
Informatics in Education, 2024, Vol. 23, No. 1, 145–178
© 2024 Vilnius University
DOI: 10.15388/infedu.2024.07

145

Effect of an OwlSpace Programming Course
on the Computational Thinking of Elementary
School Students

Wei-Ying LI, Tzu-Chuen LU*

Department of Information Management, Chaoyang University of Technology
Taichung 41349, Taiwan
e-mail: totoro@y-shun.com.tw, tclu@cyut.edu.tw

Received: January 2023

Abstract. This study investigates the effect of programming courses on the computational
thinking (CT) skills of elementary school students and the learning effectiveness of students
from different backgrounds who are studying programming. We designed a OwlSpace program-
ming course into an elementary school curriculum. Students in fourth and fifth grades were
taught the fundamentals of programming. We measured and analyzed the effectiveness of their
CT skills and self-efficacy in CT. The researchers analyzed the changes in the CT of different
gender, different grade, and different past experience students in programming courses and then
made specific recommendations for information technigy teachers and related units. The results
demonstrate that students learned and improved their CT skills by taking OwlSpace program-
ming course. Additionally, gender, grade, and past experience are found to have no impact on
the students’ learning that means the course can improve students ability without limited any
characteristics.

Keywords: computational thinking, OwlSpace programming, script-block-based programming
language.

1. Introduction

With the advent of the global information age, information technology products, rang-
ing from simple web pages to mobile applications, the Internet of Things (IoT), and
big data to artificial intelligence, have become the most common and convenient tools
available to us. These useful tools comprise coded instructions and rely on the col-
laboration of multiple programs to power various innovative electronic products. To
develop relevant information products and enable information equipment to operate

* Corresponding author

W.-Y. Li, T.-C. Lu146

as intended, the work of programmers is particularly critical. Various countries around
the world have developed plans and made considerable efforts to cultivate talents with
programming-related skills and knowledge. For example, to address the shortage of
information technology professionals, many countries have added computer science-
related courses to K-12 education, so that children can be trained in computational
thinking (CT) at a young age (Lindberg et al., 2018).

In 2006, Wing (Wing, 2006) stated that CT is a method of solving problems by ap-
plying core concepts of computer science. CT is not limited to computer science; rather,
it is a necessary skill that everyone should possess. Wing also believed that learning CT
in early childhood can have a positive effect on studying other subjects (Wing, 2008).
Most elementary school students have easy access to various electronic and mechanical
products. In addition, students can use computing devices at home and school on a regu-
lar basis, allowing them to use computing tools with ease. The sooner schools provide
relevant education, the sooner CT can begin to develop. (Wing, 2008).

Programming education is one of the most effective ways to develop CT (Resnick
et al., 2009). The most effective way to develop CT during early childhood is to incor-
porate programming into school curricula (Moreno-León, 2018). Cynthia and Woollard
(Cynthia and Woollard, 2014) believed that there is a correlation between programming
activities and CT capabilities, and that a complete CT element can be cultivated during
the programming learning process, including abstraction, decomposition, algorithmic
design, evaluation, and generalization. However, because script-based programming pri-
marily involves abstract concepts, this learning method is challenging for many students
and can cause fear and disinterest in learning (Resnick et al., 2009). Therefore, block
programming tools, such as App Inventor (Wolber et al., 2015), Alice (Cooper et al.,
2000), and Scratch (Resnick et al., 2009), have been used in the past to facilitate the de-
velopment of CT in young learners through highly accessible programming activities. To
make abstract concepts easier to understand while teaching programming skills, block
programming software intuitively demonstrates the operation process of a program us-
ing visualization and animation techniques (Wing, 2008).

Although block-based programming languages can more intuitively introduce pro-
gramming concepts to beginners, script-based programming languages are better suited
to challenging learners because they allow for constructing comparatively more complex
programs. When researchers investigated the impact of block-based programming lan-
guages on students, students stated, “Block-based programming languages seem simple
and have little to do with real programming.” Students do not seem to associate the for-
mal coding process with tasks performed using block programming tools (Parsons and
Haden, 2007). Students also identified some disadvantages of block-based programming
languages, including a lack of realism and less powerful features (Weintrop and Wilen-
sky, 2015). In addition, interactive tools such as Scratch are inadequate to help students
with the transitions. Therefore, transition from block-based programming languages to
more advanced programming languages may be more challenging than expected (Chetty
and Barlow-Jones, 2012).

This study designed a script-block-based programming language called OwlSpace
programming language, which combines the beneficial elements of both script-based

Effect of an OwlSpace Programming Course on the Computational Thinking... 147

and block-based programming languages, to simplify the process of transitioning
students from block-based programming languages to script-based programming
languages. It also eases the transition of students from block-based to script-based
programming languages. The interface and operation of the proposed OwlSpace pro-
gramming language are similar to that of a block programming language, which may
prevent students from developing a fear of abstraction. Furthermore, OwlSpace is an
open-source language that combines the interactivity and syntax of “scripting” lan-
guages, such as Python, Matlab, and R, but with the speed of “compiled” languages
such as Fortran and C. In scripting languages such as Python, the user types the code
line by line into the editor, and the language interprets and runs it, then returns the
result immediately; however, in languages such as C and Fortran, code must be com-
piled before it can be executed. Scripting languages such as Python are easier to use,
whereas languages such as C and Fortran produce faster code. As a result, program-
mers often develop algorithms in a scripting language, then translate them into C or
Fortran. OwlSpace can solve the two language problems because it runs similar to C
but reads similar to Python.

Additional information about OwlSpace is available on the website:
https://www.sdc.org.tw/product/貓頭鷹-steam-程式設計平臺owlspace-貓

頭鷹創作空間-貓頭鷹線/.
The system can be download from https://tinyurl.com/owledu2208.

2. Related Works

2.1. Cognitive Load

When people are performing a task, their attention and cognitive resources are limited,
and the use of these resources is referred to as “cognitive load. Sweller defined cog-
nitive load as the amount of load imposed on an individual’s cognitive system when
performing a specific task (Sweller, 1988). If a task is too complex or requires cogni-
tive resources beyond an individual’s capacity, then a higher load will be imposed.
This can lead to decreased task performance, errors, or increased fatigue. For learners,
cognitive load refers to the load imposed on the learning system when a specific task is
added (Paas and Van Merriënboer, 1994). More specifically, cognitive load theory as-
sumes that any learning task imposes three types of cognitive load on working memory:
intrinsic cognitive load, extraneous cognitive load, and germane cognitive load (van
Merri€enboer and Sweller, 2005; Paas et al., 2003; Paas et al., 2004; Sweller et al.,
2011). Intrinsic cognitive load – This is the inherent cognitive load of the instructional
material, determined by its complexity and difficulty. Extraneous cognitive load – This
refers to cognitive load caused by factors outside of the instructional material, such
as distractions, poor instructions, or irrelevant information. Germane cognitive load –
This refers to cognitive load that is beneficial to learning, because it is related to the
information in the current learning task and the learner’s long-term memory.

W.-Y. Li, T.-C. Lu148

Presenting the instructional material in an appropriate way according to different
tasks can help learners understand more easily, and at the same time, efforts should be
made to avoid generating intrinsic and extraneous cognitive loads. Using multimedia
materials for teaching and practice can help learners reduce cognitive load. Currently,
there is a large amount of educational research using cognitive load theory to explain
the potential benefits of using multimedia to enhance learning. Multimedia can pres-
ent information to students in a flexible way, involving various combinations such
as text (written or spoken), static graphics (such as pictures, illustrations, graphics,
and charts), dynamic graphics (such as animations) and videos. Learning with both
text and pictures is more effective than learning with text or pictures alone (Butcher,
2014).

Currently, there are many examples of using multimedia to influence cognitive load.
Çakiroğlu et al. used Scratch’s visual image-based interface to stimulate learners’ inter-
est and reduce the cognitive load of novice programmers (Çakiroğlu et al., 2018). Lavy
used music as an intermediary to teach Scratch programming and further reduce the
cognitive load of novice programmers (Lavy., 2023). Shim et al. introduced educational
robots to stimulate student learning motivation and reduce the cognitive load of novice
programmers (Shim et al., 2016).

