
Informatics in Education, 2024, Vol. 23, No. 2, 279–322
© 2024 Vilnius University
DOI: 10.15388/infedu.2024.11

279

Active Learning Methodologies for Teaching
Programming in Undergraduate Courses:
A Systematic Mapping Study

Ivanilse CALDERON1,3, Williamson SILVA2, Eduardo FEITOSA3
1Federal Institute of Rondônia - IFRO, Brazil
2Federal University of Pampa - UNIPAMPA, Brazil
3Federal University of Amazonas - UFAM, Brazil
e-mail: ivanilse.calderon@ifro.edu.br, williamson.silva@gmail.com,
efeitosa@icomp.ufam.edu.br

Received: April 2023

Abstract. Teaching programming is a complex process requiring learning to develop different
skills. To minimize the challenges faced in the classroom, instructors have been adopting active
methodolo gies in teaching computer programming. This article presents a Systematic Mapping
Study (SMS) to identify and categorize the types of methodologies that instructors have adopted
for teaching programming. We evaluated 3,850 papers published from 2000 to 2022. The re-
sults provide an overview and comprehensive view of active learning methodologies employed
in teaching program ming, technologies, programming languages, and the metrics used to observe
student learning in this context. In the results, we identified thirty-seven different ALMs adopted
by instructors. We real ized that seventeen publications describe teaching approaches that combine
more than one ALM, and the most reported methodologies in the studies are Flipped Classroom
and Gamification-Based Learning. In addition, we are proposing an educational and collaborative
tool called CollabProg, which summarizes the primary active learning methodologies identified
in this SMS. CollabProg will assist instructors in selecting appropriate ALMs that align with their
pedagogical requirements and teaching programming context.

Keywords: teaching programming, active learning methodologies, computer programming.

1. Introduction

Teaching and learning computing is not trivial due to the fundamental subjects in the
area, especially those related to programming (Luxton-Reilly et al., 2018), since they are
considered complex and require the complete understanding of abstract concepts (Raj
et al., 2018; Turpen et al., 2016). Learning programming requires students to plan solu-
tions to problems, transform the plans into syntactically correct instructions for execu-
tion, and assess the consequential results of executing those instructions (Chao, 2016).

I. Calderon, W. Silva, E. Feitosa280

Analyzing the Computer Science (CS) curriculum, we perceive that the introduc-
tory CS courses (CS0, CS1, and/or CS2) provide the understanding of fundamental
program ming topics for the students (Lang et al., 2006). Typically, they are curricular
units that pro mote the initial contact of Science, Technology, Engineering, and Math-
ematics (STEM) undergraduate students with computational thinking and programming
languages. How ever, why do introductory programming courses have high failure and
dropout rates?

We highlight two reasons. We identify two reasons. First, higher education in-
stitutions are often associated with traditional teaching methods and resistance to
change (West et al., 2007). Additionally, most instructors adopt traditional teaching
methodologies, caus ing students to lose interest in learning. Second, according to So-
bral (2021b), teaching and learning how to program are challenging tasks. Teaching
programming is more than coding and translating an algorithm into a language that
a computer can understand. It is to think and solve the problem of creating an algo-
rithm (Sobral, 2021c). For computer sci ence students, acquiring the necessary skills
for software development is one of the main challenges faced. These problems make
students unable to develop specific skills (e.g., ab straction) and often abandon classes
and sometimes even the course (Sobral, 2021b). To combat these problems, instruc-
tors and researchers must constantly update and/or modify teaching methodologies
(Garcia et al., 2021).

Over the past few decades, there has been a significant evolution in technological
re sources that can support the teaching and learning process. As a positive contribution
to the teaching process, active learning methodologies have been widely adopted in
develop ing strategies to overcome learning difficulties, lack of motivation or engage-
ment on the part of students, or even dropping out of the course (Sobral, 2021a).

Active Learning Methodologies (ALMs) combine active student participation,
exper imental learning, and action learning. These methodologies make students more
respon sible for learning, increasing their motivation and satisfaction (Imbulpitiya et al.,
2020). It is essential to highlight that ALMs induce aspects of active learning, includ-
ing other concepts, such as collaborative and cooperative learning. In active learning,
students learn through instructor-defined activities, which are responsible for supervis-
ing and proposing discussions and challenges, and performed through collaborative
or cooperative learning, which involves two or more participants (de Andrade et al.,
2021). According to Chan drasekaran et al. (2016), the ALMs are considered necessary
in the learning process since they involve students actively constructing knowledge and
change the role of the instruc tor, who was previously a transmitter of content and in-
formation for a learning facilita tor. Think-pair-share, Group Writing assignments, Peer
Instruction, and Problem-Based Learning are examples of ALMs employed to teach
and learn programming.

In the educational context of teaching programming, it is crucial to recognize that
pro gramming is a practical skill that demands hands-on experience for mastery. ALMs,
such as hands-on projects, labs, and interactive exercises, allow students to engage with
and ap ply programming concepts directly. This iterative process contributes to develop-
ing their problem-solving and programming skills over time. ALMs embody teaching

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...281

methodolo gies prioritizing the student’s central role in learning, fostering engagement,
active par ticipation, and the construction of knowledge. They prove highly effective due
to the in herently practical and problem-solving nature of programming itself, facilitating
practical learning, honing problem-solving abilities, fostering collaboration, and pro-
moting student teamwork (Eickholt, 2018).

However, which ALM should instructors adopt for teaching programming in comput-
ing? To answer this question, we must first consider several related questions: In which
course or course will the instructor use the ALM? Will the instructor incorporate ALMs
throughout the entire course, or will they use them in specific contexts? Does the instruc-
tor know ALM? Does he have time to learn how to use it? Although secondary studies
have been conducted to examine publications analyzing the adoption of ALMs (de An-
drade et al. (2021), Garcia et al. (2022), Suarez-Escalona et al. (2022), Ahshan (2021)),
they have not centered explicitly on identifying suitable methodologies to aid educators
in teaching programming at the higher education level, nor have they proposed a col-
laborative and open repository to support programming instructors. Through an SMS,
we can compile the factors that may bolster programming teaching and ascertain which
ALMs have been embraced, enabling educators to implement these methodologies in
their classrooms.

This research aims to summarize and characterize, through a Systematic Mapping
Study (SMS), the ALMs employed in teaching computer programming in undergradu-
ate computing courses. Thus, this SMS provides an overview of the current scenario
and characterizes the research that adopts different ALMs when teaching computer
program ming. It also identifies the contents/classes, tools, and programming languages
and the metrics presented in the publications. We hope that Computer Science Education
commu nities and researchers will use this research to improve academic education and
industry training.

The remainder of this paper is organized as follows. Section 2 describes the back-
ground. The protocol of the systematic mapping is presented in Section 3. In Section 4,
we present the results of selected studies. Section 5 contains a discussion of the results.
Section 6 shows the effects of this SMS results in the proposal for the new educational
technology called CollabProg. Section 7 addresses threats to validity. Finally, conclu-
sions and further work are presented in Section 7.

2. Background

This section presents the theoretical concepts of teaching computer programming and
active learning methodologies.

2.1. Teaching Computer Programming

Programming is recognized as an essential competency for addressing real-world prob-
lems using computational tools in the 21st Century (Chao, 2016), and consequently,

I. Calderon, W. Silva, E. Feitosa282

the promotion of skills related to computer programming has been encouraged. Learn-
ing computer programming is a crucial step towards developing these skills.

Programming courses should stimulate and develop students’ skills and compe-
tencies necessary for them to be able to solve complex real-world problems. In other
words, skills may encompass coding (the ability to write computer code using specific
programming languages to create programs and solutions), problem-solving, logical
thinking, debug ging, and abstraction. The ACM and IEEE curriculums state that stu-
dents are expected to learn the knowledge, skills, and attitudes presented at the under-
graduate level (ACM and IEEE, 2013). For Petri and von Wangenheim (2017), com-
puter science graduates should be able to design and implement systems involving
software and hardware.

However, when it comes to teaching and learning programming, the literature over
the years has shown that, when teaching programming to students, instructors could be
more successful and need to be (Berssanette and de Francisco, 2021). When instructing
pro gramming, it’s crucial to recognize that competencies extend beyond mere tech-
nical skills; they encompass the ability to apply these skills across diverse contexts
and effectively combine them to attain larger objectives. These competencies include
problem-solving, collaboration, self-learning, analysis, adaptation, and technical com-
munication. Conse quently, programming is one of the most prevalent means of nurtur-
ing computational thinking, as it requires the application of computer science concepts
such as abstraction, debugging, remixing, and iteration to address problem-solving
(Yang et al., 2023).

In light of this, innovative pedagogical approaches to teaching programming have
be come an ongoing topic of discussion in universities and colleges worldwide. The
teaching of programming is centered on the three aspects of programming: design,
development, and testing (Kong et al., 2020). The inadequate balance in applying these
concepts re sults in a disproportionate amount of time that the student spends to abstract
the prob lem from the real world and create a solution, then develop this solution and
test it. This leads to frustration and demotivation and is a severe problem of these core
disciplines for computer science (Rajaravivarma, 2005). Lister et al. (2004) and Tenen-
berg and Fincher (2005) highlight significant deficiencies in the learning outcomes of
students who studied programming in different higher education courses. These scenar-
ios originate from mis takes at the beginning of studies and poor understanding of basic
concepts, procedures, and processes (Kinnunen and Malmi, 2006). Moreover, some
deficiencies are identified in the teaching of programming, particularly concerning the
students’ lack of skills for programming (McCracken et al., 2001).

According to Barnes et al. (2008) and Parsons (2011), the nature of computing and
this generation of students has changed remarkably in recent years. However, most
higher education computing courses are still taught in traditional ways and may not be
adequate to keep pace with modern concerns and may not support the necessary learn-
ing. According to (Petri and von Wangenheim, 2017), student-centered instructional
strategies are needed to achieve more effective learning at higher levels, thus allowing
them to learn by doing.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...283

2.2. Active Learning Methodologies

Active learning (AL) or Active Learning Methodologies (ALM), a term popular in
US ed ucation circles in the 1980s, encourages learners to take responsibility for their
learning, requiring their experience in education to inform their process of learning
(Zayapragas sarazan and Kumar, 2012). The premise is to engage more actively the
students through various methodologies, strategies, approaches, and student-centered
pedagogical tech niques so that they become involved in the teaching and learning pro-
cess. The idea is that they apply their knowledge meaningfully, employing higher-order
thinking skills and reflecting on their learning to build new knowledge (Berssanette and
de Francisco, 2021).

Although understanding the concept behind ALM is simple, it does not have a spe-
cific or strict definition. ALMs have no specific definition and can have different inter-
pretations depending on the subject or group of learners involved (Hativa, 2001; Kane,
2007). On the other hand, it is easy to observe that ALMs can draw from various learning
theories emphasizing active student participation, knowledge construction, and the de-
velopment of practical skills, especially Constructivist Theory (Ben-Ari, 2001; Jonassen
et al., 1995) where the knowledge is not simply absorbed from textbooks and lectures
but actively constructed by the student (Ben-Ari, 2001).

It is a fact that ALMs help instructors develop and improve general principles about
teaching and learning. Using ALMs, instructors are responsible for organizing appro-
priate learning activities that allow learners to explore and develop their knowledge and
thinking. They must use practical teaching methods by providing numerous examples
of activities and pedagogical techniques that students can enjoy in various learning situ-
ations. Various teaching methods have been created to achieve this goal (Hativa, 2001;
Kane, 2007). In practice, the possibilities for adopting ALMs vary widely in intensity
and implementation and include diverse approaches such as group problem solving,
use of tools, and the real ization of projects in classes or workshops (Freeman et al.,
2014). So, the typical question made by instructors is: Which ALM should I adopt in
my classroom?

There is much evidence in the literature about the advantages of using ALMs in teach-
ing, especially in computing. Several researchers have highlighted the positive impacts
on student learning, attitudes, critical thinking, and reducing students’ failures in subjects
for teaching programming (Park and Choi, 2014). The use of ALMs allows the instructors
to create learning situations for students to build knowledge about the contents learned to
de velop critical thinking and reflections on the exercises they carry out, as well as explor-
ing attitudes, personal values, and learning through doing (Parsons, 2011).

However, adopting ALMs for teaching programming has practical implications for
in structors who wish to implement active learning. There are many ALMs to be adopted.
The possibilities vary widely in intensity and implementation and include diverse ap-
proaches such as group problem solving, use of tools, and the realization of projects in
classes or workshops (Freeman et al., 2014). But which choice? Do the instructors know
the various successful or unsuccessful ways of using and implementing ALMs? Do they
have some knowledge and planning to be considered to use an ALM?

I. Calderon, W. Silva, E. Feitosa284

To address these questions, this research investigates how instructors have used ac-
tive learning methodologies while teaching programming in undergraduate courses. In
addi tion, we were also interested in which subjects they were applied to, which program-
ming languages were used, and if they were realized experimental studies.

3. Research Methodology

We conducted a Systematic Mapping Study (SMS) to identify the scenario in which in-
structors used the ALMs while teaching programming. The SMS follows the procedures
described in Kitchenham (2012), i.e., planning, conducting, and analyzing the results.
The planning activities and their steps are described in the following subsections, and
Sections 4 and 5 show the results.

3.1. Research Questions

We defined the following Research Question (RQ) to guide our work:
RQ1 ● : How have instructors used active methodologies during the teaching of
program ming in undergraduate courses?

To answer the research question, we sought to identify three aspects in the selected
publications: (i) Which ALMs have been adopted for teaching programming? (ii) What
is the programming teaching context?, and (iii) What kinds of experiments have been
performed by the researchers? Based on the three aspects, research sub-questions (SQs)
were defined for each element to answer specific questions (see Table 1).

3.2. Search Strategy

This SMS proposes investigating the ALMs instructors adopt while teaching program-
ming in undergraduate courses. For this, we used the search mechanism available in most
digital libraries based on textual research expressions and a manual search of events in

Table 1
Sub-questions. Source: The authors.

Aspect Sub-questions

Methodology SQ1. Which ALMs were addressed in the publications?

Teaching SQ2. Which subjects were mentioned in the publications?
SQ3. Which programming languages were reported in the publications?

Experiments SQ4. What type of experimental study was carried out?
SQ5. What evaluation metrics were reported in the publications?
SQ6. Which technologies were adopted during the teaching of program ming?

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...285

computing. According to Steinmacher et al. (2015), the definition of the search string is
an essential phase for the effectiveness of the search stage of an SMS. The search string
was defined based on two essential terms of our research questions: (1) active method-
ologies and (2) teaching of programming. Besides this, to help us, the studies by Kelle-
her and Pausch (2005), Raj et al. (2018), Tharayil et al. (2018), and Aksit et al. (2016)
were used as control articles to support the selection of keywords and synonyms related
to the research questions.

