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Abstract. In this paper, we present an activity to introduce the idea of public-key cryptogra-
phy and to make pre-service STEM teachers explore fundamental informatics and mathemati-
cal con cepts and methods. We follow the Theory of Didactical Situations within the Didactical 
Engineer ing methodology (both widely used in mathematics education research) to design and 
analyse a didactical situation about asymmetric cryptography using graphs. Following the phases 
of Didacti cal Engineering, after the preliminary analysis of the content, the constraints and con-
ditions of the teaching context, we conceived and analysed the situation a priori, with a particular 
focus on the milieu (the set of elements students can interact with) and on the choices for the 
didactical vari ables. We discuss their impact on the problem-solving strategies the participants 
need to elaborate to decrypt an encrypted message. We implemented our situation and collected 
qualitative data. We then analysed a posteriori the different strategies that participants used. The 
comparison of the a posteriori analysis with the a priori analysis showed the learning potential of 
the activity. To elabo rate on different problem-solving strategies, the participants need to explore 
and understand several concepts and methods from mathematics, informatics, and the frontier of 
the two disciplines, also moving between different semiotic registers. 

Keywords: public-key cryptography, unplugged activity, pre-service teacher training, didactical 
engineering, theory of didactical situations, interdisciplinarity, perfect dominating set. 
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1. Introduction 

In the last decade, the importance of introducing informatics1 in K-12 education has been 
strongly advocated (Wilson et al., 2010; CECE (The Committee on European Comput-
ing Education), 2017). Informatics should be recognised as a fundamental, independent 
scientific discipline to be taught to students, so they can understand the digital world we 
are immersed in and become active and informed citizens and, potentially, workers in 
the ever-increasing digital job market. 

However, in our increasingly complex and rapidly changing world, many criticise the 
traditional siloed teaching of disciplines in school and advocate a much more integrated, 
interdisciplinary teaching, particularly for the fundamental STEM (science, technology, 
engineering, and mathematics) fields (Millar, 2020). One difficulty in developing STEM 
activities at the secondary school level is the lack of training in this direction for teachers 
in the involved disciplines. 

In the context of the IDENTITIES Erasmus+ European Project, a larger project about 
interdisciplinarity in STEM education and pre-service teacher training, we developed 
a teaching activity on public-key cryptography. The activity was designed for teacher 
train ing and was tested during pre-service teacher training events. Furthermore, although 
not yet tested in that context, its content and organisation have the potential to be used by 
teachers for classroom activities and/or projects with high school students. 

The activity we developed has the objectives of teaching the big ideas and chal-
lenges of public-key cryptography and making participants interact with the interdis-
ciplinary ob jects (pertaining to informatics and mathematics) the activity contains. We 
chose to design a public-key cryptography activity (based on a computationally hard 
problem on graphs) for epistemological and didactical reasons. Epistemologically, in-
formatics and mathemat ics are deeply interconnected in the cryptography research 
field and discipline, and the activity, as we will see, can bring up many topics like 
algorithms, computational complex ity, graphs, matrices, and linear systems. Educa-
tionally, informatics and cryptography are well suited to provide adidacticity, which 
is the potential to enable learning independently of teacher interventions (see Subsec-
tions 2.2 and 3.2). 

For the content of our activity, we relied on a cryptosystem first described by Fellows 
and Koblitz (1994), based on the problem of finding a perfect dominating set in a ran-
dom graph. Bell et al. (2003, pp. 209–211) developed a CS Unplugged activity for high-
school students using that cryptosystem. We will use the same cryptosystem, although 
our design differs significantly from the original. 

To design the teaching activity we followed the Theory of Didactical Situa tions 
(Brousseau and Warfield, 2020) within Didactical Engineering (Artigue, 1994), a re-
search methodology widely used for decades in mathematics education research. The 
main objective is ‘the controlled design and experimentation of teaching sequences [...] 
adopting an internal mode of validation based on the comparison between the a priori 
and a posteriori analyses of these’ (Artigue, 2020). 

1 We use the term ‘informatics’ as a European synonym for computer science (CS) or computing.
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Section 2 presents our theoretical and methodological underpinnings: Didactical En-
gineering (2.1) and the Theory of Didactical Situations (2.2). 

The subsequent sections are organised according to the phases of the Didactical Engi-
neering research methodology. Section 3 presents the preliminary analysis of the current 
epistemological, institutional, and didactical context of interdisciplinary and cryptogra-
phy teaching. Section 4 details the chosen cryptosystem’s computational, mathemati-
cal, and didactical aspects, which are necessary to understand our activity. Section 5 
describes the research purposes of the study and the design of the situation. Section 6 
details the a priori analysis of the didactical variables and their impact on the differ-
ent problem-solving strategies and their relative interdisciplinary potential. Section 7 
describes the implemen tation of our situation and the data collected. Section 8 presents 
our a posteriori analysis in light of the a priori one. Section 9 discusses our results and 
gives concluding remarks. 

2. Methodology 

2.1. Didactical Engineering 

For this research, we chose the Didactical (or Didactic) Engineering (DE) methodol ogy 
(Artigue, 1994, 2020), which consists in designing and analysing (from an episte mological 
and a didactical point of view) a situation that is experimented with afterwards. DE is a 
qualitative research methodology proposed by Guy Brousseau in the early eight ies and 
successfully practised for research in didactics of mathematics for several decades. This 
methodology, which is centred on the conception, organisation, and study of class room 
realisations, was developed by French researchers in order to address both theoretical 
and practical aspects of the science of didactics that could not be captured by the existing 
methodologies adapted from other scientific fields such as psychology (questionnaires, 
interviews, and test comparisons). DE aims to build a constructive relationship between 
research and practice: didactical systems are considered in their concrete functioning, 
and as such, the researchers should take into account the conditions and constraints under 
which the teaching and learning process is done. DE has also been practised outside the 
community of mathematics education (for example, in physical sciences education) and 
has been used for teacher education and to test new pedagogical techniques. 

Starting from the content to be taught (in our case, public-key cryptography), the DE 
process is structured in four phases: 

The 1. preliminary analysis. This first phase clarifies the background for the next 
phase, i.e., for the conception and organisation of the didactical situation. It con-
sists of studying the mathematical (and informatics, in this case) content and the 
conditions of the teaching and learning process. This analysis is done in three 
different dimen sions. 

An institutional analysis of the constraints and conditions where the DE  ●
methodology will take place. These conditions and constraints can be of 
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dif ferent natures: curricular characteristics, teaching practices, technologi-
cal re sources available, evaluation practices, characteristics of the students 
and of the teachers involved, and so on. 
An epistemological analysis of the content. In this part, possible episte- ●
mologi cal issues that may be related to the content of the situation are 
identified. 
A didactical analysis which is mainly a survey of the existing research lit- ●
erature about teaching and learning the content of the situation. 

The 2. conception and a priori analysis. This second phase consists of modelling 
the situation and analysing its content and organisation within a theoretical di-
dactical framework – in our case, the Theory of Didactical Situations2 (explained 
later in 2.2). The conception and the analysis are closely related in the sense that 
the analysis helps revisit and adapt the conception in order to achieve the teach-
ing and learning objectives. 

Conception requires a number of choices that may concern different levels 
of organ isation and of disciplinary content. During the a priori analysis, these 
choices are made explicit, and their relation to the research hypothesis and to the 
preliminary analysis is clarified. These choices may concern the task itself, its 
content, but also the resources proposed to the students. The way these choices 
affect the possible strategies conducted by the students to solve the problem is 
discussed during the a priori analysis in order to reveal possible obstacles, inter-
actions and dynamics. The goal of the a priori analysis is not to predict individual 
student behaviour but to create a generic reference of the learning potential of 
the situation designed and its poten tial difficulties. This reference will be used 
afterwards to compare with classroom realisations. 
The 3. realisation, observation and data collection. During the implementation, the 
researchers collect data to be used for the a posteriori analysis. The data collected 
aim to understand the interactions of students with the milieu (the set of elements 
with which the student can interact, see Subsection 2.2) and to understand at 
what point the choices made help students move from initial (naive) strategies to 
more elaborate and complex strategies that involve potential learning. Usually, 
the data collected are observers’ notes, students’ productions and files, and audio 
or video recordings. The researchers are in the position of observers during the 
realisation phase. 
The 4. a posteriori analysis. The a posteriori analysis concerns the comparison 
of the data collected during the classroom realisation with the a priori analysis. 
What were the convergences and divergences, and what do they reveal? What 
were the interac tions that were not anticipated? How can we interpret the con-
trast with respect to the difficulties and the learning potential of the situation? 
Note that there will al ways be differences between the realisation and the a pri-
ori analysis because the a priori analysis considers an abstract generic student 

2 Other frameworks, like the Anthropological Theory of the Didactic (Chevallard and Bosch, 2020) are not 
discussed in this work. 
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behaviour which is, of course, never present during a real classroom implemen-
tation. As such, the validation of the research hypotheses does not require an 
exact match between the a priori and the a posteriori analysis. Nevertheless, the 
understanding of students’ activity is made possible because of the depth of the 
a priori analysis. 