2.2. CT Definition

Wing (Wing, 2008) was the first to recognize CT as a problem-solving method. Further,
in 2011, Wing defined CT as the thinking process in formulating a problem and its
solution (Cuny et al., 2010). The solution was expressed in a way that an information
processing agent can effectively execute. After Wing proposed CT, other scholars put
forward their opinions and provided relevant research. For example, in 2011, Tinker
(National Research Council, 2011) believed that the core of CT is “the ability to decom-
pose large problems into small problems until these small problems can be automatically
solved to achieve rapid response.” This definition has appeared frequently in subsequent
research. To bring CT into K-12 education as soon as possible, the International Society
for Technology in Education and the Computer Science Teachers Association have de-
veloped an operational definition of CT. Its problem-solving process includes problem
formulation, data analysis, abstraction, modeling, and automation steps to achieve the
most effective solution (Barr et al., 2011).

Brennan and Resnick (Brennan and Resnick, 2012) proposed a CT framework com-
prising three dimensions, including CT concepts, CT practices, and CT perspectives, by
analyzing Scratch. The following are some of the CT skills in each dimension:

CT concepts(a) include sequences, loops, parallelism, events, conditionals, opera-
tors, and data.
CT practices(b) include being incremental and iterative, testing and debugging,
reusing and remixing, and abstracting and modularizing.
CT perspectives(c) : expressing, connecting, and questioning can be transferred
and applied to other programming environments.

Effect of an OwlSpace Programming Course on the Computational Thinking... 149

Table 1 lists the skills and definitions included in the CT framework proposed by
Brennan and Resnick (Brennan and Resnick, 2012).

2.3. CT Assessment

As with the diversity of definitions of CT, there is no widely accepted methodology to
assess CT. As a result, multiple CT assessment techniques have been developed, making
it difficult to measure the effectiveness of interventions in a reliable and valid manner
(Valerie et al., 2017). Questionnaire surveys, performance/combination assessments,
knowledge and aptitude tests, and personal interviews are the four main types of CT
assessments (Valerie et al., 2017). Commonly used CT skill assessments focus on cogni-
tive domains (Anderson and Krathwohl, 2001), such as creation and review using Dr.
Scratch, analysis and application using Bebras, and comprehension and memory using
CT test (CTt) (Cutumisu et al., 2019).

Dr. Scratch is an automated tool for formative assessment of Scratch projects
(Moreno-León et al., 2016) that targets seven dimensions of CT capabilities: abstrac-
tion, parallelism, logical thinking, synchronization, flow control, user interactivity, and
data representation. Each of these dimensions is measured on a scale of 0–3, and the

Table 1
CT framework proposed by Brennan and Resnick (Brennan and Resnick, 2012)

CT skill Definition

Concepts
Sequences A specific activity or task is represented as a series of individual steps or

instructions that can be performed by a computer.
Loops Loops are a mechanism for running the same sequence multiple times.
Parallelism Parallelism refers to a sequence of instructions occurring simultaneously.
Events One thing causes another to happen, which is an important element of interactive

media.
Conditionals The ability to make decisions based on specific conditions, which supports the

expression of multiple outcomes.
Operators Operators provide support for mathematical, logical, and string expressions,

which enable programmers to perform numeric and string operations.
Data Data involves storing, retrieving, and updating values.

Practices
Incremental and iterative An iterative process of gradually designing and implementing a solution.
Testing and debugging Trial and error process to test and eliminate guaranteed failures.
Reusing and remixing Build reusable instructions; develop new products based on the work of

others.
Abstracting and modularizing Build complex systems from basic elements.

Perspectives
Expressing Think of computing as a means of expression and creativity.
Connecting Think of computing as a way to interact and work with other people.
Questioning Ask questions and use technology to solve real-world problems.

W.-Y. Li, T.-C. Lu150

overall CT score is calculated by summing the partial scores. Dr. Scratch was designed
to help teachers evaluate the Scratch projects of their students and detect common er-
rors and poor programming habits. In addition, it can also provide statistics for orga-
nized programming teaching projects to evaluate their effectiveness (Moreno-León and
Robles, 2015).

Computational thinking test (CTt) (González, 2015) is a popular assessment method
for block-based programming languages because it is not restricted to a specific subject
or programming language. CTt uses a multiple-choice question format, and it is one of
the few validated assessment methods based on a practical guide to international stan-
dards for applied psychological and educational testing in secondary schools (Buffum
et al., 2015). CTt is designed to assess students aged 12–14 (7–8 grades). However, it
can also be used for lower (5–6 grades) and higher grade students (9–10 grades). The
test includes 28 items and takes approximately 45 min to complete. It emphasizes vari-
ous computational concepts such as direction and sequences, loops, if conditions, and
simple functions (Cutumisu et al., 2019). These computational concepts are used to
evaluate four cognitive processes in CT: decomposition, pattern recognition, abstraction,
and algorithm design.

Bebras, which originated in Lithuania, is a CT assessment method that is independent
of programming languages. Bebras does not require participants to write code; thus, us-
ing Bebras for assessment does not require participants to know a specific programming
language. The Bebras Challenge on Informatics is conducted annually in more than 60
countries and regions worldwide (Bebras International Challenge on Informatics and
Computational Thinking, 2023). The competition topic combines multiple challenges
to promote short-term problem-solving skills related to informatics and CT for students
of different ages (Dagienė and Stupurienė, 2016). To evaluate the impact of specific
courses, Bebras primarily uses a programming foundation and programming knowledge
to solve problems in real-world scenarios and evaluate the CT skills of the students
(Hubwieser and Mühling, 2014).

For the competition, Bebras launches a new set of test questions each year, and these
test questions are categorized as easy, medium, and hard based on difficulty. The par-
ticipants were divided into 6 groups by age: Pre-Primary (1–2 grades, 5–8 years old),
Primary (3–4 grades, 8–10 years old), Benjamins (5–6 grades, 10–12 years old), Cadets
(7–8 grades, 12–14 years old), Juniors (9–10 grades, 14–16 years old), and Seniors (11–
12 grades, 16–18 years old) (Bebras International Challenge on Informatics and Com-
putational Thinking, 2023). There are approximately 12–15 questions in this test, and
each question has a 3-min time limit. Thus, the total test time is approximately 36–45
minutes. The test questions are designed to be challenging, interesting, and thought-
provoking for students.

The questions of Bebras are designed to increase the interest of students in informa-
tion technology, thereby enhancing their motivation to learn. However, as it has grown
in scale, it has attracted the attention of psychometric researchers who have begun
to explore its potential as a measurement instrument for CT (Román-González et al.,
2017). Although Bebras was not designed specifically for CT testing, due to its wide

Effect of an OwlSpace Programming Course on the Computational Thinking... 151

age coverage and high degree of freedom in use, as well as its aim to seek “real” solu-
tions, CT can be transferred and projected through the context of problems and used
to solve problems for students (del Olmo-Muñoz et al., 2020). Many scholars have
used Bebras for experimental. For example, del Olmo-Muñoz et al. (del Olmo-Muñoz
et al., 2020) conducted a controlled experiment with second grade elementary school
students using Code.org with one group using plugged-in devices and the other group
using unplugged devices, and found that the CT skill level improved more significantly
in the unplugged group. Chiazzese et al. (Chiazzese et al., 2019) conducted a controlled
experiment with elementary school students in grades 3–4 using Lego robot education
kits as the experimental group and traditional curriculum as the control group. The total
scores obtained by the experimental group were significantly higher than those of the
control group. Chen et al. (Chen et al., 2018) conducted a controlled experiment in
which high school students in the second grade were taught Arduino using a situational
learning strategy, and were compared to students who were taught using traditional
learning methods. The results showed that students who used the situational learning
strategy had better computational thinking abilities than those who used traditional
learning methods.

The comparison of the above three assessment methods is shown in Table 2. Bebras
is used in this study to investigate changes in students’ CT after considering the applica-
bility and completeness of elementary school education.

2.4. Self-efficacy Scale

Self-efficacy refers to the strength of a person’s belief in his/her ability to master or
complete a task (Bandura, 1994), and it can also be used to assess a learner’s percep-
tion of his/her CT skills. Self-efficacy is a critical driver of a person’s perseverance and
resilience when confronted with adversity (Nordén et al., 2017). Students with high
self-efficacy see task completion as a challenge to be solved rather than something to be
avoided. Self-efficacy affects the effort exhibited in various learning situations (Gandhi
and Varma, 2010). In the programming context, self-efficacy is described as “a person’s
potency toward organizing and executing action processes to achieve a specified perfor-
mance” (Kong, 2017).