Therefore, the query was iteratively evolved several times to ensure that a compre-
hensive set of synonyms was used to allow high coverage. A search string refinement
process was performed to include new terms from previously selected publications and
verify whether the control articles provided hits via the test search strings. The search
string used in this study is presented below.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses 7

(“active learning” OR “active methodology”)
AND

(“introductory programming” OR “introduction to programming” OR “novice
programming” OR “novice programmers” OR “CS1” OR “CS 1” OR

“programming course” OR “learn programming” OR “learning to program” OR
“teach programming” OR “training programming” OR “instruction

programming” OR “coaching programming”)

After defining the search string, we selected the following libraries: (i) IEEE Xplore
Digital Library (IEEE)2, (ii) ACM Digital Library (ACM)3, and (iii) Scopus Library4.
These libraries were selected for the following reasons: (i) They possess robust search
engines with effective operations and broad search scope; (ii) Scopus serves as a meta-
library, indexing publications from several renowned publishers, including Springer, El-
sevier, and Taylor & Francis; (iii) ACM and IEEE rank as the top two digital libraries
in Computer Science. Our choice of these databases is informed by recommendations
from prior systematic literature reviews, affirming their suitability and relevance as sources
(Nakamura et al., 2022).

Additionally, a manual search was carried out in the following events and scientific
journals on education in computing and informatics in education in Brazil: (i) Brazilian
Symposium on Informatics in Education (SBIE), (ii) Workshop on Computing at School
(WIE), (iii) Computer Education Workshop (WEI), (iv) Brazilian Symposium on Games
and Digital Entertainment (SBGames), (v) International Congress of Educational Infor-
matics (TISE), (vi)New Journal Technologies in Education (RENOTE) and (vii)Brazilian
Journal of Informatics in Education (RBIE). The choice to perform searches in Brazilian
sources, including journals and specialized events in the field of computing and informat-
ics education in Brazil, was motivated by several vital reasons that align with the scope of
this research. First and foremost, it is crucial to emphasize that Brazil’s educational and
technological landscape possesses distinct characteristics that can significantly influence
the emergence of pedagogical approaches and practices that are both unique and highly
relevant to the national context. As suggested by Mendes et al. (2020), it is advisable to
follow the references cited in each selected paper to discover additional pertinent sources.
Consequently, exploring Brazilian sources has provided access to studies, research find-
ings, and local experiences frequently unavailable internationally. This enrichment con-
tributes significantly to the discourse and comprehension of the challenges and progress
in computing education within a distinct contextual framework.

Our aim in incorporating Brazilian sources was to encourage cultural and linguistic
diversity in academic discourse, enabling researchers and educators from diverse back-
grounds to share their knowledge and promoting a more inclusive and worldwide outlook
in studies related to educational informatics. Thus, it was a strategic decision to incor-
porate Brazilian sources into the research to enhance and provide context to the results

2https://www.ieee.org/
3http://dl.acm.org/
4http://www.scopus.com/

After defining the search string, we selected the following libraries: (i) IEEE Xplore
Digital Library (IEEE)1, (ii) ACM Digital Library (ACM)2, and (iii) Scopus Library3.
These libraries were selected for the following reasons: (i) They possess robust search
engines with effective operations and broad search scope; (ii) Scopus serves as a meta-
library, indexing publications from several renowned publishers, including Springer, El-
sevier, and Taylor & Francis; (iii) ACM and IEEE rank as the top two digital libraries in
Computer Science. Our choice of these databases is informed by recommendations from
prior systematic literature reviews, affirming their suitability andrelevance as sources
(Nakamura et al., 2022).

Additionally, a manual search was carried out in the following events and scientific
journals on education in computing and informatics in education in Brazil: (i) Brazil-
ian Symposium on Informatics in Education (SBIE), (ii) Workshop on Computing at
School (WIE), (iii) Computer Education Workshop (WEI), (iv) Brazilian Symposium on
Games and Digital Entertainment (SBGames), (v) International Congress of Educational
Infor matics (TISE), (vi) New Journal Technologies in Education (RENOTE) and (vii)
Brazilian Journal of Informatics in Education (RBIE). The choice to perform searches
in Brazilian sources, including journals and specialized events in the field of computing

1 https://www.ieee.org/
2 http://dl.acm.org/
3 http://www.scopus.com/

I. Calderon, W. Silva, E. Feitosa286

and informat ics education in Brazil, was motivated by several vital reasons that align
with the scope of this research. First and foremost, it is crucial to emphasize that Bra-
zil’s educational and technological landscape possesses distinct characteristics that can
significantly influence the emergence of pedagogical approaches and practices that are
both unique and highly relevant to the national context. As suggested by Mendes et al.
(2020), it is advisable to follow the references cited in each selected paper to discover
additional pertinent sources. Consequently, exploring Brazilian sources has provided
access to studies, research find ings, and local experiences frequently unavailable inter-
nationally. This enrichment con tributes significantly to the discourse and comprehen-
sion of the challenges and progress in computing education within a distinct contextual
framework.

Our aim in incorporating Brazilian sources was to encourage cultural and linguis-
tic diversity in academic discourse, enabling researchers and educators from diverse
back grounds to share their knowledge and promoting a more inclusive and worldwide
outlook in studies related to educational informatics. Thus, it was a strategic decision
to incor porate Brazilian sources into the research to enhance and provide context to the
results despite potential limitations in linguistic accessibility for confident readers of the
interna tional journal.

3.3. Publication Selection Criteria

Following the procedures described by Kuhrmann et al. (2017), inclusion criteria (IC)
and exclusion criteria (EC) were defined for the publications returned by the search
string. These criteria are needed to select only relevant publications for the search and
filter pub lications that require further analysis. The criteria are presented in Table 2.

Table 2
Criteria for inclusion or exclusion of publications. Source: The authors.

Criteria ID Description

Inclusion of
publication
(IC)

IC1

IC2

IC3

Publications that discuss the perceptions of instructors and/or students regarding
the ALMs used during the teaching and learning of programming classes should be
selected.
Publications that present experimental studies on the use of ALMs during the teaching
of programming should be selected.
Publications that present learning assessment metrics about the use of the ALM(s) adop-
ted should be selected.

Exclusion of
publication
(EC)

EC1

EC2
EC3
EC4

EC5

Publication is not available for reading and data collection (paid publications or those
not made available by the search engine).
Publications that do not meet the inclusion criteria.
Publications not written in English or Portuguese.
The following types of publication: books, doctoral theses, master’s dissertations,
patents, tutorials, workshop proposals, or posters.
Duplicate publications (for example, a paper with a study published in different
places or on different dates). In this case, we considered only the most complete and
latest version.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...287

3.4. Processes for the Selection of Publications

We applied two selection filters (inclusion and exclusion criteria) in the returned pub-
lications. We adopted the Start tool4 to help us filter the papers. If the search returned du-
plicate papers, the tool would indicate this, and only one article remained for analysis.

In the 1st Filter, we analyzed the titles and abstracts of the returned publications,
and only the publications that adopted ALMs for teaching programming were selected.
Via this filter, we excluded only papers that were clearly out of scope. In case of doubts
regarding the publication’s relevance, the articles were kept for further analysis.

In the 2nd Filter, we read the publications selected by the first filter to conduct a
more detailed analysis and identify and extract the data according to the inclusion and
exclusion criteria.

3.5. Data Extraction

From the publications selected, we extracted relevant information using a form summa-
rized in Table 3.

3.6. Execution of Systematic Mapping

The systematic mapping involved three researchers to reduce the interpretation bias of
a single researcher. Two Ph.D. researchers reviewed the inclusion and exclusion criteria
protocol and analyzed the search strategy.

To assess the reliability of the publication selection process, two researchers indepen-
dently ranked a sample of 40 publications randomly selected from the set of publications
returned to measure the level of agreement among them.

In this classification, the title and abstract of each publication were evaluated and
clas sified based on the selection criteria. Cohen’s Kappa coefficient was applied af-
ter this step, and the statistical test was used, which is a measure of intra-and inter-
observer agreement and the degree of understanding beyond what would be expected
by chance alone (Cohen, 1960). The evaluation result showed a consensus between
researchers of 0.89 (Kappa con cordance), representing an almost perfect concordance.
Based on this result, the steps of selecting and extracting data from publications were
continued.

3.7. Identified Publications

Initially, 3,850 publications were found in the digital libraries and annals: 954 in the
Sco pus library, 2,190 in the manual search, 373 in the IEEE library, and 333 in the

4 http://lapes.dc.ufscar.br/tools/start_tool

I. Calderon, W. Silva, E. Feitosa288

ACM library. After removing duplicate publications, the total number of publica-
tions selected for analysis using the first filter was 3,709. Of these 3,709 publications,
2,979 were ex cluded after using the first filter since they did not meet the inclusion
criteria.

According to the established inclusion and exclusion criteria, the remaining 730
pub lications were read and analyzed using the second filter. At the end of the evaluation
pro cess, 80 publications were accepted and had their data extracted. Fig. 1 summarizes
the complete data selection and extraction process. The publications selected in this
SMS are presented in Table 13, organized by their relevance as obtained from digital
libraries.

Table 3
Data to be extracted from publications. Source: The authors

Aspect Extraction items Data to be extracted

General
information

Title
Author(s)
Type of publication

Publication Year
Venue of the paper

The title of the publication.
The name of the author(s) of publication.
The type of publication (e.g., paper in a journal, conference
paper, etc.).
The publication year of the paper.
The name of the venue where the paper was published.

Methodologies Identified ALM Name of the ALM addressed in the publication.

Teaching Subject
Course
Language

The name of the subject taught.
The name of the course reported.
Name of the programming language that was used.

Experiments Experimental study
Type of experimental
study

Technologies

Metrics

Does the publication present an experimental study?
Does the publication describe the type of study? If yes, which one
(Unterkalmsteiner et al., 2011; Creswell et al., 2006): (i) case
study, if an empirical inquiry investigates a contemporary
phe nomenon within its real-life context, especially when
the bound aries between phenomenon and context are not
evident; (ii) ex perience report, if the focus of the study is
directed towards re porting educational experiences without
stating research questions or a theoretical concept, which is
then evaluated empirically; (iii) controlled experiment, if the
study performs an empirical inves tigation that manipulates one
or more variables or factors in the studied context, verifying
the effects of this manipulation; (iv) ac tion research, if the
study states this research method explicitly; (v) survey, if
the study collects quantitative and/or qualitative data using a
questionnaire or interviews; (vi) mixed methods if involves
collecting, analyzing, and mixing qualitative and quantitative
ap proaches in a single study or a series of studies.
Does the publication present the technologies, tools, and
applica tions used in teaching programming? If yes, list them.
Does the publication describe the metrics used to evaluate the
im provement in teaching programming? If there are metrics,
specify the metric used in the publication.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...289

4. Results

4.1. Publication Trend

This section presents the publication trends for the research topic investigated in this
SMS. Fig. 2 shows the variation in the number of publications on adopting ALMs
for teaching programming. During the research period, 2018 has the most significant
number of pub lications. Ten studies were published in 2021, while only three were
published in 2022. The period from 2019 to 2020 has 12 and nine publications, respec-

Fig. 1. Results of systematic mapping filters. Source: The authors.

Fig. 2. Publication trend by year. Source: The authors.

I. Calderon, W. Silva, E. Feitosa290

tively. Between 2013 and 2017, there was a variation between two and six publications.
From 2001 to 2012, the number of publications varied between zero and one per year.

We observed decreased publications between 2020 and 2022, possibly due to the
pan demic and the shift to remote learning. One possible reason for this could be the
numerous planned studies on in-person teaching. However, in 2021, some strategies,
such as those in publication S64, were adapted for emergency remote teaching. Given
this scenario, it is clear that there is a significant number of publications on the adop-
tion of ALMs for learn ing programming. Therefore, it is believed that the community is
constantly researching the adoption of ALMs to support teaching practices.

The most common publication type is conference papers, with 43 publications.
Work shops had 19 publications; finally, the journals had 18 studies published. To pres-
ent venues for research publications related to adopting ALM in computing, we intro-
duce Table 4, which lists events and journals and their respective number of publica-
tions. In this way, we aim to assist researchers new to the field.

We observed that the Frontiers in Education Conference (FIE), an important interna-
tional conference that focuses on educational innovations and research in engineering
and education in computing, leads in the development of new research insights and
educa tional approaches and is the conference with the most significant number of pub-
lications of interest to this research. In addition, the Technical Symposium on Computer
Science Education (SIGCSE) and the Brazilian Symposium on Informatics in Educa-
tion (SBIE) presented seven publications each, and the Workshop on Computing Edu-
cation (WEI) presented five publications.

4.2. SQ1. Which ALMs were Addressed in the Publications?

To answer SQ1, the ALMs reported in the publications were analyzed and classified by
type, and 37 kinds of ALMs adopted for teaching programming were identified. Fig. 3
shows the types of ALMs mapped in this study. According to Katona and Kovari (2016),

Table 4
Events that resulted in more than two publications on the SMS theme. Source: The authors

ID Publication venue #Publications

01 Frontiers in Education Conference (FIE) 15
02 Technical Symposium on Computer Science Education (SIGCSE) 7
03 Brazilian Symposium on Informatics in Education (SBIE) 6
04 Workshop on Computer Education (WEI) 5
05 Brazilian Symposium on Games and Digital Entertainment (SBGames) 2
06 Global Engineering Education Conference (EDUCON) 2
07 International Conference on Learning and Teaching in Computing and Engineering

(LaTICE)
 2

08 Conference on Information Technology Education (SIG) 2
09 Others (places with only one publication) 39

- Total 80

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...291

numerous approaches have been aimed at enhancing students’ learning achievements in
re cent decades through active learning methods. This particularly applies to program-
ming-related courses, where students must practice regularly.

Among the ALMs mapped, we noticed 17 publications presenting approaches that
combine more than one ALM. We named and classified them as “Mixed Methodologies”
(MixMeth). See all the MixMeth in Table 5. In addition, four publications with proposals
for new methodologies were classified as “Authors’ Methodologies” (Aut-Meth), i.e.,
in structors adopt different teaching practices to explore active learning during the teach-
ing schedule. These can be seen in publications S16, S17, S18, and S25.

The ALMs that were jointly adopted stand out with a percentage of 20.9% (17) of
the mapped publications, as can be seen in study S12, in which the authors adopted the
Flipped classroom (FC) and Problem-Based Learning (PBL) in a mixed way. The FC
method uses information technology to invert traditional in-class activities into out-of-
class activities and vice versa (Hendrik, 2019). The common practice of this approach is
the students watch a pre-recorded lecturer video at home and then in the class meeting.
They do a quiz or assignments related to the subject they learned before (Bergmann
and Sams, 2012). Project-Based Learning (PBL) is an inclusive teaching approach that
involves students in vestigating real-world problems. With this methodology, students
formulate the questions and find solutions to these issues (dos Santos et al., 2018).
Therefore, the combination of active methodologies like FC and PBL can be highly ben-

Fig. 3. Types ALMs adopted for teaching programming. Source: The authors.

I. Calderon, W. Silva, E. Feitosa292

eficial for teaching programming due to the different contributions each one offers. FC
method offers benefits such as pre-preparation, an emphasis on practical activities, and
heightened interaction with the in structor. Meanwhile, Problem-Based Learning (PBL)
promotes student-centered learning, knowledge application, and interpersonal skills de-
velopment. This effective and engaging approach thoroughly equips students with real-
world programming practice.

Notably, the Flipped Classroom and Problem-Based Learning methodologies were
in dividually reported in 17.5% (14) and 9.8% (8) of the publications.

