 9781450382939. https://doi.org/10.1145/3437800.3439204

Perkins, D., Martin, F. (1985). Fragile Knowledge and Neglected Strategies in Novice Programmers. IR85-22.
Technical Report IR85-22, Educational Technology Center, Cambridge, MA, USA.
https://eric.ed.gov/?id=ED295618

Perrenet, J., Groote, J.F., Kaasenbrood, E. (2005). Exploring Students’ Understanding of the Concept of Al-
gorithm: Levels of Abstraction. In: Proceedings of the 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education. ITiCSE ’05. Association for Computing Machinery, New
York, NY, USA, pp. 64–68. 1595930248. https://doi.org/10.1145/1067445.1067467

Porter, L., Zingaro, D., Liao, S.N., Taylor, C., Webb, K.C., Lee, C., Clancy, M. (2019). BDSI: A Validated Con-
cept Inventory for Basic Data Structures. In: Proceedings of the 2019 ACM Conference on International
Computing Education Research. ICER ’19. Association for Computing Machinery, New York, NY, USA,
pp. 111–119. 9781450361859. https://doi.org/10.1145/3291279.3339404

Qian, Y., Lehman, J. (2017). Students’ Misconceptions and Other Difficulties in Introductory Programming: A
Literature Review. ACM Trans. Comput. Educ., 18(1). https://doi.org/10.1145/3077618

Rapley, T. (2014). 4. Sampling Strategies in Qualitative Research. SAGE Publications, London. 978-1-4462-
0898-4. https://doi.org/10.4135/9781446282243

Schreier, M. (2014). Qualitative Content Analysis. SAGE Publications, London. Chap. 12. 978-1-4462-0898-4.
https://doi.org/10.4135/9781446282243

Shaffer, C.A., Karavirta, V., Korhonen, A., Naps, T.L. (2011). OpenDSA: Beginning a Community active-
eBook Project. In: Proceedings of the 11th Koli Calling International Conference on Computing Education
Research. Koli Calling ’11. ACM, New York, NY, USA, pp. 112–117. 978-1-4503-1052-9.
https://doi.org/10.1145/2094131.2094154

Sorva, J. (2013). Notional Machines and Introductory Programming Education. ACM Trans. Comput. Educ.,
13(2). https://doi.org/10.1145/2483710.2483713

Statter, D., Armoni, M. (2020). Teaching Abstraction in Computer Science to 7th Grade Students. ACM Trans.
Comput. Educ., 20(1). https://doi.org/10.1145/3372143

Tenenberg, J., Murphy, L. (2005). Knowing what I know: An investigation of undergraduate knowledge and
self-knowledge of data structures. Computer Science Education, 15(4), 297–315.
https://doi.org/10.1080/08993400500307677

Valstar, S., Griswold, W.G., Porter, L. (2019). The Relationship between Prerequisite Proficiency and Student
Performance in an Upper-Division Computing Course. In: Proceedings of the 50th ACM Technical Sympo-
sium on Computer Science Education. SIGCSE ’19. Association for Computing Machinery, New York,
NY, USA, pp. 794–800. 9781450358903. https://doi.org/10.1145/3287324.3287419

Wing, J.M. (2006). Computational Thinking. Commun. ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

Zingaro, D., Taylor, C., Porter, L., Clancy, M., Lee, C., Nam Liao, S., Webb, K.C. (2018). Identifying Stu dent
Difficulties with Basic Data Structures. In: Proceedings of the 2018 ACM Conference on International
Computing Education Research. ICER ’18. ACM, New York, NY, USA, pp. 169–177. 978-1-4503-5628-2.
https://doi.org/10.1145/3230977.3231005

M. Begum Dr Marjahan Begum is a learning scientist in computing education interested
in programming pedagogy, algorithmic thinking and software engineering education.
Re cently she has embarked on “women in computing” research specifically looking at
barri ers faced by women in the field. She is a Lecturer in the Department of Computer
Science, University of Nottingham (0.8) and at the City University of London (0.2).

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 93

P. Haglund is a lecturer and PhD student in the Department of Computer Science at
Linköping University, Sweden. He has taught at the university since 2018, primarily
work ing with courses in programming and language design. His interest in research
is focused around students’ acquisition of subtle programming concepts. He has also
worked with the Swedish National Agency for Education, developing courses for the
national initiative to introduce younger students to programming. His efforts here have
primarily been focused on teaching programming to K-12 teachers.