Table 2
Comparison of assessment methods

Assessment
method

Programming
experience

Applicable education level Testing time Language used

Dr. Scratch Scratch Elementary, middle, and High school Not fixed Multinational

CTt Not limited Middle and High School 45 minutes Spanish and English

Bebras Not limited Elementary, middle, and High school 36–45 minutes Multinational

W.-Y. Li, T.-C. Lu152

Based on Brennan and Resnick’s Three-dimensional CT framework, Kong (Kong
et al., 2018) developed a programming empowerment scale. They believed that most
current assessment methods only evaluated CT concepts and practices. Therefore, to
evaluate more CT perspectives, the impact of investigation interest and cooperation
based on self-efficacy were included in Kong’s programming empowerment scale, and
its corresponding structure is shown in Fig. 1.

Kong conducted the corresponding survey with a sample of 287 elementary school
students in fourth to sixth grades. They found that interested students rated programming
as meaningful and had higher self-efficacy. Students with a more positive cooperative
attitude than others had higher creative self-efficacy, and boys showed more interest
in programming than girls. Older students rated programming as less rewarding and
had lower programming self-efficacy than younger students. Future research on pro-
gramming can be conducted in an environment that provides students with collabora-
tion opportunities while also exploring the impact of students’ interests on both CT and
programming courses.

3. OwlSpace Programming Course

3.1. OwlSpace

OwlSpace is a programming platform that combines programming, maker, informa-
tion technology, and artificial intelligence education. OwlSpace integrates “teaching,”
“learning,” and “practice” in a single platform to meet all the needs of students from
entry to independent creation. This educational programming language is easy to teach,

2.4. Self-efficacy Scale

Self-efficacy refers to the strength of a person’s belief in his/her ability to master

or complete a task [42], and it can also be used to assess a learner’s perception of his/her

CT skills. Self-efficacy is a critical driver of a person’s perseverance and resilience when

confronted with adversity [43]. Students with high self-efficacy see task completion as a

challenge to be solved rather than something to be avoided. Self-efficacy affects the

effort exhibited in various learning situations [44]. In the programming context,

self-efficacy is described as “a person’s potency toward organizing and executing action

processes to achieve a specified performance” [45].

Based on Brennan and Resnick’s Three-dimensional CT framework, Kong [46]

developed a programming empowerment scale. They believed that most current

assessment methods only evaluated CT concepts and practices. Therefore, to evaluate

more CT perspectives, the impact of investigation interest and cooperation based on

self-efficacy were included in Kong’s programming empowerment scale, and its

corresponding structure is shown in Fig. 1.

Fig. 1 Programming empowerment research framework [46].

Kong conducted the corresponding survey with a sample of 287 elementary school

students in fourth to sixth grades. They found that interested students rated programming

as meaningful and had higher self-efficacy. Students with a more positive cooperative

attitude than others had higher creative self-efficacy, and boys showed more interest in

programming than girls. Older students rated programming as less rewarding and had

lower programming self-efficacy than younger students. Future research on

programming can be conducted in an environment that provides students with

collaboration opportunities while also exploring the impact of students’ interests on both

CT and programming courses.

3. OwlSpace Programming Course

Interest

Meaningfulness

Impact

Collaboration

Creative
self-efficacy

Programming
self-efficacy

H-1a

H-1b

H-1c

H-1d
H-2a

H-2b

Girl

Grade

H-4

H-3a

H-3b

Fig. 1 Programming empowerment research framework (Kong et al., 2018).

Effect of an OwlSpace Programming Course on the Computational Thinking... 153

learn, and use. It employs graphics and animation to illustrate the program’s operation
so that students are not overly challenged or bored while learning it. In addition, to help
beginner students who transition to mainstream programming languages, it combines
the characteristics of mainstream programming languages, such as C++ and JavaScript.
Furthermore, students can quickly develop IoT devices and automated robots by con-
necting to micro:bit, Arduino, ESP32, and other microprocessors.

OwlSpace has a built-in series of fundamental to advanced programming courses,
with the level of difficulty scaled up to accommodate elementary, middle, and high
school users. Thus, students learn joint programming statements such as variables, con-
ditions, loops, and functions. OwlSpace simultaneously trains the students’ CT skills by
arranging exercises for them to perform after courses. The programming course selec-
tion interface is shown in Fig. 2.

3.2. OwlSpace Programming Language

Compared to block-based programming languages that drag blocks to build programs,
OwlSpace programming language does not utilize blocks. Instead, it requires the user
to input the name and properties of the object, e.g., bee’s X coordinates, as variables. It
sets the specified value as the object’s value, using the equal sign to establish the basic
code. Fig. 3 shows the bee’s positional movement and size change through code.

For conditional expressions, the user must input three strings: “if,” “else,” and
“end” as the structure. For example, “bee.height > butterfly.height” in brackets is the
selection condition used to determine whether the bee or butterfly moves to the flower.
Depending on the selection condition “is true or not,” the bee can move to the flower
using “bee.moveTo(flower)” or the butterfly can move to the flower using “butterfly.
moveTo(flower).” Fig. 4 shows the corresponding code and illustrates the execution
results.

Fig. 2 OwlSpace course selection interface.

W.-Y. Li, T.-C. Lu154

Fig. 3 Code to adjust the coordinates, height, and width of the bee.

Fig. 4 Conditional statement to select a mobile bee or butterfly.

Fig. 5 Loop statement to move the bee repeatedly.

Effect of an OwlSpace Programming Course on the Computational Thinking... 155

Another joint basic program is a loop, which executes the “For loop” operation
through “for” and “end” strings. Here, the user enters the code that needs to be executed
repeatedly in the area between “for” and “end,” and the program can be executed con-
tinuously according to the set number of loops. Fig. 5 shows how the bee repeatedly
moves between the flower and the honeycomb.

3.3. Effect of OwlSpace Programming Courses on CT

OwlSpace platform provides built-in instructional courses and practice exercises, where
students can follow on-screen instructions to start coding programs. The course content
includes object naming, coordinate settings, length and width settings, object move-
ment, rotation, collision, as well as learning how to use functions, variables, expressions,
and conditional expressions. To reduce students’ cognitive load, each course uses vivid
pictures and animation to illustrate the learning objectives and allows students to think
of how to use the functions they learned when they practice after class. The instructional
screen is shown in Fig. 6.

The students input code according to the requirements of the task to complete their
creation. They make the pufferfish bigger than the shark, but smaller than the chef, and
have the shark and chef say the corresponding sentences when the conditions are not
met. During the process, students can discuss with others or complete the task on their
own. When the students complete the task correctly, the word “YES!” will be displayed
on the screen, as shown in Fig. 7 and Fig. 8.

This programming course includes a total of 11 units with the theme of basic pro-
gramming. The corresponding table of each learning content (unit) is planned prior to
teaching to ensure that the course’s content covers the Three-dimensional CT frame-
work, as shown in Table 3.

Fig. 6 Built-in teaching of OwlSpace.

W.-Y. Li, T.-C. Lu156

3.4. OwlSpace Programming Research Process

In this study, we investigated the relationship between changes in students’ CT and
different background variables on CT learning after the students went through the pro-
posed curriculum in OwlSpace programming platform. The participants were students
in fourth and fifth grades at an elementary school in Taiwan. The research involved
interventions. Thus, pre- and post-assessment designs were used. In addition, two as-
sessment tools were utilized to realize comprehensive assessment, i.e., the previous
Bebras competition test questions and programming empowerment scale proposed by
Kong et al. (Kong et al., 2018) This study also conformed to the Three-dimensional CT
framework (concepts, practices, and perspectives) proposed by Brennan and Resnick
(Brennan and Resnick, 2012). In addition, relevant background data (gender, grade, ex-

Fig. 8. The student answered correctly.

Fig. 7. Student uses programs to answer questions.

Effect of an OwlSpace Programming Course on the Computational Thinking... 157

perience, etc.) were collected for subsequent analysis. Table 4 shows the experimental
design. Bebras serves as the pre-test; the intervention step is teaching OwlSpace pro-
gramming course; Bebras is repeated as post-test; and finally, programming empower-
ment scale is implemented.