The S35 publication adopted Process-Oriented Guided Inquiry Learning (POGIL)
and Pair Programming (PP) for teaching programming. POGIL is a student-centered
learning approach that focuses on concept development in the framework of learning
teams. Instead of passively listening to a traditional lecture, students work together
in groups on specifi cally designed activities that guide students through the construc-
tion of course content (Hu and Shepherd, 2013). The pilot is responsible for typing
at the computer or docu menting a design in the PP process. The other partner, the co-
pilot, observes the driver’s work, looks for defects in the driver’s position, and is an
ever-ready brainstorming part ner (Nagappan et al., 2003). Adopting POGIL and PP
methodologies can lead to notable enhancements in programming education. These
improvements encompass active learn ing, the promotion of collaboration, the stimula-
tion of critical thinking through guided inquiry, the provision of immediate feedback,
ongoing code review, the encouragement of cooperative knowledge building, joint

Table 5
Methodologies adopted jointly. Source: The authors

ID ALM #Publications

 1 Flipped Classroom + Project-Based Learning S01
 2 Mini-lecture + Live-coding + In-class coding S03
 3 Pair programming + Exercise-based learning S05
 4 Flipped Classroom + Problem-based Learning S12, S15
 5 Animated Flowchart with Example Think-Pair-Share S16
 6 Project-Based Learning + SCRUM S23
 7 Student Ownership of Learning + Flipped Classroom S26
 8 Pairing-based pedagogy - Pairing-Based Approach (Pair programming + Blended Learning S27
 9 Flipped Classroom + Team-Based Learning S28
10 Process Oriented Guided Inquiry Learning + Pair Programming S35
11 Process Oriented Guided Inquiry Learning + Pair Programming S21
12 Game-Based Learning + Problem-Based Learning S43
13 Lecture-based Learning + Problem-Based Learning + Peer Instruction S46
14 Flipped Classroom + Gamification-Based Learning S65
15 Blended teaching + Problem-Based Learning + Task-driven + Flipped classroom S70
16 Learning by Collaboration, Flipped Classroom, Game-Based Learning S73
17 Flipped Classroom, Peer Discussion, and Just-in-time S76
18 Coding Dojo, Gamification, Problem-Based Learning, Flipped Classroom and Serious

Games
S80

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...293

problem-solving, and a deeper comprehension of algorithms. Consequently, incorpo-
rating these approaches into programming educa tion can amplify student engagement,
facilitate collaboration, cultivate problem-solving skills, and elevate the quality of
generated code. Both methodologies are practical and can be employed in conjunction
or separately, depending on the learning objectives and the specific requirements of
the class. Thus, it can be seen that the mixed use of ALMs pro vided instructors with
different possibilities to test combinations of ALMs jointly. In this way, different ex-
periences of teaching practices are observed, as well as new opportunities for students
to be motivated to learn actively.

We observed that 13.5% (11) of the analyzed studies adopted Gamification-Based
Learning (GM). Gamification refers to integrating game elements into non-game con-
texts. This trend is gaining popularity among educational researchers due to its poten-
tial to re duce student boredom and increase active learning, engagement, and motiva-
tion (Kaya and Ercag, 2023). According to Venter (2020), GM is considered one of the
most promis ing educational methodologies for this decade, as educators worldwide
recognize that the proper design of gamified learning activities can significantly im-
prove student productiv ity and creativity. Therefore, adopting the GM methodology in
programming education innovates by making learning more engaging, practical, and
motivating. GM is crucial for attracting and retaining students, developing program-
ming and problem-solving skills, and preparing them for success in the tech industry.
Adopting GM also provides significant opportunities, such as student engagement and
motivation, promoting practical learning, fostering self-directed learning, and facilitat-
ing collaboration.

The Game-Based Learning (GBL) methodology appears in 6.1% (5) of the publica-
tions. The game-based approach is unique because it involves and excites students,
al lowing them to spend their time-solving problems. Additionally, GBL encourages the
ex ploration of different problem-solving methods. In simple, fun games, the students
may repeat the process just because they want a different outcome (Rajaravivarma,
2005). The methodology focuses on applying educational games designed to balance
learning a spe cific competence with the gameplay (Qian and Clark, 2016). Currently, it
is being adopted in computer science teaching in several areas, such as software engi-
neering, programming, or security (Zhang-Kennedy and Chiasson, 2021).

Aut-Meth appears in 4.9% (4) of the publications, such as S26 and S32. The authors
elaborated and used an ALM to explore collaboration and active learning in teaching
pro gramming. With the same percentage, Project-Based Learning (PjBL) appears in
4.9% (4) of the publications. PjBL is also an example of a student-centered methodolo-
gy, through which students learn to build their own learning experiences independently
(Paristiowati et al., 2022). The Project-Based Learning (PjBL) methodology involves
learning through projects. This methodology challenges students to take responsibility
for their learning while promoting positive interdependence, individual accountability,
social skills, and equal participation during project presentations. Students can ben-
efit greatly from this learning approach by encouraging communication and leadership
(Kholijah et al., 2023).

I. Calderon, W. Silva, E. Feitosa294

Finally, 12 types of methodologies were cited by less than four publications: Coop-
erative Learning (CL) (3), Pair Programming (PP) (3), Team-Based Learning (TBL)
(2), Think-Pair-Share (TPS) (2), Coding Dojo (Dojo) (2), Blended Learning (BL)
(1), Peer Review (PR) (1), Project-Based Service Learning (PBSL) (1), Method 300
(M300) (1), Process-Oriented Guided Inquiry Learning (POGIL) (1), and Top-Down
(TopD) (1).

CL is a widely-used educational approach that the instructors can apply to diverse
subjects and populations (Beck and Chizhik, 2006). Also, it can develop computation-
al thinking and knowledge of computational programming (Li et al., 2023). PP is an
ac tive learning methodology that compares pair programming and solo programming.
Its effectiveness is affected by compatibility factors such as students’ skills, person-
ality, and self-esteem (Xu and Correia, 2023). TBL develops critical thinking skills
and problem-solving ability to solve problems individually and empowers students
to solve complex issues (Sibley and Ostafichuk, 2023). TPS methodology encourages
students to consider the problem’s solution individually, share their answers with their
partners in pairs, and present their solutions orally to the entire class (Hidayati et al.,
2023). Dojo is a hands-on workshop session widely used in classroom settings where
students can practice pro gramming in groups for collaborative learning. This meth-
odology significantly improves students’ skills in designing software and applying
design patterns (Nasir, 2023).

BL combines in-person and online instruction for flexibility. It offers face-to-face
learning while keeping students safe (Srivatanakul, 2023). PR is an active, authentic
ac tivity providing a distinct learning experience in the classroom. This approach de-
mands that students engage in higher-level thinking as they analyze and evaluate the
work of oth ers. It is a commonly used technique in industry and is a genuine activ-
ity that can help prepare students for the workplace (Turner et al., 2018). At PBSL,
students can participate in projects that present challenging and holistic situations
requiring them to apply their functional technology skills, critical thinking abilities,
and interpersonal skills to under stand the issues they must address. The learning ex-
perience is highly engaging as they work through the project and solve the problems
they encounter (Brescia et al., 2009).

M300 method can be defined as an innovative strategy of active learning, combin-
ing features of peer learning and mentoring techniques, which are widely used in ac-
tive learning (de Castro Junior et al., 2021). POGIL is a suitable pedagogical approach
for teaching programming, software testing, and DevOps at the undergraduate level
(Joshi and Lau, 2023). The TopD methodology is a pedagogical approach to software
devel opment and programming education. It begins with a broad view of the problem
to be solved and gradually delves into specific implementation details. This approach
is advan tageous when teaching object-oriented programming, software architecture,
and complex systems development, where organization and structure are vital to proj-
ect success (Sung and Shirley, 2003). Table 6 shows the ALMs individually adopted
per paper.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...295

4.3. SQ2. Which Subjects were Mentioned in the Publications?

To answer SQ2, we observed the contents and disciplines presented in the publications,
as reported in the studies, and identified approximately 30 different disciplines used for
teaching. Table 7 presents the ALMs used for teaching programming in different courses
and classes in computing.

In the Introductory Programming class, different ALMs (PBSL, PjBL, PP, TBL,
and TPS) have been adopted for the initial teaching of programming, as observed in

Table 7
Subject X Methodologies. Source: The authors.

ALM Subject/content Course #Publication

FC Data structures and OOP
Introduction to programming and algo-
rithm

Computer Engineering
Software Engineering

S2
S38

Introduction to programming/linear
data structures

Computer Science S41

OOP
Computer programming
Introductory programming

Computer Programming
Computer Science
Computer Science and Information Techno-
logy, Information Systems

S8, S42
S30, S37, S40
S7, S14, S24,
S47, S50

Continued on next page

Table 6
Methodologies individually adopted per paper. Source: The authors

ID ALM #Publications

 1 Blended Learning (BL) S36
 2 Cooperative Learning (CL) S17, S32, S33, S77
 3 Coding Dojo (DOJO) S61, S63
 4 Flipped Classroom (FC) S2, S7, S8, S14, S24, S30, S37, S38, S40, S41, S42,

S47, S50, S74
 5 Game-Based Learning (GBL) S11, S48, S51, S53, S55, S67
 6 Gamification-Based Learning (GM) S19, S21, S49, S54, S56, S57, S58, S60, S62, S68
 7 Method 300 (M300) S64
 8 Programming Case Studies (PCS) S18
 9 Hybrid Two-Stage Model (HTSM) S25
10 Problem-Based Learning (PBL) S9, S10, S13, S52, S59, S75, S78, S80
11 Project-Based Service Learning (PBSL) S44
12 Project-Based Learning (PjBL) S4, S39, S66, S79
13 Process Oriented Guided Inquiry Learning (POGIL) S71
14 Pair Programming (PP) S22, S45, S72
15 Peer Review (PR) S31
16 Team-Based Learning (TBL) S6, S20
17 Top-Down (TopD) S69
18 Think-Pair-Share (TPS) S29, S34

I. Calderon, W. Silva, E. Feitosa296

Table 7 – continued from previous page

ALM Subject/content Course #Publication

MixMeth Web programming
Introductory programming
Computer programming
OOP

Informatics
Management Information System
Computer Science
Computer Engineering, Software Engineer-
ing

S1
S26
S35
S3, S15, S27,
S65

Introductory programming Computer Engineering, Software Engineer-
ing and Information Systems Engineering

S5, S12, S23,
S28, S43, S46

GM Algorithm
Algorithm and data structures
OOP
Programming lab
Web programming
Introductory programming I and II

Computer Science
Computer Science
Information Systems
Computer Science
Information Systems
Computer Engineering, Computer Science

S54
S57
S68
S58
S62
S56, S60,
S19, S21, S49

GBL Data Structures
Programming II
Programming Logic and Algorithm
Algorithms
Introductory programming

Computer Science
Computer Science
Information Systems
Computer Science and Information Systems
Computer science and Information Systems

S48
S53
S67
S51
S11, S55

PBL OOP
Algorithms and programming I
OOP, data structures and software design
Programming paradigms
Teaching programming

Computer Engineering
Computer Engineering
Computer Engineering
Software Engineering
not mentioned

S9
S13
S10
S59
S52

AuthMeth System Programming Computer Science and Engineering S16
Programming
Introductory programming

Computer Science
Computer Science

S18
S17, S25

PjBL Introductory programming
Mobile development
OOP, data structures and systems design

Computer Engineering
Computer Science
Computer Engineering

S4
S39
S66

CL Parallel programming
OOP

Computer Science
Informatics

S32
S33

PP Introductory Computer Science course
Mobile app development

Computer Science S22
S45

TBL Introduction to systems programming
Introductory programming

Computer Science S6
S20

DOJO Introductory programming, programm-
ing language, OOP
Algorithm

Computer Science S63

S61

TPS Introductory programming Computer Science S29, S34

BL Computer programming Computer Science S29, S36

M300 Algorithm and programming Computer Science S64

PBSL Introductory programming Computer Engineering S44

PR OOP Computer Science S31

Note: FC – Flipped Classroom; MixMeth – Mixed Methodologies; GM – Gamification-Based Learning;
GBL – Game-Based Learning; PBL – Problem-Based Learning; Aut-Meth – Authors’ Methodolo-
gies; PjBL – Project-Based Learning; CL – Cooperative Learning; PP – Pair Programming; TBL
– Team-Based Learning; BL – Blended Learning; M300 – Method 300; PBSL – Project-Based
Service Learning; PR – Peer Review.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...297

publica tions S4, S22, S29, SS34, S39, S44, S45, and S66. Regarding the teaching of
algorithms and data structures, the adoption of GM, GBL, FC, M300, and Dojo is ob-
served, as ob served in publications S11, S19, S21, S24, S30, S37 S48, S49, S51, S53-
S58; S60-S64, S67 and S68.

In teaching computer programming, the BL, FC, and MixMeth are adopted, accord-
ing to publications S1-S3, S5, S7, S8, S12, S14, S15, S23, S24, S26, S28, S30, S35, S37,
S38, S40-S43, S46, S47, S50, S54, S61 and S65.

Finally, in classes such as Parallel Programming, Object-Oriented Programming
(OOP), System Programming, Software Design, Teaching Programming, and Program-
ming paradigms, the CL, Aut-Meth, PBL, and PR methodologies were mapped and are
presented in publications S9, S10, S13, S16-S18, S25, S31-S33, S52, and S59.

4.4. SQ3. Which Programming Languages were Reported in the Publications?

To answer SQ3, we verified the programming languages reported in the studies. Table 8
summarizes the types of programming languages found in the publications, which are
analyzed by the type of ALM used for their teaching. The publications S64, S65, S67,
S70, S72, and S74 do not show which programming language was used.

Java is among the most used programming languages mentioned in 27 publications.
The C++ and C languages are used in 12 and 10 publications. Finally, Python was men-
tioned in 11 publications. Not all publications cited which programming language was
used, and some did not mention it clearly in the study. The following publications, S51,
S53, S67 (GBL), S22 and S45 (PP), S6 (TBL), S64 (M300), S44 (PBSL), S31 (PR) and
S54 (GM) are examples of this fact.

Table 8
Programming Language X Methodology. Source: The authors

ALM Programming language #Publication

FC Java, C#, C,Python S2, S7, S8, S14, S24, S30, S37, S38, S40, S41, S42, S47, S50
MixMeth Javascript, PHP, Java, C++, C,Python S1, S3, S5, S12, S15, S23, S26, S27, S28, S35, S43, S46, S65
GM Java, C++, C,Python, PHP, Ruby S19, S21, S49, S54, S56, S57, S58, S60, S62, S68
PBL Java C, Python S9, S10, S13, S52, S59
Maut Assembly, C++, Java S16, S17, S18, S25
PjBL Python Java S4, S39, S66
CL C, C++, JAVA S32,S 33
GBL Python, Java S48, S55
DOJO C, Python, Java S61, S62
BL Java S36
TBL C++ S20

Note: FC – Flipped Classroom; MixMeth – Mixed Methodologies; GM – Gamification-Based Learning;
PBL – Problem-Based Learning; Aut-Meth – Authors’ Methodologies; PjBL – Project-Based
Learning; CL – Cooperative Learning; GBL – Game-Based Learning; DOJO – Coding Dojo; BL –
Blended Learning; TBL – Team-Based Learning.

I. Calderon, W. Silva, E. Feitosa298

4.5. SQ4. What Type of Experimental Study was Carried out?

Research and development in information technology and computer science rely heav-
ily on empirical studies. These studies provide (i) the necessary foundation for mak-
ing tech nical decisions, (ii) evaluating the efficiency of systems and solutions, and
(iii) generating evidence-based knowledge to improve computing practices in different
fields.

To answer SQ4, the types of studies were carried out: case studies, controlled experi-
ments, surveys, and mixed methods.

