
Informatics in Education, 2024, Vol. 23, No. 2, 385–408
© 2024 Vilnius University
DOI: 10.15388/infedu.2024.14

385

Productive Failure-based Programming Course
to Develop Computational Thinking and
Creative Problem-Solving Skills in a Korean
Elementary School

Dagyeom LEE, Youngjun LEE
Department of Computer Education, Korea National University of Education
Cheongju, Republic of Korea
e-mail: gyeomdalee@gmail.com, yjlee@knue.ac.kr

Received: May 2023

Abstract. As our society has advanced in the era of digital transformation, education has been
transformed from knowledge-centered to competency-centered to solve future problems in the
light of unpredictable changes and events in our lives. Programming education provides the ba-
sic knowledge needed, and fosters higher-order thinking skills in the process of generating and
converging ideas to solve problems. However, in Korean elementary schools, it is mostly based
on a lecture-based instructional design and focuses on knowledge delivery, which has limited the
educational effects of programming. However, productive failure (PF) focuses on learning con-
cepts in authentic problems, and lets the students generate different solutions and discuss them
in an acceptable environment, with the result that they fail to solve the problem. Therefore, this
study developed a PF-based educational program and tested it on sixth-grade students in a Korean
elementary school. The results showed that the computational thinking (CT) and creative problem-
solving (CPS) skills of the experimental group were significantly greater than those of the control
group, with a medium effect size for CT and a high effect size for CPS skills. To generalize the
results and increase the applicability, follow-up studies should expand the subject of the study, de-
velop specific teaching guidelines for teachers, and invent various learning problems appropriate
to the students’ level and different domains of learning.

Keywords: productive failure, programming education in elementary school, computational
thinking, creative problem-solving skills.

1. Introduction

The technological advances of the Fourth Industrial Revolution have brought about tre-
mendous changes in all aspects of our lives. Education is also undergoing a transformation
from knowledge-centered, where the main focus is on how much knowledge is memo-

D. Lee, Y. Lee386

rized, to competency-based, where competencies such as creativity and problem-solving
are developed (Taguma and Barrera, 2019). This is because advances in technology, such
as artificial intelligence, are replacing low-level thinking, such as rote memorization.
Computer science education is not only about acquiring the principles and knowledge
of computer science and related technologies but also about experiencing the entire pro-
cess of identifying and solving problems using the knowledge and skills students have
learned. In particular, programming education focuses on exploring different ways to
solve problems, finding the best solution, and expressing it clearly, which is effective in
improving competencies such as computational thinking (CT), logical thinking, critical
thinking, and creative problem-solving (CPS) skills (Oldridge, 2017; Shih, 2019; Sila-
pachote and Srisuphab, 2017; Zeng, 2013). As these core competencies are critical to
solving the challenges of society now and in the future (ICT, 2020; Taguma and Barrera,
2019), research on effective teaching of IT to improve competencies through program-
ming education has received considerable attention (Papavlasopoulou, 2019).

The educational innovation of shifting from a knowledge-centered curriculum to a
competency-centered curriculum has also been tried in the field of computing education
around the world. In the United States, the Association for Computing Machinery (ACM),
IEEE Computer Society, and the Association for Information Systems (AIS), the lead-
ing academic organizations in computer science, have developed a competency-based
curriculum called Computing Curricula 2020 (CC2020). CC2020 defines competencies
as the sum of knowledge, skills, and dispositions needed to solve authentic problems,
and provides a systematic curriculum and content framework for developing these com-
petencies (Han Sung, 2021). In 2015, the South Korean government also developed a
revised, competency-based curriculum. This curriculum (Ministry of Education, 2015a)
and other competency-based curricula all emphasize that the competencies should be
transferable to the real world beyond the classroom. For this purpose, researchers have
carefully selected content that can foster competencies and have designed systematic
curricula. However, questions remain about whether the appropriate instructional design
has been implemented according to the curricula. In South Korea, instructional materials
such as textbooks are mainly based on direct instruction and teacher-centered demon-
strations, a one-way mimetic method that limits the development of students’ competen-
cies (Youngsik, 2018). To reflect on the current instructional design and improve it, it is
necessary to conduct a study to explore an alternative instructional design suitable for
the competency-based curriculum.

Therefore, this study developed a productive failure (PF)-based programming ed-
ucational course and tested it to effectively improve CT and CPS skills in a Korean
elementary school. In many works, these competencies are identified as core compe-
tencies in informatics (Ritter and Standl, 2023) and a problem-solving process rather
than programming skills, as these are required for future human resources (Pewkam and
Chamrat, 2022). Thus, two research questions (below) guide this study.

 RQ1: What impact does the PF-based programming course have on CT among stu-
dents in a Korean elementary school?
 RQ2: What impact does PF-based programming course have on CPS skills among
students in a Korean elementary school?

Productive Failure-based Programming Course to Develop Computational Thinking ... 387

This research is a semi-experimental study with a sample of 69 students from the
sixth grade of an elementary school: the experimental group (35 students) and the con-
trol group (34 students). The development of CT and CPS skills was measured before
and after the courses. We hypothesized that the experimental group would outperform
while solving the problems and achieve better than the control group in CT and CPS
skills.

This paper is organized as follows: Section 2 briefly demonstrates the trends of pro-
gramming education in Korea and PF as an alternative instruction. Section 3 describes
how to compose the procedures of the program course and details the methodology. Sec-
tion 4 presented the results according to the research questions. Finally, the conclusions
from this study and discussions are presented in Section 5.