In summary, according to DE methodology, the a priori analysis is compared with 
the a posteriori analysis of the experimentation. The validation of research hypotheses 
is internal, i.e., results from the epistemological conformity of a posteriori analysis with 
a priori analysis. Moreover, the a priori and a posteriori analyses develop in a circular 
process, where each experimentation can contribute to enriching and refining the a priori 
analysis. 

2.2. Theory of Didactical Situations 

For the development of this specific DE process, we rely on the Theory of Didactical 
Situations (Brousseau and Warfield, 2020). 

For our analysis, we use several concepts from the Theory of Didactical Situations: 
A  ● didactical variable is a variable of the problem or situation whose values influ-
ence the possibility or the hierarchy of strategies that students implement to solve 
the prob lem. Identifying the didactical variables and their effects and choosing 
their values according to the learning objectives is a crucial element of the a 
priori analysis. 
The  ● milieu, in the sense of the Theory of Didactical Situations, is the set of 
situations’ elements with which the student can interact. In response to stu-
dents’ actions, the milieu produces retroactions, allowing them to adjust their 
behaviour, modify their understanding of the problem, and adapt, i.e., learn. 
The analysis and organisation of a milieu, the possible actions, and the retroac-
tions that the milieu allows is a central element of a didactical situation and its 
a priori analysis. 
The  ● adidacticity of a situation is the potential of a situation and its milieu to en able 
learning independently of teacher interventions. In the Theory of Didactical Situa-
tions, adidacticity in learning is essential, mainly because it prevents specific side 
effects of the didactical contract (the implicit pact between students and teach ers 
(Brousseau et al., 2020)). 
For this learning potential to be realised, the teacher must transfer part of the  ●
respon sibility for solving the problem to the students. The devolution allows this 
transfer of responsibility (Brousseau and Warfield, 2020) and must be taken into 
account when designing a didactical situation. Conversely, institutionalisation is 
the teacher’s ac tivity that allows students to structure into more formal knowledge 
what they have learned from solving the problem. 

We rely on these concepts to design, organise and analyse the didactical situation 
pre sented in what follows. 
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3. Preliminary Analysis 

3.1. Institutional Analysis (Elements of Context) 

The didactical situation reported in this paper is part of a module on cryptography for 
prospective science teachers (who are the target learners for the module). The module 
is one of the outputs of the IDENTITIES European project involving five universi-
ties that aims to design novel teaching approaches to interdisciplinarity in science to 
innovate pre-service teacher education. The project developed and tested innovative 
teaching modules on interdisciplinary curricular topics (such as cryptography) to ex-
plore inter-multi-trans disciplinary knowledge organisations and to develop interdisci-
plinary classroom activities and new models of co-teaching. The teaching modules aim 
to highlight and question the identities of STEM disciplines through reflections on their 
epistemological and linguis tic structures, focusing on the interaction between physics, 
mathematics, and informatics. 

Each module must last about 6 hours. Its interdisciplinary content must be socially 
rele vant and potentially suitable for high school students as well. Indeed, the content 
must be understandable to high school teachers of STEM disciplines without discipline-
specific prerequisites. Module activities must be easy to understand for all the partici-
pants yet engaging and approachable in the given time. 

These interdisciplinary modules were implemented and tested twice in week-long 
training schools for student teachers. The first training school took place in 2021 and 
was held online because of the COVID-19 pandemic restrictions. This first remote 
im plementation of our cryptography module informed our design and helped us both 
refine the teaching activity and design an observation grid for researchers to use dur-
ing the im plementation. In this paper, we will focus on the analysis of the teaching 
activity and its implementation during the second training school, which took place in 
2022 in physical presence. Twenty-eight student teachers participated, five or six from 
each partner’s insti tution. They had a disciplinary background (bachelor’s or master’s 
degree) in informatics, mathematics, physics, or natural sciences, and experience or 
motivation in science educa tion3. The training school was held in English (which was 
not the native language of any of the participants). Each module was attended by about 
14 prospective teachers. 

Therefore, the institutional constraints for the design of our didactical situation 
were the following. (i) Three hours (out of six) available for the didactical situation 
during the module. (ii) Fourteen participating student teachers with different disci-
plinary and linguistic backgrounds. (iii) No specific disciplinary prerequisites of the 
participants could be assumed. (iv) Participants could use PCs and tablets, and Internet 
access was provided. 

3 The participants had to be enrolled in a master’s program (or equivalent course, depending on the national 
regulations) to become high-school teachers in STEM disciplines. 
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3.2. Epistemological and Didactical Analysis 

The incredibly rapid development of our digital society has widened the gap between 
what is taught in schools and what students experience in daily life. One of the most 
significant causes may be the rigid discipline-based organisation of the school cur-
riculum (Miani, 2021). STEM movement tries to answer this challenge by proposing 
the integration of science, technology, engineering, and mathematics in an interdisci-
plinary and applied ap proach that deals with real-world problems and problem-based 
learning. According to the movement, these subjects do not exist in isolation in the real 
world, and therefore they should not be taught separately (STEM Task Force, 2014, 
p. 11). However, the ‘tradi tional siloed subject teaching of STEM’ is far from being 
overcome. Many challenges are still to be tackled, like ‘inadequate teacher knowledge 
incorporating all STEM fields, and the lack of materials and instructional and assess-
ment support and guidance’. Moreover, teachers ‘struggle to make connections across 
the STEM disciplines [...and] expressed difficulty in using frameworks from other dis-
ciplines[...] and felt [...not] able to impart meaningful learning’ (Miani, 2021). Also, it 
is still fundamental to value the specific char acteristics, methods, and ways of thinking 
of the different disciplines in order for a fruitful interdisciplinary interaction (Barelli 
et al., 2022). 

In this paper, we focus on the interdisciplinarity between informatics and mathemat-
ics. The disciplines have ‘strong links and a common history’, sharing common founda-
tions, ‘fields developing at their interface’, and ‘a very similar relation to other sciences 
through modelling and simulation’ (Modeste, 2016, pp. 243–244). Cryptography is one 
of the fields that is developing at the interface of informatics and mathematics (Mod-
este, 2016), and therefore it is a good candidate for our activity. 

The Cybersecurity Curricula 2017 (Joint Task Force on Cybersecurity Educa-
tion, 2018) gathers guidelines for graduate programs in cybersecurity and indicates 
cryptog raphy as necessary to lay the foundation for subsequent learning. Suggested 
content in cludes basic cryptography concepts, the necessary mathematical background, 
and sym metric and asymmetric cyphers; recommended methodologies include con-
crete encryp tion and decryption activities. Similar indications are also found in pre-
university (K-12) informatics education standards from CSTA (CSTA, 2017), which 
also recommend un plugged hands-on activities. However, a review of ACM education 
conferences between 2010 and 2019 (Švábenský et al., 2020) shows that most publica-
tions on informatics edu cation investigate cybersecurity learning, where cryptography 
is seen as only one of many topics (e.g., Sommers, 2010; Turner et al., 2011; Brown 
et al., 2012; Deshpande et al., 2019) and often viewed only from a technical and in-
strumental perspective rather than for its fundamental principles and social implica-
tions. Nevertheless, some significant in dications emerge from a review of the works 
that deal specifically with cryptography in school settings. First, hands-on, cooperative, 
and inquiry-based activities can improve stu dents’ self-efficacy and problem-solving 
skills (Konak, 2018). In addition, the use of di dactical tools (e.g., Simms and Chi, 
2011; Schweitzer and Brown, 2009; Ma et al., 2016; Anane and Alshammari, 2020) to 
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visualise and simulate how cryptosystems work, their weaknesses, and possible attacks, 
is recurrent. However, such tools are often too rich in technical details for novices and 
nonspecialist students; furthermore, their interactivity is limited to changing some pa-
rameters of the simulations. Some authors have proposed and implemented unplugged 
activities in which students experience encryption and decryption algorithms, proto-
cols, and attacks at a high level and without computers (e.g., Bell et al., 2003; Konak, 
2014; Fees et al., 2018; Rosamond, 2018). These activities use simple ob jects (e.g., 
scissors, maps, padlocks) and concrete actions (e.g., cutting out paper, mixing colours). 
Rosamond (2018) describes two unplugged cryptography enrichment activities: one 
based on covering a directed graph with vertex disjoint cycles and one based on per fect 
codes or perfect dominating sets. As anticipated, the latter was introduced by Bell et al. 
(2003): in the activity, a one-way function is simulated by constructing a graph with 
a perfect dominating set (i.e., a particular subset of the graph nodes). Such a graph is 
the base for a cryptosystem that uses elementary arithmetic computations to encrypt a 
num ber. This is the basis of our didactical situation and is explained in detail later as 
such (see Section 4). 

Communicating in secret and trying to decrypt messages without knowing the key is 
engaging and motivating for students (Lindmeier and Mühling, 2020). Moreover, crypt-
analysis has an inherent potential for adidacticity, that is, the potential for learning with 
a strong autonomy left to students’ interactions with the problem. Indeed, if one is trying 
to find the secret key of a cryptosystem (where encryption and decryption algorithms are 
public), the supposed key can be tested by decrypting the messages that have been en-
crypted with that key and see if the result is the original plaintext message4. Considering 
these two aspects of cryptography, we have organised a didactical situation based on a 
public-key cryptosystem. Based on bibliographic research and the analysis of several 
pro posals, we chose a cryptographic system based on a graph theory problem: the ex-
istence of a perfect dominating set on a graph. The choice was guided by the need for 
the activity to be understandable by students with no informatics or cryptography back-
ground and to involve interdisciplinary objects like graphs. 

