
Informatics in Education, 2024, Vol. 23, No. 2, 409–437
© 2024 Vilnius University
DOI: 10.15388/infedu.2024.10

409

Reliability and Validity of an Automated Model  
for Assessing the Learning of Machine Learning  
in Middle and High School:  
Experiences from the “ML for All!” Course

Marcelo Fernando RAUBER1,2,  
Christiane GRESSE VON WANGENHEIM1,  
Pedro Alberto BARBETTA3, Adriano FERRETI BORGATTO3,  
Ramon Mayor MARTINS1, Jean Carlo Rossa HAUCK1

1Graduate Program in Computer Science, Department of Informatics and Statistics,  
 Federal University of Santa Catarina, Florianópolis/SC, Brazil.
2Federal Institute Catarinense (IFC), Camboriú/SC, Brazil.
3Graduate Program in Methods and Management in Evaluation,  
 Federal University of Santa Catarina, Florianópolis/SC, Brazil.
e-mail: marcelo.rauber@ifc.edu.br, c.wangenheim@ufsc.br, pedro.barbetta@ufsc.br,  
adriano.borgatto@ufsc.br, ramon.mayor@posgrad.ufsc.br, jean.hauck@ufsc.br

Received: April 2023

Abstract. The insertion of Machine Learning (ML) in everyday life demonstrates the importance 
of popularizing an understanding of ML already in school. Accompanying this trend arises the 
need to assess the students’ learning. Yet, so far, few assessments have been proposed, most lack-
ing an evaluation. Therefore, we evaluate the reliability and validity of an automated assessment 
of the students’ learning of an image classification model created as a learning outcome of the “ML 
for All!” course. Results based on data collected from 240 students indicate that the assessment 
can be considered reliable (coefficient Omega = 0.834/Cronbach’s alpha α = 0.83). We also identi-
fied moderate to strong convergent and discriminant validity based on the polychoric correlation 
matrix. Factor analyses indicate two underlying factors “Data Management and Model Training” 
and “Performance Interpretation”, completing each other. These results can guide the improve-
ment of assessments, as well as the decision on the application of this model in order to support 
ML education as part of a comprehensive assessment. 

Keywords: K-12, middle and high school, Machine Learning, Artificial Intelligence, neural net-
work, image classification, assessment, evaluation.
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1. Introduction

Our culture, diversity, education, scientific knowledge, communication, and informa-
tion are deeply impacted by a diverse set of Artificial Intelligence (AI) technologies, 
with Machine Learning (ML) being one of the most prominent fields (UNESCO, 2022). 
ML refers to systems that learn and evolve from their own experience without hav-
ing to be explicitly programmed to do some task, based on a mathematical/statistical 
model from data (Mitchell, 1997). More recently, Deep Learning approaches using 
neural networks, provide substantial progress in ML improving the state of art, for 
example, in computer vision through image recognition/classification (LeCun et al., 
2015; UNESCO, 2022). 

However, a significant portion of the population does not understand the technology 
used in ML, which can make it mysterious or even scary (Ho and Scadding, 2019). To 
demystify what ML is, how it works, and demonstrate its impacts and limitations, there 
is a growing need for the public to understand ML (House of Lords, 2018). Thus, it is 
important to introduce basic ML concepts already at school (Camada and Durães, 2020; 
Caruso and Cavalheiro, 2021), guiding students to critically and consciously use ML 
models, as well as providing a first contact to create intelligent and ethically correct solu-
tions (Kandlhofer et al., 2016; Royal Society, 2017; UNESCO, 2022).

Following the curriculum guidelines proposed by Touretzky et al. (2019) and Long 
and Magerko (2020), teaching ML should start at K-12 and cover an understanding of 
basic ML concepts, such as learning algorithms and neural network fundamentals, as 
well as limitations and ethical considerations related to ML. Aiming to achieve this 
goal, several initiatives are emerging proposing the teaching of AI/ML in K-12 (Long 
and Magerko, 2020; Marques et al., 2020). Expecting students to go beyond merely 
understanding ML concepts, but to becoming creators of ML models, typically active 
learning methodologies are adopted with a focus on the human-centered development of 
an ML model (Amershi et al., 2019), in order to teach students how to prepare a dataset, 
train a ML model, and evaluate its performance and use it for the prediction of new im-
ages (Lwakatare et al., 2019; Ramos et al., 2020). Therefore, typically visual no-coding 
tools are used, such as Google Teachable Machine (GTM; Google, 2023). This allows 
students to run an ML process interactively, through a cycle of training, feedback, and 
correction, enabling them to evaluate the performance of the ML model and so, mak-
ing changes to the model aiming to improve the model (Gresse von Wangenheim et al., 
2021). Adopting the Use-Modify-Create cycle (Lee et al., 2011) commonly novices are 
taught to first inspect and manipulate pre-defined ML models on the Use stage, then to 
modify these models until at the Create stage, students are encouraged to develop their 
own ML projects. 

As part of this learning process, it is important to assess the student’s performance 
and to provide feedback to both the student and instructor (Hattie and Timperley, 2007). 
Assessment as the result of an educational experience, comprising both the process of 
collecting and analyzing information from various sources, aims to understand in depth 
the student’s knowledge, what s/he understands, and what tasks s/he can accomplish 
(Huba and Freed, 2000). Yet, so far few models have been proposed to assess the learn-
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ing of ML in K-12 ranging from quizzes and self-assessments to performance-based 
models assessing the learning of basic ML concepts, approaches, and some cases ethical 
issues and the impact of ML on lower cognitive levels (Rauber and Gresse von Wangen-
heim, 2022). Most of these assessments are done manually by the instructor with only 
very few automated solutions. Furthermore, a lack of evaluation of these assessments 
is common, leaving their reliability and validity questionable (Marques et al., 2020, 
Rauber and Gresse von Wangenheim, 2022). A few exceptions include Hsu et al. (2022) 
analyzing the reliability of a five-item self-assessment questionnaire reporting a Cron-
bach’s alpha α = 0.883, and Hitron et al. (2019) analyzing the reliability of the coding 
performed by researchers when manually labeling student’s short answer items of an 
essay on basic ML understanding reporting an interrater Kappa of 92%. Only Shamir 
and Levin (2021) report the analysis of content validity, in which students and instruc-
tors reviewed the questions for the ability to read and understand the items, but without 
providing statistical results.

Therefore, this research aims at evaluating a performance-based assessment model 
of the learning of concepts and practices regarding image classification with artificial 
neural networks in middle and high school proposed by Gresse von Wangenheim et al. 
(2021) based on data collected from the application of the “ML for All!” course (Gresse 
von Wangenheim et al., 2020). The assessment is based on the examination of student-
created artifacts as a part of open-ended applications on the Use stage of the Use-Mod-
ify-Create cycle (Lee et al., 2011). An initial evaluation of the scoring rubric through 
an expert panel demonstrates its internal consistency as well as its correctness and rel-
evance. In order to evolve the evaluation of the proposed assessment model, we analyze 
the reliability and validity of the assessment based on data collected from 240 middle 
and high school students.

2. Assessment of Learning ML Concepts at the Use Stage  
in Middle and High School

Aiming to teach ML to middle and high school students, an alternative is the course “ML 
for All!” (Gresse von Wangenheim et al., 2020) presenting basic concepts of ML and 
artificial neural networks as well as teaching students to develop a predefined model for 
the classification of recycling thrash images. As part of the course ML for All! (Gresse 
von Wangenheim et al., 2020), we systematically designed, developed, and implement-
ed an assessment model adopting the Evidence-Centered Design methodology (Mislevy 
et al., 2003). 