As the participants were elementary school students, we began by selecting suitable
questions from the Bebras problem set based on the elementary school level. Next, we
utilized Dagienė’s (Dagienė et al., 2017) proposed two-dimensional classification sys-
tem and classified the Bebras questions using the provided keywords for each question.
Subsequently, we specifically chose questions falling under the categories of “Algo-
rithms and Programming” and “Data, Data Structures, and Representations.” Finally,
we correlated the filtered questions with CT skills to ensure that students could apply
their learned CT skills to solve the questions. Table 5 presents the relationship between
the selected questions and CT skills. In addition, we limited the number of questions to
ten (Appendix I) to avoid disrupting the course’s progress.

Table 3
OwlSpace programming course CT definition correspondence table

Unit Concepts Practices Perspectives
Se

qu
en

ce
s

Lo
op

s

Pa
ra

lle
lis

m

Ev
en

ts

C
on

di
tio

na
ls

O
pe

ra
to

rs

D
at

a

B
ei

ng
 in

cr
em

en
-

ta
l a

nd
 it

er
at

iv
e

Te
st

in
g

an
d

de
bu

gg
in

g

R
eu

si
ng

 a
nd

re

m
ix

in
g

A
bs

tra
ct

in
g

an
d

m
od

ul
ar

iz
in

g

Ex
pr

es
si

ng

C
on

ne
ct

in
g

Q
ue

st
io

ni
ng

Name ✓ ✓ ✓
Coordinates ✓ ✓ ✓ ✓ ✓ ✓ ✓
Size ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Scale ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Function ✓ ✓ ✓ ✓ ✓ ✓ ✓
Parameter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Alpha ✓ ✓ ✓ ✓ ✓ ✓ ✓
Animation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Go ahead ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Rotate ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4
Teaching experiment design

Experimental design Pre-test Intervene Post-test

One-group pre-post-test design O1 * O2 and O3

O1：Bebras test (pre-test)
 *：Program teaching
O2：Bebras test (post-test)
O3：Programming empowerment scale

W.-Y. Li, T.-C. Lu158

Prior to conducting the experiment, we consulted with the computer science
teacher and confirmed that the students at the school had not previously participated
in the Bebras competition. Hence, it can be assumed that the students had no prior
exposure to any Bebras questions. To maintain the integrity of the study, we explic-
itly requested the teachers not to reveal that the questions were sourced from the
Bebras competition to prevent students from searching for related information online.
Following the completion of the pre-test, we refrained from providing the correct
answers to the students to prevent them from memorizing the answers. After teach-
ing the programming course, the post-test covered the same topics as the pre-test.
Furthermore, using a programming empowerment scale, we investigated whether the
students’ assumptions about the course’s ability to contribute to creativity, coopera-
tive attitudes, and programming self-efficacy were met. The questions of program-
ming empowerment scale are shown in Table 6, and each question is investigated
using a 5-point Likert scale.

Table 5
A table for task categorization using the two-dimensional categorization system

Name of task Informatics domain Keywords CT skill

1. Bracelet Data, data structures and
representations

Recognising patterns Abstracting and modularizing
Grammar check Reusing and remixing

2. Dog swap Algorithms and programming Sorting algorithm Data
Bubble sort Incremental and iterative

3. Lollipop and
toothbrush

Algorithms and programming Constraints Operators
Best solution Incremental and iterative

4. Spinning squares Algorithms and programming Divide and conquer Parallelism
Sorting Abstracting and modularizing
Track

5. Painting robot Data, data structures and
representations

Graph theory Incremental and iterative
Eulerian path

6. Board game piece
returns home

Algorithms and programming Program execution Sequences

7. Bebras painting Algorithms and programming Algorithm Events
Computer vision Abstracting and modularizing
Image conversion

8. Dancer Algorithms and programming Brute force algorithm Conditionals
Binary Abstracting and modularizing

9. Secret recipe Data, data structures and
representations

Linked list Data
Abstracting and modularizing
Reusing and remixing

10. Bakery Algorithms and programming Loop algorithm Loops
Operating systems Abstracting and modularizing
Scheduling Incremental and iterative

Effect of an OwlSpace Programming Course on the Computational Thinking... 159

Table 6
The questions of programming empowerment scale

Construct Questions source

Meaningfulness Programming is useful to me. (Kong et al.,
2018)Programming will help me achieve my goals.

I want to become good at programming.
Programming is important to me.

Impact I want to use programming to help solve problems in the world. (Kong et al.,
2018)I want to use programming to improve people’s lives.

I can use programming to make daily life easier.

Creative self-efficacy I would like to design things using programming. (Kong et al.,
2018)Computer programmers are creative.

It is important to be creative when you are programming.

Programming self-efficacy I can learn how to program. (Kong et al.,
2018)I am good at programming.

I think of myself as someone who can program.
I have the skills to program.
I have confidence in my ability to program.

Interest in programming Programming is interesting. (Kong et al.,
2018)I am curious about the content of programming.

I think the content of programming is fun.
I am very interested in computer programming activities.

Attitude toward collaboration
in programming

I like to program with others. (Kong et al.,
2018)I finish things faster when I program with others.

I have better ideas when I program with others.
People ask me for help with computers a lot.

3.5. Framework Used in this Study

We utilized Kong et al.’s programming empowerment scale to establish a research
framework, as shown in Fig. 9, and established 9 hypotheses (H-1a, H-1b, H-1c, H-1d,
H-2a, H-2b, H-3a, H-3b, and H-4) that were identical to Kong et al.’s research.

Kong et al. believes that CT courses are novel to students and can stimulate their
interest (Kong et al., 2018). When students are interested in programming, it will have
greater significance and impact on them. They will be willing to spend more time and
effort to challenge difficult tasks, thereby having higher levels of creative self-efficacy
and programming self-efficacy.

H-1a. Students with greater interest in OwlSpace programming than others view ●
it as more meaningfulness.
H-1b. Students with greater interest in OwlSpace programming than others be- ●
lieve it has greater impact.
H-1c. Students with greater interest in OwlSpace programming than others have ●
greater creative self-efficacy.

W.-Y. Li, T.-C. Lu160

H-1d. Students with greater interest in OwlSpace programming than others have ●
greater programming self-efficacy.

Kong et al. believed that collaborative attitude is related to creative self-efficacy and
programming self-efficacy (Kong et al., 2018). Students with a collaborative attitude
tend to work harder and solve difficult tasks more effectively when working with others,
resulting in better programming abilities.

H-2a. Students with better attitudes toward collaborative programming than oth- ●
ers have greater creative self-efficacy.
H-2b. Students with better attitudes toward collaborative programming than oth- ●
ers have greater programming self-efficacy.

Kong et al. reviewed previous research findings and found that older students usu-
ally perceive school subjects as meaningless compared to younger students (Kong et al.,
2018). This is because older students usually face more disconnected teaching situations
that are not related to their daily lives, which reduces their motivation to learn. There-
fore, they tend to believe that computer programming is not meaningful and believe that
their programming skills are weaker.

H-3a. Students of different grades think that the meaning of OwlSpace program- ●
ming is different.
H-3b. Students of different grades have different levels of self-efficacy in Owl- ●
Space programming.

Kong et al. reviewed previous studies and found that boys are generally more in-
terested in computer programming, and gender stereotypes of male computer experts
can hinder girls’ interest in computer programming (Kong et al., 2018). Therefore,
it is believed that boys are usually more interested in computer programming than
girls.

Kong et al. believed that collaborative attitude is related to creative self-efficacy

and programming self-efficacy [46]. Students with a collaborative attitude tend to work

harder and solve difficult tasks more effectively when working with others, resulting in

better programming abilities.

 H-2a. Students with better attitudes toward collaborative programming than others

have greater creative self-efficacy.

 H-2b. Students with better attitudes toward collaborative programming than others

have greater programming self-efficacy.

Kong et al. reviewed previous research findings and found that older students

usually perceive school subjects as meaningless compared to younger students [46]. This

is because older students usually face more disconnected teaching situations that are not

related to their daily lives, which reduces their motivation to learn. Therefore, they tend

to believe that computer programming is not meaningful and believe that their

programming skills are weaker.

 H-3a. Students of different grades think that the meaning of OwlSpace

programming is different.

 H-3b. Students of different grades have different levels of self-efficacy in

OwlSpace programming.