In the following, we give some definitions and formalise the cryptosystem. 

4. A Public-key Cryptosystem Using Perfect Dominating Sets on Graphs 

In an encryption scheme, we assume two individuals communicate on a public channel. 
In order to ensure the confidentiality of their communication, the parties use an encryp-
tion algorithm to transform a plaintext message into an encrypted message (a cipher-
text). The security of this process is based on (one or several) keys, allowing both parties 
to encrypt and decrypt messages. There are two types of cryptosystems: symmetric (or 
secret-key) and asymmetric (or public-key). In a symmetric cryptosystem, the encryp-

4 Analogously, in computer programming, students can autonomously test their program and check if it works 
by comparing the desired and actual result of the computation without waiting for teacher’s validation.
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tion and decryp tion key is the same. In an asymmetric cryptosystem, the encryption key 
(public key) and the decryption key (private key) are different. 

In our work, we will focus on public-key cryptosystems. The main elements of a 
public-key encryption scheme5 are: a key generation algorithm Gen that generates a 
pair of keys (pk, sk), i.e., a public key and a private (or secret) key for each user; an 
encryption al gorithm Enc that, given the pk of the receiver and a plaintext message m, 
outputs a ci phertext message c = Encpk(m); a decryption algorithm Dec that, given the 
receiver’s private key sk and a ciphertext c, outputs a plaintext m = Decsk(c) identical 
to the plain text encrypted with the public key pk. Both functions Enc and Dec should be 
easy (that is, efficient) to compute if the keys pk and sk, respectively, are available. The 
security of the scheme depends on the difficulty (that is, the computational complexity) 
of computing the function Dec without knowing the private key sk. 

Fellows and Koblitz (1994) proposed an asymmetric cryptosystem based on a dif-
ficult problem: the Perfect Dominating Set (PDS) problem. 

Let a graph G = (V, E) with V the set of vertices and E the set of edges. A (closed) 
neighbourhood of a vertex u ∈ V is the set N[u] = {v ∈ V | uv ∈ E} ∪ {u}, of vertices 
of V adjacent to u as well as u (in other words, all vertices of distance ⩽ 1 from u). A 
dominating set of G is a subset of vertices S ⊆ V such that every vertex of V is included 
in the neighbourhood of a vertex of S. If S is a dominating set of G = (V, E), then 
every vertex of V is a neighbour to at least one vertex of S, or it belongs to S. If each 
vertex of V is included in exactly one neighbourhood of a vertex of S, then S is said 
to be a perfect code, often referred to also as perfect dominating set (noted PDS in the 
following). Fig. 1 gives an example of a graph with a PDS. 

A useful result is that if a graph has more than one PDS, they all have the same size 
(Klostermeyer, 2015, p.106). 

5 For a formal definition, see for example Katz and Lindell (2007, p. 366) 
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Fig. 1. {I,K, F} is a PDS of this graph.

vertex of V is included in exactly one neighbourhood of a vertex of S, then S is said
to be a perfect code, often referred to also as perfect dominating set (noted PDS in the
following). Figure 1 gives an example of a graph with a PDS.

A useful result is that if a graph has more than one PDS, they all have the same
size (Klostermeyer, 2015, p.106).

Thus, the PDS problem is the following (Fellows and Hoover, 1991; Haynes et al.,
2013):

PDS P������

Input: A graph G = (V,E)

Output: A PDS of G (if one exists)

In general, deciding whether there exists a PDS in a given graph is an NP-complete
decision problem (Klostermeyer, 2015, p. 107), and therefore finding a PDS in a given
graph (our PDS P������) is a NP-hard problem7.

7We summarise here, in an informal way, the most relevant ideas. NP-completeness is a vast topic in the
study of the computational complexity of problems: for a formal introduction, we suggest Cormen et al. (2022,
ch. 34).

We say a problem is in the set P if we can solve it in polynomial time with respect to the input size (i.e., it
can be solved in O(nk) time for some constant k, with n the input size).

We say a problem is in NP if we can verify a solution (or, more formally, a solution ‘certificate’) in poly-
nomial time with respect to the input size. Intuitively, P ⊆ NP, but whether P = NP or P = NP is one of the
most famous, relevant and open questions of Informatics.

We focus on a particular set of NP problems: the NP-complete problems. These problems are considered
‘the most difficult NP problems’ because if we find a polynomial-time solution for one of them, then we can
solve all the NP problems in polynomial time. NP-complete problems include relevant problems for today’s
world. Still, unfortunately, no one has ever found a polynomial solution for any of them, nor has it been proven
that such a polynomial solution cannot exist.

Fig. 1. {I, K, F } is a PDS of this graph. 
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Thus, the PDS problem is the following (Fellows and Hoover, 1991; Haynes et al., 
2013): 

PDS Problem
Input:
Output:

A graph G =(V, E) 

A PDS of G (if one exists) 

In general, deciding whether there exists a PDS in a given graph is an NP-complete 
decision problem (Klostermeyer, 2015, p. 107), and therefore finding a PDS in a given 
graph (our PDS Problem) is a NP-hard problem6. 

This means that we only know algorithms that take exponential time with respect to 
the number of nodes, and we don’t know if we will ever be able to do better than that. As 
we will explain, we can use this feature to design a cryptosystem. 

For our didactical situation, we used an instance of the PDS problem, i.e., we have 
constructed a graph with a PDS. The choice of this graph is important, as will be ex-
plained later. 

Using the PDS problem, we can design a cryptosystem based on the following two 
facts: 

Given a set of vertices, we can easily construct a graph whose PDS will be this  ●
set of vertices. 
Given a graph containing a PDS, it is difficult to find the PDS if we only know  ●
the graph. 

The PDS cryptosystem is the following: Alice and Bob want to communicate confiden-
tially. Bob wants to send a message m (in this case, m is an integer) to Alice. They use 
the following encryption protocol: 

Alice builds a graph 1. G = (V, E) with a PDS S. The graph G is Alice’s public key, 
and the PDS S is Alice’s private key. Let V = {v1, v2, ...vk}. 

6 We summarise here, in an informal way, the most relevant ideas. NP-completeness is a vast topic in the 
study of the computational complexity of problems: for a formal introduction, we suggest Cormen et al. 
(2022, ch. 34). 

We say a problem is in the set P if we can solve it in polynomial time with respect to the input size (i.e., 
it can be solved in O(nk) time for some constant k, with n the input size). 

We say a problem is in NP if we can verify a solution (or, more formally, a solution ‘certificate’) in 
poly nomial time with respect to the input size. Intuitively, P ⊆ NP, but whether P = NP or P ≠ NP is one 
of the most famous, relevant and open questions of Informatics. 

We focus on a particular set of NP problems: the NP-complete problems. These problems are consid-
ered ‘the most difficult NP problems’ because if we find a polynomial-time solution for one of them, then 
we can solve all the NP problems in polynomial time. NP-complete problems include relevant problems 
for today’s world. Still, unfortunately, no one has ever found a polynomial solution for any of them, nor 
has it been proven that such a polynomial solution cannot exist. 

Formally, the NP-complete set includes only decision problems, i.e. those problems whose output is 
either a ‘yes’ or a ‘no’. For example, as said, determining whether a graph has a PDS is an NP-complete 
problem. Since we are interested here in the complexity of finding an actual instance of that PDS, we are 
not dealing with a decision problem. Still, it should be easy to convince yourself that our problem is at 
least as hard as the decision problem. Therefore, we say that finding a PDS on a given graph (our PDS 
problem) is NP-hard. 
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Bob chooses integers 2. m1, m2, ..., mk such that m1 + m2 + ... + mk
 = m. 

Bob writes on each vertex 3. vi of V an mi. We call mi the secret value of the ver-
tex vi. 
For each vertex 4. vi, Bob sums its secret value with the secret values of its neigh-
bours. This new value pi is called the public value of the vertex vi. 
Bob writes on each vertex its public value and erases the secret values. The en-5. 
crypted message is the graph G with the public values. 

Fig. 2 gives an example of a graph with its public and secret values. 
To decrypt the message, Alice computes the sum of the values on the vertices of the 

PDS (Alice knows the PDS because it is her private key). Note that the graph G (public 
key) and the encrypted message (graph G with public values) can circulate without an 
eavesdropper being able to read the plaintext message (a priori). Note also that if the 
graph has several PDS, then any PDS can be used for decryption7. 

The security of the system is based on the fact that it is (NP-)hard to find the PDS 
given the graph. Of course, the PDS cryptosystem is only ‘didactically secure’ because 
simple algebraic attacks are possible (Fellows and Koblitz, 1994), as we will see. 

As said, the PDS cryptosystem was first presented by Fellows and Koblitz (1994), 
and an unplugged activity based on it has been included in the Classic CS Unplugged 
(Bell et al., 2003, 2015). 