2. Background

In this section, we present the current state of programming education in elementary
schools in Korea, based on an analysis of textbooks and existing research. We propose
PF as an instructional design to improve this education, as follows: the emergence of
PF, the pedagogical principles of PF, and why PF is suitable for programming educa-
tion in elementary schools among instructional designs that are based on teaching via
problem solving.

2.1. Programming Education Trends in Elementary Schools in South Korea

In 2014, the South Korean government released the Strategy Report for Realizing a Soft-
ware (SW) – Centered Society to promote SW education in elementary schools (Minis-
try of Education, 2015a), and programming education was officially introduced into the
elementary school curriculum in the 2015 Revised Curriculum. It was organized in the
“Practical Arts” curriculum for more than 17 hours per year for grades 5–6 (Ministry of
Education, 2015b). The teaching and learning directions set out in the curriculum call for
the use of educational tools that consider the developmental level of elementary school
students and teach them to apply what they have learned in the real world.

However, the textbooks, which are general teaching materials for implementing
the curriculum in class, present the tasks and instructional design in the class in a way
that limits their ability to achieve the goal of a competency-based curriculum. Typi-
cal programming instructional approaches presented in textbooks are as follows. The
instructor teaches programming knowledge and structures at the beginning of the class
and then presents a simple programming module. At this point, the textbook already
has a sample code, and the student solves the problem by copying the sample code after
the instructor’s demonstration. Finally, students are given an exercise to practice what
they have learned, and they create a program that solves the problem. This instructional
design consists mainly of direct instruction and demonstration by the teacher. The goal
of the programming class implemented by this design does not focus on developing

D. Lee, Y. Lee388

competencies such as CT and problem-solving skills, but rather on gaining experience
in using programming languages and the grammar of block programming languages
(Youngsik, 2018).

This instructional design does little to improve competencies and enable the transfer
of skills to the real world. First, because the instructor teaches programming knowledge
and structures early in the course, students are not given the opportunity to discover and
organize their knowledge on their own. In addition, the problems in the textbook are au-
thentic and presented in a well-structured way. While this may help in solving the tasks
in class, as they are clearly stated so that students can identify the key conditions of the
task, simply applying what they have learned makes it difficult for students to acquire
competencies such as CT and transfer skills. This is because most real-world problems
are unstructured and require students to use abstract thinking to identify problems and
discover key conditions. Finally, activities in which the teacher demonstrates a model
answer and students copy it prevent the emergence of divergent thinking that generates
multiple problem solutions. An alternative instructional design is needed to overcome
these limitations.

Research on programming education for elementary school students has also identi-
fied the need for further research to develop an effective instructional design of pro-
gramming education. Lee et al. (2022) conducted a study to analyze the current state of
programming education research in elementary schools. They examined which compe-
tencies and instructional designs were related. They found only some 10 studies compar-
ing instructional designs or strategies to improve competencies. By contrast, approxi-
mately 90 studies compared and analyzed the educational effects of different educational
tools, such as physical computing and programming languages. Therefore, there is a
need for research to explore instructional designs for effective programming education
in elementary schools.

2.2. Pedagogical Design and Theoretical Foundations: PF

Teaching via problem solving is an instructional design based on constructivism that
effectively guides the development of students’ thinking skills by gradually allowing
the students to form core concepts as they solve problems, including problem-based
learning and project-based learning. By presenting students with authentic problems and
letting them experience the entire process, this instructional design is more engaging
than traditional lectures and is effective in developing problem-solving skills. However,
teaching via problem solving requires a lot of class time, as pointed out by Kerrigan
et al. (2021). Currently, only 16 hours are allocated to teach Informatics related content
(Software, programming, physical computing) in the curriculum of all grades of elemen-
tary school in Korea. Among them, around 8 hours are allocated to teach programming
and it is evidently not enough to teach programming Lee et al. (2022). PF deals with
both the benefits of teaching via problem solving and the problem of insufficient time.
This can reduce the amount of direct teacher instruction within the allocated time, free-
ing up time for student-led activities.

Productive Failure-based Programming Course to Develop Computational Thinking ... 389

PF originated as an attempt to analyze the role of failure in learning, as opposed to
the typical problem-solving instructional design. Kapur (2008) found that, among two
groups of students with the same learning objectives, the group of students who reached
an impasse in the problem-solving process and failed the task performed better than the
group of students who solved the problem with direct instruction from the teacher but did
not reach an impasse. A similar result was also found in a study by Schwartz and Martin
(2004), who reported that students who learned concepts but failed to generate standard
solutions through direct instruction in a classroom achieved statistically higher outcomes
than students who succeeded in arriving at solutions. These findings contradict the tra-
ditional belief that the experience of successfully solving problems presented in class
enhances learning, and has stimulated research into how failure can enhance learning.

Drawing on pedagogical theory, Kapur (2008) argued that failure in class can be pro-
ductive for learning if it has the following factors, the first being impasse-driven learn-
ing (VanLehn et al., 2003). An impasse is a state of being stuck in a problem-solving
process. When students reach an impasse, they try to solve the problem in different ways
to get through it, thereby experiencing and analyzing more of the structure of the prob-
lem. Piaget (1964) understood it as a process that can occur in the learning process. He
saw learning as a process of assimilation or adaptation of a person’s internal schema to
fit the external environment. diSessa (2006) also argued that learners can experience an
impasse, in which they realize that their knowledge differs from standard concepts or so-
lutions by experiencing a mismatch between the external environment and their internal
schema. He explained that learners continue to learn to overcome this impasse.