Domain Analysis. The target audience are Brazilian students from public middle and 
high schools, with a minimum age of 12 years. At this educational stage, it is expected 
that students are fluent in their native language, have developed logical-mathematical 
reasoning, and know how to perform everyday activities with computers, such as ac-
cessing the Internet (MEC, 2018). Yet, as computing education in Brazil in practice is 
still limited to extracurricular programs (Santos et al., 2018) many students do not have 
computing competencies nor AI/ML knowledge. 
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Regarding access to computer resources, 66% of urban school students have at least 
one computer or tablet at home, and 42% spend more than three hours a day dealing with 
technology (TIC Educação, 2019). Furthermore, 98% of students in urban schools have 
access to the Internet via a smartphone. 

In Brazil, most schools do not have teachers with a degree in computing education 
(MEC, 2020). Therefore, computing education is typically introduced in an interdisciplin-
ary way being taught by teachers from diverse backgrounds in curricular knowledge ar-
eas, such as history, science, etc., with few computing competencies. This can complicate 
the assessment of learning outcomes and even result in unreliable results. Furthermore, as 
public school classes are typically large with sometimes more than 30 students, a manual 
assessment of the students’ projects represents an effort and time consuming activity. 

Following the K-12 Guidelines for Artificial Intelligence (Touretzky et al., 2019a) 
referring to the Big Idea 3 – Learning, AI literacy (Long and Magerko, 2020) and a 
human-centered ML process (Amershi et al., 2019) the course “ML for All!” (Gresse 
von Wangenheim et al., 2020) aims to promote knowledge building regarding basic ML 
concepts with a focus on image recognition including data preparation, model training, 
performance evaluation and prediction of ML model at the Use stage. In order to opera-
tionalize the teaching of ML with an interdisciplinary approach related to the Sustain-
able Development Goals (United Nations, 2015), the course focuses on the task of the 
classification of recyclable trash images. 

Domain Modeling. Based on the domain analysis, the Principled Assessment Designs 
for Inquiry design pattern were adopted, specifying the elements that will be needed in 
the assessment considering computational artifacts in the context of computing educa-
tion of ML (Mislevy et al., 2003; Seeratan and Mislevy, 2008). 

 a) Student competencies. The student model is designed considering focal knowl-
edge, skills, and abilities (Mislevy and Haertel, 2006) as well as other knowl-
edge/skills/abilities that may be required. At the Use stage of the “Use-Mod-
ify-Create” cycle (Lee et al., 2011), following a human-centered ML process 
(Amershi et al., 2019) as well as AI curricula guidelines, the general learning 
objective is to introduce students to Machine Learning enabling them to have a 
basic understanding of how ML and neural networks work and develop an ML 
model for image classification. Table 1 presents the learning objectives with re-
spect to ML competencies at the Use stage in the course “ML for All!”.
 b) Task model. The task model designs a family of potential tasks, and how to 
structure the kinds of situations we need to obtain the kinds of evidence needed 
for the evidence models (Mislevy et al., 2003). Elements for the task model are 
described in Table 2. 

The assessment is defined to be applied as part of the course “ML for All!” 
(Gresse von Wangenheim et al., 2020) teaching ML to middle and high school 
students without prior knowledge of computing or AI/ML. The course is planned 
to be taught in eight hours. The course teaches basic concepts on ML and neural 
networks and how to develop a predefined ML model for image recognition 
following the basic steps of a human-centric ML process including data prepa-
ration, model training, performance evaluation, and prediction. Aiming at an 
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interdisciplinary application, the course “ML for All!” guides the students to 
build an ML model for image classification addressing the topic of recycling 
thrash. After the motivation and presentation of basic ML concepts and neu-
ral networks, the students start the development of the pre-defined ML model 
(Fig. 1). To build the ML model students are guided step-by-step to use a visual 
environment, Google Teachable Machine (GTM) (Google, 2023). In addition, 
students are provided with a set of 210 resized and uncategorized images in or-
der to prepare a dataset. Students have to clean the dataset and label the images 
with respect to the recycling categories: metal, paper, plastic, and glass. They 
are also encouraged to expand the dataset by collecting images of trash they 
have on hand. Then, they are instructed to train the model with GTM, test the 
model with new images, and interpret the performance achieved by the model, 
taking into account their tests, the accuracy of the model, and the confusion 
matrix provided by GTM. During the course, the students are also instigated to 

Table 1
Student model for the assessment of ML competencies at Use stage

Element Description

Rationale Neural networks are a current and key technique in ML for the development of image 
classification models.

Focal knowledge, 
skills, and other 
attributes

Understanding of basic concepts about neural networks.
Ability to collect, clean and label data for the training of an ML model. 
Ability to train an ML model for image classification using a visual tool.
Ability to analyze and interpret the performance of the trained ML model and to improve 

the model.
Ability to test the ML model with new images for prediction.

Additional know-
ledge, skills, and 
attributes

Ability and maturity to understand instructions in Brazilian Portuguese. 
The ability to use a computer (basic operations) and access the Internet via a browser.
Ability to login to web pages with personal user data. 

Table 2
Task model for the assessment of ML competencies at Use stage

Element Description

Potential work 
products

Google Teachable Machine file (.tm) including the dataset and category labels.
Report on the evaluation of the test results with new objects.
Report on the evaluation of the model’s performance (accuracy table and confusion 

matrix).
Report of improvements made.

Potential 
Rubric(s)

Rubric for application of ML concepts for image recognition – Use stage (Gresse von 
Wangenheim et al., 2021).

Characteristic 
features

The task must have the students to clean and label a dataset of recycling trash images. 
The task must have the students to train the ML model.
The tasks must have the students to analyze and interpret the performance of the model 

based on validation results (accuracy measure and confusion matrix) and testing of new 
images. 

Variable features No variable features are identified at the Use stage.
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adjust the dataset and/or change the training parameters in order to improve the 
performance of the ML model. The course is available online for free in Brazil-
ian Portuguese at https://cursos.computacaonaescola.ufsc.br/.

 c) Evidence model. Given a performance in the form of the student’s work products 
from the tasks, the evidence model details how the information about the student 
model variables should be updated (Mislevy et al., 2003). Elements of potential 
observation are elicited in conformity with the student model (Table 3).

The evidence model includes an evaluation model and a measurement 
model. The evaluation model describes how to extract observable variables 
in terms of students’ performance from work products of specific tasks and 
form evidence reflecting students’ information competency level. Observable 
variables describe characteristics to be evaluated and possibly can group other 
observable variables together (Mislevy et al., 2003). Thus, in this article, the 
terms observable variables, items, and rubric criteria will be used interchange-
ably. Focusing on performance-based assessment the evaluation model is rep-
resented in form of a scoring rubric (Table 4) initially proposed by Gresse 

a) Dataset preparation b) Model training and adjustments

{
“type”:”image”,
“version”:”2.4.4”,
“appdata”:
  {“publishResults”:
      {“tensorflowjs”:
          {“name”:”aa_Omited”,
          “token”:”bb_Omited”
          }
      },
  “trainEpochs”:50,
  “trainBatchSize”:16,
  “trainLearningRate”:0.001
  }
}

 
c) Training parameters assessed directly from  

Google Teachable Machine file (.tm)

d) Example of an online report for evidence 
collection about interpretation and analysis 

 of accuracy per category

Fig. 1. Examples of work products created by students as a result of learning.
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von Wangenheim et al. (2021), which was reviewed and adjusted, defining 
the observable variables to be measured to assess the ability to develop an ML 
model indirectly inferring the achievement of ML competencies. The observ-
able variables in the previous and initial version of the rubric were evaluated 
in terms of validity by a group of experts and showed a substantial inter-rater 
agreement as well as content validity in terms of correctness, relevance, com-
pleteness, and clarity (Gresse von Wangenheim et al., 2021). With the aim to 
automate the assessment process, only items that can be assessed automati-
cally were considered. Performance levels were defined according to learn-
ing outcomes, specifying the criteria associated with learning objectives, and 
indicators describing each level to assess student achievement. Higher levels 
represent greater understanding with respect to the concept being measured. 
The performance levels were defined on a 4 or 3-point ordinal scale, ranging 
from not submitted to good in adherence with the performance expected to 
achieve the respective learning goal. In case of a lack of submission of certain 
work products by the student the lowest (not submitted) performance level is 
associated, assuming that the student has not executed the respective task and, 
therefore, has not achieved any performance regarding this criteria. 