7 Note that proving that decryption is correct does not use the uniqueness of the PDS. The public value of 
a node v in (any) PDS is the sum of the secret values of the ‘stars’ (see Fig. 3) whose centre is v. Since 
every node of the graph is connected to exactly one node of a PDS by definition, summing up the public 
values of all the nodes of a PDS will result exactly in the sum of all the secret values.
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Fig. 2. Example of an encrypted message using a graph G. Secret values in orange (left of the node) and public
values in blue (right of the node). The plaintext message m is the sum of the secret values (m = 19).

5. Conception

5.1. Research purposes

As explained above, this research was developed inside a European project whose more
general goal is to create innovative teaching modules for pre-service teacher training about
interdisciplinarity in STEM fields (with a particular focus on links and interactions be-
tween physics, mathematics, and informatics).

In that context, we designed, implemented, and analysed a didactical situation for pre-
service STEM teachers to introduce the idea of public-key cryptography and make them
explore fundamental informatics and mathematical concepts and methods.

For this work, the research purposes are, therefore, the following:
RP1 Examine the different strategies (analysed both a priori and a posteriori, after an ac-

tual implementation) that student teachers will adopt to decrypt a message starting
from different information at their disposal (access to information is the main didac-
tical variable of the situation, see Subsection 6.2).

RP2 Examine how student teachers will interact with different disciplinary and interdis-
ciplinary objects like matrices and graphs, using methods and practices from math-
ematics and informatics, moving between different semiotic representations9.

As said, the cryptosystem is already known (Fellows and Koblitz, 1994) and used for
didactic purposes (Bell et al., 2003, 2015). However, the novelty of our approach was to

9Intuitively, the theory of registers of semiotic representation (Duval, 1995, 2017) is based on the fact
that ‘there are as many different semiotic representations of the same mathematical object as semiotic registers
utilised’ (Pino-Fan et al., 2015).

Fig. 2. Example of an encrypted message using a graph G. Secret values in orange (left of 
the node) and public values in blue (right of the node). The plaintext message m is the sum 

of the secret values (m = 19).
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5. Conception 

5.1. Research Purposes 

As explained above, this research was developed inside a European project whose more 
general goal is to create innovative teaching modules for pre-service teacher training 
about interdisciplinarity in STEM fields (with a particular focus on links and interactions 
be tween physics, mathematics, and informatics). 

In that context, we designed, implemented, and analysed a didactical situation for 
pre-service STEM teachers to introduce the idea of public-key cryptography and make 
them explore fundamental informatics and mathematical concepts and methods. 

For this work, the research purposes are, therefore, the following: 
RP1 Examine the different strategies (analysed both a priori and a posteriori, after 

an ac tual implementation) that student teachers will adopt to decrypt a message 
starting from different information at their disposal (access to information is the 
main didac tical variable of the situation, see Subsection 6.2). 

RP2 Examine how student teachers will interact with different disciplinary and 
interdis ciplinary objects like matrices and graphs, using methods and practices 
from math ematics and informatics, moving between different semiotic 
representations8. 

As said, the cryptosystem is already known (Fellows and Koblitz, 1994) and used 
for didactic purposes (Bell et al., 2003, 2015). However, the novelty of our approach 
was to embed this problem in a didactical situation (in Brousseau’s meaning), devel-
oped and im plemented within the methodological framework of didactic engineering, 
aiming at foster ing the interdisciplinarity of mathematics and informatics. Our contri-
bution is the precise organisation of its milieu and the analysis of the didactical vari-
ables that come into play, together with specific choices for their values. Moreover, we 
propose an implementation in teacher training that takes into account the strengths of 
the PDS problem. 

During the didactical situation, the participants are given a problem (to decipher a 
message) that is not broken down into simpler tasks. Because of this fact (and because of 
the careful choices of the didactical variables), the participants need to elaborate specific 
strategies in order to address the problem. These strategies (explained in the next sec-
tion) require the use and understanding of several concepts and methods from mathemat-
ics and informatics and sometimes the change of semiotic registers. 

In what follows, we describe the choices of the didactical variables and the resulting 
strategies, underlining the concepts and the methods involved. 

The more general research purpose of examining this activity’s learning potential 
and impact on related disciplinary and interdisciplinary concepts is left for future work. 

8 Intuitively, the theory of registers of semiotic representation (Duval, 1995, 2017) is based on the fact that 
‘there are as many different semiotic representations of the same mathematical object as semiotic registers 
utilised’ (Pino-Fan et al., 2015). 
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5.2. The Didactical Situation 

The objectives of the didactical situation are the following: 
Introduce some general concepts and terminology of cryptography (plaintext and  ●
en crypted message, encryption and decryption algorithms, key, attack models, 
private and public keys, difficult-to-reverse problem, one-way function, and so 
on) and make students understand and explore the principles and issues of public-
key cryptography. 
Make students explore and interact with mathematical and informatics concepts  ●
and objects on the boundary of the two disciplines (such as graphs, algorithms, 
and ma trices). 

The didactical situation is organised as follows: 

Step 1: Encryption. We explain the encryption algorithm to the participants by means of 
a graph G (the public key). We do not introduce or explain the notion of PDS (it is not 
needed to encrypt a message). We do not say that G has a PDS either. 

Step 2: Cryptanalysis. The participants are divided into three groups. All the groups are 
given the same encrypted message (i.e., graph G with public values on it) and asked to 
decrypt it. Each group is given different information to solve the problem. 

Group A is given the definition of PDS and the (unique) PDS for the given  ●
graph G. We do not explain the decryption algorithm. Group A is in the position 
of a cryp tographic engineer who has all the mathematical elements available and 
needs to combine them to design a public-key cryptosystem. 
Group B is given the definition of PDS and the decryption algorithm (which uses  ●
the PDS). They do not know the PDS for graph G. Group B is in the position of 
a cryptanalyst carrying out a person-in-the-middle attack; that is, the attacker has 
knowledge of the public-key cryptosystem but does not know the private key. 
Group C has no information other than the encrypted message itself. Group C does  ●
not know the decryption algorithm. There is also no reference to the existence of a 
PDS. Group C is in the position of a cryptanalyst trying to find the plaintext mes-
sage without necessarily finding the private key. 

All groups can independently check whether they have decrypted the message cor-
rectly. 

6. A Priori Analysis 

6.1. A Priori Analysis Elements 

In the following, we schematically describe strategies that the groups can use to de-
crypt the message given their available information. Note that students work on a 
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graph that is larger than the previous examples, as discussed in Subsection 6.2 and 
shown in Fig. 4. 

6.1.1. Group A 

Available Information. The definition of PDS and the (unique) PDS for the given graph 
G. Note that group A is not given any elements on how to use the PDS to decrypt: their 
goal is to find by themselves the decryption algorithm using the PDS. 

Strategy. Identify the neighbourhoods of all vertices that belong to the given PDS. 
Then observe that the intersection of these neighbourhoods is empty and that the union 
of these neighbourhoods covers the graph G. The neighbourhoods can be represented 
as lists of vertices or graphically as ‘stars’ on the graph (see Fig. 3). By construction of 
the cryp tosystem, the public value of each vertex is the sum of the secret values of its 
neighbour hood. Thus, the sum of the public values of the vertices of the PDS is equal to 
the sum of the secret values of all the nodes, which is the plaintext message. 

The definition of PDS is expressed using terminology from set theory. In order to 
elaborate this strategy, group A needs to interpret this definition on the graphical rep-
resentation of the graph and make the connection with the encryption procedure. More 
precisely, they need to deduct what the perfect domination property means for the public 
values of the nodes. This procedure is not trivial and requires an intuitive understand-
ing of the proof of correctness of the cryptosystem. This way, group A has the potential 
to ex plore the central idea of such proof, i.e., the decryption of an encrypted message 
returns the plaintext message Decsk(Encpk(m)) = m. This can be the object of a formu-
lation phase consisting of making the decryption algorithm explicit and of a validation 
phase of proving the encryption’s correctness. 
14 E.-I. Bartzia et al.

Fig. 3. We can visualise the ‘stars’ with the PDS nodes as centres, showing that each node is directly connected
to exactly one node of the PDS.

noted on its vertices). Group B is thus confronted with an instance of the difficult problem
of finding a PDS in a graph.

Strategies. We describe three possible general strategies for this group. These strategies
are interesting because they use different semiotic registers (Duval, 1995, 2017): the graph
representation, the lists of vertices, and the adjacency matrix of the graph. These three
strategies amount to a structured, exhaustive search of the subsets of vertices to find a
PDS that is known to exist. This search can be done in an organised and structured way
(algorithm) or in a more heuristic way, based on the same principles.

Strategy 1: Finding stars in the graph. Let a graph G = (V,E) and let S be a PDS of
G. This strategy is based on the following ideas:
• Let v be a vertex of V . By the definition of the PDS, in the neighbourhood N [v],

there exists exactly one vertex that belongs to S. Thus, if v vertex is not in S, then
exactly one of its neighbours is in S.

• If a vertex u belongs to S, then (a) the neighbouring vertices of u do not belong to
S, and (b) for any neighbour u of u, the neighbouring vertices of u do not belong
to S either (otherwise u would be linked to two vertices that belong to S). Thus, if
we find a vertex of S, we can deduce that its neighbours and the neighbours of its
neighbours are not in S.