The second factor of PF is an ill-structured problem. Ill-structured problems contrast
with well-structured problems, which are the types of examples and exercises usually
presented in textbooks. Well-structured problems make it easy for students to identify
the core concept in the question and what knowledge and skills are needed to solve the
problem. They also have limited problem-solving space, so that students can perform
within it. And they are less relevant to students’ lives because the variables in the prob-
lem are manipulated to facilitate solutions. These manipulations are effective for solving
unit tasks but have the limitation of making it difficult to transfer learning outcomes and
skills to the real world. However, ill-structured problems present students with authentic
problems that do not limit their problem-solving space and performance (Kapur, 2010).
When solving ill-structured problems, students can see the relevance of problems to their
lives and become engaged, knowing that they have to analyze and identify variables in
problems. Marton (2006) explains the pedagogical benefits of ill-structured problems
through the theory of the retrospective transfer effect. This effect consists of internal and
external transfer effects. Students experience an internal transfer in that they learn more
about problem-solving structures as they identify, analyze, and solve ill-structured prob-
lems. After that, they experience an external transferring-out effect in that they apply
the problem-solving structures they used to solve ill-structured problems when solving
authentic problems (Bransford and Schwartz, 1999). PF facilitates the internal and ex-
ternal transfer of learning by iteratively presenting and solving ill-structured problems.
In addition, target concepts and problem-solving structures can be effectively learned
by generating a lot of solutions when experiencing an impasse and challenge and by
discussing ways to overcome them.

D. Lee, Y. Lee390

PF also focuses on having students generate a variety of problem solutions. In the
classroom, the teacher does not take the lead in providing cognitive scaffolding from the
outset, but rather plays a dispositional supportive role in creating an open atmosphere
that allows for failure. However, there is no explicit teacher guidance. The comparison
of the solutions generated at the end of the lesson allows for elaborating on the target
concept and connecting it to prior knowledge.

The pedagogical benefits of PF have been validated by empirical studies (DeCaro
and Rittle-Johnson, 2012; Kapur, 2014). First, PF activates prior knowledge and helps
learners to identify gaps in the target concept. Second, learners are self-regulated and
willing to continue learning throughout the PF lesson to fill the gaps. Third, it helps
students to recognize the limits of their prior knowledge by allowing them to experi-
ence the process of generating solutions before teacher guidance. Fourth, the activity of
comparing, contrasting, and discussing solutions with students and a teacher helps them
to better identify important features of the target concept.

3. Methodology

3.1. Research Design

To achieve the objectives of this study, we defined the following research questions and
hypotheses:

RQ1: What impact does the PF-based programming course have on CT among students
in a Korean elementary school?

Hypothesis 1.0: ● There is no evidence that the PF-based programming course can
impact on students’ CT in a Korean elementary school.
Hypothesis 1.1: ● The PF-based programming course can impact on students’ CT
in a Korean elementary school.

RQ2: What impact does PF-based programming course have on CPS skills among stu-What impact does PF-based programming course have on CPS skills among stu-
dents in a Korean elementary school?

Hypothesis 2.0: ● There is no evidence that the PF-based programming course can
impact on students’ CPS skills in a Korean elementary school.
Hypothesis 2.1: ● The PF-based programming course can impact on students’ CPS
skills in a Korean elementary school.

This study adopted a control group pre-test–post-test design on a quasi-experimen-
tal basis, as shown in Table 1. It consists of two groups of students, the experimental
and the control group. The experimental group received the PF-based programming
course, while the control group received an exemplary instructional course presented
in a textbook that mainly used lectures and direct teaching methods. CT and CPS skills
were measured before and after the program to see if there was a statistical difference
between the two groups.

Productive Failure-based Programming Course to Develop Computational Thinking ... 391

Table 1
Research design

Groups Independent Variables Dependent Variables

Experimental
Control

PF-based PC
PC

CT, CPS
CT, CPS

Some variables are part of this design:
Programming course (PC): ● This independent variable represents the program-
ming course in an elementary school;
Productive failure (PF): ● We considered the robotics course proposed and ap-
plied it to the experimental group as an independent variable;
CT skills (CT): ● Performance in the pencil-paper test that explores CT skills;
CPS skills (CPS): ● Responses in a self-report evaluation survey that explores
CPS skills.

3.2. Profile of Participants

In this study, we considered a sample of 69 students from the sixth grade in a city in
South Korea, with a total of four classes selected by convenience sampling. Classes in
elementary schools in Korea are organized according to the results of the overall aca-
demic achievement of the previous school year, so that the average is evenly distributed
among the classes. Therefore, we randomly divided four classes into two. The experi-
mental group consisted of 35 students (17 males, 18 females), and the control group con-
sisted of 34 students (16 males, 18 females), as shown in Table 2.