Therefore, we observed that all the studies carried out were experimental. Table 9
presents the types of studies identified in the publications. Given this panorama, we ob-
served that 87.76% of the studies carried out a case study, which evidences the instruc-
tors’ concern regarding the applicability of the methodologies, technologies, and types
of pro gramming languages in daily teaching practice.

Table 9
Type of studies X Methodology. Source: The authors

ALM Action
research

Case
study

Focus
group

Inter-
views

Obser-
vations

Survey #Publication

MixMeth X X X S1, S3, S5, S12, S15, S23, S26, S27, S28,
S35, S43, S46, S65, S70, S73, S76, S80

FC X X S2, S7, S8, S14, S24, S30, S37, S38, S40,
S41, S42, S47, S50, S74

GM X X S19, S21, S49, S54, S56, S57, S58, S60,
S62, S68

PBL X S9, S10, S13, S52, S59, S75, S78, S80
GBL X X S48, S51, S53, S55, S67
AuthMeth X S16, S17, S18, S25
PjBL X S4, S39, S66, S79
CL X X S32, S33, S77
PP X S22, S45, S72
DOJO X S61, S63
TBL X X X S6, S20
TPS X X X S29, S34
BL X S36
M300 X S64
PBSL X S44
PR X S31
POGIL X S71
TopD X S69

Note: MixMeth – Mixed Methodologies; FC – Flipped Classroom; GM – Gamification-Based Learning;
PBL – Problem-Based Learning; GBL – Game-Based Learning; Aut-Meth – Authors’ Methodologies;
PjBL – Project-Based Learning; CL – Co operative Learning; PP – Pair Programming; DOJO –
Coding Dojo;TBL – Team-Based Learning; TPS – Think-Pair-Share; BL – Blended Learning; M300
– Method 300; PBSL – Project-Based Service Learning; PP – Pair Programming; POGIL – Process
Oriented Guided Inquiry Learning; TopD – Top-Down.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...299

In addition, we realized that the case study was the most used type of experiment and
was used in conjunction with other types of investigation (e.g., surveys and interviews)
as in publications S21, S29, S41, S46, and S48.

Observation, interviews, focus groups, and action-research experiments stood out
in a smaller percentage. Our observations revealed that each technique was pivotal in
re search concerning adopting ALMs in programming education. The focus group ap-
proach provided an overview of group perspectives, allowing us to identify common
trends and issues in studies S34. In contrast, studies S20 and S46 utilized the interview
technique, provided a more in-depth exploration of individual experiences and revealed
detailed and unique insights. Finally, research S77 using the action research technique
enabled us to assess the implementation and evaluation of practical interventions, foster-
ing continuous improvement in active teaching practices.

4.6. SQ5. What Evaluation Metrics were Reported in the Publications?

To answer SQ5, a qualitative analysis of the metrics was carried out about the ALMs
adopted, which are presented from each accepted publication. The main objective of
this analysis was to identify the metrics used by the instructors from the perspective of
teaching to the adoption of ALMs. A list of all identified metrics was created to perform
the qual itative analysis. Each of the metrics was listed, and based on the list, codes were
created. Subsequently, these codes were analyzed and grouped according to their char-
acteristics to form relevant concepts represented in this work through categories. It is
noteworthy that a researcher-author performed the analysis. The identified metrics were
then revised and discussed with another researcher-author with more than six years of
experience in qualitative analysis.

Table 10 presents the main metrics, which are grouped according to the identified
categories: Engagement, Performance, Motivation, Collaboration, and Interaction.

In the Engagement category, we observed that this metric generally represents why
students felt more engaged in learning programming. Engagement refers to a work-relat-
ed cognitive-affective state characterized by vigor, dedication, and absorption (Schaufeli
and Bakker, 2003). The perception regarding engagement was identified when instruc-
tors adopted the following ALMs: GM (S19, S21, S54, S56, S62, S68), MixMeth (S15,
S35), Auth-Meth (18), TBL (S20); TPS (S29), FC (S41), M300 (S64) and PBL (S78).
Therefore, it can be seen that these ALMs contribute to awakening students to an active,
creative, and collaborative posture, as they are engaged in teamwork, discuss issues dur-
ing class, and seek to clarify their doubts.

The Performance category is related to performance in continuous assessment tasks
such as key indicators, student progress, student grades after completing the course,
rates, and averages obtained in activities, assessments, and final exams (Veerasamy
et al., 2020). In this category, the following ALMs stood out: MixMeth (S1, S5, S12,
S15, S23, S26, S28, S35, S43, S73, S76, S80), FC (S14, S30, S36, S38, S40, S47, S50),
PBL (S10, S58, S75, S80) and GM (S49, S54, S57, S60). These ALMs have significantly
improved student performance due to new teaching strategies, which have shown con-

I. Calderon, W. Silva, E. Feitosa300

siderable advantages in solving real problems while maintaining curiosity about technol-
ogy (Wang et al., 2019).

By definition, motivation explains the goals and how actively or intensely someone
pursues them. This can be intrinsic motivation, which involves the individual in some
task for the simple pleasure of performing it, or extrinsic motivation, which consists of
the individual in activities for the rewards obtained by completing them or because such
activities are necessary steps to achieve a specific objective (Souza and Bittencourt,
2019). The category Motivation is associated with how students felt when learning via
the GM (S21, S54, S56, S58, S60, S62, S68), FC (S7, S40, S74), MixMeth (S15, S65),
GBL (S51, S55) and Dojo (S61, S63) methodologies. We note that the motivation is
reflected in an improvement in the student’s attendance and class participation due to
the chal lenges proposed to them to seek innovative ways of solving problems inside and
outside the classroom.

Knowledge construction occurs via the exchange of experiences and the sharing of
ac quired knowledge. In this sense, it is observed that the DOJO (S61, S63), TBL (S20),
JE (S11), and PBL (S9) were the methodologies that most contributed to the awaken-
ing of Collaboration among students and between students and instructors. In the case

Table 10
Metrics X Methodology. Source: The authors

ALM Enga-
gement

Perfor-
mance

Moti-
vation

Colla-
boration

Inter-
action

#Publications

FC X X X S7, S14, S30, S36, S38, S40, S41, S47, S50, S74
MixMeth X X X S1, S5, S12, S15, S23, S26, S28, S35, S43, S65,

S73, S76, S80
GM X X X S19, S21, S49, S54, S56, S57, S60, S62, S68, S21,

S54, S56, S58, S60, S62, S68
GBL X X X X S48, S11, S51, S55, S76
AutMeth X X X S16, S18, S17, S25
PjBL X X S4, S66, S79
CL X S77
PP X S22, S46, S72
TBL X X X S6, S20
TPS X X S29, S34
M300 X X X S64
PBSL X S44
DOJO X X X S61, S63
PBL X X X X X S9, S10, S58, S75, S78, S80
TopD X S69
POGIL X S71

Note: FC – Flipped Classroom; MixMeth – Mixed Methodologies; GM – Gamification-Based Learning;
GBL – Game-Based Learning; Aut-Meth – Authors’ Methodologies; PjBL – Project-Based Learning;
CL – Cooperative Learning; PP – Pair Programming; TBL – Team-Based Learning; TPS – Think-
Pair-Share; M300 – Method 300; PBSL – Project-Based Service Learning; DOJO – Coding Dojo;
PBL – Problem-Based Learning; TopD – Top-Down; POGIL – Process Oriented Guided Inquiry
Learning.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...301

of the DOJO, in addition to making the experience more fun, it promotes an inclusive,
coop erative, and collaborative environment based on exchanging experiences and net-
working among participants (de Castro Junior et al., 2021). This occurs because this
ALM allows for improved classroom participation and knowledge exchange via col-
laboration in activ ities and discussions.

In the Interaction, the PBL (S9, S10), JE (S11), and M300 (S64) methodologies
were the most reported to contributing to the awakening of interaction in the classroom,
whether between students themselves or between the students and their instructors. We
note that they all relate to improving or even awakening student interaction. They can
contribute to developing professional skills such as broader communication, teamwork,
and self-education. In addition, there is a discussion about improving programming
skills such as problem-solving, understanding the basic functioning of programming
languages, and the ability to read code (Nagai et al., 2016).

Table 11 presents the metric instructor’s perception. The instructor’s perception
met ric is related to the subjective observations of instructors reported in the teaching
and stu dent learning studies. In this sense, the instructor’s perception metric is related
to their perception of knowledge and skill acquisition, students’ perceptions of the ef-
fectiveness of studies, and students’ views and performance, among others. Table 11
presents an overview of the reported perceptions since the perceptions regarding the
students’ effort are not objective (Aivaloglou and Meulen, 2021).

Table 11
Instructors’ perception X Methodology. Source: The authors

Metho-
dology

Instructors’ perceptions #Publi-
cation

MixMeth Improvement of students’ abilities, students’ completion of a task.
Correcting errors and problem-solving within the given time frame.
Students’ perceptions of the effectiveness.

S70
S27
S3

FC Knowledge and skill acquisition.
Cognitive flexibility, problem-solving skills, flipped learning readiness levels in stu dents’
programming.

S2
S24

CL Peer evaluations and self-assessment.
Improvement in programming skills.

S32
S33

PBL Student behavior with a focus on the teaching-learning process, students’ grades for the
three PBL problems.
Theoretical evaluation (content), evaluation of the proposed solution (result), and eval-
uation of interpersonal skills.

S13

S52

GBL Willingness to solve problems, ability to generate alternatives, comparison between pos-
sible alternatives, evaluation of solutions.

S53

BL Affection, skill, cognition. S36

PjBL Course organization and course quality, course difficulty level. S39

PR Students understood the concepts, and understanding was improving. S31

Note: MixMeth – Mixed Methodologies; FC – Flipped Classroom; CL – Cooperative Learning; PBL –
Problem-Based Learning; GBL – Game-Based Learning; BL – Blended Learning; PjBL – Project-
Based Learning; PR Peer Review.

I. Calderon, W. Silva, E. Feitosa302

Given this scenario, it can be seen that the Performance metric highlights the
method ologies MixMeth, FC, PBL, GM, and PjBL. However, we realized the GM and
FC method ologies stand out regarding the Motivation metric. For the Collaboration
and Interaction metrics, the DOJO and PBL stand out, respectively. Thus, there is an
opportunity to im prove instructional strategies for teaching, in addition to contrib-
uting to the understanding of taught concepts and the development of skills related
to programming, which con sequently contributes to the development of professional
skills. Finally, the instructors’ perception highlights the MixMeth, FC, CL, and PBL
methodologies if we consider the advantages and construction of knowledge regarding
group activities.

4.7. SQ6. Which Technologies Were Used During the Teaching of Programming?

To answer SQ6, we organized the technologies cited in the publications by the type of
methodologies used for teaching programming. Table 12 presents the technologies re-
ported in the publications.

Table 12
Technologies X Methodology. Source: The authors

Metho-
dology

Technologies #Publi-
cation

FC Hands-on instruction, Tic-Tac-Toe, Grading, Tokens, Pearson MyProgrammingLab
Blackboard, videos, slides, textbooks
Video tutorials
App Inventor online editor, Edmodo, video
Video, interactive textbook, zyBooks platform
Video lectures, platforms online
Flash animations and video, Java Swing
Java Collections Framework and iterators, Eclipse, Java v1.7, JUnit v4, EclEmma, Jacoco,
FindBugs, PMD, and CheckStyle, GitHub, Google Forms
Virtual learning environment
YouTube channel, video quizzes
MyProgrammingLab textbook, online quizzes, programming homework

S7
S8
S14
S24
S30
S37
S40
S41

S42
S47
S50

MixMeth Google Classroom, Kahoot, video lectures
Stack Overflow, Javadoc or Google
CodeBlocks IDE, URI Judge Online, Sophia Learning tool
MOOC tool, PPT to the projection screen
Moodle
NSB AppStudio, commercial APIs (e.g., Google Maps, Yelp, Weather, etc.), Code
Academy lessons, videos, Canvas
textbook, videos
Scratch game
Moodle, video from YouTube, Poll Everywhere tool
Moodle, the Multimedia Teaching-Learning Environment

S1
S3
S12
S15
S23
S26

S28
S43
S46
S65

Continued on next page

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...303

Table 12 – continued from previous page

Metho-
dology

Technologies #Publi-
cation

GM Interactive User Input, Cryptogram, Word Search, Puzzle Maker, Hangman
Framework de Werbach, UVa Online Judge
URI Online Judge
GameProgJF, Google Forms
code.org course, Kahoot, Socrative
cod[edu], Google Forms

S19
S54
S57
S58
S60
S68

GBL Textbook, video
Games: DSAsketch, Lightest and Heaviest, SAVG-Engine, Sorting Game, Sorting Casi-
no, Sorting Game, Sortko
Games: Bullfrogs, An Eight-minute Empire, Carcassone, Metrocity, Resolution Inventory
Social Problems
App Construct2

S48
S51

S53

S67

PBL Eclipse, NetBeans
Google Classroom, IDE JetBrains PyCharm

S10
S52

PjBL GUI tkinter
Video lectures, Canvas, Gitlab, Google App Engine, Google Cloud, CATME system
Junit

S4
S39
S66

CL Github, Facebook, IntelliJ IDEA S33

PP Lectures, tutorials, demo sessions, homework assignments S45

TBL Quiz
Eclipse, NetBeans, JUnit, Javadoc

S6
S20

TPS Survey S29

DOJO IDE DevC++
Google Forms

S61
S63

Note: FC – Flipped Classroom; MixMeth – Mixed Methodologies; GM – Gamification-Based Learning;
GBL – Game-Based Learning; PBL – Problem-Based Learning; PjBL – Project-Based Learning;
CL – Cooperative Learning; PP – Pair Program ming; TBL – Team-Based Learning; TPS – Think-
Pair-Share; DOJO – Coding Dojo.

It is essential to mention that not all publications presented the tools or technologies
used. However, we noticed that the selected studies present different types of tools,
rang ing from devices known by the community, such as Google Classroom, Kahoot,
video lectures, and GitHub, which were shown in publications S1, S33, and S52, to
even less common ones, such as tkinter GUI, App Inventor online editor, MyProgram-
mingLab, App Construct2, which were featured in S4, S24, S50, and S55. In addition, it
is observed that not all publications reported or did not mention which technology was
used in the study.

5. Discussion of the Results

We observed that instructors have been experimenting with different ALMs to improve
their teaching abilities, which will reflect directly on the students’ learning. In addition,

I. Calderon, W. Silva, E. Feitosa304

the community’s concern regarding improvements in teaching programming is due to
the needs and weaknesses still perceived in teaching. From this perspective, positive
aspects are observed. Higher education has developed significantly over the last two
decades. It has been influenced by two trends: advances in active learning methods and
the integration of technology, which are much more than artifacts and applications.

In this context, the diverse scenario of ALMs experienced in teaching programming
shows that the faculty seeks to motivate and engage students in programming studies,
as it is known that teaching and learning programming is complex and challenging. In
this context, it is observed that it is challenging to introduce innovations even when this
would be advantageous and beneficial for teaching and learning programming, consider-
ing that teaching programming is still a challenge for instructors of computing courses
(Raj et al., 2018). However, adopting these ALMs makes it possible to minimize the
challenges faced in the classroom for teaching and learning programming.