A. Korhonen is a Senior University Lecturer in Aalto University. He is also an Adjunct
Professor at University of Turku. Korhonen has been working in the field of educational
technology since 1997. He has been developing several systems capable of automatic
assessment and feedback as well as visualizing and engaging students to digital learn ing
environments. He is one of the founders of the LeTech (Learning + Technology) re search
group at Aalto University (https://research.cs.aalto.fi/LeTech/). Korhonen
has been a PC member, chairing, and organizing conferences like ACM Con ference on
International Computing Education Research (ICER), Frontiers in Education (FIE), and
Koli Calling International Conference on Computing Education Research.

V. Lonati is an assistant professor at the Computer Science Department of Univer sità
degli Studi di Milano (Italy). With a degree in mathematics and a PhD in com puter
science, she has been working in the field of computer science education since 2008.
She is one of the founder of the ALaDDIn research group at University of Mi lan
(http://aladdin.unimi.it). Her current research interests include introduc tory
programming learning, computing education at K-12 level, constructivist strategies in
computing education, professional development for teachers.

M. Monga is an Associate Professor at Università degli Studi di Milano, Milan, Italy
with the Department of Computer Science. He holds a Ph.D. in Computer and Automa-
tion Engineering from Politecnico di Milano, Italy. He is one of the founders of ALaD-
DIn (http://aladdin.unimi.it) and the Deputy Director of the CINI National
Lab oratory on Computer Science and School. Further information are available on his
web page at http://homes.di.unimi.it/~monga.

F. Strömbäck is a lecturer in the Department of Computer Science at Linköping
Univer sity, Sweden. He has been working in the area of teaching and learning concur-
rent pro gramming, and as a part of that work developed the visualization tool Progvis.
In addition to concurrent programming, his research interests include teaching subtle
programming concepts to novices, and programming language design and implemen-
tation.

A. Tilanterä is a Ph.D. student at Aalto University, Finland. They received B.Sc. and
M.Sc. degrees in Computer Science from the same institution in 2016 and 2021, respec-
tively. They are currently studying students’ misconceptions related to Data Structures
and Algorithms, while having research interests also in Algorithm Visualization, Auto-
mated Feedback, and Information Visualization.

M. Begum et al.94

Appendix A. The Instrument

Consider the following code when answering the questions below:

Class Y behaves like which well-known data structure? 1.
Stack (a)
Queue (b)
Priority queue (c)
Union find (d)

36 M. Begum et al.

A. The Instrument

Consider the following code when answering the questions below:

1 public class Y<Key extends Comparable<Key>>
2 {
3 private Key[] A = (Key[]) new Comparable[1];
4 private int lo, hi, N;
5 public void insert(Key in)
6 {
7 A[hi] = in;
8 hi = hi + 1;
9 if (hi == A.length) hi = 0;

10 N = N + 1;
11 if (N == A.length) rebuild();
12 }
13 public Key remove() // assumes this is not empty
14 {
15 Key out = A[lo];
16 A[lo] = null;
17 lo = lo + 1;
18 if (lo == A.length) lo = 0;
19 N = N - 1;
20 return out;
21 }
22 private void rebuild()
23 {
24 // The line below is essentially:
25 // Key[] tmp = new Key[2*A.length]
26 // with keys being comparable.
27 Key[] tmp = (Key[]) new Comparable[2*A.length];
28 for (int i = 0; i < N; i++)
29 tmp[i] = A[(i + lo) % A.length];
30 A = tmp;
31 lo = 0;
32 hi = N;
33 }
34 }

1. Class Y behaves like which well-known data structure?
(a) Stack
(b) Queue
(c) Priority queue

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 95

Write the body of a method2. int size() that returns the number of elements
in the data structure.

 (a) return N;
 (b) return A.length;
 (c) return A[N];
 (d) return hi - lo;

Which invariant does the data structure maintain after every public operation? 3.
(An invariant is a condition that the data structure ensures is true after each opera-
tion)

 (a) N < A.length
 (b) lo < hi
 (c) hi < N
 (d) hi == N

Assume that: 4.
A holds 3 8 4 1
lo holds 3
hi holds 2
N holds 2

Is the above situation something that can occur by calling a sequence of (a)
insert and remove? If yes, give such a sequence, otherwise explain
why not.
What are the contents of(b) A, lo and hi after executing rebuild in
this state?

Draw the data structure (including the contents of 5. A and the values of hi, lo,
and N) after the following operations, and indicate how many times rebuild
were called:

Given the following partially known sequence of operations, what are the possible 6.
contents of A? Select all that apply. Empty boxes are considered empty by the
data structure (i.e., they contain something that the data structure does not care
about).