3.3. PF-based Programming Course

The ADDIE model (analysis, design, development, implementation, evaluation) is
a widely used curriculum design framework that provides a systematic, sequential
approach(Schlegel, 1995). There are five phases in the ADDIE model. In the analysis
stage, we extracted the achievement standards related to programming learning present-

Table 2
Profile of participants

Groups Number of
Classes

Gender Number of
studentsMale Female

Experimental 2 17 18 35
Control 2 16 18 34

Total 4 33 36 69

D. Lee, Y. Lee392

ed in the 2015 Revised Curriculum as the objectives of the course. We also analyzed the
characteristics and procedures of the PF model to apply it appropriately. In addition, we
explored the existing research trends in programming education for elementary students
to reflect the development stage of students in programming education. In the design
phase, the objectives of the course were created based on the performance standards
selected in the analysis phase. We selected teaching tools and competency measure-
ment instruments. In the development stage, we developed the curriculum of the course
based on the PF model. The curriculum was reviewed and revised by computer science
education experts and teachers for content validity. Then, materials for teachers and
students were developed for the application of the course in the field. In the implementa-
tion phase, the developed course was applied to the research subjects. We measured the
competencies before and after the course and collected the data. Finally, in the evalua-
tion stage, the data were analyzed to verify the effectiveness of the course and to reflect
on it for improvement. This study was conducted according to the procedure outlined in
Table 3, and the details of the analysis, design, and development stages are described in
each chapter. The details of the implementation and evaluation phases are described in
the results and conclusions.

3.3.1. Analysis

To design the course, we first analyzed the achievement standards related to programming
education in the elementary school curriculum in South Korea. Programming-related
achievement standards are shown in Table 4. Among them, we selected the achievement
standard “Understand the structure of sequence, selection, and iteration in the process of
creating a program to solve a problem” as the objective of the course because it contains
programming-related knowledge and structures and improves the transfer of skills to the
real world. Since only eight hours are allocated in the curriculum to achieve this objec-
tive, we decided that the course also should be eight periods long.

Table 3
Course development phases according to the ADDIE model

Stages Contents

Analysis Exploring the programming-related standards in the 2015 Revised Curriculum•	
Analyzing instruction models•	
Analyzing research trends in programming education for elementary school students•	

Design Organizing learning objectives and sequences based on the achievement standards•	
Selecting an educational programming language (EPL)•	
Selecting tools to measure CT and CPS•	

Development Developing PF-based instructional materials and organizing content•	
Developing the process of the program •	
Expert review of the program•	

Implementation Applying the program•	
Examining CT and CPS tests•	

Evaluation Analyzing pre- and post-test results data for each group•	
Analyzing the effectiveness of the training program and identifying areas for improvement•	

Productive Failure-based Programming Course to Develop Computational Thinking ... 393

Second, we analyzed the PF model. The PF model consists of two phases: “Genera-
tion & Exploration” and “Consolidation & Knowledge Assembly”. In the Generation &
Exploration phase, ill-structured problems are appropriate to motivate students and acti-
vate their prior knowledge. Groups of three or four students have a discussion express-
ing and explaining the important features of the problem and finding the target concept
in different ways. In the Consolidation & Knowledge Assembly phase, pupils compare
the solutions they come up with, exploring their similarities and differences or their
practicalities and the limitations of solutions. Finally, important features of the target
concept are identified by comparing them with the teacher’s standard solution. These are
combined to form the target concept clearly (Kapur, 2010).

However, to apply the PF model to programming content, it needs to be revised with
specific learning activities, considering the characteristics of programming education
content. It must also reflect the developmental stage of elementary school students, as
the PF model has mainly been studied for middle school students and above. Therefore,

Table 4
Achievement standards of programming education in the 2015 Revised Curriculum

Criteria Achievement Standards

Understanding Software (SW) Identifying examples of software applications and understanding their •	
impact on our lives.

Procedural Problem Solving Thinking about and applying the sequence of problem solving by procedural •	
thinking.

Elements and Structure of
Programming

Experiencing the basic programming process using programming tools. •	
Designing a simple program that inputs data, performs necessary processing, •	
and outputs results.
Understanding the structure of sequence, selection, and repetition in creating •	
programs to solve problems.

Table 5
PF-based programming instructional model

Steps Activity
PF DDD

Generation
&
Exploration

Discovery Presenting the problem scenario•	
Identifying the key element of the goals•	
Exploring factors that are important to solving the problem•	

Design Identifying variables and behaviors needed to solve a problem•	
Generating multiple solutions•	
Describing and evaluating solutions through group discussion•	

Development Implementing the best solution determined through discussion•	
Posing a “what if” problem (for those who succeed in solving the problem)•	

Consolidation
& Knowledge
Construction

Evaluation &
Feedback

Presentation and feedback on each group’s solution•	
Finding key features by comparing to standard solutions•	
Structuring the learning contents•	

D. Lee, Y. Lee394

we combined the PF model with the discovery-design-development (DDD) teaching
model, which has been empirically proven to be an effective instructional design in
programming education for elementary school students. DDD is also theoretically based
on the constructivism perspective. Students take the initiative in learning programming,
and the teacher acts as a guide. The results of applying this model to elementary school
students have shown that it is effective in developing defining competencies, such as
learning motivation and confidence, as well as CT skills (Soojin, 2017).

Therefore, to develop a PF-based programming course in this study, we set up the
model as shown in Table 5, taking into consideration the developmental stage of elemen-
tary school students and content characteristics.