Table 4
Rubric for the assessment of the application of ML concepts for image recognition – Use stage

ID Item /
Observable 
variables

Performance levels
Not submitted –  
0 points

Poor –  
1 point

Acceptable –  
2 points

Good –  
3 points

Data management

I1 Quantity of 
images

No GTM file (.tm) 
submitted for assess-
ment

Less than 20 images 
per category

21 to 35 images 
per category

More than 35 ima-
ges per category

I2 Distribution of 
the dataset

No GTM file (.tm) 
submitted for assess-
ment.

The number of ima-
ges in each category 
varies greatly. More 
than 10% variation 
in at least one cate-
gory (relative to the 
total)

The number of 
images between 
the categories va-
ries between 3% 
and 10%

All categories have 
the same amount 
of images (less 
than 3% variation)

Continued on next page

Table 3
Evidence model for the assessment of ML competencies at Use stage

Element Description

Potential 
observations

Size, distribution, and correctness of the labels of the dataset 
Execution of the model training
Correctness of the performance analysis and interpretation (accuracy table, confusion matrix)
Execution of improvement actions
Correctness of the analysis and interpretation of prediction tests 
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Table 4 – continued from previous page

ID Item /
Observable 
variables

Performance levels
Not submitted –  
0 points

Poor –  
1 point

Acceptable –  
2 points

Good –  
3 points

I3 Labeling of the 
images (Sampling 
10% of images 
to test through 
hi-accuracy ML 
model)

No GTM file (.tm) 
submitted for 
assessment.

Less than 20% of the 
images were labeled 
correctly

20% and 95% of 
the images were 
labeled correctly

More than 95% of 
the images were 
labeled correctly

Model training

I4 Training No GTM file (.tm) 
submitted for 
assessment.

The model was not 
trained

The model was 
trained using the 
default parameters

The model was 
trained with adjus-
ted parame-ters 
(epochs, batch size, 
learning rate)

Interpretation of performance

I5 Analysis of 
accuracy per 
category

No information 
submitted about 
categories and/or 
interpretation.

Categories with low 
accuracy were not 
identified

-- All categories with 
low accuracy were 
correctly identified

I6 Interpretation of 
the accuracy

No information 
submitted about 
categories and/or 
interpretation.

Incorrect 
interpretation of the 
accuracy analysis of 
the model

-- Correct interpre-
tation of the 
accuracy analysis 
of the model

I7 Analysis of the 
confusion matrix 

No information 
submitted about 
Confusion Matrix 
and/or interpretation.

Incorrect 
identification of 
classification errors 
(more than 2 errors)

Incorrect identifi-
cation of one or 
two classification 
errors

Correct 
identification of 
all classification 
errors

I8 Interpretation 
of the
confusion matrix

No information 
submitted about 
Confusion Matrix 
and/or interpretation.

Incorrect interpreta-
tion of the confusion 
matrix analysis of 
the model

-- Correct interpreta-
tion of the confu-
sion matrix analy-
sis of the model

I9 Adjustments / 
Improvements 
made

No information 
submitted about 
improvements.

No new 
development 
iterations were 
reported

A new iteration 
with changes in 
the dataset and/or 
training parame-
ters was reported

Several iterations 
with changes in 
the dataset and/or 
training parameters 
have been reported

I10 Tests with new 
objects

No information sub-
mitted about Tests 
and/or interpretation.

No new object tested 1–3 objects tested More than 3 
objects tested

I11 Analysis of test 
results

No information sub-
mitted about Tests 
and/or interpretation.

Incorrect indication 
of the number of 
errors in the tests

-- Correct indication 
of the amount of 
errors in the tests

I12 Interpretation of 
test results 

No information 
submitted about tests 
and/or interpretation.

Wrong interpretation 
of test results

-- Correct interpreta-
tion of test results

The measurement model calculates an overall score ranging from 0.0 to 10.0 in ac-
cordance with the grading system typically adopted in Brazil (Santos et al., 2018), as the 
average of the sum of points of the rubric multiplicated by ten.
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An overview of the relation between the main constructs of the Student model iden-
tifying focal knowledge and skills, the Evidence model (evaluation model) identifying 
items and the Task model identifying the proposed learning activities is presented in 
Table 5.

Assessment implementation and delivery. During the application of the course “ML 
for All!” (Gresse von Wangenheim et al., 2020), work products created by the students 
were collected as learning outcomes and assessed using the evidence model. Students 
were instructed to document the results of the ML process during and after the tasks, 
which includes, besides submitting the generated model by the GTM (.tm) file, reports 
completed online that document the analysis and interpretation of the performance and 
prediction results. All these work products resulting from the process of developing the 
ML model were collected as a basis for the performance-based assessment of the stu-
dent’s learning. 

 a) Automation of the assessment – CodeMaster tool. The assessment model 
has been automated as part of CodeMaster (Gresse von Wangenheim et al., 
2018), a web-based tool for automatically assessing App Inventor apps (and 
BYOB/Snap! projects) (Fig. 2). The tool was evolved to also automate the as-
sessment of ML concepts based on the evidence model, through the analysis 
of the work products created as a result of the educational tasks during the 
course. The work products are submitted iteratively online by uploading the 
respective artifacts and reports. All submitted data is analyzed and assessed 
instantly, providing immediate feedback to the students. In order to reduce 
the processing time for analyzing the labeling correctness with a high-preci-
sion deep learning model, we assess only a 10% sample of the images used 
by the student for training for the assessment of the item “I03 Labeling of 
the images”. The overall score is shown as a numerical value as well as in a 

Table 5
Overview on the main constructs of the Student, Evidence, and Task model

Student model Evidence model Task model

Understanding of basic concepts about neural 
networks. / Ability to collect, clean and label data 
for the training of an ML model. 

I1 Quantity of images Dataset 
preparationI2 Distribution of the dataset

I3 Labeling of the images

Ability to train an ML model for image classification 
using a visual tool.

I4 Training Training

Ability to analyze and interpret the performance of 
the trained ML model and to improve the model.

I5 Analysis of accuracy per category Performance 
evaluationI6 Interpretation of the accuracy

I7 Analysis of the confusion matrix
I8 Interpretation of the confusion matrix
I9 Adjustments / Improvements made

Ability to test the ML model with new images for 
prediction.

I10 Tests with new objects Prediction
I11 Analysis of test results
I12 Interpretation of test results
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ludic form of a robot ninja, whose belt color varies accordingly. In addition, 
the criteria of the evidence model are listed with the respective performance 
level achieved. The tool is available in Brazilian Portuguese online for free at 
http://apps.computacaonaescola.ufsc.br/codemaster/.