Kong et al. reviewed previous studies and found that boys are generally more

interested in computer programming, and gender stereotypes of male computer experts

can hinder girls' interest in computer programming[46]. Therefore, it is believed that

boys are usually more interested in computer programming than girls.

 H-4. Students of different genders have different levels of interests in OwlSpace

programming.

Fig. 9 Programming empowerment research framework

Interest

Meaningfulness

Impact

Collaboration

Creative
self-efficacy

Programming
self-efficacy

H-1a

H-1b

H-1c

H-1d
H-2a

H-2b

Gender

Grade

H-4

H-3a

H-3b

Fig. 9. Programming empowerment research framework.

Effect of an OwlSpace Programming Course on the Computational Thinking... 161

H-4. Students of different genders have different levels of interests in OwlSpace ●
programming.

To understand the effectiveness of students using OwlSpace courses, Statistical Prod-
uct and Service Solutions (SPSS) statistical package software was used to analyze the
Bebras test results. Here, a paired sample T-test and an independent sample T-test were
conducted using SPSS to explore the differences between the students’ learning effects
and their gender, grade, and past programming experience. Programming empowerment
questionnaire was analyzed and validated using SPSS regression analysis of hypotheses
H-1a to H-2b. H-3a to H-4 were examined for differences based on gender and grade
level using independent sample T-tests.

4. Results

4.1. Descriptive Statistics

This experiment started in February 2022 and ran until July 2022. Table 7 shows the
descriptive statistical data from the questionnaire. The participants were 150 elementary
school students in the fourth and fifth grades. The programming language learned on
programming empowerment scale is a multiple-answers question.

A total of 150 questionnaires were returned. We omitted 12 invalid (incomplete)
questionnaires. Thus, the total number of valid questionnaires was 138. Table 7 shows
that the proportion of male students is higher than that of female students. In addition,
fifth grade students make up the majority of participants; 52.9% of the students had
no programming experience, and 37.7% of students had learned some programming
using Scratch.

Table 7
Student background statistics

Attribute People Percent

Male students 80 58.0%
Female students 58 42.0%
Fourth grade 58 42.0%
Fifth grade 80 58.0%
Programming experience 65 47.1%
No programming experience 73 52.9%
Scratch 52 37.7%
Code.org 0 0%
Alice 1 0.7%
Java 2 1.4%
Python 7 5.1%
Other 15 10.9%

W.-Y. Li, T.-C. Lu162

4.2. CT Skills Before and After Test Analysis.

Table 8 shows that the average pre- and post-test scores were 48.91 and 53.04, respec-
tively; thus, the average post-test score was 4.13 points higher than the pre-test score.
The paired samples T-test was conducted to compare the two test scores and determine
whether the pre-test and post-test scores were statistically different. Here, the T value
was −2.064, and the p-value was 0.041. These results indicate a significant difference
and demonstrate that students made progress on the CT.

We found that female students scored 48.97 in the pre-test on average, while male
students scored 48.88. Thus, the female students scored 0.09 points higher than the male
students, and the female students scored 1.89 points higher than the boys in the post-
test. However, the results of the independent sample T-test comparison indicate that the
statistical difference between the two is negligible. For both the pre-test and post-test,
no significant difference was observed in terms of gender affecting CT. The results are
shown in Table 9.

For the pre-test, the scores obtained by the students in the fourth and fifth grades were
47.76 and 49.75, respectively. The scores obtained by fifth grade students are higher than
those in fourth grade by 1.99 points on the pre-test and 4.66 points on the post-test. No
statistical difference between the pre-test and the post-test results were found using the
independent sample T-test comparison, and the students’ grade did not affect the CT. The
results are shown in Table 10.

Students with prior programming experience performed better on the test than those
without similar experience. However, the independent sample T-test comparison did not
reveal a significant difference. The results are shown in Table 11.

Table 8
Paired sample T-test of pre-test and post-test.

N=138 Mean (Standard Deviation) df T P

Pre-test Post-test

Score 48.91 53.04 137 −2.064 0.041
(21.36) (20.98)

Table 9
Independent sample T-test based on student’s gender

Test Male students Female students T P

Pre-test 48.88 48.97 -0.024 0.981
Post-test 52.25 54.14 -0.520 0.604

Effect of an OwlSpace Programming Course on the Computational Thinking... 163

Table 11
Independent sample T-test of past programming experience

Test Experience No experience T P

Pre-test 52.46 45.75 1.857 0.065
Post-test 52.62 53.42 -0.225 0.822

4.3. CT Self-efficacy Questionnaire Analysis

The questionarire is shown in Appendix II. Programming empowerment scale question-
naire uses a 5-point Likert scale to investigate level of self-efficacy of users. As shown
in Table 12, the average value of each item is higher than 3, indicating a middle-to-high
level of self-efficacy. In addition, Cronbach’s alpha reliability is greater than 0.7, which
indicates good reliability.

Table 10
Independent sample T-test by grades

Test Fourth grade Fifth grade T P

Pre-test 47.76 49.75 -0.539 0.591
Post-test 50.34 55.00 -1.290 0.199

Table 12
Programming enablement statistics

Item Mean SD Cronbach’s alpha

Meaningfulness 1 4.15 0.734 0.899
Meaningfulness 2 4.00 0.755
Meaningfulness 3 4.07 0.794
Meaningfulness 4 3.88 0.793

Impact 1 3.96 0.858 0.827
Impact 2 4.09 0.782
Impact 3 4.07 0.834

Creative self-efficacy 1 4.25 0.695 0.853
Creative self-efficacy 2 4.38 0.642
Creative self-efficacy 3 4.42 0.626

Programming self-efficacy 1 4.25 0.715 0.912
Programming self-efficacy 2 3.50 0.930
Programming self-efficacy 3 3.57 0.920
Programming self-efficacy 4 3.59 0.851
Programming self-efficacy 5 3.62 0.890

Continued on next page

W.-Y. Li, T.-C. Lu164

Table 13 and Fig. 10 show regression analysis values of different factors. The data
allows us to identify the following observations.

When using linear regression to analyze the effect of interest on meaningfulness, ●
the significance p-value ˂ 0.05. Thus, hypothesis H-1a, i.e., students who are more
interested in programming think it is more meaningful, is valid.
When using linear regression to analyze the effect of interest on impact, the sig- ●
nificance p-value ˂ 0.05. Thus, hypothesis H-1b is valid, i.e., students who are
more interested in programming think it has a greater impact.
When using linear regression to analyze the influence of interest on creative self- ●
efficacy, the significance p-value ˂ 0.05. Thus, it is assumed that H-1c is valid,
i.e., students who are more interested in programming have greater creative self-
efficacy.
When using linear regression to analyze the influence of interest on programming ●
self-efficacy, the significance p-value ˂ 0.05. Thus, it is assumed that hypothesis
H-1d is confirmed, i.e., students who are more interested in programming have
higher programming self-efficacy.
When using linear regression to analyze the influence of collaborative program- ●
ming attitude on creative self-efficacy, the significance p-value ˂ 0.05. Thus, it is
assumed that H-2a is confirmed, i.e., students with a better collaborative program-
ming attitude have greater creative self-efficacy.

Table 13
Regression analysis results

Hypothesis Independent Variable Dependent Variable Beta T P

H-1a Interest Meaningfulness 0.749 13.19 0.000
H-1b Interest Impact 0.712 11.84 0.000
H-1c Interest Creative self-efficacy 0.731 12.50 0.000

H-1d Interest Programming self-efficacy 0.649 9.94 0.000
H-2a Collaboration Creative self-efficacy 0.506 6.84 0.000
H-2b Collaboration Programming self-efficacy 0.615 9.09 0.000

Table 12 – continued from previous page

Item Mean SD Cronbach’s alpha

Interest 1 4.27 0.700 0.931
Interest 2 4.17 0.819
Interest 3 4.23 0.708
Interest 4 4.09 0.782

Collaboration 1 4.08 0.855 0.822
Collaboration 2 4.01 0.819
Collaboration 3 3.97 0.837
Collaboration 4 3.38 1.028

Effect of an OwlSpace Programming Course on the Computational Thinking... 165

When using linear regression to analyze the influence of collaboration on pro- ●
gramming self-efficacy, the significance p-value ˂ 0.05. Thus, H-2b is valid, i.e.,
students with better attitudes toward collaborative programming have higher pro-
gramming self-efficacy.