3.3.2. Design

The Lesson plan is as follows: In PF-based program, the teacher presented ill-structured
problems in the form of scenarios, which is very close to the student’s life. Students
were motivated by recognizing that the problems presented in the scenario were often
in their school lives, and that solving this problem would make their school life more
convenient. When making problem-solving program, we facilitate cooperative activi-
ties through intervening and counseling. The group of three to four students was nec-
essarily deadlocked in the process of solving the problem. Although at what stage the
deadlock occurred was different for each group, it was observed that all groups reached
at least two deadlocks. We presented the following guidelines based on productive
failure to the group who was in the deadlock of learning or asked for help: all members
were asked to create at least one solution. Rather than choosing one of the generated
solutions, we made them organize the similarities and differences of their solutions
and synthesize them to derive a ‘group solution’. It was observed that these guidelines
increased the members’ tendency to cooperate. This led to coding activity which was
easy to do individually, leading to cooperative coding like paired programming. The
control group’s lesson plan was designed similarly, except that the productive failure
teaching method was not applied. The difference between them is that first, the program
of the control group did not present an ill-structured problem. Instead, the program
was produced based on the topics presented in the textbook. The topics presented in
the textbook were verified to take into account the student’s level and interest, but they
were structured and not very close to the students’ real life as the problems presented in
the PF-based program. Second, in group activities, we did not provide guidelines based
on productive failure. Students naturally performed activities by only a few students
presenting a solution or simply selected and coded one of the solutions.

The topics were selected to meet the course’s objective. According to the design
principles of the PF model, the topics should be authentic problems and presented in
an ill-structured way. The course consisted of four topics, with two hours per topic.
The first topic, “What to do during the morning in school in order,” is an unplugged
programming task that uses procedural thinking as prior knowledge to suggest the or-
der of tasks to be performed during morning activities. This topic contains a problem
that cannot be solved only by prior knowledge and requires more knowledge. Students
should develop the most efficient sequence of tasks in a limited time. The second

Productive Failure-based Programming Course to Develop Computational Thinking ... 395

topic, “Create a program to write a to-do list,” is designed to implement sequential
programming. The problem situations were designed to reflect their educational envi-
ronment, in which students were given handheld devices. The students were motivated
and actively engaged in class because they could create a program that could be used
on their own portable devices. The third topic was “Create a program to teach disaster
evacuation tips.” As June is a time when natural disasters, such as typhoons and flood-
ing, could often occur in South Korea, it was an appropriate time to present this as a
problem situation. In the process of implementing a program on how to prepare for
disasters, the students felt the lack of prior knowledge and the need for a new struc-
ture, such as a repetitive structure, and actively participated in learning to meet these
needs. The last topic was “Create a program to inform about the availability of outdoor
physical classes.” Outdoor physical education is not possible when the temperature is
too high or the concentration of fine dust is high. By creating a program that informs
students about the availability of outdoor classes based on weather information, they
can learn about the conditions. To reflect the real-world situation of the students, the
program is based on the weather and fine dust information in the area where the school
is located.

The programming language to be used in this course is a block-based programming
language considering the developmental characteristics of elementary school students.
Scratch 3.0 and Entry are block-based programming languages commonly used in Ko-
rean elementary schools. Scratch has been used the most in Korean programming edu-
cation for elementary school students, but the usage rate of both languages has been
similar since Entry was introduced in textbooks of the 2015 Revised Curriculum, and it
is commonly used in the classroom (Lee et al., 2022). We decided to use Entry in the ex-
perimental and control group, as all textbooks for the 2015 Revised Curriculum in South
Korea selected Entry as their programming language (as shown in Fig. 1).

Fig. 1. Screen capture of the workspace in ‘Entry’.

D. Lee, Y. Lee396

3.3.3. Development

The program developed in this study consisted of eight hours for both the experimental
and the control groups. The contents of the activities in the two courses are compared
and presented in Table 6. We presented ill-structured problems, standard solutions for
the PF-based course [see Appendix A].

To confirm the validity of the course developed above, the content validity of the
course was tested by computing education experts and teachers. The test questions of
the contents were designed to judge the appropriateness of learning topics, learning
objectives, content organization, the teaching plan, and the relevance and quantity of
the course contents. The participants responded to four-point Likert scale questions
and open-ended questions. The content validity ratio (CVR) was verified based on the
percentage of respondents who answered the questions as required (3 and 4 responses
based on a four-point Likert scale) among all respondents. Experts who participated in
the test are a doctor of education majoring in elementary computing education, three
doctoral students majoring in elementary computing education, three master’s students,
one master’s student majoring in informatics education for the gifted, and one master’s
student majoring in computing education. The results of the expert review of the edu-
cation program are shown in Table 7, and it was determined that content validity was
ensured because it was over the minimum value of 0.78.

The open-ended responses to the program from the expert group and the modifica-
tions reflecting them are shown in Table 8.

The implementation and evaluation steps taken in this study are presented in the
Results and Conclusions chapter.

Table 6
Activities of the courses by the groups

Periods Phases Experimental group Phases Control group

1 Best solution
for problem
solving

What to do during
the morning in
school

Sequential
structure

Create a program to meet a figure athlete cha-
racter

2 Create a program that responds to a figure’s
words

3 Sequential
structure

Create a program to
write a to-do list

Repetition
structure

Create a program to identify the capital of your
country

4 Create a program that makes a sound for correct
or incorrect answers

5 Repetition
structure

Create a program to
teach disaster evacu-
ation tips

Conditional
structure

Create a program to make a flower with four
petals by stamping petals at regular intervals

6 Create a program to make a flower with six petals
by stamping at regular intervals

7 Conditional
structure

Create a program
to inform about
the availability of
outdoor classes

Best
solution for
problem
solving

Create a robot vacuum cleaner that will change
direction when it hits a wall

8 Create a robot vacuum cleaner that avoids obs-
tacles on the floor

Productive Failure-based Programming Course to Develop Computational Thinking ... 397