3. Research Methodology

The research was conducted in an exploratory manner based on a series of case studies, 
based on data collected from applying the “ML for All!” (Gresse von Wangenheim et al., 
2020) course in practice. Following the Goal Question Metric approach (Basili et al., 
1994), the objective of this study was to evaluate the assessment model in terms of reli-
ability and construct validity for the performance-based assessment of ML competencies 
related to image recognition from the researchers’ perspective in the educational context 
in middle and high school. Based on this objective, the following analysis questions 
focusing on the scoring rubric as part of the assessment model are derived:

Q1. Is there evidence of the quality of the rubric in terms of difficulty, discrimination, 
and differentiation?
Reliability 
Q2: Is there evidence of internal consistency in the rubric? 

Fig. 2. CodeMaster – ML use stage assessment. 
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Construct Validity 
Q3: Is there evidence of convergent and discriminant validity in the rubric?
Q4. How do underlying factors influence the responses on the items of the rubric?

This research was approved by the Ethics Committee of the Federal University of 
Santa Catarina (No. 4.893.560 and No. 5.610.912).

3.1. Data Collection

The sample is composed of learning outcomes collected from middle and high students 
enrolled in the course, using a non-probabilistic sampling in each case study applying 
the convenience sampling method (Trochim and Donnelly, 2008). We collected data 
from seven applications of the course “ML for All!” from 2021 to 2022 (Table 6). The 
course was applied as an extracurricular activity in six cases and one at a public school 
as part of school classes. A total of 240 students submitted, sometimes only partially, 
the work products created throughout the course. Due to the COVID-19 pandemic, 
most applications were run remotely via Google Meet by an instructor with ML exper-
tise. Two applications were taught face-to-face, with the students present in the school’s 
computer lab. In those applications, the instructor with ML experience taught the con-
tent remotely via Google Meet, and the school class teacher acted as an assistant. Basic 
concepts were taught through interactive lectures, while the practical activities were 
executed individually by the students following step-by-step instructions available as 
online material with the assistance of the instructors. One application was carried out 
asynchronously online by students without an instructor. 

Table 6
Overview of the course applications and demographic distribution

Ap-
plic-
ation

Date Application 
site/ organizing 
institution

Instruc-
tion mode

Instruc-
tion 
type

Age 
(years)

Educa-
tional 
stage

No. of 
stu-
dents

Middle 
School 
(≤15y)

High 
School
(>15y)

Fe-
male

Ma-
le

AP1 Sep 
2021

Public School  
Dilma Lúcia 
dos Santos

Face-to-
face
(instructor 
remote)

As 
part of 
school 
classes

15-16 Middle 
school

  12   9     3   3     9

AP2 Oct 
2021

Federal Institute 
Catarinense 
(IFC) Campus 
Camboriú

Remote 
instructor-
paced

Extracu-
rricular

15-17 Middle 
and 
High 
school

  10   1     9   6     4

AP3 Nov 
2021

Open to any in-
terested student 
organized by 
the Federal 
University of 
(UFSC)

Remote 
instructor-
paced

Extracu-
rricular

12-18 Middle 
and 
High 
school

  35   9   26   9   26

Continued on next page
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Table 6 – continued from previous page

Ap-
plic-
ation

Date Application 
site/ organizing 
institution

Instruc-
tion mode

Instruc-
tion 
type

Age 
(years)

Educa-
tional 
stage

No. of 
stu-
dents

Middle 
School 
(≤15y)

High 
School
(>15y)

Fe-
male

Ma-
le

AP4 Mar 
2022

Open to any 
interested stu-
dent organized 
by the Federal 
University of 
(UFSC)

Remote 
instructor-
paced

Extracu-
rricular

14-18 Middle 
and 
High 
school

  38   6   32 15   23

AP5 Sep 
2022 
to  
Nov 
2022

Non-profit 
educational or-
ganization for 
underprivileged 
students Father 
Vilson Groh 
Institute

Face-to-
face (inst-
ructor 
remote)

Extracu-
rricular

13-18 Middle 
and 
High 
school

109 38   71 47*   59*

AP6 Nov 
2022

Open to any 
interested 
student 
organized by 
the Federal 
University of 
(UFSC)

Remote 
instructor-
paced

Extracu-
rricular

15-24 High 
school 
and 
under-
gradu-
ate

  25   2   23 10   15

AP7 Sep 
2021 
to 
Dec 
2022

Online course Remote 
self-paced

Extracu-
rricular

≤18 Middle 
and 
High 
school

  11   6     5 ** **

Total 240 71 169 90† 136†

Note. * 3 students preferred not to indicate their gender at AP6. **Information on gender was not collected as part of AP7. 
†Considering AP1–AP6.

Once the data was collected, the work products were automatically assessed fol-
lowing the evidence model. In the applications AP5 and AP6, the work products were 
collected, stored and instantly assessed with the CodeMaster tool, in an automated and 
anonymous way. For all other applications, the same work products were collected and 
stored in an online form and later analyzed using the exact same algorithms. 

3.2. Data Analysis 

All the collected data were compiled into a single sample for analysis. Grouping the 
data was possible due to the similarity of the case studies and the standardization of 
the data collected by the assessment model, as the case studies were similar in terms of 
definition, research design, and context. In addition, all case studies were standardized 
in terms of measures, data collection method, and response format. Typical data prepa-
ration for statistical analysis was conducted (Bennett and von Davier, 2017; Rust et al., 
2020), grouping categories with low variability. Observing that some students did not 
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submit all the work products, we decided to disregard the data from students who could 
not be assessed with regard to at least 4 of the items of the assessment model following 
the procedure proposed by Raghunathan (2004).

Analysis of the quality of items. In order to analyze the quality of the items of the as-
sessment model, we used classical test theory (also called Item Analysis). Item Analysis 
procedures refer to a set of statistical measures used to review and revise items, estimate 
their characteristics, and make judgments about the quality of items, typically involv-
ing measures of difficulty, discrimination, and differentiation (Bichi, 2016; Bennett and 
von Davier, 2017; Rust et al., 2020). In order to proceed to the analysis of the difficulty 
of the items, we use the difficulty index, which is calculated by the proportion of cor-
rect answers on each item. In order to proceed to the analysis of the discrimination, the 
discrimination index is calculated as the difference between the proportion of correct an-
swers of the participants with the higher ability (27% of respondents with higher scores) 
from those with the lower ability (27% of respondents with lower scores). The biserial 
correlation is a measure of item differentiation that measures the correlation of the score 
of a particular test item with the test score. To conduct difficulty and discrimination Item 
Analysis, due to the nature of the data with items with polytomous responses, the items 
were considered dichotomized, with the correct answer corresponding to the highest 
performance level (Acceptable or Good) of each item.

Reliability and validity analysis. In order to evaluate the reliability and construct valid-
ity of the assessment model, we used different statistical methods. As reliability refers 
to the degree of consistency or stability of the assessment items on the same quality 
factor, we estimate internal consistency by calculating Cronbach’s alpha and Omega 
coefficient (DeVellis, 2017). Both are used to estimate reliability but are determined in 
different ways. The coefficient omega uses in its calculations a matrix of item loadings 
on the single common factor that the items share, while Cronbach’s alpha derives vari-
ance estimates from the covariance (or correlation) matrix of the items (DeVellis, 2017). 
Even though the most commonly used is the alpha coefficient, the coefficient Omega 
makes the calculations more stable, with a higher level of reliability and independent of 
the number of items in the instrument (Flora, 2020), and, thus, both will be considered 
together here.