Table 14 shows the difference analysis between different grades, from which we
conclude the following.

Using the independent sample T-test to compare the mean of the fourth and fifth ●
grades, the significant p-value in meaningfulness and programming self-efficacy
was not less than 0.05. Thus, H-3a and H-3b are rejected, and the means of fourth
and fifth grades did not differ. Therefore, we cannot assume that students in dif-
ferent grades think that the meaning of OwlSpace programming course is different
(H-3a). In addition, we cannot assume that students of different grades have dif-
ferent programming self-efficacy when using OwlSpace (H-3b).

Table 15 shows the results of analyzing the differences between male students and
female students. Using the independent sample T-test to compare the differences be-
tween the average numbers of male students and female students, the significant p-value
in interest was not less than 0.05. Thus, H-4 is rejected, i.e., the average numbers of male
students and female students do not differ. Therefore, assuming that H-4 students of dif-
ferent genders have different interests in OwlSpace programming course is invalid.

Fig. 10 Programming empowerment path relationship diagram

Table 14 shows the difference analysis between different grades, from which we

conclude the following.

 Using the independent sample T-test to compare the mean of the fourth and fifth

grades, the significant p-value in meaningfulness and programming self-efficacy

was not less than 0.05. Thus, H-3a and H-3b are rejected, and the means of fourth

and fifth grades did not differ. Therefore, we cannot assume that students in

different grades think that the meaning of OwlSpace programming course is

different (H-3a). In addition, we cannot assume that students of different grades

have different programming self-efficacy when using OwlSpace (H-3b).

Table 14 Independent samples T-test of grades

No. Grade T-test results for

Interested Fourth grade Fifth grade
Mean SD Mean SD T P

Meaningfulness 4.01 0.659 4.03 0.688 -.184 0.854

Programming 3.62 0.705 3.77 0.769 -1.165 0.246

Table 15 shows the results of analyzing the differences between male students and

female students. Using the independent sample T-test to compare the differences

between the average numbers of male students and female students, the significant

p-value in interest was not less than 0.05. Thus, H-4 is rejected, i.e., the average numbers

of male students and female students do not differ. Therefore, assuming that H-4

students of different genders have different interests in OwlSpace programming course is

invalid.

Table 15 Independent samples T-test of gender

Interest

Meaningfulness

Impact

Collaboration

 *significant p < 0.05,
 **very significant p < 0.01,
***extremely significant p<0.001

Creative
self-efficacy

Programming
self-efficacy

0.749***

0.712***

0.731***

0.649***
0.506***

0.615***

Fig. 10 Programming empowerment path relationship diagram.

Table 14
Independent samples T-test of grades

No. Grade T-test results for
InterestedFourth grade Fifth grade

Mean SD Mean SD T P

Meaningfulness 4.01 0.659 4.03 0.688 -.184 0.854
Programming 3.62 0.705 3.77 0.769 -1.165 0.246

W.-Y. Li, T.-C. Lu166

The final hypothesis verification results are shown in Table 16. A total of six as-
sumptions are confirmed, and three assumptions are not confirmed. OwlSpace pro-
gramming language courses do not have grade and gender differences. Interested stu-
dents find OwlSpace meaningful and influential, and students that are interested or
those with better attitudes toward collaborative programming exhibit greater creative
self-efficacy.

5. Conclusions

In this study, we utilized the Bebras test and programming empowerment scale com-
bined with Brennan’s Three-dimensional CT framework to investigate whether ele-
mentary school students could improve their CT skills after training with OwlSpace
programming courses. Pre- and post-test data analysis show that students improved
on the test, and all items on programming empowerment scale are positive. Therefore,

Table 15
Independent samples T-test of gender

No. Gender T-test results for
InterestedMale students Female students

Mean SD Mean SD T P

Interest 4.24 0.688 4.12 0.682 0.978 0.330

Table 16
Hypothesis verification results

Hypothesis Hypothetical content Result

H-1a Students with greater interest in OwlSpace programming than others view it as
more meaningfulness.

Valid

H-1b Students with greater interest in OwlSpace programming than others believe it
has greater impact.

Valid

H-1c Students with greater interest in OwlSpace programming than others have greater
creative self-efficacy.

Valid

H-1d Students with greater interest in OwlSpace programming than others have greater
programming self-efficacy.

Valid

H-2a Students with better attitudes toward collaborative programming than others have
greater creative self-efficacy.

Valid

H-2b Students with better attitudes toward collaborative programming than others have
greater programming self-efficacy.

Valid

H-3a Students of different grades think that the meaning of OwlSpace programming
is different.

Invalid

H-3b Students of different grades have different levels of self-efficacy in OwlSpace
programming.

Invalid

H-4 Students of different genders have different levels of interests in OwlSpace
programming.

Invalid

Effect of an OwlSpace Programming Course on the Computational Thinking... 167

we believe that by using OwlSpace programming courses, students can cultivate and
improve the CT concepts, practices, and perspectives. Gender, grade, and past experi-
ence are frequently discussed as factors that cause differences in students’ learning of
programming. However, this was not observed in this study. This result is consistent
with Papadakis et al.’s study(Papadakis et al., 2016), which found that gender does
not affect children’s performance in computational thinking and digital skills in early
education. According to Angeli and Valadines (Angeli and Valanides, 2020), it is not
because girls have lower programming and computational thinking skills or motivation
levels, but rather because of a lack of creative content that meets the needs and interests
of children. Girls can also perform well as long as they are provided with appropriate
teaching environments.

In terms of programming empowerment scale model, we found that six correspond-
ing assumptions hold true. Students who expressed greater interest in programming
with OwlSpace perceived it as more meaningful, as having a greater impact, as having
more creative self-efficacy, and as having higher programming self-efficacy, which is
consistent with Kong’s findings. Students with better attitudes toward collaboration
exhibited higher creative self-efficacy and higher programming self-efficacy, which
indicates that thay possess both “expressing” and “connecting” from CT perspectives.
In addition, differences in grade and gender had no effect on students’ meaning, inter-
est, and self-efficacy in programming, which contradicts the findings of Kong’s study.
However, these findings are consistent with the research of Ma et al.(Ma et al., 2021)
Using problem-solving instruction can enhance the CT self-efficacy of older students
and girls. Additionally, providing supportive instruction can increase girls’ engagement
and confidence in using programming environments.

OwlSpace platform used in this study provides programming courses suitable for
each learning stage according to the students’ academic background. For example, ba-
sic courses for elementary school, advanced courses for junior high school, and profes-
sional courses for high school, with assisted teaching provided to help students make a
gradual transition in their learning. Ultimately, students can independently use formal
text-based programming languages such as C or Python. However, in this study, we
only investigated whether students improved their CT skills by taking OwlSpace cours-
es. We did not compare OwlSpace interactively with other joint programming tools.
Therefore, we intend to conduct controlled experiments in the same environment in the
future to investigate differences in the students’ use of various programming education
systems and platforms.

Acknowledgement

This work was partly supported by the Ministry of Education, Taiwan, Republic of Chi-
na, under the “Enhancing Practical Competencies of Teachers and Students through the
Development of Digital Teaching Materials for the Introduction of Text-based Program-
ming Language, Neural Networks, and Information Hiding Concepts” Project.

W.-Y. Li, T.-C. Lu168

References

Anderson, L.W., Krathwohl, D.R. (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of
Bloom’s Taxonomy of Educational Objectives. Longman, New York.

Angeli, C., Valanides, N. (2020). Developing young children’s computational thinking with educational ro-
botics: An interaction efect between gender and scafolding strategy. Computers in Human Behavior, 105,
105954.

Bandura, A. (1994). Social cognitive theory and exercise of control over HIV infection, In Preventing AIDS,
pp. 25–59. Springer, Boston, MA.

Barr, D., Harrison, J., Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning &
Leading with Technology, 38(6), 20–23.

Bebras International Challenge on Informatics and Computational Thinking (2023). Participation in interna-
tional Bebras challenges worldwide. Retrieved 24 July 2023. Accessed at
https://www.bebras.org/statistics.html

Bebras International Challenge on Informatics and Computational Thinking (2023). Structure of a challenge.
Retrieved 24 July 2023. Accessed at https://www.bebras.org/structure.html

Brennan, K., Resnick, M., 2012, New frameworks for studying and assessing the development of computa-
tional thinking. In: Proceedings of the 2012 Annual Meeting of the American Educational Research As-
sociation. Vancouver, Canada, Vol. 1, p. 25.