The results of this SMS are corroborated with the results of the literature, espe-
cially concerning the main ALMs mapped. The works by Berssanette and de Francisco
(2021) and (Anicic and Stapic, 2022) present results that report adopting different ALMs
in teach ing and learning computer programming. These authors highlight methodolo-
gies that have been used by instructors in teaching programming, namely Coding Dojo
(DOJO), Gami fication (GM), Game-Based Learning (GBL), Project-Based Learning
(PjBL), Problem-Based Learning (PBL), Flipped classroom (FC) and Peer Instruction
(PI). The adoption of these ALMs reveals their concern for motivating and engaging stu-
dents in program ming classes. It is observed that instructors seek support in the ALMs
to innovate in their teaching of programming.

Table 3 presents methodologies that were also listed in the research by Berssanette
and de Francisco (2021) and Anicic and Stapic (2022), including approaches that in-
structors have implemented for active teaching and learning. Hendrik (2019) adopts two
ALMs for teaching programming, the FC, which refers to the concept of role reversal in
the classroom. The Flipped Classroom is “what is traditionally done in the classroom is
now done at home, and what is traditionally done as homework is now done in the class-
room” (Bergmann and Sams, 2012) and PjBL, which is “a teaching method that engages
students in learning knowledge and skills through a structured extended inquiry process,
complex real-life questions, and projected tasks” (Hallermann et al., 2016).

We mapped four new methodologies implemented by the authors (S16, S17, S18,
and S25) named Auth-Meth. The Auth-Meth are not widely used methodologies in the
liter ature and are presented as new strategies for the teaching of programming. The work
by Dol (2018) (S16) presents a combination of an animated flowchart with an example
and TPS activities. The approach used to modify the TPS activities proved helpful in
teaching algorithms. The work of Yuan and Cao (2019) (S25) shows a hybrid two-stage
model in which a programming project is divided into two stages: the checkpoint stage
(stage one) and the final submission stage (stage two) and the act of reviewing other
people’s code are found to improve student learning.

It is a challenge to plan classes that motivate students. However, motivation is consid-
ered an indispensable factor in carrying out any activity and, mainly, in learning. Faced
with this challenge, ALMs are seen as an essential support and strategy for teaching

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...305

pro gramming. In this context, Table 7 shows that the FC, MixMeth, GM, GBL, and PBL
methodologies are more frequently addressed in the studies.

In this scenario, the MixMeth, GM, GBL, and PBL methodologies provide student
learning that is generally based on projects and work in groups during their studies.
According to Aivaloglou and Meulen (2021), there are several reasons for implement-
ing group work, e.g., it offers students the opportunity to work on larger-scale software
projects, and it can be used as an instructional strategy and is included in education be-
cause of its benefits for the domain-specific knowledge learning process. For Kirschner
et al. (2018), there are also the benefits of collaboration when facilitating measures are
taken, such as scripted learning environments, including rules for communication and
co ordination, in the classroom.

Table 12 summarizes the technologies that instructors have used. The FC, MixMeth,
GM, and GBL methodologies use different technologies. It is observed that the techno-
logical support (whether digital or not) adopted for teaching programming was effective,
mainly in implementing activities in the classroom, such as questionnaires and projects
using different tools and applications. For Shokaliuk et al. (2020), the interaction with
technologies and digital content provides a reflective and critical attitude in the face
of its evolution and an ethical, safe, and responsible approach to using these tools. In
this perspective, adopting ALMs and learning technologies, such as Kahoot or Google
Class room, is presented as effective in facilitating the teaching of programming. Even
curious, open, and perspective in the face of its evolution, as well as an ethical, safe, and
responsi ble approach to using these tools. In this perspective, adopting ALMs and learn-
ing tools (e.g., Kahoot or Google Classroom) is presented as effective in facilitating the
teaching of programming.

In recent years, special attention has been focused on integrating digital technologies
and games in education, and there is an increase in interest in using games as a tool to
aid student learning (Grivokostopoulou et al., 2016). In this context, the mapping re-
sults show that the studies used different games regarding GM and GBL methodologies,
while methodologies like FC, MixMeth, PBL, and PjBL are used with online learn-
ing resources. The growing availability of online learning resources, such as tutorial
web-sites (e.g., Codecademy.org, Kahn Academy), block programming environments
(e.g., Scratch), and educational games (e.g., Swift Playgrounds), are popular choices for
people to gain programming knowledge (Lee and Chiou, 2020).

ALMs and relevant technologies can aid instructors in teaching programming due
to the possibility of involving students in classes. Students’ engagement during their
learn ing is essential for learning challenging subjects like computer programming. In
particu lar, educational games have successfully taught introductory programming con-
cepts (Lee and Chiou, 2020). However, even with the success of these resources, the
student may en counter difficulties and not receive the necessary support to overcome the
difficulties and may become frustrated (Lee and Chiou, 2020). Therefore, it is essential
to look at student engagement, as it is crucial to student success (Marks, 2000) and, con-
sequently, necessary for teaching programming.

Due to their unnatural syntax and semantics, computer programming languages are
challenging for most first-year computer science students (Jeff and Nguyen, 2018). Giv-

I. Calderon, W. Silva, E. Feitosa306

en this, anattemptwas made to map the programminglanguages reported in the studies.
Table 8 presents the various types of languages, and three types of programming lan-
guage stand out for being the most used with most mapped ALMs. Java, Python, and C
languages were the most reported in the studies, and these languages are among the main
languages, according to surveys by Cass (2022).

Thus, using different languages with ALMs can significantly contribute to the pro-
gramming teaching process and prove to be a viable alternative in teaching. Java is a
popular language for developing Web applications. Java is the most-reported program-
ming language in the studies and is used with the FC, MixMeth, GM, PBL, Auth-Meth,
PjBL, CL, GBL, DOJO, and BL methodologies. Additionally, most studies reported us-
ing Python with the FC, MixMeth, GMm, PBL, PjBL, GBL, and DOJO methodologies.
Ac cording to research by Cass (2022), since 2019, Python has been one of the main
program ming languages and at the top of the main programming languages until 2022.
Another language that stood out in the studies was C, which was used with FC, Mix-
Meth, PBL, CL, and Dojo methodologies. It can be used in different projects, such as
creating applica tions. According to research by Cass (2022), C stands out among the
main programming languages.

6. Why Are these Results Essential for an Educational Technology Proposal?

The results achieved in this SMS permitted us to identify and categorize the ALMs that
instructors have adopted and revealed crucial positive evidence related to their use in
teaching programming. On the other hand, it also shows that they are still little employed
by instructors (Nguyen et al., 2021). Lack of time for lesson planning (Eickholt, 2018;
Michael, 2007), difficulty in complying with the entire content of the course (Eick-
holt, 2018), students’ rejection of the use of new teaching methodologies, and lack of
informa tion on how to implement ALMs in classes (Tharayil et al., 2018) are pointed out
as to incorporate them into their teaching.

Based on that, we intend to develop an educational tool called CollabProg. Collab-
Prog helps instructors to identify, select, adopt, discuss, comment, evaluate, and possibly
col laborate with new (or existing) ALMs used during the teaching of programming. As a
guide, we are using the Design Science Research (DSR) methodology (Wieringa, 2014;
Vihavainen et al., 2014) to help us develop CollabProg, a collaborative repository whose
main objective is to aid instructors in adopting active methodologies while teaching pro-
gramming content.

CollabProg will help the instructor to identify and choose ALMs that meet the peda-
gogical needs and follow their teaching context. In addition, it will provide a set of
specific guidelines that will describe the steps for instructors to apply ALMs in the class-
room. In this way, instructors will no longer need to search various books, articles, web-
sites, or forums for ways to implement a specific ALM. The initial idea is for CollabProg
to be available on a website on the Web so that instructors can access it. Fig. 4 shows the
first version of CollabProg focusing on a specific active methodology, POGIL. Part 01 of

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...307

Fig. 4 provides a brief description of CollabProg, and Part 02 offers a concise overview
of the chosen active methodology by the instructor, in this case, POGIL. Finally, Part 03
provides more detailed explanations of the methodology, including the roles within the
method, the steps for adoption, and a breakdown of each step.

The website will contain further information to assist instructors in their teaching
prac tice. The repository modules (menus) will displayed in sequence, and the instructor
will not need to register to access the platform and have access to all its functions.

In CollabProg version 1, the repository is divided into three labeled menus. Each
menu provides information for users to navigate, select, and adopt any available ALMs.
Instruc tors can find a wealth of information on ALMs within CollabProg, including adop-
tion examples, community-adopted tool options, real-world experiences, and feedback
from other instructors. This platform provides valuable insights into both the positive
and neg ative aspects of different ALMs. As a differential, unlike many other platforms,
users don’t need to register to access CollabProg – it’s open to anyone.

In the main interface (Home), instructors will have access to About, which will
present an overview of the CollabProg repository. In Methodology, a list of the ALMs

Fig. 4. First version of CollabProg. Source: The authors.

I. Calderon, W. Silva, E. Feitosa308

mapped from the SMS results will be presented. It is essential to highlight that not all
methodolo gies identified here may be available on CollabProg. We will conduct a previ-
ous evaluation of all ALMs and, through pre-established evaluation criteria, a curation
of methodologies with steps defined in the literature to direct their implementation in
the classroom. This curatorship will be very important, as it will be through it that only
methodologies that have well-defined steps and that can be reproduced by other instruc-
tors, regardless of their teaching context, will be highlighted.

In Recommendation (How to adopt menu), the instructor will provide character-
istics about the class, the content to be taught, and the discipline, among others, so
that Col labProg can recommend the ALM that best suits the scenario informed by the
instructor. Based on CollabProg’s recommendation, the intention is to present the step-
by-step in structions for using the ALM, information, and the roles to be assumed by
participants during the methodology implementation, suggestions for activities, and tool
support op tions that are available and have been adopted by the community.

As it is a collatborative and open repository, in the Register methodology menu,
the instructor will have an open space to share a new ALM or an adaptation of one
already implemented or tested for teaching programming. The Experiences menu will
be a space for the community to share their experiences, suggestions, and evaluations
of ALMs in different educational settings. In addition, the results of the achieved learn-
ing objectives and the positive and negative points about the adopted ALM will also be
presented. In this way, other instructors can consult the advantages or disadvantages of
using a particular ALM, thus helping them choose the methodology. Finally, Contact
will be the means of communication between the researchers involved in the develop-
ment of the platform and the academic community, who will be able to get in touch via
the authors’ e-mails to report errors, problems, or suggestions for the repository.

To classify the ALMs that will be part of CollabProg, we intend to group the knowl-
edge about each methodology in a conceptual model inspired by those proposed by
Sobrinho et al. (2016). We will initially define the domain and scope of knowledge
built from the SMS results. According to Sobrinho et al. (2016), the domain is the
semantic represen tation and formalization of teaching methodologies based on active
learning principles. This model’s scope is to support instructors in teaching program-
ming in higher education through organized and semantically represented knowledge,
thus facilitating its dissem ination and active methodologies. This way, we will structure
the information collected from the ALMs in a conceptual model, represented using the
class diagram shown in Fig. 5.

In the model, the class Category represents the category of active methodologies
ac cording to the approach of the method. This class is associated with the Methodology
class, which represents the active methodologies that will compose CollabProg. As we
observed in the SMS, the methodologies can be used together to improve or complement
the positive results of teaching programming. The self-relationship represents this possi-
bility in the Methodology class. The Step class represents the necessary steps for adopt-
ing methodologies. The Activity class describes the activities to be carried out in the
steps for implementing the methodologies in the classroom, which can be planning the

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...309

con tent and explaining the methodology and the roles, among others. The Technology
class represents the possible educational technologies that can be used and employed for
each activity, whether a virtual environment or a game. Finally, to define the roles to be
followed and that exist in the methodologies, the Participant and Role classes are as-
sociated with each other and related to the Methodology class.

To better explain and develop the elaborated conceptual model, a recommendation
system will be developed based on knowledge of the methodologies presented in the con-
ceptual model. Thus, based on the answers provided by the instructors in the question-
naire, the recommendation system will provide a set of methodologies according to the
needs of the instructor interested in applying them. This recommendation system will
be part of CollabProg and will be available in the Recommendation menu, described in
the information architecture.

Regarding the trusteeship of the contents that will be shared on CollabProg, in gener-
al, the perspective is that a screening process be carried out to guarantee the reliability of
the contents presented so that there is adoption and effective use of ALMs in the teaching
of programming. In addition, for curation, the researchers involved will propose criteria
that will evaluate the contents made available in the repository to avoid any frustrations
of the users who will use the repository.

To assess the feasibility of using and developing CollabProg, we intend to conduct
quantitative experimental studies via questionnaires and using the Technology Accep-
tance Model (TAM) and semi-structured interviews. In addition, qualitative studies are
planned that involve case studies, focus group sessions, and interviews with instructors
in the area to understand the context in which instructors work (Manotas et al., 2016).
The goal is to conduct studies with instructors from public or private higher education
institutions and in classes that deal with computer programming content, whether in
courses for beginners or not.

We expected that CollabProg would be a technological aid that would bring to-
gether, in a single Internet portal, strategies on how to conduct the adoption of dif-

Fig. 5. Conceptual model of CollabProg. Source: The authors.

I. Calderon, W. Silva, E. Feitosa310

ferent ALMs for teaching programming and will provide examples, suggestions for
activities, support options, and tools adopted by the computer science education com-
munity, as well as expe riences on the adoption of methodologies in different scenarios,
results achieved by other instructors and positive and negative points about the ALM
adopted.

7. Threats to Validity

Despite the care in defining the SMS protocol as per Kitchenham (2012) and its sys-
tematic application, it can be observed that this research suffers from some well-known
limitations and threats to its validity. However, to mitigate the impact of factors that
may affect the validity of this SMS, several strategies were adopted for constructing the
search string for selecting and extracting data from the publications. According to Am-
patzoglou et al. (2019), several threats to validity can occur in an SMS. Among the most
common is the search string construction, which we sought to mitigate using a string
carefully constructed to include all potentially relevant publications.

In terms of threats to selecting relevant instructional units and data extraction, these
were mitigated by the definition and documentation of a rigorous protocol. The careful
establishment of inclusion and exclusion criteria and discussion among the authors until
consensus was reached. As study inclusion/exclusion bias is a common threat to validity,
an attempt was made to mitigate this threat by carrying out an inclusion and exclusion
process by two researchers, who held weekly meetings to discuss each article, especially
those that did not fit the criterion applied.

Finally, another prevalent threat in studies is data extraction bias, mitigated by defin-
ing possible answers for each question in the protocol before extraction. In addition, data
extraction was performed by the first author, inferred when not explicitly indicated in the
article, and carefully reviewed by the co-authors. Finally, selecting digital libraries and
annals to search for publications is another validity threat we sought to mitigate. There-
fore, to avoid this problem, we selected libraries and events that are known and widely
used in computer science.

8. Conclusion and Future Work

After analyzing the data extracted from the publications selected for this research, the
state of the art regarding adopting ALMs in teaching computer programming was char-
acterized. It is essential to mention that this characterization can help in the development
of new research since the selection of different methodologies that can be used and im-
proved in teaching practice will, therefore, support the knowledge and construction of
new research that aims to test or create new methods that help the instructors in teaching
programming.

Thus, the importance of seeking strategies to support instructors in teaching and
mo tivating students to learn programming is highlighted since this is a significant fac-

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...311

tor for successful instruction. This factor is especially relevant in collaborative learn-
ing contexts, where social interaction is critical in adopting ALMs (Serrano-Cámara
et al., 2014).