Construct validity, on the other hand, refers to the ability that the assessment items 
manage to measure the latent trait that it proposes to measure, involving convergent and 
discriminant validity (Brown, 2015; DeVellis, 2017). Convergent validity is the col-
lection of evidence of similarity between measures of theoretically related constructs, 
while discriminant validity is the absence of evidence of similarity between measures 
of unrelated constructs (DeVellis, 2017). For both, the degree of correlation between the 
instrument’s items was calculated using the polychoric correlation matrix, which is best 
suited to ordinal categorical items (Lordelo et al., 2018; Mukaka, 2012). Complementa-
rily, convergent validity was also evaluated by analyzing the correlation between each 
item and all others, through the item-total correlation (Henrysson, 1963). 

We also performed factor analyses (Brown, 2015; DeVellis, 2017) to analyze con-
struct validity, obtaining evidence of convergent and discriminant validity through in-
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dicators of factor loadings associated with underlying factors. Following the analysis 
proposed by Brown (2015), we first checked the suitability of the data for factor analy-
sis through the Kaiser-Meyer-Olkin test. Next, we used parallel analysis, whose ap-
proach is based on a scree plot of the eigenvalues obtained from the sample data against 
eigenvalues that are estimated from a data set of random numbers. Then we performed 
an exploratory factor analysis in order to find out the essential structure of multivari-
ate observation variables and to identify how much each item is correlated to each 
sub-dimension through its factor loadings. Due to the nature of the data (items with 
polytomous responses), the Graded Response Model (Samejima, 1969, 1997; Paek and 
Cole, 2020) was used for the exploratory factor analysis. For running the data analyses, 
we used the R language (R Core Team, 2022). 

4. Data Preparation

Analyzing the performance achieved based on the work products created by the stu-
dents throughout the “ML for All!” course and applying the assessment model (Table 4), 
the frequencies in the performance levels achieved by the students are summarized in 
Table 7. 

We proceed with typical data preparation for statistical analysis (Bennett and von 
Davier, 2017; Rust et al., 2020). In this regard, items “I05 Accuracy analysis per catego-
ry”, “I06 Interpretation of the accuracy”, “I08 Interpretation of the Confusion Matrix”, 
“I11 Analysis of test results”, and “I12 Test Interpretation” were recoded to belong to 
categories with lower codes and sequentially starting at zero points, as the standard for 
conducting statistical tests. Similarly, item “I03 Labeling of the images” at performance 

Table 7
Frequency distribution of achieved performance levels per rubric item

Items Performance Levels Total
Not submitted 
0 points

Poor
1 point

Acceptable
2 points

Good
3 points

I01 Quantity of images 30 77   58   75 240
I02 Distribution of the dataset 30 16 102   92 240
I03 Labeling of the images 30   1   25 184 240
I04 Training 30   0 195   15 240
I05 Analysis of accuracy per category 40 16 - 184 240
I06 Interpretation of the accuracy 40 21 - 179 240
I07 Analysis of the confusion matrix 52 71   41   76 240
I08 Interpretation of the confusion matrix 52 21 - 167 240
I09 Adjustments / Improvements made 39 38   94   69 240
I10 Tests with new objects 39 11   68 122 240
I11 Analysis of test results 39 77 - 124 240
I12 Interpretation of test results 39 47 - 154 240

Note. – Performance level not existent according to the rubric (Table 4).
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level “poor” presents and maintains low variability after adjustments, and, thus, was 
grouped with the level Acceptable. Given the large number of students who did not 
submit all the work products that are part of the tasks and the potential inaccuracy to 
be inserted when keeping their data (Raghunathan, 2004), we decided to disregard all 
data from students whose learning could not be analyzed with regard to at least four of 
the assessment items. Table 8 shows the results of these adjustments considering the 
submissions of 227 students.

5. Results

5.1. Is there Evidence of the Quality of the Rubric in Terms of Difficulty,  
Discrimination, and Differentiation?

Initially, analyzing the overall score, the performance achieved by the students was con-
cerning the work products submitted that were assessed according to the items of the 
evidence model. Fig. 3 presents the percentage of students performing by item correct-
ness. The performance achieved considering all the items dichotomized by their high-
est category (Acceptable or Good). The average performance achieved regarding all 12 
items was 6.2 with a standard deviation of 2.5 and a median of 6. This indicates that on 
average most of the students achieved a good overall score, an indication that the rubric 
used in the evidence model is appropriate for the task model.

The difficulty of each item of the evidence model (Table 9) was analyzed consider-
ing the difficulty index, given in percentages. As the assessment model uses ordinal 

Table 8
Frequency distribution of performance levels by rubric items after adjustments

Items Performance Levels Total
Not submitted
0 points

Poor
1 point

Acceptable
2 points

Good
3 points

I01 Quantity of images 17 77   58   75 227
I02 Distribution of the dataset 17 16 102   92 227
I03 Labeling of the images 17 26 184 227
I04 Training 17 195   15 227
I05 Analysis of accuracy per category 29 16 182 227
I06 Interpretation of the accuracy 29 21 177 227
I07 Analysis of the confusion matrix 39 71   41   76 227
I08 Interpretation of the confusion matrix 39 21 167 227
I09 Adjustments / Improvements made 30 38   92   67 227
I10 Tests with new objects 32 11   68 116 227
I11 Analysis of test results 32 74 121 227
I12 Interpretation of test results 32 47 148 227

Note. Not all items have four performance levels, according to the rubric (Table 4).
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polytomous items, these were considered dichotomized in their highest category, where 
a value higher or close to 100% indicates that the item is easier, while the opposite in-
dicates that the item is more difficult (Bennett and von Davier, 2017; Rust et al., 2020). 
There is no clear consensus about range limits classification, but ideally, the difficult 
index for each item should not lie below 25% or above 75%, averaging 50% for the 
entire items collection (Rust et al., 2020). The difficulty index is typically classified 
into ranges, so we defined an index from 0 to < 15% very hard, from 15 to < 35% hard, 
from 35% to < 65% medium, 65% to < 85% easy, and 85% or more as very easy. In 
general, the items have an adequate difficulty index, with an overall average difficulty 
index of 52.13%. Items “I03 Labeling of the images” and “I05 Accuracy analysis per 
category” are slightly easier, but still acceptable, while item “I04 Training” actually 
turned out to be very hard, demonstrating that few students changed any of the default 
training parameters (e.g., epochs, batch size, learning rate) of the ML model submitted 
for assessment.

Additionally, the discrimination index was calculated to estimate the discrimination 
ability of the items (Table 9). This index ranges from -1 to 1 and is calculated as the 
difference between the percentages of responses given by the top group and the bottom 
group (Bennett and von Davier, 2017; Rust et al., 2020). There is no clear consensus on 
the classification of the range limits, but items with negative values indicate that dele-
tion or revision of the item should be considered (Bichi, 2016; Bennett and von Davier, 
2017; Rust et al., 2020). The discrimination index rating is assumed as excellent for 
0.3 or above, adequate between 0.2 and < 0.3, moderate from 0.1 to < 0.2, low from 0 
to < 0.1, and not discriminating, if less than zero. The results of our analysis show that 
all items are adequate with respect to discrimination, with the majority being excellent, 
which consistently indicates that a higher proportion of the group of students with the 
highest overall performance obtained the highest level of performance for the items. 

Fig. 3. Students’ performance.
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And, although only items “I01 Quantity of images” e “I04 Training” demonstrated a 
low discrimination level, they can still be considered, as only items with a discrimina-
tion below zero should be excluded. 