3.4. Instruments

To measure CT skills, we used the CT Test for Elementary School Students devel-
oped by Kim (2019). They analyzed the achievement standards related to CT skills in
the 2015 Revised Curriculum in South Korea. She developed questions to assess CT
skills, including abstraction and automation skills, as shown in Table 9. This test is
a summative assessment consisting of short-answer and long-answer questions. The
content validity index (CVI) of this test was 1.0, which is highly valid. In addition,
she measured a difficulty coefficient to examine the appropriateness of the content
and difficulty level for sixth-grade learners. Generally, a difficulty coefficient of 0.3
to 0.8 means that a percentage of the number of correct answers given by the subjects
is considered an appropriate level of difficulty (Cangelosi, 1990). The difficulty coef-
ficient of the test indicated that the test instrument was generally moderately difficult;
out of 18 items, one item was difficult, 14 items were moderately difficult, and three
items were easy.

To measure the CPS skills of elementary school students, we used a test developed
by the research team at the Psychology Research Center of Seoul National University

Table 7
Results of the expert review

Criteria Contents CVR

Learning topic Appropriateness of learning topics
Reflective of performance standards

1
1

Learning Objectives Appropriateness of learning objectives
Clarity of learning objectives
Level of learning objectives

1
1
1

Construction Appropriateness of content organization 1

Contents & Methods Appropriateness of topic and content
Variety of learning methods
Fostering creativity

1
1
1

Relevance Relevance to CT
Connections between content
Relevance to the authentic problems

1
1
1

Quantity Appropriateness of content 1

Table 8
Results of the expert review (open question)

Feedback from the experts Modification

Clear statement of the objective Revised the learning objective statement to “I can create a program to
solve a problem.”

Strategy to check prior knowledge Added the teaching strategy to remind students of their prior knowledge.

D. Lee, Y. Lee398

(Cho, 2002). This test is designed to test students’ CPS skills in school environments.
The test has four sub-factors of CPS skills: Understanding and mastery of knowledge
and skills, Divergent thinking, Critical and logical thinking, and Motivational factors.
The test consists of 20 questions, five questions for each factor, and is designed to be
answered on a five-point Likert scale. It has been used in several studies to test the CPS
skills of elementary school students in Korea, and its reliability has been verified with
a Cronbach’s alpha of 0.899. The item structure and reliability of the CPS skills test are
shown in Table 10.

4. Results

In order to answer the research questions defined, we analyzed the results obtained from
the data of the experimental and the control groups. We present the data analysis proce-
dures and results in relation to each of the research questions.

Table 9
Contents of the CT skills test

Criteria Standards CT factors Question numbers

Abstraction Determine what information is necessary •	
to solve a problem and what information is
unnecessary.

Analysis, decomposition,
abstraction

1, 2, 3, 4, 8, 9, 10,
11, 12, 13, 14, 15,
16, 17, 18

Analyze provided data to discover relation-•	
ships or rules between data.

Analysis, decomposition,
abstraction

Represent problem-solving processes proce-•	
durally.

Abstraction, algorithm

Automation Understand sequential, selection, iterative, •	
and parallel structures.

Automation, parallelizing 3, 5, 6, 7, 8, 9, 13

Represent the problem-solving process in a •	
form that a computer can understand.

Automation

Interpret algorithms or instructions to predict •	
outcomes.

Simulation

Table 10
Results of the reliability of the CPS skills test

Factors Question number Cronbach’s α Number of
questions

Understanding and mastery of knowledge and skills 1, 2, 3, 4, 5 0.770 5
Divergent thinking 6, 7, 8, 9, 10 0.749 5
Critical/logical thinking 11, 12, 13, 14, 15 0.849 5
Motivation 16, 17, 18, 19, 20 0.832 5

Total 0.899 20

Productive Failure-based Programming Course to Develop Computational Thinking ... 399

4.1. Data Analysis Procedures

The data collected in this study were analyzed using IBM SPSS Statistics 26, i-sta-
tistics 2.01, in the following ways. First, we analyzed the statistical assumptions of
normality and homogeneity of variance using the Shapiro-Wilk and Levene hypothesis
tests.

We compared the post-test results of the experimental and control groups after the
programming course using an independent samples t-test to see if the difference in
the means was statistically significant. A paired-samples t-test was conducted to de-
termine the degree of change in CT and CPS within each group. Cohen’s d, an effect
size value, was calculated based on the group size, mean, and standard deviation to
determine the effect size of PF-based programming course on improving CT and CPS
in elementary school students.

4.2. Statistical Assumption

Although the class organization in Korean elementary schools is relatively equal in
terms of the average results of academic achievement assessments, we analyzed the
statistical assumption of normality and homoscedasticity using the Shapiro-Wilk and
Levene hypothesis tests, respectively, considering a significance level of α = 0.05 in the
students’ CT and CPS skills by group.

We measured the CT and CPS skills of the two groups to ensure that they met the
normality. The Shapiro-Wilk test was performed on a small sample of fewer than 50
students in each group, and the results are shown in Table 11. Only the probability
of significance of the experimental group’s CPS skills was 0.009 (p < 0.05), which
did not seem to meet normality. However, we consider it to meet the normality as-
sumption because the result of the Kolmogorov-Smirnov test showed that normality
was met (Yoo, 2021), and the kurtosis and skewness did not exceed 2 (Snedecor and
Cochran, 1980).