As future work, the aim is to curate and categorize the ALMs mapped here so that
instructors can compose an open, collaborative repository in which they can identify, se-
lect, adopt, discuss, comment, evaluate, and possibly collaborate with new (or existing)
ALMs are used while teaching programming. The repository will help the instructors
identify and choose ALMs according to their teaching context to meet their pedagogical
needs. Therefore, from the curation of the mapped ALMs, it will be possible to build and
make available a set of step-by-step guidelines to aid instructors during the adoption of
the ALMs. In this way, the instructors will not need to search various scientific articles
or books for ways to carry out a particular ALM in the classroom.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – Brasil (CAPES) – Finance Code 001. This work was partially supported
by Amazonas State Research Support Foundation – FAPEAM – through the POSGRAD
project. Williamson Silva thanks FAPERGS for the financial support granted through
ARD/ARC Project (process 22/2551-0000606-0). Ivanilse Calderon thanks the Federal
Institute of Rondônia (IFRO).

References

ACM, IEEE (2013). Computer science curricula 2013.
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

Agapito, J.L., Rodrigo, M., Mercedes, T. (2018). Investigating the impact of a meaningful gamification-based
intervention on novice programmers’ achievement. In: International Conference on Artificial Intelligence
in Education, pp. 3–16. Springer.

Ahshan, R. (2021). A framework of implementing strategies for active student engagement in remote/online
teaching and learning during the COVID-19 pandemic. Education Sciences, 11(9), 483.

Aivaloglou, E., Meulen, A.v.d. (2021). An empirical study of students’ perceptions on the setup and grading
of group programming assignments. ACM Transactions on Computing Education (TOCE), 21(3), 1–22.

Aksit, F., Niemi, H., Nevgi, A. (2016). Why is active learning so difficult to implement: The Turkish case.
Australian Journal of Teacher Education (Online), 41(4), 94–109.

Alves, G., Rebouças, A., Scaico, P. (2019). Coding dojo como prática de aprendizagem colaborativa para
apoiar o ensino introdutório de programação: Um estudo de caso. In: Anais do XXVII Workshop sobre
Educação em Computação, pp. 276–290. SBC.

Amira, T., Lamia, M., Hafidi, M. (2019). Implementation and evaluation of flipped algorithmic class. Interna-
tional Journal of Information and Communication Technology Education (IJICTE), 15(1), 1–12.

Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., Chatzigeorgiou, A. (2019). Identifying, categorizing
and mitigating threats to validity in software engineering secondary studies. Information and Software
Technol ogy, 106, 201–230.

Anicic, K.P., Stapic, Z. (2022). Teaching Methods in Software Engineering: Systematic Review. IEEE Soft-
ware.

Araújo, E.A., Furtado C C, J., Alexandre S H, G. (2020). Jogos de tabuleiros modernos para aprimorar a res-
olução de problemas em alunos de programação. In: XIX Simposio Brasileiro de Jogos e Entretenimento
Digital (SBgames 2020).

I. Calderon, W. Silva, E. Feitosa312

Astrachan, O.L., Duvall, R.C., Forbes, J., Rodger, S.H. (2002). Active learning in small to large courses. In:
32nd Annual Frontiers in Education (Vol. 1), pp. 2–2. IEEE.

Avouris, N., Kaxiras, S., Koufopavlou, O., Sgarbas, K., Stathopoulou, P. (2010). Teaching introduction to
com puting through a project-based collaborative learning approach. In: 2010 14th Panhellenic Confer-
ence on Informatics, pp. 237–241. IEEE.

Barnes, T., Powell, E., Chaffin, A., Lipford, H. (2008). Game2Learn: improving the motivation of CS1
students. In: Proceedings of the 3rd international conference on Game development in computer science
education, pp. 1–5.

Battistella, P.E., Wangenheim, C.G.v., Wangenheim, A.v., Martina, J.E. (2017). Design and large-scale eval-
uation of educational games for teaching sorting algorithms. Informatics in Education, 16(2), 141–164.

Beck, L.L., Chizhik, A.W. (2006). Workshop Applying Cooperative Learning Methods in Teaching Com-
puter Programming. In: Proceedings. Frontiers in Education. 36th Annual Conference, pp. 1–2. IEEE.

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of computers in Mathematics
and Science Teaching, 20(1), 45–73.

Bergmann, J., Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Interna-
tional society for technology in Education, ???.

Berssanette, J.H., de Francisco, A.C. (2021). Active learning in the context of the teaching/learning of
computer programming: A systematic review. Journal of Information Technology Education. Research,
20, 201.

Bittencourt, R.A., Rodrigues, C.A., Cruz, D.S.S. (2013). Uma experiência integrada de programaçao ori-
entada a objetos, estruturas de dados e projeto de sistemas com pbl. In: XXXIII Congresso da SBC–XXI
WEI.

Boudia, C., Bengueddach, A., Haffaf, H. (2019). Collaborative strategy for teaching and learning object-
oriented programming course: A case study at Mostafa Stambouli Mascara University, Algeria. Infor-
matica, 43(1).

Bowman, N.A., Jarratt, L., Culver, K., Segre, A.M. (2021). The impact of pair programming on college
students’ interest, perceptions, and achievement in computer science. ACM Transactions on Computing
Education, 21(3), 1–19.

Brescia, W., Mullins, C., Miller, M.T. (2009). Project-based Service-Learning in an Instructional Technol-
ogy Graduate Program. International Journal for the Scholarship of Teaching and Learning, 3(2), 2.

Brito, P., Fortes, R., Faria, F., Lopes, R.A., Santos, V., Magalhães, F. (2019). Programaçao competitiva
como ferramenta de apoio ao ensino de algoritmos e estrutura de dados para alunos de ciência da com-
putaçao. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na
Educação-SBIE) (Vol. 30), p. 359.

Caceffo, R., Gama, G., Azevedo, R. (2018). Exploring active learning approaches to computer science
classes. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education, pp.
922–927.

Cao, L., Grabchak, M. (2019). Interactive preparatory work in a flipped programming course. In: Proceed-
ings of the ACM Conference on Global Computing Education, pp. 229–235.

Casarotto, R.I., Bernardi, G., Cordenonsi, A.Z., Medina, R.D. (2018). Logirunner: um Jogo de Tabuleiro
como Ferramenta para o Auxílio do Ensino e Aprendizagem de Algoritmos e Lógica de Programação.
RENOTE, 16(1).

Cass, S. (2022). The Top Programming Languages 2022: Python’s still No. 1, but employers love to see
SQL skills. IEEE Spectrum.

Chandrasekaran, S., Badwal, P., Thirunavukkarasu, G., Littlefair, G. (2016). Collaborative learning experi-
ence of students in distance education. In: International Symposium on Project Approaches in Engi-
neeringEducation (Vol. 6), pp. 90–99.

Chao, P.-Y. (2016). Exploring students’ computational practice, design and performance of problem-solving
through a visual programming environment. Computers & Education, 95, 202–215.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological measure-
ment, 20(1), 37–46.

Corritore, C.L., Love, B. (2020). Redesigning an Introductory Programming Course to Facilitate Effective
Stu dent Learning: A Case Study. Journal of Information Technology Education: Innovations in Practice,
19, 091–135.

Costa, A.F.F., de Melo, A.F.M.F., Moreira, G.G., Carvalho, M.d.A., Lima, M.V.d.A. (2017). Aplicaçao de
sala invertida e elementos de gamificaçao para melhoria do ensino-aprendizagem em programaçao ori-
entada a objetos. TISE.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...313

Creswell, J.W., Shope, R., Plano Clark, V.L., Green, D.O. (2006). How interpretive qualitative research
extends mixed methods research. Research in the Schools, 13(1), 1–11.

da Silva, T.S.C., de Melo, J.C.B., Tedesco, P.C.d.A.R. (2018). Um modelo para promover o engajamento
estudan til no aprendizado de programação utilizando gamification. Revista Brasileira de Informática na
Educação, 26(03), 120.

da Silva Garcia, F.W., Oliveira, S.R.B. (2022). Aplicação de um Plano de Ensino para Disciplina de Algo-
ritmos com Metodologias Ativas: Um Relato de Estudo de Caso Piloto. In: Anais do XXXIII Simpósio
Brasileiro de Informática na Educação, pp. 301–310. SBC.

de Andrade, T.L., Rigo, S.J., Barbosa, J.L.V. (2021). Active methodology, educational data mining and
learning analytics: A systematic mapping study. Informatics in Education, 20(2), 171.

de Azevêdo Silva, M.A., Dantas, A. (2014). KLouro: Um jogo educacional para motivar alunos iniciantes
em programação. In: Brazilian Symposium on Computers in Education (Vol. 25), p. 702.

de Castro Junior, A.A., Cheung, L.M., Batista, E.J.S., de Lima, A.C. (2021). Uma Análise Preliminar da
Apli cação do Método 300 em Turmas de Algoritmos e Programação. In: AnaisdoXXIXWorkshopsobre-
Educação em Computação, pp. 171–180. SBC.

de Oliveira Fassbinder, A.G., Botelho, T.G.G., Martins, R.J., Barbosa, E.F. (2015). Applying flipped class-
room and problem-based learning in a CS1 course. In: 2015 IEEE Frontiers in Education Conference
(FIE), pp. 1–7. IEEE.

Desai, P., Meena, S., Giraddi, S., Desai, S., Hanchinamani, G. (2021). Transformation in Course Delivery
Aug mented with Problem-Based Learning and Tutorial. In: 2021 World Engineering Education Forum/
Global Engineering Deans Council (WEEF/GEDC), pp. 15–22. IEEE.

Dicheva, D., Hodge, A. (2018). Active learning through game play in a data structures course. In: Proceed-
ings of the 49th ACM Technical Symposium on Computer Science Education, pp. 834–839.

Dol, S.M. (2018). Animated flowchart with example followed by think-pair-share activity for teaching algo-
rithms of engineering courses. In: 2018 IEEE Tenth International Conference on Technology for Educa-
tion (T4E), pp. 186–189. IEEE.

dos Santos, S.C., Santana, E., Santana, L., Rossi, P., Cardoso, L., Fernandes, U., Carvalho, C., Torres, P.
(2018). Applying PBL in teaching programming: an experience report. In: 2018 IEEE Frontiers in Edu-
cation Con ference (FIE), pp. 1–8. IEEE.

Drini, M. (2018). Using new methodologies in teaching computer programming. In: 2018IEEEIntegrated-
STEM Education Conference (ISEC), pp. 120–124. IEEE.

Durak, H.Y. (2020). Modeling different variables in learning basic concepts of programming in flipped
class rooms. Journal of Educational Computing Research, 58(1), 160–199.

Edwards, J.M., Fulton, E.K., Holmes, J.D., Valentin, J.L., Beard, D.V., Parker, K.R. (2018). Separation of
syn tax and problem solving in Introductory Computer Programming. In: 2018 IEEE Frontiers in Educa-
tion Conference (FIE), pp. 1–5. IEEE.

Eickholt, J. (2018). Barriers to active learning for computer science faculty. arXiv preprint
arXiv:1808.02426.

Elmaleh, J., Shankararaman, V. (2017). Improving student learning in an introductory programming course
using flipped classroom and competency framework. In: 2017 IEEE Global Engineering Education Con-
ference (EDUCON), pp. 49–55. IEEE.

Elnagar, A., Ali, M. (2012). A modified team-based learning methodology for effective delivery of an
introduc tory programming course. In: Proceedings of the 13th annual conference on Information tech-
nology educa tion, pp. 177–182.

Finger, A.F., da Silva, J.P.S., Ecar, M. (2021). Utilizando Aprendizado Baseado em Problemas para o Ensino
de Paradigmas de Programação. In: Anais do XXXII Simpósio Brasileiro de Informática na Educação,
pp. 135–144. SBC.

Freeman, S., Eddy, S.L., McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H., Wenderoth, M.P. (2014).
Active learning increases student performance in science, engineering, and mathematics. Proceedings of
the national academy of sciences, 111(23), 8410–8415.

Gamage, L.N. (2021). A bottom-up approach for computer programming education. Journal of Computing
Sci ences in Colleges, 36(7), 66–75.

Garcia, F.W.D.S., Carvalho, E.D.C., Oliveira, S.R.B. (2021). Use of active methodologies for the develop-
ment of a teaching plan for the algorithms subject. In: 2021 IEEE Frontiers in Education Conference
(FIE), pp. 1–9. IEEE.

Garcia, F.W.d.S., Oliveira, S.R.B., Carvalho, E.d.C. (2022). A second experimental study the application of
a teaching plan for the algorithms subject in an undergraduate course in computing using active method-
ologies. Informatics in Education, 22(2), 233–255.

I. Calderon, W. Silva, E. Feitosa314

Gonçalves, B., Nascimento, E., Monteiro, E., Portela, C., Oliveira, S. (2019). Elementos de Gamificação
Apli cados no Ensino-Aprendizagem de Programação Web. In: Anais do XXVII Workshop sobre Educa-
ção em Computação, pp. 1–10. SBC.

Grivokostopoulou, F., Perikos, I., Hatzilygeroudis, I. (2016). An educational game for teaching search algo-
rithms. In: International Conference on Computer Supported Education (Vol. 3), pp. 129–136. SCITE-
PRESS.

Hallermann, S., Larmer, J., Mergendoller, J.R. (2016). PBL in the elementary grades: step-by-step guid-
ance, tools and tips for standards-focused K-5 projects. Buck Institute for Education, ???.

Hativa, N. (2001). Teaching for effective learning in higher education. Springer Science & Business Media,
???.

Hayashi, Y., Fukamachi, K.-I., Komatsugawa, H. (2015). Collaborative learning in computer programming
courses that adopted the flipped classroom. In: 2015 International Conference on Learning and Teaching
in Computing and Engineering, pp. 209–212. IEEE.

Heckman, S.S. (2015). An empirical study of in-class laboratories on student learning of linear data struc-
tures. In: Proceedings of the Eleventh Annual International Conference on International Computing
Education Research, pp. 217–225.

Hendrik, H. (2019). Flipping Web Programming Class: Student’s Perception and Performance. In: Proceed-
ings of the 11th International Conference on Engineering Education (ICEED), pp. 31–45.

Herala, A., Vanhala, E., Nikula, U. (2015). Object-oriented programming course revisited. In: Proceedings
of the 15th Koli Calling Conference on Computing Education Research, pp. 23–32.

Hidayati, N., Hariyadi, T., Praheto, B., Kusnita, S., Darmuki, A. (2023). The effect of cooperative learn-
ing model with think pair share type on speaking skill. International Journal of Instruction, 16(3),
935–950.

Hijon-Neira, R., Velazquez-Iturbide, A., Pizarro-Romero, C., Carriço, L. (2014). Serious games for motivat-
ing into programming. In: 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp. 1–8.
IEEE.

Hu, H.H., Shepherd, T.D. (2013). Using POGIL to help students learn to program. ACM Transactions on
Com puting Education (TOCE), 13(3), 1–23.

Hu, H.H., Shepherd, T.D. (2014). Teaching CS 1 with POGIL activities and roles. In: Proceedings of the
45th ACM technical symposium on Computer science education, pp. 127–132.

Imbulpitiya, A., Kodagoda, N., Gamage, A., Suriyawansa, K. (2020). Using active learning integrated with
pedagogical aspects to enhance student’s learning experience in programming and related concepts. In:
In ternational Conference on Interactive Collaborative Learning, pp. 218–228. Springer.