In order to measure differentiation, which is also related to discrimination, we 
calculate the biserial correlation (Table 9). Its main advantage over the discrimination 
index is that by considering all responses and not just groups at the edges, this test 
has a greater power of discrimination (Bichi, 2016). The biserial correlation value is 
in the range between -1 and 1. It is expected that the highest performance levels (Ac-
ceptable or Good) will have the highest and positive Biserial Correlation values, and 
gradually, for the lower levels, it should decrease until the lowest level (Not submitted 
), for which it is expected to be negative (Bennett and von Davier, 2017; Rust et al., 
2020). There is no clear consensus on the classification of the range limits, but items 
with negative values indicate that deletion or revision of the item should be consid-
ered (Bichi, 2016; Bennett and von Davier, 2017; Rust et al., 2020). The Biserial 
Correlation rating for the highest performance level is assumed as excellent for 0.3 or 
above, adequate between 0.2 and < 0.3, moderate from 0.1 to < 0.2, inadequate from 
0 to < 0.1, and inappropriate, if less than zero. Most of the items of the assessment 
model were classified regarding differentiation as Excellent and two as Adequate. Fur-
thermore, all “Not Submitted” item levels show a negative biserial correlation, as 
expected. This implies that the assessment is adequate since students with high total 
scores (considering all items) are the students assessed on “Good” or “Acceptable” 
performance levels on these items, and, at the same time, implies that students with 
low total scores are the students assessed on low-performance levels. Only item “I01 
Quantity of images” demonstrated a low differentiation but still considered appropri-
ate, since its performance level “Good” is close to zero.

Table 9
Item quality according to classical test theory

Item Difficul-
ty index

Classifi-
cation

Bise-
rial

Classifica- 
tion

Discrimina-
tion index

Classifi-
cation

I01 Quantity of images 33.0 Hard 0,005 Inadequate 0,029 Low
I02 Distribution of the dataset 40.5 Medium 0,267 Adequate 0,242 Adequate
I03 Labeling of the images 81.1 Easy 0,498 Excellent 0,341 Excellent
I04 Training   6.6 Very 

Hard
0,223 Adequate 0,051 Low

I05 Analysis of accuracy per category 80.2 Easy 0,85 Excellent 0,485 Excellent
I06 Interpretation of the accuracy 78.0 Easy 0,808 Excellent 0,496 Excellent
I07 Analysis of the confusion matrix 33.5 Hard 0,488 Excellent 0,423 Excellent
I08 Interpretation of the confusion matrix 73.6 Easy 0,821 Excellent 0,561 Excellent
I09 Adjustments / Improvements made 29.5 Hard 0,42 Excellent 0,361 Excellent
I10 Tests with new objects 51.1 Medium 0,311 Excellent 0,321 Excellent
I11 Analysis of test results 53.3 Medium 0,495 Excellent 0,466 Excellent
I12 Interpretation of test results 65.2 Easy 0,492 Excellent 0,444 Excellent
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5.2. Is there Evidence of Internal Consistency in the Rubric? 

Reliability was analyzed with respect to the internal consistency of the rubric, calculat-
ing Omega and Cronbach’s alpha coefficients. Both are used to estimate internal consis-
tency, which indicates how well an instrument’s items are correlated. There is no clear 
consensus on the classification of the range limits, but typically Omega and Cronbach’s 
alpha coefficients above 0.70 indicate the internal consistency of the instrument (values 
between 0.7 and 0.8 are acceptable, values between 0.8 to 0.9 indicate good, and values 
greater than or equal to 0.9 indicate excellent internal consistency) (Brown, 2015; Ben-
nett and von Davier, 2017; Rust et al., 2020). The analysis of the rubric resulted in a 
coefficient Omega of 0.834 and Cronbach’s alpha of 0.83. Both coefficients point in the 
same direction, indicating a good internal consistency of the rubric. 

Analyzing whether the internal consistency increases when removing an item (Ta-
ble 10), it can be observed that the Omega coefficient increases slightly when eliminat-
ing some items (“I01 Quantity of images’’, “I02 Distribution of the dataset”, and “I04 
Training”). The coefficient Cronbach’s alpha increases slightly when eliminating the 
item “I01 Quantity of images”. The results could point out the exclusion of these items. 
But this is not supported for several reasons: both coefficients are already at adequate 
levels, considering the inclusion of the items in question, and, although excluding some 
items may lead to an increase this increase is negligible, thus their exclusion is not sen-
sibly significant. In addition, the exclusion of items in question would negatively affect 
other properties of the rubric, especially the measure of difficulty and differentiation. 
As a consequence, the average performance score would increase significantly, since 
these items are precisely the most difficult ones, being classified as very hard, hard, or 
medium. Thus, their exclusion would eventually lead to a very easy instrument, focus-
ing on assessing only artifacts from lower-performing students, which would flatten the 
upper part of the performance in the graph (Fig. 3.). Another reason is that considering 

Table 10
Omega and Cronbach’s alpha coefficients when removing an item

Item Omega
when removing an item

Cronbach’s alpha
when removing an item

I01 Quantity of images 0.85 0.84
I02 Distribution of the dataset 0.84 0.82
I03 Labeling of the images 0.82 0.82
I04 Training 0.83 0.83
I05 Analysis of accuracy per category 0.78 0.81
I06 Interpretation of the accuracy 0.78 0.81
I07 Analysis of the confusion matrix 0.81 0.81
I08 Interpretation of the confusion matrix 0.79 0.80
I09 Adjustments / Improvements made 0.82 0.82
I10 Tests with new objects 0.83 0.82
I11 Analysis of test results 0.82 0.81
I12 Interpretation of test results 0.82 0.82
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the student model as well as the learning objectives, it is important that students under-
stand that the accuracy of the model improves significantly in function of the number 
of images used for training, allocated to each category and adjusting the training param-
eters. This illustrates the importance of maintaining all these items.

5.3. Is there Evidence of Convergent and Discriminant Validity in the Rubric?

Convergent and discriminant validity were analyzed by means of the degree of correla-
tion between the items of the instrument based on their polychoric correlation matrix 
(Fig. 4). It is expected that the items that are measuring a single dimension present 
correlations greater than or equal to 0.30 (DeVellis, 2017). In this regard, correlations 
(r) whose value in modulus does not exceed 0.5 (0.30 ≤ | r | < 0.50) are considered a 
weak linear correlation, up to 0.7 (0.50 ≤ | r | < 0.70) represent a moderate correlation, 
and above (0.70 ≤ | r | < 0.90) a strong or (| r | ≥ 0.90) very strong correlation (Mukaka, 
2012).

In Fig. 4, positive correlations are shown with the background highlighted in blue, 
in a gradient that tends toward dark blue as the degree of correlation increases. It can 
be observed that there are several pairs of items that show a correlation above 0.3 as 
expected, many of them strong and moderate, which indicates a statistical relationship 
in the association between pairs of items. The strongest correlation with a value of 0.95 
was demonstrated between items I05xI06 which refer to the correct analysis and inter-
pretation of the accuracy of the model categories performed by the student. Following, 
with 0.85, is the correlation of the pair I08xI07, which refers to the student’s analysis 
and interpretation of the confusion matrix of the ML model. Regarding convergent 
validity, at least two clusters have been identified, the first one referring to the “Data 
management” and “Model training” dimension of the rubric, encompassing item I01 

I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12

Quantity of images I01 1.00

Distribution of the dataset I02 0.56 1.00

Labeling of the images I03 0.49 0.81 1.00

Training I04 0.49 0.59 0.79 1.00

Analysis of accuracy per category I05 0.03 0.26 0.44 0.16 1.00

Interpretation of the accuracy I06 0.04 0.28 0.36 0.18 0.95 1.00

Analysis of the confusion matrix I07 0.04 0.24 0.29 0.19 0.71 0.68 1.00

Interpretation of the confusion matrix I08 0.07 0.36 0.35 0.19 0.82 0.84 0.85 1.00

Adjustments / Improvements made I09 0.05 0.07 0.09 0.15 0.51 0.51 0.49 0.64 1.00

Tests with new objects I10 -0.11 -0.03 -0.06 -0.14 0.49 0.47 0.48 0.37 0.47 1.00

Analysis of test results I11 -0.13 0.06 0.15 0.14 0.54 0.51 0.49 0.52 0.55 0.76 1.00

Interpretation of test results I12 -0.14 0.04 0.07 -0.03 0.50 0.53 0.46 0.54 0.48 0.77 0.81 1.00

Fig. 4. Polychoric correlation matrix.
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to I04. The second more visible one encompasses items I05 to I12 that are related to 
“Interpretation of performance”. 