Buffum, P.S., Lobene, E.V., Frankosky, M.H., Boyer, K.E., Wiebe, E.N., Lester, J.C. (2015). A practical guide
to developing and validating computer science knowledge assessments with application to middle school.
In: Proceedings of the 46th ACM Technical Symposium on Computer Science Education, pp. 622–627

Butcher, K.R. (2014). The Multimedia Principle. In: R.E.E. Mayer (Ed.), The Cambridge Handbook of Multi-
media Learning (2nd ed.), pp. 174–205.

Çakiroğlu, Ü., Suiçmez, S.S., Kurtoğlu, Y.B., Sari, A., Yildiz, S., Öztürk, M. (2018). Exploring perceived cog-
nitive load in learning programming via Scratch. Research in Learning Technology, Vol. 26.

Chen, J.M., Wu, T.T., Sandnes, F.E. (2018). Exploration of computational thinking based on bebras perfor-
mance in webduino programming by high school students. In: Innovative Technologies and Learning:
First International Conference, ICITL 2018, Portoroz, Slovenia, August 27–30, 2018, Proceedings 1, pp.
443–452.

Chetty, J., Barlow-Jones, G. (2012). Bridging the gap: The role of mediated transfer for computer program-
ming. In: Proceedings of Computer Science & Information Technology, Vol. 43.

Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V., Tosto, C. (2019). Educational robotics in primary school:
Measuring the development of computational thinking skills with the Bebras tasks. In Informatics, 6(4).

Cooper, S., Dann, W., and Pausch, R. (2000). Alice: A 3-D tool for introductory programming concepts. Jour-
nal of Computing Sciences in Colleges, 15(5), 107–116.

Cuny, J., Snyder, L., Wing, J. (2010). Demystifying computational thinking for non-computer scientists. Edu-
cational Research Review, 22(1).

Cutumisu, M., Adams, C., Lu, C. (2019). A scoping review of empirical research on recent computational
thinking assessments. Journal of Science Education and Technology, 28(6), 651–676.

Cutumisu, M., Adams, C., Lu, C. (2019). A scoping review of empirical research on recent computational
thinking assessments. Journal of Science Education and Technology, 28(6), 651–676.

Cynthia, S., Woollard, J. (2014). Computational thinking: the developing definition, In: Proceedings of Con-
ference: Special Interest Group on Computer Science Education (SIGCSE).

Dagienė, V., Sentance, S., Stupurienė, G. (2017). Developing a two-dimensional categorization system for
educational tasks in informatics. Informatica, 28(1), 23–44.

Dagienė, V., Stupurienė, G. (2016). Bebras – a sustainable community building model for the concept based
learning of informatics and computational thinking. Informatics in Education, 5(1), 25–44.

Gandhi, H. and Varma, M. (2010). Strategic content learning approach to promote self-regulated learning in
mathematics. In: Poceedings of epiSTME, Vol. 3, 119–124.

González, M.R. (2015). Computational thinking test: Design guidelines and content validation. In: Proceed-
ings of EDULEARN15, pp. 2436–2444.

Hubwieser, P., Mühling, A. (2014). Playing PISA with Bebras, In: Proceedings of the 9th Workshop in Primary
and Secondary Computing Education, pp. 128–129.

Kong, S.C. (2017). Development and validation of a programming self-efficacy scale for senior primary scho-
ol learners. In: Proceedings of the International Conference on Computational Thinking Education, pp.
97–102.

Effect of an OwlSpace Programming Course on the Computational Thinking... 169

Kong, S.C., Chiu, M.M., Lai, M. (2018). A study of primary school students’ interest, collaboration attitude,
and programming empowerment in computational thinking education. Computers and Education, 127,
178–189.

Lavy, I. (2023). Leveraging the Pied Piper Effect – The Case of Teaching Programming to Sixth-grade Stu-
dents Via Music. Informatics in Education, 22(1), 45–69.

Lindberg, S.N., , Laine, T.H., Haaranen, L. (2018). Gamifying programming education in K-12: A review of
programming curricula in seven countries and programming games. British Journal of Educational Tech-
nology, 50(4), 1979–1995.

Ma, H., Zhao, M., Wang, H., Wan, X., Cavanaugh, T.W., Liu, J. (2021). Promoting pupils’ computational thin-
king skills and self-efficacy: A problem-solving instructional approach. Educational Technology Research
and Development, 69(3), 1599–1616.

van Merri€enboer, J.J.G., Sweller, J. (2005). Cognitive load theory and complex learning: Recent develop-
ments and future directions. Educational Psychology Review, 17(2), 147–177.

Moreno-León, J. (2018). On computational thinking as a universal skill, In: Proceedings of 2018 IEEE Global
Engineering Education Conference (EDUCON), pp. 1684–1689.

Moreno-León, J., Robles, G. (2015). Dr. Scratch: A web tool to automatically evaluate Scratch projects. In:
Proceedings of the Workshop in Primary and Secondary Computing Education, pp. 132–133.

Moreno-León, J., Robles, G., Román-González, M. (2016). Comparing computational thinking development
assessment scores with software complexity metrics. In: Proceedings of 2016 IEEE Global Engineering
Education Conference (EDUCON), pp. 1040–1045.

National Research Council (2011). Report of a Workshop on the Pedagogical Aspects of Computational Think-
ing. Washington, DC: National Academies Press.

Nordén, L.Å., Mannila, L., Pears, A. (2017). Development of a self-efficacy scale for digital competences in
schools. In: Proceedings of 2017 IEEE Frontiers in Education Conference (FIE) , pp. 1–7.

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., González-Calero, J.A. (2020). Computational thinking through un-
plugged activities in early years of Primary Education. Computers & Education, 150, 103832.

Paas, F., Renkl, A., Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments.
Educational Psychologist, 38(1), 1–4.

Paas, F., Renkl, A., Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction be-
tween information structures and cognitive architecture. Instructional Science, 32(1/2), 1–8.

Paas, F.G., Van Merriënboer, J.J. (1994). Variability of worked examples and transfer of geometrical problem-
solving skills: A cognitive-load approach. Journal of educational psychology, 86(1), 122–133.

Papadakis, S., Kalogiannakis, M., Zaranis, N. (2016). Developing fundamental programming concepts and
computational thinking with ScratchJr in preschool education: A case study. International Journal of Mo-
bile Learning and Organisation, 10(3), 187–202.

Parsons, D., Haden, P. (2007). Programming Osmosis: Knowledge transfer from imperative to visual program-
ming environments. In: Procedings of the Twentieth Annual NACCQ Conference, Vol. 209. New Zealand:
Hamilton, p. 215.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Evelyn, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J., Silverman, B., Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM,
52(11).

Román-González, M., Pérez-González, J.C., Jiménez-Fernández, C. (2017). Which cognitive abilities under-
lie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human
Behavior, 72, 678–691.

Shim, J., Kwon, D., Lee, W. (2016) The effects of a robot game environment on computer programming educa-
tion for elementary school students. IEEE Transactions on Education, 60(2), 164–172.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2),
257–285.

Sweller, J., Ayres, P., Kalyuga, S. (2011). Cognitive Load Theory. New York, NY: Springer.
Valerie, J.S., Chen, S., Asbell-Clarke, J. (2017). Demystifying comptational thinking. Educational Research

Review, 22, 142–158.
Weintrop, D., Wilensky, U. (2015). To block or not to block, that is the question: Students’ perceptions of

blocks-based programming. In: Proceedings of the 14th International Conference on Interaction Design
and Children, pp. 199–208.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
Wolber, D., Harold A., Friedman, M. (2015). Democratizing computing with App Inventor, GetMobile: Mo-

bile Computing and Communications, 18(4), 53–58.