Jeff, B., Nguyen, K. (2018). ADL-Algorithmic design language. In: 2018 International Conference on
Compu tational Science and Computational Intelligence (CSCI), pp. 651–654. IEEE.

Jonassen, D., Davidson, M., Collins, M., Campbell, J., Haag, B.B. (1995). Constructivism and computer-
mediated communication in distance education. American journal of distance education, 9(2), 7–26.

Jonsson, H. (2015). Using flipped classroom, peer discussion, and just-in-time teaching to increase learning
in a programming course. In: 2015 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE.

Joshi, A., Schmidt, M., Panter, S., Jain, A. (2020). Evaluating the benefits of team-based learning in a sys-
tems programming class. In: 2020 IEEE Frontiers in Education Conference (FIE), pp. 1–7. IEEE.

Joshi, N., Lau, S.-K. (2023). Effects of process-oriented guided inquiry learning on approaches to learn-
ing, long-term performance, and online learning outcomes. Interactive Learning Environments, 31(5),
3112–3127.

Kane, L. (2007). Educators, learners and active learning methodologies. International journal of lifelong
edu cation.

Katona, J., Kovari, A. (2016). A brain–computer interface project applied in computer engineering. IEEE
Trans actions on Education, 59(4), 319–326.

Kaya, O.S., Ercag, E. (2023). The impact of applying challenge-based gamification program on students’
learning outcomes: Academic achievement, motivation and flow. Education and Information Technolo-
gies, 1–26.

Kelleher, C., Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming
environ ments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83–
137.

Kholijah, G., Rarasati, N., Sormin, C., Aryanto, F. (2023). Project Based Learning Model in Computer
Program ming Courses at Mathematics Student. IJER (Indonesian Journal of Educational Research),
8(1), 36–42.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...315

Kinnunen, P., Malmi, L. (2006). Why students drop out CS1 course? In: Proceedings of the second interna-
tional workshop on Computing education research, pp. 97–108.

Kirschner, P.A., Sweller, J., Kirschner, F., Zambrano R, J., et al.(2018). From cognitive load theory to
collab orative cognitive load theory. International Journal of Computer-Supported Collaborative Learn-
ing, 13(2), 213–233.

Kitchenham, B.A. (2012). Systematic review in software engineering: where we are and where we should
be going. In: Proceedings of the 2nd international workshop on Evidential assessment of software tech-
nologies, pp. 1–2.

Kong, S.-C., Lai, M., Sun, D. (2020). Teacher development in computational thinking: Design and learning
outcomes of programming concepts, practices and pedagogy. Computers & Education, 151, 103872.

Kothiyal, A., Murthy, S., Iyer, S. (2014). Think-pair-share in a large CS1 class: does learning really happen?
In: Proceedings of the 2014 conference on Innovation & technology in computer science education, pp.
51–56.

Kuhrmann, M., Fernández, D.M., Daneva, M. (2017). On the pragmatic design of literature studies in soft-
ware engineering: an experience-based guideline. Empirical software engineering, 22(6), 2852–2891.

Kumar, M., Renumol, V., Murthy, S. (2018). Flipped classroom strategy to help underachievers in java pro-
gramming. In: 2018 International Conference on Learning and Teaching in Computing and Engineering
(LaTICE), pp. 44–49. IEEE.

Kurkovsky, S. (2013). Mobile game development: improving student engagement and motivation in intro-
ductory computing courses. Computer Science Education, 23(2), 138–157.

Lacher, L.L., Jiang, A., Zhang, Y., Lewis, M.C. (2018). Including Coding Questions in Video Quizzes for a
Flipped CS1. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Education,
pp. 574–579.

Lang, J., Nugent, G.C., Samal, A., Soh, L.-K. (2006). Implementing CS1 with embedded instructional re-
search design in laboratories. IEEE Transactions on Education, 49(1), 157–165.

Lee, M.J., Chiou, J. (2020). Animated hints help novices complete more levels in an educational program-
ming game. Journal of computing sciences in colleges, 35(8).

Li, W., Liu, C.-Y., Tseng, J.C. (2023). Effects of the interaction between metacognition teaching and stu-
dents’ learning achievement on students’ computational thinking, critical thinking, and metacognition in
collabora tive programming learning. Education and Information Technologies, 1–25.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J.E.,
Sanders, K., Seppälä, O., et al.(2004). A multi-national study of reading and tracing skills in novice pro-
grammers. ACM SIGCSE Bulletin, 36(4), 119–150.

Loftsson, H., Matthíasdóttir, Á. (2019). Using flipped classroom and team-based learning in a first-semester
programming course: An experience report. In: 2019 IEEE International Conference on Engineering,
Tech nology and Education (TALE), pp. 1–6. IEEE.

Luxton-Reilly, A., Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott, L., Paterson, J., Scott, M.J.,
Sheard, J., Szabo, C. (2018). Introductory programming: a systematic literature review. In: Proceedings
Com panion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education, pp. 55–106.

Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock, L., Clause, J. (2016). An
empirical study of practitioners’ perspectives on green software engineering. In: Proceedings of the 38th
international conference on software engineering, pp. 237–248.

Marks, H.M. (2000). Student engagement in instructional activity: Patterns in the elementary, middle, and
high school years. American educational research journal, 37(1), 153–184.

Mayfield, C., Moudgalya, S.K., Yadav, A., Kussmaul, C., Hu, H.H. (2022). POGIL in CS1: Evidence for
Stu dent Learning and Belonging. In: Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1, pp. 439–445.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D., Laxer, C., Thomas, L.,
Utting, I., Wilusz, T. (2001). Report by the ITiCSE 2001 Working Group on Assessment of Programming
Skills of First-year CS Students. Distribution, 33(4), 125–180.

Melo, S., Soares Neto, C.d.S. (2017). Game of code: desenvolvimento e avaliação de uma atividade gami-
ficada para disciplinas de programação. In: XVI Simposio Brasileiro de Jogos e Entretenimento Digital
(SBgames 2017).

Mendes, E., Wohlin, C., Felizardo, K., Kalinowski, M. (2020). When to update systematic literature reviews
in software engineering. Journal of Systems and Software, 167, 110607.

I. Calderon, W. Silva, E. Feitosa316

Michael, J. (2007). Faculty perceptions about barriers to active learning. College teaching, 55(2), 42–47.
Michaličková, V. (2021). Using Online Forums to Promote Collaborative Learning in Introductory Pro-

gramming Courses. In: 7th International Conference on Higher Education Advances (HEAd’21), pp.
145–152. Editorial Universitat Politècnica de València.

Nagai, W., Izeki, C., Dias, R. (2016). Experiência no uso de ferramentas online gamificadas na introdução
à programação de computadores. In: Anais do Workshop de Informática na Escola (Vol. 22), pp. 301–
310.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., Balik, S. (2003). Improving the CS1
experience with pair programming. ACM Sigcse Bulletin, 35(1), 359–362.

Nakamura, W.T., de Oliveira, E.C., de Oliveira, E.H., Redmiles, D., Conte, T. (2022). What factors affect
the UX in mobile apps? A systematic mapping study on the analysis of app store reviews. Journal of
Systems and Software, 193, 111462.

Nasir, U. (2023). Using Architectural Kata in Software Architecture Course: An Experience Report. In: Pro-
ceedings of the 5th European Conference on Software Engineering Education, pp. 215–219.

Nguyen, K.A., Borrego, M., Finelli, C.J., DeMonbrun, M., Crockett, C., Tharayil, S., Shekhar, P., Waters,
C., Rosenberg, R. (2021). Instructor strategies to aid implementation of active learning: a systematic
literature review. International Journal of STEM Education, 8, 1–18.

Özyurt, H., Özyurt, Ö. (2018). Analyzing the effects of adapted flipped classroom approach on computer
pro gramming success, attitude toward programming, and programming self-efficacy. Computer Applica-
tions in Engineering Education, 26(6), 2036–2046.

Paristiowati, M., Rahmawati, Y., Fitriani, E., Satrio, J.A., Putri Hasibuan, N.A. (2022). Developing Preser-
vice Chemistry Teachers’ Engagement with Sustainability Education through an Online Project-Based
Learning Summer Course Program. Sustainability, 14(3), 1783.

Park, E.L., Choi, B.K. (2014). Transformation of classroom spaces: Traditional versus active learning class-
room in colleges. Higher Education, 68(5), 749–771.

Parsons, P. (2011). Preparing computer science graduates for the 21st Century. Teaching Innovation Proj-
ects, 1(1).

Petri, G., von Wangenheim, C.G. (2017). How games for computing education are evaluated? A systematic
literature review. Computers & education, 107, 68–90.

Pollock, L., Jochen, M. (2001). Making parallel programming accessible to inexperienced programmers
through cooperative learning. ACM SIGCSE Bulletin, 33(1), 224–228.

Qian, M., Clark, K.R. (2016). Game-based Learning and 21st century skills: A review of recent research.
Com puters in human behavior, 63, 50–58.

Rahman, F. (2018). Integrating project-based learning in mobile development course to enhance student
learning experience. In: Proceedings of the 19th Annual SIG Conference on Information Technology
Education, pp. 1–6.

Raj, A.G.S., Patel, J., Halverson, R. (2018). Is More Active Always Better for Teaching Introductory
Program ming? In: 2018 International Conference on Learning and Teaching in Computing and Engi-
neering (LaT-ICE), pp. 103–109. IEEE.

Rajaravivarma, R. (2005). A games-based approach for teaching the introductory programming course.
ACM SIGCSE Bulletin, 37(4), 98–102.

Raposo, E.H.S., Dantas, V. (2016). O Desafio da Serpente-Usando gamification para motivar alunos em
uma disciplina introdutória de programação. In: Brazilian Symposium on Computers in Education (Vol.
27), p. 577.

Ribeiro, A.L., Bittencourt, R.A. (2018). A pbl-based, integrated learning experience of object-oriented
program ming, data structures and software design. In: 2018 IEEE Frontiers in Education Conference
(FIE), pp. 1–9. IEEE.

Ribeiro, A.L., Bittencourt, R.A. (2019). A case study of an integrated programming course based on PBL.
In: 2019 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE.

Rosiene, C.P., Rosiene, J.A. (2015). Flipping a programming course: The good, the bad, and the ugly. In:
2015 IEEE Frontiers in Education Conference (FIE), pp. 1–3. IEEE.

Safana, A.I., Nat, M. (2019). Students’ Perception of a Blended Learning Approach in an African Higher
Insti tution. J. Univers. Comput. Sci., 25(5), 515–540.

Schaufeli, W.B., Bakker, A.B. (2003). Utrecht work engagement scale preliminary manual version 1.1.
Occu pational Health Psychology Unit, Utrecht University.

Scherer, A.P.Z., Mór, F.N. (2020). Uso da técnica Coding DOJO em aulas de programação de computadores.
In: Anais do XXVIII Workshop sobre Educação em Computação, pp. 6–10. SBC.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...317

Seeling, P. (2016a). Evolving an introductory programming course: impacts of student self-empowerment,
guided hands-on times, and self-directed training. In: 2016 IEEE Frontiers in Education Conference
(FIE), pp. 1–5. IEEE.

Seeling, P. (2016b). Switching to blend-Ed: Effects of replacing the textbook with the browser in an intro-
ductory computer programming course. In: 2016 IEEE Frontiers in Education Conference (FIE), pp.
1–5. IEEE.

Serrano-Cámara, L.M., Paredes-Velasco, M., Alcover, C.-M., Velazquez-Iturbide, J.Á. (2014). An evalu-
ation of students’ motivation in computer-supported collaborative learning of programming concepts.
Computers in human behavior, 31, 499–508.

Seyam, M., McCrickard, D.S., Niu, S., Esakia, A., Kim, W. (2016). Teaching mobile application develop-
ment through lectures, interactive tutorials, and Pair Programming. In: 2016 IEEE Frontiers in Educa-
tion Confer ence (FIE), pp. 1–9. IEEE.

Shokaliuk, S.V., Bohunenko, Y.Y., Lovianova, I.V., Shyshkina, M.P. (2020). Technologies of distance learn-
ing for programming basics on the principles of integrated development of key competences. In: CTE
Workshop Proceedings (Vol. 7), pp. 548–562.

Sibley, J., Ostafichuk, P. (2023). Getting started with team-based learning. Taylor & Francis, ???.
Sobral, S.R. (2020). Two different experiments on teaching how to program with active learning method-

ologies: a critical analysis. In: 2020 15th Iberian Conference on Information Systems and Technologies
(CISTI), pp. 1–7. IEEE.

Sobral, S.R. (2021a). Project based learning with peer assessment in an introductory programming course.
Sobral, S.R. (2021b). Strategies on teaching introducing to programming in higher education. In: World

Con ference on Information Systems and Technologies, pp. 133–150. Springer.
Sobral, S.R. (2021c). Teaching and learning to program: Umbrella review of introductory programming in

higher education. Mathematics, 9(15), 1737.
Sobrinho, H., Castro, L., Nogueira, A., Harada, E., Gadelha, B. (2016). Organizando o conhecimento sobre

técnicas de aprendizagem colaborativas. Nuevas Ideas em Informatica Educativa, 12, 152–156.
Souza, S.M., Bittencourt, R.A. (2019). Motivation and engagement with pbl in an introductory program-

ming course. In: 2019 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE.
Souza, S.M., Bittencourt, R.A. (2020). Report of a CS1 Course for Computer Engineering Majors Based on

PBL. In: 2020 IEEE Global Engineering Education Conference (EDUCON), pp. 837–846. IEEE.
Souza, S.M., Bittencourt, R.A. (2021). Sentiments and Performance in an Introductory Programming Course

Based on PBL. In: 2021 IEEE Global Engineering Education Conference (EDUCON), pp. 831–840.
IEEE.

Srivatanakul, T. (2023). Emerging from the pandemic: instructor reflections and students’ perceptions on an
in troductory programming course in blended learning. Education and Information Technologies, 28(5),
5673– 5695.

Steinmacher, I., Silva, M.A.G., Gerosa, M.A., Redmiles, D.F. (2015). A systematic literature review on the
barriers faced by newcomers to open source software projects. Information and Software Technology,
59, 67–85.

Stephan, J., Oliveira, A., Renhe, M.C. (2020). O uso de jogos para apoiar o ensino e aprendizagem de
progra mação. In: Anais do XXXI Simpósio Brasileiro de Informática na Educação, pp. 381–390. SBC.

Suarez-Escalona, R., Estrada-Dominguez, J., Infante-Alcantara, L., Cavazos-Salazar, R., Treviño-Rodri-
guez, F. (2022). Active Learning Implementation as Digital Education Strategy During the COVID-19.
In: 13th International Multi-Conference on Complexity, Informatics and Cybernetics, IMCIC 2022, pp.
63–68.

Sulaiman, S. (2020). Pairing-based approach to support understanding of object-oriented concepts and
program ming. Int. J. Adv. Sci. Eng. Inf. Technol, 10(4).

Sung, K., Shirley, P. (2003). A top-down approach to teaching introductory computer graphics. In: ACM
SIG GRAPH 2003 Educators Program, pp. 1–4.

Tao, Y., Nandigam, J. (2016). Programming case studies as context for active learning activities in the class-
room. In: 2016 IEEE Frontiers in Education Conference (FIE), pp. 1–4. IEEE.

Tenenberg, J., Fincher, S. (2005). Students designing software: a multi-national, multi-institutional study.
Infor matics in Education, 4(1), 143–162.