On the other hand, correlations outside these two dimensions are mostly weak. There 
are also some negative correlations, although really weak, which indicate that there is 
an inversely proportional relationship between the pair, not to be expected. In any case, 
these correlations are insignificant, and the tendency in a larger sample is for them to be 
adjusted.

Yet, in general, the rubric presents adequate discriminant and convergent validity and 
confirms an alignment with the pre-established theoretical dimensions, grouping “Data 
management” and “Model training” into one dimension and items related to “Interpreta-
tion of performance” into another dimension.

To complement the previous analysis, we evaluated the correlation between each 
criterion and all others using the corrected item-total correlation method (Henrysson, 
1963) (Table 11). Each item of the instrument should have a medium or high correlation 
with all other items (DeVellis, 2017), as this indicates that the items are consistently 
compared to the other items, considering a correlation as satisfactory if the correlation 
coefficient is greater than 0.29 (Cohen, 1960). Results show that most items of the rubric 
have a correlation above or near 0.29. Items I01 to I04 which refer to the “Data manage-
ment” and “Model training” dimension, in general, have a lower item-total correlation, 
and only item “I01 Quantity of images” has a low correlation, which indicates that the 
item may not satisfactorily correlated with the other items in the rubric and possibly 
should be revised. However, as part of the specific domain it seems to be important to 
be maintained, as the exclusion of the item would negatively affect other properties of 
the rubric, especially the measure of difficulty and differentiation. And considering the 
student model as well as the learning objectives, it is important that students realize that 
the accuracy of the developed model improves significantly in function of the number of 
images used for training the model.

Table 11
Item-total correlation of the rubric

Item Item-total  
correlation

I01 Quantity of images 0.12
I02 Distribution of the dataset 0.35
I03 Labeling of the images 0.36
I04 Training 0.30
I05 Analysis of accuracy per category 0.65
I06 Interpretation of the accuracy 0.65
I07 Analysis of the confusion matrix 0.59
I08 Interpretation of the confusion matrix 0.70
I09 Adjustments / Improvements made 0.51
I10 Tests with new objects 0.50
I11 Analysis of test results 0.57
I12 Interpretation of test results 0.54
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5.4. How do Underlying Factors Influence the Responses on the Items of the Rubric?

In order to obtain evidence of underlying factors that influence the items of the assess-
ment model we performed a factor analysis (DeVellis, 2017). To check the possibility of 
performing a factor analysis we used the Kaiser-Meyer-Olkin index (Brown, 2015). It 
measures the sampling adequacy with values between 0 and 1. A value near 1.0 supports 
a factor analysis and a value less than 0.5 indicates that the data is not likely suitable for 
a useful factor analysis (Brown, 2015). Analyzing the items of the rubric, we obtained a 
KMO index of 0.78, demonstrating that factor analysis is suitable in this case.

Next, we used parallel analysis, a method for determining the number of components 
or factors to retain which factors with eigenvalues greater than 1 may be significant (De-
Vellis, 2017). Fig. 5 shows the results of the scree plot with two eigenvalues above the 
red line. This suggests the existence of two underlying factors or traits in the sample.

We proceeded to exploratory factor analysis (Table 12), in order to compare the 
indicators of factor loadings associated with underlying factors. Given the nature of 
the data, the Graded Response Model was used (Samejima, 1969, 1997; Paek and 
Cole, 2020). In order to decide which items are loaded in each factor, we use the 
Oblimin rotation method, in which the factors are allowed to be correlated (Jackson, 
2005). The models were trained without any priors, by modifying only the number of 
dimensions. 

When considering a single latent trait, we can observe in Table 12/column “One Di-
mension” that the factor loadings associated with items “I01 Quantity of images”, “I02 
Distribution of the dataset”, and “I04 Training” are below the expected value of 0.30, 
but items “I02 Distribution of the dataset” and “I04 Training” are very close to it. In this 
case, only item “I01 Quantity of images” demonstrates a very low factor loading. This 
suggests that there is more than one latent factor, indicating that one factor was not suf-
ficient to explain the variations among the items, and hence there was a violation of the 
assumption of unidimensionality. 

Fig. 5. Parallel analysis scree plot.
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When considering two dimensions, in other words, two latent traits, the results in 
general seem to be more adequate and result in higher values than when considering 
only one dimension. All items can be included in a dimension with factor loadings well 
above 0.30, which clearly further confirms the existence of two factors that are being 
measured (items marked in bold), indicating the same groupings as by the polychoric 
correlation matrix (Fig. 4). Even item “I01 Quantity of images” presents a good factor 
loading. Between these two factors, there is a weak correlation of 0.19. 

Again, we can observe the alignment with the pre-established theoretical dimen-
sions proposed for the assessment model, grouping “Data management” and “Model 
training” items into one dimension and another dimension related to “Interpretation of 
performance”.

5.5. Threats to Validity

In order to minimize validity impacts in this study, we identified potential threats and ap-
plied mitigation strategies. In order to mitigate threats related to the study design and anal-
ysis definition, we defined and documented a systematic methodology following the GQM 
approach (Basili et al., 1994) and Evidence-Centered Design (Mislevy et al., 2003). 

Another issue concerns the quality of the data grouped in a single sample. This was 
made possible by the standardization of the data, all collected as part of the applications 
of the “ML for All!” course. 

Overcoming the challenges inherent in the automation of the assessment model we 
adopted Evidence-Centered Design (Mislevy et al., 2003) to systematically define the 
observable variables that are considered in the automation. In addition, the observable 
variables in a previous and initial version of the rubric were evaluated in terms of va-

Table 12
Exploratory factor analysis of the rubric

Item One Dimension Two Dimensions
F1 F1 F2

I01 Quantity of images 0.04 -0.14 0.68
I02 Distribution of the dataset 0.27 0.03 0.91
I03 Labeling of the images 0.34 0.07 0.90
I04 Training 0.27 0.02 0.79
I05 Analysis of accuracy per category 0.89 0.81 0.18
I06 Interpretation of the accuracy 0.89 0.81 0.17
I07 Analysis of the confusion matrix 0.84 0.77 0.11
I08 Interpretation of the confusion matrix 0.92 0.83 0.19
I09 Adjustments / Improvements made 0.63 0.66 -0.04
I10 Tests with new objects 0.61 0.76 -0.28
I11 Analysis of test results 0.68 0.80 -0.16
I12 Interpretation of test results 0.65 0.78 -0.21

Note. F1 and F2 denote model dimensions. 
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lidity by a group of experts and showed a substantial inter-rater agreement as well as 
content validity in terms of correctness, relevance, completeness, and clarity (Gresse 
von Wangenheim et al., 2021).