Empirical Evaluation of a Differentiated Assessment of Data Structures 37

(d) Union find
2. Write the body of a method int size() that returns the number of elements in

the data structure.
(a) return N;
(b) return A.length;
(c) return A[N];
(d) return hi - lo;

3. Which invariant does the data structure maintain after every public operation? (An
invariant is a condition that the data structure ensures is true after each operation)
(a) N < A.length
(b) lo < hi
(c) hi < N
(d) hi == N

4. Assume that:
A holds 3 8 4 1

lo holds 3
hi holds 2
N holds 2
(a) Is the above situation something that can occur by calling a sequence of

insert and remove? If yes, give such a sequence, otherwise explain why
not.

(b) What are the contents of A, lo and hi after executing rebuild in this state?
5. Draw the data structure (including the contents of A and the values of hi, lo, and N)

after the following operations, and indicate how many times rebuild were called:

1 Y y = new Y();
2 y.insert(1);
3 y.remove();
4 y.insert(2);
5 y.remove();
6 y.insert(3);

6. Given the following partially known sequence of operations, what are the possible
contents of A? Select all that apply. Empty boxes are considered empty by the data
structure (i.e., they contain something that the data structure does not care about).

1 Y y = new Y();
2 // an unknown sequence of operations
3 y.insert(1);
4 y.insert(2);
5 y.insert(3);

Empirical Evaluation of a Differentiated Assessment of Data Structures 37

(d) Union find
2. Write the body of a method int size() that returns the number of elements in

the data structure.
(a) return N;
(b) return A.length;
(c) return A[N];
(d) return hi - lo;

3. Which invariant does the data structure maintain after every public operation? (An
invariant is a condition that the data structure ensures is true after each operation)
(a) N < A.length
(b) lo < hi
(c) hi < N
(d) hi == N

4. Assume that:
A holds 3 8 4 1

lo holds 3
hi holds 2
N holds 2
(a) Is the above situation something that can occur by calling a sequence of

insert and remove? If yes, give such a sequence, otherwise explain why
not.

(b) What are the contents of A, lo and hi after executing rebuild in this state?
5. Draw the data structure (including the contents of A and the values of hi, lo, and N)

after the following operations, and indicate how many times rebuild were called:

1 Y y = new Y();
2 y.insert(1);
3 y.remove();
4 y.insert(2);
5 y.remove();
6 y.insert(3);

6. Given the following partially known sequence of operations, what are the possible
contents of A? Select all that apply. Empty boxes are considered empty by the data
structure (i.e., they contain something that the data structure does not care about).

1 Y y = new Y();
2 // an unknown sequence of operations
3 y.insert(1);
4 y.insert(2);
5 y.insert(3);

M. Begum et al.96

(a) 1 2 3
(b) 1 2 3
(c) 2 3 1
(d) 2 3 1
(e) 1 2 3

What are the values of 7. a and b after executing the following piece of code?

How many array accesses does a single call to8. Y.remove take in the worst
case? (To make this well-defined, we assume that the compiler performs no
clever optimi sations. That is, every array access we’ve written in the code will
actually be per formed.)

 (a) ∼ 4N
 (b) 2
 (c) ∼ 2N
 (d) 7

How many array accesses does a single call to the most expensive public method 9.
of Y take in the worst case?

linear in (a) k –

38 M. Begum et al.

(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

(k).
constant – (b)

38 M. Begum et al.

(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

(1).
linearithmic in (c) k –

38 M. Begum et al.

(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

(k log k).
quadratic in (d) k –

38 M. Begum et al.

(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

(k2).
What is the number of array accesses per operation in the following sequence 10.
of 2k operations, starting from anempty data structure: y.insert(1);
y.remove(); y.insert(2); y.remove(); y.insert(3);
y.remove(); ... y.insert(k); y.remove();
Note: The amortized case describes the average, or expected, runtime of an op-
eration.

linear in (a) k in the worst case and in the amortized case.
constant in the worst case. (b)
constant in the amortized case, but linear in (c) k in the worst case.
quadratic in (d) k in the worst case.

True or false: The data structure 11. Y uses space linear in N. Explain you answer on
a separate piece of paper. (Be as formal and short as you can, but not shorter. If
you use more than half a page of text you’re on the wrong level of abstraction.)

38 M. Begum et al.

(a) 1 2 3

(b) 1 2 3

(c) 2 3 1

(d) 2 3 1

(e) 1 2 3
7. What are the values of a and b after executing the following piece of code?