Informally, we add step-by-step vertices in a set S in order to find a PDS. When we
do not succeed, we backtrack to the choices of vertices made to continue the exploration
of potential PDS. In informatics, backtracking is a ‘systematic way to run through all the
possible configurations of a search space’. It is relevant especially when ‘we must generate
each possible configuration exactly once’ (Skiena, 2020, p. 281). Intuitively, we build a

Fig. 3. We can visualise the ‘stars’ with the PDS nodes as centres, showing  
that each node is directly connected to exactly one node of the PDS.
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6.1.2. Group B 

Available information. The definition of PDS and the decryption algorithm (which 
uses the PDS). Group B knows that there is a PDS in graph G, but they do not know 
which nodes are the PDS on that specific graph. This incites the group to try to find the 
private key (the PDS) using the encrypted message and the public key (G with the public 
values noted on its vertices). Group B is thus confronted with an instance of the difficult 
problem of finding a PDS in a graph. 

Strategies. We describe three possible general strategies for this group. These strate-
gies are interesting because they use different semiotic registers (Duval, 1995, 2017): the 
graph representation, the lists of vertices, and the adjacency matrix of the graph. These 
three strategies amount to a structured, exhaustive search of the subsets of vertices to 
find a PDS that is known to exist. This search can be done in an organised and structured 
way (algorithm) or in a more heuristic way, based on the same principles. 

Strategy 1: Finding stars in the graph. Let a graph G =(V, E) and let S be a PDS of 
G. This strategy is based on the following ideas: 

Let  ● v be a vertex of V. By the definition of the PDS, in the neighbourhood N[v], 
there exists exactly one vertex that belongs to S. Thus, if v vertex is not in S, then 
exactly one of its neighbours is in S. 
If a vertex  ● u belongs to S, then (a) the neighbouring vertices of u do not belong to 
S, and (b) for any neighbour u′ of u, the neighbouring vertices of u′ do not belong 
to S either (otherwise u′ would be linked to two vertices that belong to S). Thus, 
if we find a vertex of S, we can deduce that its neighbours and the neighbours of 
its neighbours are not in S. 

Informally, we add step-by-step vertices in a set S in order to find a PDS. When we 
do not succeed, we backtrack to the choices of vertices made to continue the exploration 
of potential PDS. In informatics, backtracking is a ‘systematic way to run through all 
the possible configurations of a search space’. It is relevant especially when ‘we must 
generate each possible configuration exactly once’ (Skiena, 2020, p. 281). Intuitively, we 
build a solution incrementally, and when we reach a partial solution that cannot become 
a correct solution anymore, we abandon the path and backtrack to explore other paths. 

Elaborating this strategy first requires understanding the definition of a PDS (which 
is expressed symbolically in set theory language) and then interpreting the definition 
on the graphical representation of the graph (by drawing subgraphs as stars, see Fig. 3). 
Systematising the steps of the algorithm requires an intuitive understanding of both the 
properties of domination and perfect domination and the idea of backtracking. 

In Algorithm 1, we provide a more formal description of this strategy. Note that, al-
though more rigorous, it is still informal in some operations. 

In a heuristic approach to the above strategy, we start with a vertex v of a small de-
gree to deal with a small number of starting cases. 

Strategy 2: Lists. Let G be a graph and S a PDS of G. For each vertex of G, we 
write its neighbourhood as a list. We then study these lists in order to find a set of lists 
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whose intersection is empty and whose union covers the graph G. The basic idea of 
this strategy is that each vertex of the graph G belongs to exactly one neighbourhood 
of a vertex of S. 

Informally, the idea is to incrementally build a collection L of lists i, such that the 
intersection of the i ∈ L is empty, while their union contains all the vertices of G. 

More rigorously, we formalised this strategy in Algorithm 2, where L is a LIFO 
stack since the first element removed is always the last one added. In informatics, a 
stack is a collection of elements that implements the LIFO (last-in, first-out) policy: 

Algorithm 1  Finding stars in the graph

S ← {}
Choose a vertex v, with neighbourhood N[v] 

⊳ We are sure that v or one of its neighbours is in the PDS 
while True do 
    Choose t ∈ N[v] 

    Add t to S 

    repeat 
        Mark red all nodes in N[t] 

⊳ A previous green may be overridden with red, if necessary 
        Mark green any non-red neighbour of neighbours of t 

⊳ i.e. the non red nodes in N[x] for all x ∈ N[t] 

        if there is an uncoloured vertex w connected to a green vertex then 
⊳ Backtracking point 

            Choose such w and add it to S 

            t ← w 

            Done ← False 
        else 
            Done ← True 
        end if 
    until Done or S is aPDS 
    if S is a PDS then 
        return S 

    else if backtracking is possible then 
⊳ i.e. if we may choose some other vertex at one backtracking point 

        Backtrack (undoing the colouring and the additions to S) to the last possible 
backtracking point 
        Choose a different w and start again from there 
    else 
        Remove all the colouring                 ⊳ We want to iterate again with a new t
        Remove t from N[v] 

        S ← {} 
    end if 
end while 
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like in a pile of plates, you can only push a new plate on top of the stack, or pop the 
plate on the top of the pile. Therefore, the ‘order in which plates are popped from the 
stack is the reverse of the order in which they were pushed onto the stack, since only 
the top plate is accessi ble’ (Cormen et al., 2022, p. 254): the last plate you pushed in is 
the first you pop out. 

Elaborating this strategy requires understanding the domination and perfect domina-
tion properties, expressing these properties using lists, and also an intuitive understand-
ing of a LIFO stack (even if it is not necessarily recognised as such). 

Strategy 3: Adjacency matrix of the graph. This strategy consists in writing the adja-
cency matrix of the graph G and in selecting a set of rows whose sum is a row of 1. 
Indeed, in the adjacency matrix, for a vertex i, in the corresponding row li = [ai1, ai2..., 
ain] the coefficients aij = 1 if the vertices j and i are connected and 0 otherwise. Note 
that here aii = 1 for every vertex i (because, in the PDS definition, we are considering 
closed neighbourhoods). Thus, if we find a set of rows whose sum equals [1, 1, ..., 1], 
the vertices corresponding to these lines constitute a PDS (because each vertex of G is 
adjacent to exactly one of the chosen vertices). 

The idea of strategy 3 is very close to that of strategy 2. Still, the register of represen-
tation is different: on the same scheme as algorithm 2, we go through the set of rows 
of the matrix, including or excluding rows, to find a subset of rows whose sum equals 
[1, 1, ..., 1]. 

Elaborating this strategy requires, once again, understanding the properties of the 
PDS definition and expressing these properties using the adjacency matrix. 

Algorithm 2  Merging lists

V ← the set of vertices of G                     ⊳ Vertices are enumerated starting from 1
for all vi ∈ V do   
    i ← N[vi] as a list 
end for 
L ← emptystack              ⊳ L is a LIFO stack; any item in L is a list i

k ← 0
while 

S
 L ≠ V do  

     
⊳ 

S
 L is the union of all the lists i in L 

    if there exists i > k such that (
S

 L) ∩ i = ∅ then 
        Let i be the min index that satisfies the condition 
        Push i onto L 

        k ← i 
    else 
        Pop (remove) the top item gj from L 

        k ← j 
    end if 
end while 
return the set {vi : i ∈ L} (that is a PDS) 
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6.1.3. Group C 

Available information. No information other than the encrypted message. Group C 
only knows the encryption algorithm and does not know that a PDS exists in the graph 
nor how it can be used to decrypt. This group is asked (implicitly) to search for possible 
flaws in the cryptosystem without necessarily searching for the private key. 

Strategy. Starting from the encrypted message, we form a linear system as follows: for 
each vertex v, of public value pv and neighbourhood N[v] = [v, v1, ...vk], we write the 
equation xv + xv1 + ... + xvk = pv where xi is the secret value of vertex i. This equa tion 
translates the encryption step that allowed passing from private values to public val ues. 
We thus build a system of linear equations with as many equations and unknowns as 
there are vertices in G. The solution of the linear system is the tuple of all secret values 
[x1, x2, ..., xn], whose sum is the plaintext message m. 