Another risk relates to the validity of the scores inferred based on the work products 
collected. As our study is limited to assessments using the ML Use rubric, this risk is 
minimized, as the analyses and inference of the performance levels of the rubric items 
were performed automatically (using a Python script) with the CodeMaster tool. And, 
although during the first four applications (AP1–AP4) the CodeMaster tool had not yet 
been implemented, the same work products were collected through an online form and 
later analyzed using the exact same algorithms currently implemented in the CodeMas-
ter tool. Exceptions are the items I07 and I08 that were manually analyzed (for applica-
tions AP1–AP4) by the authors due to the artifacts being collected as images. For these 
two items, the evaluation was done manually by one researcher, following exactly the 
same algorithm used by CodeMaster, and reviewed by a second researcher to reduce 
the risk of scoring errors. 

Another risk is related to the clustering of data from multiple contexts. However, 
since the goal is to analyze rubric validity in a context-independent manner, this is not 
considered a problem here, as the course objectives, content and assessment model 
remained the same across all applications. Another threat to external validity is as-
sociated with the sample size and the diversity of the data used. Our analysis is based 
on a sample of 227 students, and polytomous item analyses for reliability and validity 
yielded robust results.

Another issue concerns the possible influence exerted by researchers on the data and 
analysis. In order to mitigate this threat, we adopted a systematic methodology, clearly 
defining the purpose of the study, data collection, and statistical analysis. Statistical 
methods were selected with care following the procedure proposed by DeVellis (2017) 
for the construction of measurement scales, and with procedures typically used for the 
analysis of internal consistency and construct validity of measurement instruments (Ben-
nett and von Davier, 2017; Rust et al., 2020).

6. Discussion and Conclusion 

The main goal of this research was to evaluate the assessment model in terms of reli-
ability and construct validity for the performance-based assessment of ML competencies 
related to image recognition from the researchers’ perspective in the educational context 
in middle and high school applying the “ML for All!” course in practice. A previous and 
initial version of the rubric was evaluated by a group of experts and showed a substantial 
inter-rater agreement of content validity, adequate in terms of correctness, relevance, 
completeness, and clarity (Gresse von Wangenheim et al., 2021).

The results of the evaluation indicate that the rubric items for assessing ML learn-
ing performance shows a good variability of the degree of difficulty and the greatest 
power of discrimination and differentiation. Thus, demonstrating a great capability to 
differentiate between better and worse student performance, an important characteristic 
in any assessment.
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In addition, the results indicate that the rubric achieved good levels of internal con-
sistency with a global coefficient Omega of 0.834 and a Cronbach’s alpha of 0.83, dem-
onstrating its reliability. Considering the current lack of statistically evaluated perfor-
mance-based assessment models in this emerging knowledge, the comparison of the 
evaluation results is very limited. Hitron et al. (2019) analyzed the reliability of the cod-
ing performed by researchers when manually labeling student’s short answer items of 
an essay on basic ML understanding reporting an interrater Kappa of 92%. Shamir and 
Levin (2021) report the analysis of content validity, conducted by students and instruc-
tors, reviewing the questions for the ability to read and understand the items, but without 
providing statistical results. Although the objective of the evaluations differs, Hsu et al. 
(2022) analyzed the reliability of a five-item self-assessment questionnaire reporting a 
Cronbach’s alpha of 0.883, which is a “good” range of reliability. These results reported 
in literature, and considering the theoretical basis inherent from item analysis, demon-
strates that reliability of the assessment model proposed here achieves the same levels 
as the few similar studies.

The polychoric correlation matrix showed moderate to strong correlations for many 
items evidencing convergent validity. With regard to discriminant validity, the results 
point to the existence of two dimensions, one, involving item I1–I4, which refers to the 
dimensions “Data management” and “Model training” and another one including item 
I5–I12, which refers to the dimension “Interpretation of performance” of the rubric.

Using the proposed evaluation model, we conducted an analysis of underlying fac-
tors that influence the items in the evaluation model, seeking to validate the three under-
lying factors: “Data Management”, “Model Training” and “Performance Interpretation”. 
The results, corroborated by the parallel analysis plot and the exploratory factor analy-
sis, clearly show the existence of two underlying factors. We can observe that the factor 
loadings are adequate and have higher indices when we consider two underlying fac-
tors, in which all items can be grouped into one of the two dimensions with good factor 
loadings, forming the same groups as shown through the polychoric correlation matrix 
(Fig. 4): one referring to the unification of “Data management” and “Model training”, 
encompassing item I01 to I04 and the second underlying factor encompassing item I05 
to I12 related to “Performance interpretation”.

All analyses point out item “I01 Quantity of images” to be the most complicated, as 
well as item I02 and I04 yet a little less severe. However, a possible exclusion of these 
criteria would have negative effects on other properties of the items. Both coefficients 
(Omega and Cronbach’s alpha) are already at adequate levels considering the inclusion 
of the items in question, and although exclusion may lead to an increase in the coef-
ficients, this increase would be insignificant. While on the other hand, considering the 
measures of difficulty and differentiation, an exclusion of these items would lead to a 
significantly higher mean performance score, since these items are the most difficult. 
Thus, their exclusion would lead to a very easy instrument, focusing on the assessment 
of aspects that are commonly achieved in students’ work products. Another reason to 
maintain these items is related to the learning objectives. As pointed out by Gresse von 
Wangenheim et al. (2021) and Martins et al. (2023), it is important that students realize 
that the accuracy of the developed model improves significantly in the function of the 
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number of images used for training, allocated to each category and adjusting the training 
parameters and, thus, the importance of maintaining these criteria. Perhaps, the pre-
trained neural network used in the GTM tool (Google, 2023) that leads to good results 
even with few images ends up overshadowing this importance to students.

Overall, the results of this evaluation show acceptable reliability and validity of the 
assessment model to be used for the assessment of building ML models for image clas-
sification as part of computing education on middle and high school level applying the 
“ML for All!” course in practice. In this regard the assessment model can represent 
an important step in the inclusion of teaching ML in K-12. Based on our experience 
throughout all applications we observed that the model has the potential to assist in an 
assessment process. Students themselves can self-assess their work products throughout 
the “ML for All!” course using the CodeMaster tool to obtain instantaneous feedback 
and to guide their learning process. It may also reduce teachers’ workload on assessment 
and leave them free to spend more time on other activities with the students, as well as 
to review the automated assessment as well as to conduct further complementary assess-
ments on factors that are not easily automated. 

Automated assessment of ML learning has advantages, such as efficiency and scal-
ability, but also faces challenges such as the complexity of the subject, attempts at manip-
ulation or faking where students may intentionally adjust their work products to appear 
to have learned more than they actually did, and the lack of consideration of important 
dimensions. Consequently it is important to complete the automated assessment with the 
analysis of human instructores in order to provide more robust and meaningful results 
and to prevent any of these manipulations. Alternatives to complete the automated as-
sessment include interviews, peer reviews, presentations, etc., as suggested for example 
also in the context of the assessment of the learning of computational thinking (ie., Tang 
et al., 2020; Kong et al., 2022; Su and Yang, 2023).

Furthermore it is important to emphasize that this assessment model has been system-
atically developed with regard to the learning objectives and content of the course “ML 
for All!”, and is therefore limited to this context. However, as the learning objectives 
have been specified in alignment with prominent AI curricular guidelines, the evaluated 
assessment model may also provide a reliable and valid basis for the development of as-
sessment models in similar course contexts that are also aligned with these curricula. 

As part of future work we aim at developing a scale based on further statistical 
analysis as well as extending the assessment model covering other levels of the Use-
Modify-Create cycle. 
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