We also measured the homoscedasticity of CT and CPS skills to ensure that there
were no significant differences between the two groups. As a result, the CT and CPS

Table 11
Normality test results of the experimental and control groups

Factors Groups Kolmogorov-Smirnov Shapiro-Wilk Kurtosis Skewness
Statistic df P Statistic df p

CT
(pre)

Exp. 0.087 35 0.200 0.965 35 0.325 -0.375 0.690
Con. 0.144 34 0.071 0.954 34 0.161 -0.486 -0.517

CPS
(pre)

Exp. 0.142 35 0.072 0.913 35 0.009* -1.157 1.626

Con. 0.119 33 0.200 0.960 34 0.256 -0.112 -1.053
 *p < 0.05

D. Lee, Y. Lee400

skills of the two groups met the homoscedasticity of variance with the population, as
shown in Table 12, and there was no significant difference in the mean of the skills be-
tween the two groups (p > 0.05).

4.3. RQ1: What Impact does the PF-based Programming Course Have on CT among
Students in a Korean Elementary School?

We measured the CT skills of each group after applying the educational program, and
analyzed the results of the independent t-test, shown in Table 13. The mean of the
experimental group was higher than the control group, and the difference between the
groups was statistically significant (p < 0.05). We also found that the experimental
group scored higher than the control group on both abstraction and automation skills,
and the difference between the two groups was statistically significant. Thus, we con-
cluded that the CT skills of elementary school students who received the PF-based
programming course improved significantly compared to the CT skills of elementary
school students who received programming education based on traditional lectures and
direct instruction.

To measure the change within the group, the pre-test and post-test results were
analyzed using a paired samples t-test. The results showed that the experimental group

Table 12
Homoscedasticity test results of the experimental and control groups

Factors Groups N M SD Levene’s Equal Variance Test t p
F p

CT Exp. 35 13.80 4.418 1.950 0.167 1.656 0.102
Con. 34 11.85 5.321

CPS Exp. 35 3.254 0.603 0.740 0.393 0.081 0.935
Con. 33 3.242 0.598

Table 13
Results of the independent sample t-test of CT skills

Skills Group N M SD Levene’s Test t p
F p

Abstraction Exp. 35 11.29 2.976 0.854 0.359 2.107 0.039*
Con. 34 9.74 3.136

Automation Exp. 35 5.09 1.721 0.023 0.881 2.157 0.035*
Con. 34 4.21 1.666

CT Exp. 35 16.37 4.473 0.291 0.591 2.263 0.027*
Con. 34 13.94 4.445

 *p < 0.05

Productive Failure-based Programming Course to Develop Computational Thinking ... 401

improved their CT skills, including abstraction and automation skills, as shown in
Table 14. The control group also improved their CT skills, as shown in Table 15, which
means both programs had the effect of improving CT. This is consistent with existing
research results showing that programming course improves CT. However, when com-
paring the results between the groups in the previous section, the experimental group
was statistically significantly higher than the control group in terms of the degree of
improvement in CT skills. This difference can be attributed to the instructional design
between the two groups and confirms that the PF instructional design is more effective
in programming education.

4.4. RQ2: What Impact does PF-based Programming Course Have on CPS Skills
Among Students in a Korean Elementary School?

We analyzed the data obtained by measuring the CPS skills of the two groups using an
independent samples t-test, and the results are shown in Table 16. We found that the
mean CPS score of the experimental group was higher than that of the control group,
and the difference was statistically significant (p < 0.001). We also found that the ex-
perimental group scored higher than the control group on all four sub-skills of CPS, and
the difference in scores was statistically significant. Thus, we concluded that the CPS

Table 14
Results of the paired sample t-test of CT skills in the experimental group

Exp. N M SD t p

CT Pre- 35 13.800 4.418 4.47 0.000***
Post- 35 16.371 4.473

Subfactors Abstraction Pre- 35 9.629 3.011 4.11 0.000***
Post- 35 11.286 2.976

Automation Pre- 35 4.171 1.654 3.75 0.000***
Post- 35 5.086 1.721

 ***p < 0.001

Table 15
The results of the paired sample t-test of CT skills in the control group

Competencies Con. N M SD t p

CT Pre- 34 11.853 5.321 2.78 0.004**
Post- 34 13.941 4.445

Sub-skills Abstraction Pre- 34 8.265 3.941 2.66 0.006**
Post- 34 9.735 3.136

Automation Pre- 34 3.588 1.672 2.05 0.024*
Post- 34 4.206 1.666

 *p < 0.05 **p < 0.01

D. Lee, Y. Lee402

skills of elementary school students who received the PF-based programming course
were significantly improved compared to those who received the programming course
based on traditional lectures and direct instruction.