W.-Y. Li, T.-C. Lu170

W.-Y. Li is a PhD student in the Department of Information Management at Chaoyang
University of Technology in Taichung, Taiwan. He earned his M.S.I.M degrees in infor-
mation management from Chaoyang University of Technology in Taiwan in 2011 and
2013. His research focuses on program education, instructional software, and the design
and development of human information systems

T.-C. Lu is Professor at Department of Information Management, Chaoyang Univer-
sity of Technology Taichung, Taiwan. Tzu-Chuen Lu received the B.M. and M.S.I.M.
degrees in information management from the Chaoyang University of Technology, Tai-
wan, 1999 and 2001, respectively, and the Ph.D. degree in computer engineering from
National Chung Cheng University, in 2006. Her research areas include computational
complexity, steganography, data encapsulation, and decision support systems.

Effect of an OwlSpace Programming Course on the Computational Thinking... 171

Appendix I

+ Computational thinking multiple-choice questions

1. Bracelet

Emily has broken her favorite bracelet. The broken bracelet now looks like this:

Question:
Which of the following four bracelets shows what the bracelet looked like when it was
whole?

(A) (B) (C) (D)

2. Dog swap

Two different types of dogs are lined up in the following positions.

When two adjacent dogs switch positions, it is called a swap.
We use multiple swaps to arrange the three big dogs to be in three consecutive posi-
tions.
Question:
What is the minimum number of swaps that can be done to achieve this?

(A) 5 swaps (B) 6 swaps (C) 7 swaps (D) 8 swaps

W.-Y. Li, T.-C. Lu172

3. Lollipop and toothbrush

The little beaver goes to a candy tunnel with a lollipop or a toothbrush at every other
step. This passage can only go forward and not backward. Thus, at every step, the little
beaver must decide whether to eat candy, brush his teeth, or keep going without doing
anything, according to the things placed in that position. The little beaver cannot take
the lollipop or toothbrush with him.
The little beaver wants to eat as much candy as possible but also wants to abide by
dental health rules. Therefore, after eating a maximum of two lollipops, he must brush
his teeth before eating the next lollipop.

Question:
What is the maximum number of lollipops that the little beaver can eat in order to fol-
low the dental health rules?

(A) 3 lollipops (B) 5 lollipops (C) 6 lollipops (D) 7 lollipops

4. Spinning squares

Here is a simple push-square game. The colors rotate each time the center button is
pressed.

Question:
If we press the button one more time, where will the red, blue, green, and yellow
squares be?

(A) (B) (C) (D)

Effect of an OwlSpace Programming Course on the Computational Thinking... 173

5. Painting robot

The little beaver’s tennis court looks like this odd shape when viewed from above.

The little beaver wants to use a robot to paint the tennis court. He hopes to paint each
line in the court but, to save paint, not repeat any line. Additionally, the robots can only
be turned off when the pitch is fully painted.
Question:
Which of the following paths should the robot take to paint each line without repeating
any line?

(A) A→B→C→D→E→B→D→A→B
(B) A→D→B→E→D→C→B→A→E
(C) A→D→B→E→D→C→B→A
(D) E→A→D→E→B→C→D→E

6. Board game piece returns home

A computer game is played on a board comprising white and gray squares. Pieces can
be placed on the white squares, but they cannot be placed on or moved into the gray
squares.
The following two types of pieces are initially placed on the white squares:
circle, triangle, or rhombus.
The home of each game piece has a square with a hollowed-out shape in the center.

Each piece can be moved to adjacent squares using four commands: up, down, left, and
right. The adjacent squares must be white, and no other pieces or other pieces’s home. If
a piece moves to its home, it and its home disappear from the board.

W.-Y. Li, T.-C. Lu174

The goal is to return each piece to its home (leaving a board without pieces).
Taking the chessboard in the above picture as an example, the correct order for the
shaped piece to move home is: circle: (left, left) and triangle: (bottom, right, right,
top, top).
Question:
Which string of the following movement sequences will complete the task shown on the
chessboard on the bottom?

Circle: (right, right) Rhombus: (left, bottom, right, right) Circle: (up, up) Triangle: (A)
(down, down, right, right, up, up)
Rhombus: (left, down, left, left) Circle: (right, right, up, up) Triangle: (down, (B)
down, right, right, up, up)
Circle: (right, right) Rhombus: (left, left, down, left) Circle: (up, up) Triangle: (C)
(down, down, right, right, up, up)
Circle: (right, right) Rhombus: (left, down, left, left) Circle: (up, up) Triangle: (D)
(down, down, right, right, up, up)

7. Bebras painting

The beaver children have found a magic roller.
The roller replaces a shape in a painting with the next shape shown by the arrows be-
low.

Effect of an OwlSpace Programming Course on the Computational Thinking... 175

Example:
When Ben uses the magic roller to paint over the painting on the left, he gets the paint-
ing on the right.

Question:
What will the painting below look like after using the magic roller?

(A) (C)

(B) (D)

8. Dancer

Verity makes an animation of a man dancing. So far, she has only completed the first
and last frames.
The man can only move one of his arms or legs at a time, and there should only be one
difference between adjacent frames.
Question: Drag and drop the images into the correct empty frames to complete the
animation.

(A) (C)

(B) (D)

W.-Y. Li, T.-C. Lu176

9. Secret recipe

Esther has asked Ivan to cook a special cake made of five ingredients.
She has placed labels next to the ingredients in the garden. However, one ingredient has
no label.
The labels tell Ivan which ingredient must be added next in the sequence.
The garden looks like this:

Question:
Which ingredient should be added first?

(A) (B) (C) (D)

10. Bakery

Beaver village’s bakery bakes 3 bagels every 2 min.
There is a queue in front of the bakery, which only serves only 1 customer at a time. The
bakery opens at seven in the morning and begins baking when the first customer orders.
There were already 3 beavers queuing up when the doors opened.

The first beaver, Ali, needs to buy 7 bagels, the second beaver, Bilgin, needs 3 bagels,
and the third beaver, Yasemin, needs 5 bagels.
However, beavers in the line can only buy a maximum of 3 bagels at a time. Thus, if they
want to buy more, they must immediately go to the back of the line and line up again.

The third beaver, Yasemin, bought the 5 bagels he needs a few minutes after the business
starts?

Effect of an OwlSpace Programming Course on the Computational Thinking... 177

(A) 6 min (B) 8 min (C) 10 min (D) 12 min

Appendix II
Programming Empowerment Scale

Gender：□Male □Female
Grade：□4 □5
Have you been exposed to courses related to procedural design before?
□Yes □No
Which programming courses have you taken before?
□Scratch □Code.org □Alice □Java □Python □Others:______

W.-Y. Li, T.-C. Lu178

Items
Strongly

Agree
Agree Neutral Disagree

Strongly
Disagree

Meaningfulness

Meaningfulness 1. Programming is useful to me. □ □ □ □ □
Meaningfulness 2. Programming will help me achieve my goals. □ □ □ □ □
Meaningfulness 3. I want to become good at programming. □ □ □ □ □
Meaningfulness 4. Programming is important to me. □ □ □ □ □

Impact

Impact 1. I want to use programming to help solve problems in
the world. □ □ □ □ □
Impact 2. I want to use programming to improve people’s lives. □ □ □ □ □
Impact 3. I can use programming to make daily life easier. □ □ □ □ □

Creative self-efficacy

Creative self-efficacy 1. I would like to design things using prog-
ramming. □ □ □ □ □
Creative self-efficacy 2. Computer programmers are creative. □ □ □ □ □
Creative self-efficacy 3. It is important to be creative when you
are programming. □ □ □ □ □

Programming self-efficacy

Programming self-efficacy 1. I can learn how to program. □ □ □ □ □
Programming self-efficacy 2. I am good at programming. □ □ □ □ □
Programming self-efficacy 3. I think of myself as someone who
can program. □ □ □ □ □
Programming self-efficacy 4. I have the skills to program. □ □ □ □ □
Programming self-efficacy 5. I have confidence in my ability to
program. □ □ □ □ □

Interest in programming
Interest 1. Programming is interesting. □ □ □ □ □
Interest 2. I am curious about the content of programming. □ □ □ □ □
Interest 3. I think the content of programming is fun. □ □ □ □ □
Interest 4. I am very interested in computer programming
activities. □ □ □ □ □

Attitude toward collaboration in programming
collaboration 1. I like to program with others. □ □ □ □ □
collaboration 2. I finish things faster when I program with others. □ □ □ □ □
collaboration 3. I have better ideas when I program with others. □ □ □ □ □
collaboration 4. People ask me for help with computers a lot. □ □ □ □ □