Tharayil, S., Borrego, M., Prince, M., Nguyen, K.A., Shekhar, P., Finelli, C.J., Waters, C. (2018). Strategies
to mitigate student resistance to active learning. International Journal of STEM Education, 5(1), 1–16.

Topalli, D., Cagiltay, N.E. (2018). Improving programming skills in engineering education through prob-
lem-based game projects with Scratch. Computers & Education, 120, 64–74.

I. Calderon, W. Silva, E. Feitosa318

Turner, S.A., Pérez-Quiñones, M.A., Edwards, S.H. (2018). Peer review in CS2: Conceptual learning and
high-level thinking. ACM Transactions on Computing Education (TOCE), 18(3), 1–37.

Turpen, C., Dancy, M., Henderson, C. (2016). Perceived affordances and constraints regarding instructors’
use of Peer Instruction: Implications for promoting instructional change. Physical Review Physics Edu-
cation Research, 12(1), 010116.

Unterkalmsteiner, M., Gorschek, T., Islam, A.M., Cheng, C.K., Permadi, R.B., Feldt, R. (2011). Evaluation
and measurement of software process improvement—a systematic literature review. IEEE Transactions
on Software Engineering, 38(2), 398–424.

Veerasamy, A.K., D’Souza, D., Apiola, M.-V., Laakso, M.-J., Salakoski, T. (2020). Using early assessment
per formance as early warning signs to identify at-risk students in programming courses. In: 2020 IEEE
Frontiers in Education Conference (FIE), pp. 1–9. IEEE.

Venter, M. (2020). Gamification in STEM programming courses: State of the art. In: 2020 IEEE Global
Engineer ing Education Conference (EDUCON), pp. 859–866. IEEE.

Vihavainen, A., Airaksinen, J., Watson, C. (2014). A systematic review of approaches for teaching introduc-
tory programming and their influence on success. In: Proceedings of the Tenth Annual Conference on
International Computing Education Research, pp. 19–26.

Wang, G., Zhao, H., Guo, Y., Li, M. (2019). Integration of flipped classroom and problem based learning
model and its implementation in university programming course. In: 2019 14th International Conference
on Com puter Science & Education (ICCSE), pp. 606–610. IEEE.

West, R.E., Waddoups, G., Graham, C.R. (2007). Understanding the experiences of instructors as they adopt
a course management system. Educational Technology Research and Development, 55, 1–26.

Wieringa, R.J. (2014). Design science methodology for information systems and software engineering.
Xie, S., Hu, C., Wu, W., Fan, L., Xiong, Y., Tao, J. (2021). Blended Practical Teaching of Object Oriented

Programming Based on PBL and Task Driven. In: 2021 5th International Conference on Education and
E-Learning, pp. 125–128.

Xu, F., Correia, A.-P. (2023). Adopting distributed pair programming as an effective team learning activity:
a systematic review. Journal of Computing in Higher Education, 1–30.

Yang, F.-C.O., Lai, H.-M., Wang, Y.-W. (2023). Effect of augmented reality-based virtual educational ro-
botics on programming students’ enjoyment of learning, computational thinking skills, and academic
achievement. Computers & Education, 195, 104721.

Yang, S., Park, H., Choi, H. (2021). Impact of Active Learning on Object-Oriented Programming Instruc-
tion: Transforming from 3D to Text-based coding. In: 2021 IEEE Integrated STEM Education Confer-
ence (ISEC), pp. 252–255. IEEE.

Yuan, H., Cao, Y. (2019). Hybrid pair programming-a promising alternative to standard pair programming.
In: Proceedings of the 50th ACM Technical Symposium on Computer Science Education, pp. 1046–
1052.

Zayapragassarazan, Z., Kumar, S. (2012). Active learning methods. Online Submission, 19(1), 3–5.
Zhang, L., Niu, J. (2022). Research to Practice in Computer Programming Course using Flipped Classroom.

In: 2022 IEEE Frontiers in Education Conference (FIE), pp. 1–7. IEEE.
Zhang-Kennedy, L., Chiasson, S. (2021). A systematic review of multimedia tools for cybersecurity aware-

ness and education. ACM Computing Surveys (CSUR), 54(1), 1–39.

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...319

M.I. Calderon Ribeiro is currently pursuing a Ph.D. degree in informatics with the Fed-
eral University of Amazonas (UFAM). Her research interests include software engineer-
ing education, active learning strategies, and related topics. She is an associate professor
at the Federal Institute Rondônia (IFRO – Porto Velho North Zone Campus).

W. Silva received a Ph.D. in Informatics from the Institute of Computing of the Federal
University of Amazonas (UFAM). He is currently an Adjunct Professor of Soft ware
Engineering at the Federal University of Pampa (UNIPAMPA). He is also a member
of the LESSE Research Group (Laboratory of Empirical Studies in Software Engineer-
ing), the Steering Committee (2022-2023 and 2023-2024) of the Special Committee on
Information Systems (CESI) of the Brazilian Computer Society (SBC), and is part of
the Active Methodologies Interest Group linked to the Special Committee on Comput-
ing Education. His research interests include Software Engineering, Empirical Software
En gineering, Software Quality, Computing Education Research, Usability, User Experi-
ence, Machine Learning, and Human-Centered Machine Learning.

E.L. Feitosa received a degree in data processing from the Federal Uni versity of Ama-
zonas (UFAM) in 1998, a master’s degree in computer science from the Federal Univer-
sity of Rio Grande do Sul (UFRGS), in 2001, and the Ph.D. degree in com puter science
from the Federal University of Pernambuco (UFPE). He is an Associate Professor with
the Institute of Computing (IComp), UFAM. He is also a Researcher and a Leader with
the Emerging Technologies and System Security (ETSS) Research Group. He holds a
position as a Research Fellow with the Networking and Emerging Technologies Re-
search Group.

I. Calderon, W. Silva, E. Feitosa320

Appendix A

Table 13 presents the relevant publications for this systematic mapping.

Table 13
Selected publications

ID Publication title Authors/year

S01 Flipping Web Programming Class: Student’s Perception and Performance Hendrik (2019)
S02 Flipped Classroom Strategy to Help Underachievers in Java Programming Kumar et al. (2018)
S03 Is More Active Always Better for Teaching Introductory Programming? Raj et al. (2018)
S04 Teaching Introduction to Computing through a project-based collaborative

learning approach
Avouris et al. (2010)

S05 Separation of syntax and problem-solving in Introductory Computer Progra-
mming

Edwards et al. (2018)

S06 Evaluating the Benefits of Team-Based Learning in a Systems Programming
Class

Joshi et al. (2020)

S07 Evolving an introductory programming course: Impacts of student self-
empowerment, guided hands-on times, and self-directed training

Seeling (2016a)

S08 Flipping a Programming Course: the Good, the Bad, and the Ugly Rosiene and Rosiene
(2015)

S09 A Case Study of an Integrated Programming Course Based on PBL Ribeiro and Bittencourt
(2019)

S10 A PBL-Based, Integrated Learning Experience of Object-Oriented Program-
ming, Data Structures and Software Design

Ribeiro and Bittencourt
(2018)

S11 Serious Games for Motivating into Programming Hijon-Neira et al. (2014)
S12 Applying Flipped Classroom and Problem-Based Learning in a CS1 Course de Oliveira Fassbinder

et al. (2015)
S13 Report of a CS1 Course for Computer Engineering Majors Based on PBL Souza and Bittencourt

(2020)
S14 Improving Student Learning in an Introductory Programming Course Using

Flipped Classroom and Competency Framework
Elmaleh and
Shankararaman (2017)

S15 Integration of Flipped Classroom and Problem-Based Learning Model and its
Implementation in University Programming Course

Wang et al. (2019)

S16 Animated Flowchart with Example Followed by Think-Pair-Share Activity
for Teaching Algorithms of Engineering Courses

Dol (2018)

S17 Active Learning in Small to Large Courses Astrachan et al. (2002)
S18 Programming Case Studies as Context for Active Learning Activities in the

Classroom
Tao and Nandigam
(2016)

S19 A Games-Based Approach for Teaching the Introductory Programming
Course

Rajaravivarma (2005)

S20 A Modified Team-Based Learning Methodology for Effective Delivery of an
Introductory Programming Course

Elnagar and Ali (2012)

S21 Mobile game development: Improving student engagement and motivation in
introductory computing courses

Kurkovsky (2013)

S22 Improving the CS1 Experience with Pair Programming Nagappan et al. (2003)
S23 Two different experiments on teaching how to program with active learning

methodologies: critical analysis
Sobral (2020)

S24 Modeling Different Variables in Learning Basic Concepts of Programming in
Flipped Classrooms

Durak (2020)

Continued on next page

Active Learning Methodologies for Teaching Programming in Undergraduate Courses: ...321

Table 13 – continued from previous page

ID Publication title Authors/year

S25 Hybrid Pair Programming – A Promising Alternative to Standard Pair Pro-
gramming

Yuan and Cao (2019)

S26 Redesigning an introductory programming course to facilitate effective stu-
dent learning: a case study

Corritore and Love
(2020)

S27 Pairing-Based Approach to Support Understanding of Object-Oriented Con-
cepts and Programming

Sulaiman (2020)

S28 Using Flipped Classroom and Team-Based Learning in a First-Semester Pro-
gramming Course: An Experience Report

Loftsson and
Matthíasdóttir (2019)

S29 Effect of Think-Pair-Share in a Large CS1 Class: 83 Sustained Engagement Kothiyal et al. (2014)
S30 Interactive Preparatory Work in a Flipped Programming Course Cao and Grabchak

(2019)
S31 Peer Review in CS2: Conceptual Learning and High-Level Thinking Turner et al. (2018)
S32 Making Parallel Programming Accessible to Inexperienced Programmers

through Cooperative Learning
Pollock and Jochen
(2001)

S33 Collaborative Strategy for Teaching and Learning Object-Oriented Program-
ming Course: A Case Study at Mostafa Stambouli Mascara University, Alge-
ria

Boudia et al. (2019)

S34 Think-Pair-Share in a Large CS1 Class: Does Learning Really Happen? Kothiyal et al. (2014)
S35 Teaching CS 1 with POGIL Activities and Roles Hu and Shepherd (2014)
S36 Students’ Perception of a Blended Learning Approach in an African Higher

Institution
Safana and Nat (2019)

S37 Implementation and Evaluation of Flipped Algorithmic Class Amira et al. (2019)
S38 Analyzing the effects of adapted flipped classroom approach on computer

programming success, attitude toward programming, and programming self-
efficacy

Özyurt and Özyurt
(2018)

S39 Integrating Project-Based Learning in Mobile Development Course to En-
hance Student Learning Experience

Rahman (2018)

S40 Collaborative Learning in Computer Programming Courses That Adopted
The Flipped Classroom

Hayashi et al. (2015)

S41 An Empirical Study of In-Class Laboratories on Student Learning of Linear
Data Structures

Heckman (2015)

S42 Object-oriented programming course revisited Herala et al. (2015)
S43 Improving programming skills in engineering education through problem-

based game projects with Scratch
Topalli and Cagiltay
(2018)

S44 Using New Methodologies in Teaching Computer Programming Drini (2018)
S45 Teaching Mobile Application Development through Lectures, Interactive

Tu torials, and Pair Programming
Seyam et al. (2016)

S46 Exploring Active Learning Approaches to Computer Science Classes Caceffo et al. (2018)
S47 Including Coding Questions in Video Quizzes for a Flipped CS1 Lacher et al. (2018)
S48 Active Learning through Game Play in a Data Structures Course Dicheva and Hodge

(2018)
S49 Investigating the Impact of a Meaningful Gamification-Based Intervention

on Novice Programmers’ Achievement
Agapito et al. (2018)

S50 Switching to Blend-Ed: Effects of Replacing the Textbook with the Browser
in an Introductory Computer Programming Course

Seeling (2016b)

S51 Design and Large-scale Evaluation of Educational Games for Teaching Sort-
ing Algorithms

Battistella et al. (2017)

S52 Applying PBL in Teaching Programming: na Experience Report dos Santos et al. (2018)
S53 Modern board games to improve problem solving in programming students Araújo et al. (2020)

Continued on next page

I. Calderon, W. Silva, E. Feitosa322

Table 13 – continued from previous page

ID Publication title Authors/year

S54 Game of Code: development and evaluation of a gamified activity for pro-
gramming disciplines

Melo and Soares Neto
(2017)

S55 KLouro: An educational game to motivate beginner students in programming de Azevêdo Silva and
Dantas (2014)

S56 The Snake Challenge – Using gamification to motivate students in an intro-
ductory programming course

Raposo and Dantas
(2016)

S57 Competitive Programming as a tool to support the teaching of algorithms and
data structure for Computer Science students

Brito et al. (2019)

S58 The Use of Games to Support the Teaching and Learning of Programming Stephan et al. (2020)
S59 Using Problem-Based Learning to Teach Programming Finger et al. (2021)
S60 Experience in Using Gamified Online Tools in Introduction to Computer

Pro gramming
Nagai et al. (2016)

S61 Use of the Coding DOJO technique in computer programming classes Scherer and Mór (2020)
S62 Gamification Elements Applied in Web Programming Teaching-Learning Gonçalves et al. (2019)
S63 Coding Dojo as a Collaborative Learning Practice to Support Introductory

Programming Teaching: A Case Study
Alves et al. (2019)

S64 A Preliminary Analysis of the Application of Method 300 in Algorithms and
Programming Classes

de Castro Junior et al.
(2021)

S65 Application of Inverted Room and Gamification Elements to Improve
Teaching-Learning in Object Oriented Programming

Costa et al. (2017)

S66 An Integrated Experience of Object Oriented Programming, Data Structures
and Systems Design with PBL

Bittencourt et al. (2013)

S67 Logirunner: A Board Game as a Tool to Aid the Teaching and Learning of
Algorithms and Logic Programming

Casarotto et al. (2018)

S68 A Model to Promote Student Engagement in Programming Learning Using
Gamification

da Silva et al. (2018)

S69 A Bottom-Up Approach for Computer Programming Education Gamage (2021)
S70 Blended Practical Teaching of Object Oriented Programming Based on PBL

and Task Driven
Xie et al. (2021)

S71 POGIL in CS1: Evidence for Student Learning and Belonging Mayfield et al. (2022)
S72 The Impact of Pair Programming on College Students’ Interest, Perceptions,

and Achievement in Computer Science
Bowman et al. (2021)

S73 Impact of Active Learning on Object-Oriented Programming Instruction Yang et al. (2021)
S74 Research to Practice in Computer Programming Course using Flipped Class-

room
Zhang and Niu (2022)

S75 Transformation in Course Delivery Augmented with Problem-Based Learn-
ing and Tutorial

Desai et al. (2021)

S76 Using Flipped Classroom, Peer Discussion, and Just-in-time Teaching to In-
crease Learning in a Programming Course

Jonsson (2015)

S77 Using Online Forums to Promote Collaborative Learning in Introductory
Pro gramming Courses

Michaličková (2021)

S78 Sentiments and Performance in an Introductory Programming Course Based
on PBL

Souza and Bittencourt
(2021)

S79 Project Based Learning with Peer Assessment in an Introductory Program-
ming Course

Sobral (2021a)

S80 Application of a Teaching Plan for the Discipline of Algorithms with Active
Methodologies: A Report of a Pilot Case Study

da Silva Garcia and
Oliveira (2022)