The linear system can be formed using the adjacency matrix of the graph G or by 
writing the linear equations for each vertex. We highlight that, in this activity, there is 
a correspondence between the adjacency matrix (one of the standard ways to represent 
the graph data structure in informatics (Cormen et al., 2022, p. 549)) and the matrix 
equation that can be used to solve the linear system associated with the encrypted 
message on the graph. For example, the graph in Fig. 1 can be represented by the 
following adjacency matrix (note that, as said, the diagonal is all 1s because, even if 
edges from each node to itself are not drawn, each node is a neighbour of itself in the 
PDS definition) 

A B C D E F G H I J K L M 
A 1 0 0 0 0 0 0 1 1 0 0 0 1 
B 0 1 0 0 0 1 1 0 0 0 0 1 0 
C 0 0 1 1 0 0 0 0 0 1 1 0 0 
D 0 0 1 1 0 0 0 1 1 0 0 0 0 
E 0 0 0 0 1 1 1 0 0 1 0 0 0 
F 0 1 0 0 1 1 0 0 0 0 0 0 1 
G 0 1 0 0 1 0 1 0 0 0 1 0 0 
H 1 0 0 1 0 0 0 1 0 0 1 0 0 
I 1 0 0 1 0 0 0 0 1 1 0 0 0 
J 0 0 1 0 1 0 0 0 1 1 0 0 0 
K 0 0 1 0 0 0 1 1 0 0 1 1 0 
L 0 1 0 0 0 0 0 0 0 0 1 1 1 
M 1 0 0 0 0 1 0 0 0 0 0 1 1 

which is exactly the matrix A in the matrix equation Ax = b (that represents the linear 
system of equations that can be used to find the secret values given the public values on 
the graph) where 
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A B C D E F G H I J K L M

A 1 0 0 0 0 0 0 1 1 0 0 0 1

B 0 1 0 0 0 1 1 0 0 0 0 1 0

C 0 0 1 1 0 0 0 0 0 1 1 0 0

D 0 0 1 1 0 0 0 1 1 0 0 0 0

E 0 0 0 0 1 1 1 0 0 1 0 0 0

F 0 1 0 0 1 1 0 0 0 0 0 0 1

G 0 1 0 0 1 0 1 0 0 0 1 0 0

H 1 0 0 1 0 0 0 1 0 0 1 0 0

I 1 0 0 1 0 0 0 0 1 1 0 0 0

J 0 0 1 0 1 0 0 0 1 1 0 0 0

K 0 0 1 0 0 0 1 1 0 0 1 1 0

L 0 1 0 0 0 0 0 0 0 0 1 1 1

M 1 0 0 0 0 1 0 0 0 0 0 1 1

which is exactly the matrix A in the matrix equation Ax = b (that represents the linear
system of equations that can be used to find the secret values given the public values on
the graph) where

A =




1 0 0 0 0 0 0 1 1 0 0 0 1
0 1 0 0 0 1 1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 1
0 1 0 0 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 1 0 0 1 1 0
0 1 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0 0 0 0 1 1




x =




A
B
C
D
E
F
G
H
I
J
K
L
M




b =




5
8
4
4
12
11
10
3
5
6
3
5
2



.

Groups A and B can also be tempted to use linear systems too (even if, for group A,
this means not using the private key, which is available).

Unfolding this strategy requires interpreting the cryptosystem as a linear system and
examining its solution. Note that the solution to the problem does not necessitate the so-
lution of the linear system but just finding the sum of all secret values; this can be done by
finding the rows corresponding to the PDS nodes (for example, using the third strategy of
group B). The concepts that come into play when elaborating this strategy are matrices,
linear systems and their solution, and also the correspondence of the adjacency matrix
with the system’s matrix.

6.2. Didactical variables

In this section, we identify the didactical variables of the situation and the potential ef-
fects of their values on the solving strategies. This will allow us to select relevant val-
ues in relation to our learning objectives for teachers and their presumed prior knowl-
edge. These variables have been identified through the study of the problem itself and
pre-experimented with volunteer students.
Access to information. In our didactical situation, the main didactical variable is the

access to information which differs for the three groups. We have analysed in the pre-
vious section the possible strategies that correspond to different values of this variable.

Groups A and B can also be tempted to use linear systems too (even if, for group A, 
this means not using the private key, which is available). 

Unfolding this strategy requires interpreting the cryptosystem as a linear system and 
examining its solution. Note that the solution to the problem does not necessitate the 
so lution of the linear system but just finding the sum of all secret values; this can be 
done by finding the rows corresponding to the PDS nodes (for example, using the third 
strategy of group B). The concepts that come into play when elaborating this strategy are 
matrices, linear systems and their solution, and also the correspondence of the adjacency 
matrix with the system’s matrix. 

6.2. Didactical Variables 

In this section, we identify the didactical variables of the situation and the potential ef-
fects of their values on the solving strategies. This will allow us to select relevant val ues 
in relation to our learning objectives for teachers and their presumed prior knowl edge. 
These variables have been identified through the study of the problem itself and pre-
experimented with volunteer students. 

Access to information. In our didactical situation, the main didactical variable is the ac-
cess to information which differs for the three groups. We have analysed in the pre vious 
section the possible strategies that correspond to different values of this variable. 

The type of the graph G. It should be hard to find the PDS in the graph G. So one 
should exclude certain types of graphs for which it is known that the PDS problem is 
not hard. For example, if the graph is a tree, there exists a fast algorithm that solves the 
PDS problem (Klostermeyer, 2015, p. 107). The PDS problem is hard for planar graphs, 
but we observed that the use of non-planar graphs makes the problem visually more 
difficult for the participants. Therefore, we decided to use a non-planar graph. 

The size of the graph kV k. The graph must satisfy certain criteria that make it usable 
when dealing with humans. More precisely, it must be large enough so that an exhaustive 
search of the PDS will be hard or tedious. At the same time, it must be small enough so 
that writing the linear system generated would still be possible for participants. 

The maximum degree of the graph and the difference of degrees between vertices. 
A large difference of degrees between the vertices of the graph potentially influences the 
starting point and the execution of Algorithm 1; the participants tend to consider that 
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the vertices that have a degree ‘too low’ or ‘too high’ have special properties and they 
usually start the algorithm from those nodes. In order to avoid this effect, it is desirable 
to use a graph that is ‘almost’ regular. Note that if the graph is regular (i.e., all nodes 
have the same degree k), there is an easy solution to get the plaintext message that does 
not require finding the PDS: in fact, if we add all the equations of the linear system and 
divide by k + 1, we get the plaintext message (because each mi will be added exactly 
k + 1 times in encryption). 

Moreover, note that the size of the PDS kS k is always in the interval 
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The type of the graph G. It should be hard to find the PDS in the graph G. So one
should exclude certain types of graphs for which it is known that the PDS problem is
not hard. For example, if the graph is a tree, there exists a fast algorithm that solves
the PDS problem (Klostermeyer, 2015, p. 107). The PDS problem is hard for planar
graphs, but we observed that the use of non-planar graphs makes the problem visually
more difficult for the participants. Therefore, we decided to use a non-planar graph.

The size of the graph V . The graph must satisfy certain criteria that make it usable
when dealingwith humans.More precisely, it must be large enough so that an exhaustive
search of the PDS will be hard or tedious. At the same time, it must be small enough so
that writing the linear system generated would still be possible for participants.

The maximum degree of the graph and the difference of degrees between vertices.
A large difference of degrees between the vertices of the graph potentially influences
the starting point and the execution of Algorithm 1; the participants tend to consider
that the vertices that have a degree ‘too low’ or ‘too high’ have special properties and
they usually start the algorithm from those nodes. In order to avoid this effect, it is
desirable to use a graph that is ‘almost’ regular. Note that if the graph is regular (i.e.,
all nodes have the same degree k), there is an easy solution to get the plaintext message
that does not require finding the PDS: in fact, if we add all the equations of the linear
system and divide by k + 1, we get the plaintext message (because each mi will be
added exactly k + 1 times in encryption).
Moreover, note that the size of the PDS S is always in the interval V 

∆+1  S 
V 
2 where V is the set of vertices of the graph G and ∆ is the maximum degree of

the vertices of G. For a given number of vertices, if the size of the PDS is close to the
minimum value, the vertices that belong to the PDS have more neighbours. For our
experimentation of the didactical situation, we have chosen a graph with 22 vertices
and with S = 4.

The plaintext message and its composition. The plaintext message is a positive inte-
ger number. This number is subsequently decomposed into the valuesmi (secret values)
such that Σn

i=1mi with V  = n the size of the graph. Then mi ∈ Z and can be re-
peated. We have chosen a decomposition in mi where the absolute value for all mi is
small not to add cognitive difficulty for the participants. In our case, a number between
20 and 100 seemed a reasonable choice.

Using (or not) a computer algebra system. We chose to give the possibility of using
a computer algebra system to solve the linear system. Its use was optional and was only
proposed if the participants had independently come up with the idea of writing the
linear system.

6.3. Learning potential

Following the strategies presented in this section, students have to (i) translate the PDS
properties of the graph into properties involving lists, matrices, and the graph visual repre-
sentation; (ii) manually do an exhaustive structured search in the matrix or list space or the
graph’s representation understanding intuitively the idea of LIFO stacks and backtracking;
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peated. We have chosen a decomposition in mi where the absolute value for all mi is
small not to add cognitive difficulty for the participants. In our case, a number between
20 and 100 seemed a reasonable choice.

Using (or not) a computer algebra system. We chose to give the possibility of using
a computer algebra system to solve the linear system. Its use was optional and was only
proposed if the participants had independently come up with the idea of writing the
linear system.

6.3. Learning potential

Following the strategies presented in this section, students have to (i) translate the PDS
properties of the graph into properties involving lists, matrices, and the graph visual repre-
sentation; (ii) manually do an exhaustive structured search in the matrix or list space or the
graph’s representation understanding intuitively the idea of LIFO stacks and backtracking;

 where V is the set of vertices of the graph G and Δ is the maximum degree of the 
vertices of G. For a given number of vertices, if the size of the PDS is close to the 
minimum value, the vertices that belong to the PDS have more neighbours. For our 
experimentation of the didactical situation, we have chosen a graph with 22 vertices 
and with kS k = 4. 