1 Y y = new Y();
2 Y z = new Y();
3 Y w = z;
4 w.insert(3);
5 z.insert(1);
6 y.insert(2);
7 int a = z.remove();
8 int b = y.remove();

8. How many array accesses does a single call to Y.remove take in the worst case?
(To make this well-defined, we assume that the compiler performs no clever optimi-
sations. That is, every array access we’ve written in the code will actually be per-
formed.)
(a) ∼ 4N

(b) 2

(c) ∼ 2N

(d) 7

9. How many array accesses does a single call to the most expensive public method of
Y take in the worst case?
(a) linear in k – Θ(k).
(b) constant – Θ(1).
(c) linearithmic in k – Θ(k log k).
(d) quadratic in k – Θ(k2).

10. What is the number of array accesses per operation in the following sequence of 2k
operations, starting from an empty data structure:y.insert(1);y.remove();
y.insert(2);y.remove();y.insert(3);y.remove(); . . . y.insert(k);
y.remove();
Note:The amortized case describes the average, or expected, runtime of an operation.
(a) linear in k in the worst case and in the amortized case.
(b) constant in the worst case.
(c) constant in the amortized case, but linear in k in the worst case.
(d) quadratic in k in the worst case.

11. True or false: The data structure Y uses space linear in N. Explain you answer on a
separate piece of paper. (Be as formal and short as you can, but not shorter. If you
use more than half a page of text you’re on the wrong level of abstraction.)

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 97

Appendix B. The Code in C++

Below is the C++ version of the code from the Instrument for reference.

Empirical Evaluation of a Differentiated Assessment of Data Structures 39

B. The Code in C++

Below is the C++ version of the code from the Instrument for reference.

1 template <class Key>
2 class Y
3 {
4 public:
5 void insert(Key in)
6 {
7 A[hi] = in;
8 hi = hi + 1;
9 if (hi == A_length) hi = 0;

10 N = N + 1;
11 if (N == A_length) rebuild();
12 }
13 Key remove() // assumes this is not empty
14 {
15 Key out = A[lo];
16 A[lo] = Key{};
17 lo = lo + 1;
18 if (lo == A_length) lo = 0;
19 N = N - 1;
20 return out;
21 }
22 private:
23 Key *A{new Key[1]};
24 int A_length{1};
25 int lo{0}, hi{0}, N{0};
26 void rebuild()
27 {
28 Key *tmp = new Key[2*A_length];
29 for (int i = 0; i < N; i++)
30 tmp[i] = A[(i + lo) % A_length];
31 delete []A;
32 A_length = 2*A_length;
33 A = tmp;
34 lo = 0;
35 hi = N;
36 }
37 }

M. Begum et al.98

Appendix C. The Code in Python

Below is the Python version of the code from the Instrument for reference.

40 M. Begum et al.

C. The Code in Python

Below is the Python version of the code from the Instrument for reference.

1 class Y:
2

3 def __init__(self):
4 self.A = [None]
5 self.lo = 0
6 self.hi = 0
7 self.N = 0
8

9 def insert(self, input):
10 self.A[self.hi] = input
11 self.hi = self.hi + 1
12 if (self.hi == len(self.A)):
13 self.hi = 0
14 self.N = self.N + 1
15 if (self.N == len(self.A)):
16 self.rebuild()
17

18 def remove(self): # assumes self is not empty
19 output = self.A[self.lo]
20 self.A[self.lo] = None
21 self.lo = self.lo + 1
22 if (self.lo == len(self.A)):
23 self.lo = 0
24 self.N = self.N - 1
25 return output
26

27 def rebuild(self):
28 tmp = [None] * (2 * len(self.A))
29 for i in range(0, self.N):
30 tmp[i] = self.A[(i + self.lo) % len(self.A)]
31 self.A = tmp
32 self.lo = 0
33 self.hi = self.N

Empirical Evaluation of a Differentiated Assessment of Data Structures: ... 99

Appendix D. Overview of the Written Answers

Empirical Evaluation of a Differentiated Assessment of Data Structures 41

D. Overview of the Written Answers

0% 50% 100%

1: ADT

2: Size

3: Invariant

4a: Invalid state

4b: Trace rebuild

5: Trace insert + remove

6: Circularity

7: References

8: Complexity of remove

9: Worst-case

10: Complexity of sequence

11: Memory usage

13

14

13

11

4

14

4

9

17

12

5

13

18

21

23

17

6

20

5

16

25

20

7

17

Correct answers

All (28)
Interviewed (18)

Fig. 1. Overview of the correct answers to each of the questions (1–11). The number inside each bar refers to
the number of correct answers, while the length of each bar corresponds to the percentage of correct answers.
Question 11 was considered correct as long as the justification for the answer was correct.

Fig. 1. Overview of the correct answers to each of the questions (1–11). The number inside
each bar refers to the number of correct answers, while the length of each bar corresponds

to the percentage of correct answers. Question 11 was considered correct as long as the
justification for the answer was correct.