The plaintext message and its composition. The plaintext message is a positive inte-
ger number. This number is subsequently decomposed into the values mi (secret values) 
such that Σn

i=1mi with kV k = n the size of the graph. Then mi ∈ Z and can be re peated. 
We have chosen a decomposition in mi where the absolute value for all mi is small not 
to add cognitive difficulty for the participants. In our case, a number between 20 and 100 
seemed a reasonable choice. 

Using (or not) a computer algebra system. We chose to give the possibility of us-
ing a computer algebra system to solve the linear system. Its use was optional and was 
only proposed if the participants had independently come up with the idea of writing the 
linear system. 

6.3. Learning Potential 

Following the strategies presented in this section, students have to (i) translate the PDS 
properties of the graph into properties involving lists, matrices, and the graph visual 
repre sentation; (ii) manually do an exhaustive structured search in the matrix or list 
space or the graph’s representation understanding intuitively the idea of LIFO stacks 
and backtracking; and (iii) understand and justify why their strategies are correct. When 
dealing with a lin ear system, they may try to reduce it, determine if there is a unique 
solution or many, and reflect on the complexity of solving linear systems. Because 
of the retroactions with the milieu, students have to mobilise concepts, methods, and 
practices from mathematics and informatics to overcome the obstacles they encoun-
ter, moving between semiotic represen tations (Duval, 1995, 2017) of interdisciplinary 
boundary objects9, such as matrices and graphs. We believe that this is a step towards 
understanding the challenges of public-key cryptography and of the interdisciplinary 
objects involved. 

9 artifacts [that] can fulfil a specific function in bridging intersecting practices’ (Akkerman and Bakker, 2011, 
p. 134) 
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7. Realisation, Observation, and Data Collection 

In 2021, we piloted an early implementation of the cryptography module entirely online 
via video conference, which particularly impacted the modes of interaction. In particular, 
group activity suffered. It was hampered by the less natural interactions (further compli-
cated by the use of English, which was not the native language of any of the participants) 
and the inability to physically work together on the graphs (even though they were avail-
able online, in collaborative editors). However, this preliminary implementation helped 
us improve the didactical situation. Indeed, we deepened the a priori analysis, developed 
a design more consistent with the preliminary analysis, and better defined the practical 
organisation (timing, mode, materials). 

In what follows, we present the implementation of the cryptography didactical sit-
uation, exactly as described in Section 5, which took place as part of the 2022 school 
for pre-service teachers, this time held with the presence of the participants (see Subsec-
tion 3.1). 

The experimentation took place during a one-day (6 hours) session that included a 
preliminary presentation on symmetric and asymmetric cryptography (and its use and 
relevance in our society), the didactical situation (3 hours), and a collective reflection 
on the interdisciplinary aspects that emerged from the groups’ work, led by the instruc-
tors. The teaching material for the entire module, including the situation, is available at 
https://identitiesproject.eu/cryptography/. Here we focus on the didactical 
situation itself. 

The didactical situation (about 3 hours) constitutes its active learning part. The core 
of the didactical situation is an autonomous group activity (about 1 hour): a decryption 
challenge on which each group is then asked to report back to the other groups. 

The participating student teachers were organised into three groups (A, B, and C) 
needed for implementing the didactical situation, as described in 6.1. The groups of 4 
or 5 were composed so that the members were teachers of all the different disciplines 
(mathematics, informatics, physics, chemistry, and various engineering branches) and 
na tionalities (French, Greek, Italian, and Spanish) and balanced by gender. 

After the high-level introduction to symmetric and asymmetric cryptography, the 
di dactical situation began. All three groups were given the same encrypted (with the 
PDS cryptosystem) message (Fig. 4) to decrypt in one hour, but starting with different 
infor mation. The groups were also asked to pay attention to their solving strategies and 
keep track of difficulties and results so that they could later present their group’s work 
to every one (10 minutes of presentation and 5 of Q&As). English was used both for the 
interaction between participants and for presenting their groups’ work. 

One researcher was associated with each group to observe mainly the development 
of decryption strategies but also the use of the different disciplinary languages (from 
math ematics and informatics but also from the other disciplines of the group members) 
and the communication dynamics of the groups. The purpose of this observation was to 
verify whether the implementation of the situation had provided developments consis-
tent with the a priori analysis to capture the students’ interactions with different disci-
plinary and interdisciplinary concepts, objects, and methods between different semiotic 
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representa tions. To support the observation, the researchers relied on a grid, a product of 
the a priori analysis phase (also informed by the 2021 preliminary online experimenta-
tion). Such a grid helps the researchers observe for each group three main dimensions: 
group work and communication dynamics, strategies for solving the decryption prob-
lem, and linguis tic and epistemological interdisciplinary elements. The grid is provided 
in Appendix A. In addition to the observations collected by the researchers, all the ses-
sions were video-recorded. 

An informed consent, explaining the objectives of the research, the data collection 
tools, and the commitment to process data in a pseudo-anonymous manner was provided 
and signed by all participants. 

8. A Posteriori Analysis 

The a posteriori analysis showed that the participants tried almost all of the problem-
solving strategies we have described in the a priori analysis (Section 6). The strategies 
were not formulated by the student teachers exactly as they were presented in the a priori 
analysis. Nevertheless, the data collected showed that all groups tried (parts of) all the 
expected strategies. The participants’ presentations and related discussions demonstrate 
their intuitive understanding of the strategies and why they are correct. 
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Fig. 4. The graph with the public values in blue (i.e., the encrypted message) chosen for our experimentation. In
bold and magenta, the PDS of the graph (i.e., the private key), which is the set {F,M,Q, V }.

After the high-level introduction to symmetric and asymmetric cryptography, the di-
dactical situation began. All three groups were given the same encrypted (with the PDS
cryptosystem) message (Figure 4) to decrypt in one hour, but starting with different infor-
mation. The groups were also asked to pay attention to their solving strategies and keep
track of difficulties and results so that they could later present their group’s work to every-
one (10 minutes of presentation and 5 of Q&As). English was used both for the interaction
between participants and for presenting their groups’ work.

One researcher was associated with each group to observe mainly the development of
decryption strategies but also the use of the different disciplinary languages (from math-
ematics and informatics but also from the other disciplines of the group members) and
the communication dynamics of the groups. The purpose of this observation was to verify
whether the implementation of the situation had provided developments consistent with
the a priori analysis to capture the students’ interactions with different disciplinary and
interdisciplinary concepts, objects, and methods between different semiotic representa-
tions. To support the observation, the researchers relied on a grid, a product of the a priori
analysis phase (also informed by the 2021 preliminary online experimentation). Such a
grid helps the researchers observe for each group three main dimensions: group work
and communication dynamics, strategies for solving the decryption problem, and linguis-
tic and epistemological interdisciplinary elements. The grid is provided in Appendix A.

Fig. 4. The graph with the public values in blue (i.e., the encrypted message) chosen for our 
experimentation. In bold and magenta, the PDS of the graph (i.e., the private key), which is 

the set {F, M, Q, V }.
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More specifically, group C was given the encrypted message and no other informa-
tion (see Subsection 6.1 for the information given to each group). The participants solved 
the problem by formulating a system of linear equations (22 equations and 22 variables) 
and solving it with an online automatic linear solver10. The solver was suggested by the 
observing researcher only after the group had formulated the system of equations and 
decided that they would try to solve it. We hypothesise that the opportunity to use the 
software tool influenced their strategy to solve the problem. The size of this linear sys-
tem makes it difficult to solve it by hand. With an automatic solver, the students could 
form and solve the system. Without an automatic solver available, they would probably 
have abandoned this strategy and tried to find a different one; for example, finding ap-
propriate linear combinations of equations using the graph. 

Group A was given the definition of perfect dominating set and the actual PDS 
on the graph, and they had to figure out how to use this information to decrypt the 
secret mes sage. The researcher observing did not explain the definition of PDS; the 
participants had to figure out by themselves how to use the PDS to decrypt the secret 
message. This im plies writing down the linear system by interpreting the encryption 
algorithm and trying to make the connection between the system and the PDS defini-
tion. We observed that under standing the PDS definition presents several difficulties. 
To begin with, the PDS definition is complex and structured in three steps. First, there 
is the notion of domination; second, the notion of dominating set; third, the notion of 
perfect dominating set. Domination is a symmetrical property (i.e., if node a dominates 
node b, then b also dominates a), while in natural language, domination is usually 
non-symmetric. Comprehending and using this definition was not easy for the students 
dealing with this property for the first time. In addition, domination was defined by 
the following: ‘A vertex v of a graph G dominates vertex u if either v = u or there 
is an edge from v to u.’ We observed that ‘if v = u’ was not interpreted as ‘vertex v 
dominates itself’, as was intended. Instead, the participants thought this was related to 
the public values written on the nodes: their interpretation was that a vertex dominates 
the vertices with the same public value. This may be related to mathematics’ different 
uses of the equality symbol. In mathematics, it is common to re fer to length, width, 
and measure of quantities in phrases such as the length of side v is 3 cm, and we write 
v = 3 where the equality symbol is used to give the value 3 to the variable v, i.e., with a 
classical assignment meaning from an informatics perspective. We also use it to express 
the equality of values, so we can write u = v if they have the same value. Moreover, 
the equality symbol in algebra is often used to express that two different letters (like 
u and v) refer to the same object, as we did in defining a PDS. Furthermore, although 
we thought that group A had the ‘easiest’ task since they had the private key at their 
disposal, it was revealed that their task was not trivial. Finding out how to use the PDS 
in order to decrypt requires three main steps of the PDS nodes: 

Understanding the definition of PDS. 1. 
Formulating the linear system based on the encrypted message. 2. 

10 Built by us (https://lodi.ml/solver) in Python with the SymPy library (www.sympy.org). 
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Translating the PDS properties (on the graph) into properties related to the equa-3. 
tions. 

The last step required a change of semiotic registers and was particularly tricky for 
the participants. We observed that they spent much time understanding the definition of 
the PDS and also formulating and reducing the linear system but had difficulty making 
the connection between the two. 

Group B was given (i) the PDS definition and (ii) the decryption algorithm (given 
the PDS). As was expected, the participants started looking for the PDS in the graph. 
They partially tried all three algorithms presented in the a priori analysis. Note that all 
three algorithms are not polynomial: they are a ‘structured’ exhaustive search of the 
PDS in the graph. Therefore, the objective of the situation is not to solve the problem 
but to translate the PDS properties into algorithmic steps on the three different registers 
used (the graph, the lists, and the adjacency matrix). In that sense, the students suc-
ceeded at the task. More precisely, group B started with the list algorithm: they formed 
the list of neighbours for every node, they interpreted the PDS properties with the task 
of finding a number of lists with empty intersections whose union covers the graph, 
and they started comparing lists. In order to make a more efficient comparison, they 
decided to take into consideration the lists’ size, too: given that the graph has 22 nodes, 
if they had a union of lists with size X, they only considered lists with a cardinal of 
size ⩽ 22 − X for the following step. As a next step, instead of ordering the lists to 
facilitate the comparison, they decided to use a matrix, which led to forming the ad-
jacency matrix of the graph. As one of the students stated, ‘[with a matrix] it is easier 
to see the connections [between nodes]’. Algorithm 1 came up in the last part of the 
situation in a different form. Instead of choosing a starting node (assumed in the PDS) 
and erasing its neighbours and its neighbours’ neighbours, the students decided to note 
all paths of length 2 starting from a node (assumed in the PDS) and then all the paths 
of length 3, which would give them the possible candidates for the second node in the 
PDS. This idea was not followed because of limited time. 

We observed that almost all participants took part in the conversation and in the final 
discussion about interdisciplinarity. All the groups developed the solving techniques and 
strategies that we had anticipated (not necessarily all of them). On the basis of our a 
priori analysis, we interpret this as a sign of appropriation of the problem and (at least 
partial) understanding of the main ideas behind the strategies. Although there were some 
language misunderstandings during the problem-solving process, we observed that dur-
ing the dis cussion, the students were able to make proper use of the terminology used for 
graphs, cryptography, and linear system solution. 

To conclude, the groups’ work during the implementation supports our a priori analy-
sis of the didactical situation. The participants were strongly involved in problem solv-
ing, and our observations (regarding the retroactions and the strategies used) indicate 
that our or ganisation of the milieu and our choices of didactical variables proved effec-
tive. Indeed, re searchers needed very few limited interventions to support the groups’ 
autonomous work. The work done in the different groups was generally consistent with 
the expectations of the a priori analysis. 
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9. Discussion 

We presented the study of a didactical situation on cryptography between informatics 
and mathematics, designed, implemented, and analysed using the Theory of Didactical 
Situations within the Didactical Engineering methodology. 

The implementation of the Didactical Situation showed a learning potential for fun-
damental concepts, methods, and ideas not only of cryptography but also of mathematics 
and informatics. Given the nature of the problem-solving activity, the participants need 
to find and elaborate strategies in order to solve the problem (RP1). To elaborate these 
strategies, they need to explore and understand (at least intuitively) several concepts and 
methods from mathematics and informatics (RP2), such as backtracking, LIFO stacks, 
the adjacency matrix of a graph, matrices for modelling a linear system of equations, and 
also move between semiotic registers by interpreting the properties of the PDS definition 
writ ten in set theory language, graphically, or by using lists. The choices of the values 
for the didactical variables are essential in this sense: for example, the graph (its size, the 
vertex degrees and its graphical representation) does not allow the participants to find 
the PDS by trial and error, and reveals the hardness of the problem while still allowing 
them to form a linear system by hand; also, the number of PDSs in the graph is closely 
related to the existence of a (unique) solution of the linear system. The participants are 
restricted in their retroactions by those elements and, therefore, need to explore the strat-
egies in order to solve the problem. 

Moreover, we conjecture that our didactical situation has the learning potential to 
in troduce topics like the complexity and correctness of algorithms, as well as to work 
on graphs, dominating sets, linear systems, and matrices and their representations in 
mathe matics and informatics. To illustrate that, we paraphrase some questions the par-
ticipants discussed while trying to solve the problem: Is there always a perfect dominat-
ing set in a graph? And a dominating set? How complex is it to solve a linear system? 
Are the graph algorithm and the list algorithm more efficient than the brute force solu-
tion? What is the relationship between the linear system and the PDS? Why is decoding 
with a PDS correct? 

9.1. Future Work 

The research work of the IDENTITIES project of which the current work is part is 
still ongoing. In this paper, we have analysed our observations of the implementation 
of the didactical situation on cryptography. We conjecture that students were able to 
grasp the challenges of public-key cryptography and develop a better understanding of 
the interdis ciplinary objects involved. Nevertheless, we still have to refine this analysis 
rigorously: transcribe the audio and process the videos in order to identify and analyse 
all the steps of the problem-solving procedure in detail. Next, we have to identify all 
interdisciplinary boundary objects that come into play and analyse them from an in-
terdisciplinary point of view, for example, by using the Akkerman and Bakker (2011) 
framework on interdisci plinarity. 
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A future direction for this work would be to implement our didactical situation with 
different values for the didactical variables and also to adapt and test the activity with 
high school students. 

9.2. Conclusions 

To conclude, we successfully used the Didactical Engineering research methodology 
to design a teaching activity that enables students to explore the idea and the complex-
ity of public-key cryptosystems while interacting with the informatics and mathematics 
interdis ciplinary objects involved in that activity and the related disciplinary concepts. 
Therefore, to overcome the obstacles students encounter in this didactical situation, they 
must mo bilise concepts, methods, and practices of mathematics and informatics, moving 
between semiotic representations of interdisciplinary objects. 

The specific analysis of the interdisciplinary interactions between pre-service STEM 
teachers and the model of interdisciplinarity that can emerge from this kind of activity is 
part of the larger project and will be analysed in future works. 
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A. Grid

Observer <Name> Start time <hh:mm>
Group <ID> (<milieu short description>) End time <hh:mm>

Participants (prospective teachers)
● P1 <Name Surname> – <discipline>
● P2 <Name Surname> – <discipline>
● P3 <Name Surname> – <discipline>
● P4 <Name Surname> – <discipline>
● P5 <Name Surname> – <discipline>

Group work

P1 P2 P3 P3 P5 Notes

Works mainly together with the group

Works in subgroups

specify subgroups & different approaches

Works alone

specify approach(es)

Constantly communicates with others

Does not (try to) communicate

Not understood by other students

Other / notes:

Problem-solving strategies

P1 P2 P3 P3 P5 Notes

Heuristic algorithm (partitions of the graph)

proposed

followed

abandoned

Algorithm using lists (each list is a
neighborhood of a PDS node)

(alt. desc.: find a subset of lists of neighbors
that include each node exactly once)

proposed

followed

abandoned
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P1 P2 P3 P3 P5 Notes

Algorithm 1 using the adjacency matrix:
find a linear combination that has 1
everywhere

(alt. desc.: use the adjacency matrix to
represent the graph and then to find a subset of
rows whose sum is exactly a list of 1s)

proposed

followed

abandoned

Algorithm 2 using the adjacency matrix:
create a linear system of equations (to be solved by a linear solver)

proposed

followed

abandoned

Other strategy (specify):

proposed

followed

abandoned

Other / notes:

Boundary objects

P1 P2 P3 P3 P5 Notes

Talks about the adjacency matrix as a
way to represent and solve a system of
equations

Talks about the adjacency matrix as a
way to represent the graph (1 for
neighbor)

Other / notes:
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Linguistic aspects

P1 P2 P3 P3 P5 Notes

Talks about the problem using a
cryptography language, e.g., PDS as the
(private) key

Talks about the problem using own
discipline language

Talks about the problem using OTHER
discipline languages

Other / notes:

Interdisciplinary aspects

P1 P2 P3 P3 P5 Notes

Effort in being understood by students of
other disciplines

Remain in / go back to their “disciplinary
confort zone”

Other / notes:

Disciplinary thinking / acting

P1 P2 P3 P3 P5 Notes

"First make it work, then make it nice"
(CS) approach

Comfort in doing a lot of computations
(CS) (e.g., a lot of equations without
simplifying, brute force for sublists)

Search for an elegant
representation/strategy before trying to
solve (Math/Phys?)

Discomfort in doing a lot of
computations (search for
simplification/abstraction) (Math/Phys?)

Other / notes:
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