The pre-test and post-test results were analyzed using a paired samples t-test to in-
vestigate the changes within the group. The results of the experimental group are shown
in Table 17. We found that the scores of both CPS and sub-skills improved, and the
improvement was statistically significant. The results for the control group are shown
in Table 18, which showed a slight increase in CPS compared to before the program,
but not a statistically significant increase from before to after the course. When looking
at the sub-skills, the divergent thinking score decreased, and only the critical/logical
thinking factor showed a statistically significant increase. The pre- and post-test scores

Table 16
Results of the independent sample t-test of CT skills

Skills Group N M SD Levene’s Test t p
F p

Understanding and mastery of know-
ledge and skills in a specific field

Exp. 35 3.583 0.728 0.034 0.854 2.309 0.024*
Con. 33 3.164 0.769

Divergent thinking Exp. 35 3.514 0.685 0.783 0.379 2.494 0.015*
Con. 33 3.085 0.735

Critical/logical thinking Exp. 35 3.983 0.608 0.538 0.466 2.407 0.019*
Con. 33 3.624 0.628

Motivation Exp. 35 4.200 0.531 1.931 0.169 5.790 0.000***
Con. 33 3.346 0.681

CPS Exp. 35 3.820 0.522 0.159 0.691 4.096 0.000***
Con. 33 3.305 0.515

 *p < 0.05 ***p < 0.001

Table 17
Results of the paired sample t-test of CPS skills in the control group

Competencies Con. N M SD t p

CPS Pre- 33 3.242 0.598 0.83 0.207
Post- 33 3.305 0.515

Sub-
skills

Understanding and mastery of knowledge
and skills in a specific field

Pre- 33 3.097 0.773 0.68 0.251
Post- 33 3.164 0.769

Divergent thinking Pre- 33 3.115 0.773 -0.26 0.397
Post- 33 3.085 0.735

Critical/logical thinking Pre- 33 3.461 0.729 1.72 0.048*
Post- 33 3.624 0.628

Motivation Pre- 33 3.297 0.786 0.36 0.360
Post- 33 3.345 0.681

 *p < 0.05 **p < 0.01

Productive Failure-based Programming Course to Develop Computational Thinking ... 403

changes of both groups suggest that the PF-based programming course was effective in
improving CPS. However, the change in the control group showed a slight increase in
CPS but a decrease in divergent thinking.

4.5. Effect Size

Cohen’s d-values were calculated to present the effect of the PF-based program on the
improvement of each competency. Cohen’s d-value is a statistical number that mea-
sures a continuous variable in two independent groups and indicates the magnitude
of the treatment effect in the experimental group through the difference in the mean,
which can be explained by supplementing the p-value (Lee, 2016). Since both groups
satisfied homoscedasticity of variance, the standardized mean difference was calculated
to present the effect size as Cohen’s d-value. As a result, the effect size of the PF-based
programming course is a medium effect size, as shown in Table 19.

Table 18
Results of the paired sample t-test of CPS skills in the experimental group

Competencies Exp. N M SD t p

CPS Pre- 35 3.254 0.603 5.36 0.000***
Post- 33 3.820 0.522

Sub-
skills

Understanding and mastery of knowledge
and skills in a specific field

Pre- 35 3.023 0.689 4.27 0.000***
Post- 33 3.583 0.728

Divergent thinking Pre- 35 3.371 0.805 5.96 0.000***
Post- 33 4.200 0.531

Critical/logical thinking Pre 35 3.163 0.780 2.77 0.004**
Post 33 3.514 0.685

Motivation Pre 35 3.480 0.731 3.85 0.000***
Post 33 3.983 0.601

 p < 0.01 *p < 0.001

Table 19
Effect size of the PF-based programming course on CT skills

Factors Group N Post-test score d
M SD

CT Exp. 35 16.371 4.473 0.54
Con. 34 13.941 4.445

Sub-skills Abstraction Exp. 35 11.286 2.976 0.51
Con. 34 9.735 3.136

Automation Exp. 35 5.086 1.721 0.52
Con. 34 4.206 1.666

D. Lee, Y. Lee404

The effect size of the PF-based programming course on improving CPS among
elementary school students is shown in Table 20. As shown in the table, the effect size
is high. Examining sub-skills, we found that the effect size is very high, especially for
the “motivation” skill.

5. Discussions

5.1. Conclusions

In this study, we proposed the PF-based programming course to enhance students’ com-
petencies, to make them become full members of future society and to transfer skills to
the real world. We systematically developed a programming course based on the idea of
PF, following the ADDIE model steps, and ensured its content validity through expert
review. We also engaged sixth-grade students in the course to examine its ability to im-
prove their CT and CPS skills.

Considering research questions 1 (RQ1), we confirmed that students who received
the PF-based programming course cultivated their CT skill better than those who re-
ceived the traditional lecture and direct instruction-based course. Moreover, the PF
instructional design showed a medium effect size for improving students’ CT skills.
Therefore, we dismissed Hypothesis 1.0 (There is no evidence that the PF-based pro-There is no evidence that the PF-based pro-
gramming course can impact on students’ CT in a Korean elementary school.) and ad-) and ad-
opted Hypothesis 1.1 (The PF-based programming course can impact on students’ CT
in a Korean elementary school.).

Regarding research questions 2 (RQ2), we found that students who received the
PF-based programming course improved their CPS skill better than those who received
the traditional lecture and direct instruction-based course. Moreover, the PF instruc-

Table 20
Effect size of the PF-based programming course on CPS skills

Factors Group N Post-test score d
M SD

CPS Exp. 35 3.820 0.522 0.99
Con. 33 3.305 0.515

Sub-skills Understanding and mastery of knowledge
and skills in a specific field

Exp. 35 3.583 0.728 0.56
Con. 33 3.164 0.769

Divergent thinking Exp. 35 4.200 0.531 0.61
Con. 33 3.085 0.735

Critical/logical thinking Exp. 35 3.514 0.685 0.58
Con. 33 3.624 0.628

Motivation Exp. 35 3.983 0.601 1.40
Con. 33 3.345 0.681

Productive Failure-based Programming Course to Develop Computational Thinking ... 405

tional design showed a high effect size for improving students’ CPS skills. Therefore,
we dismissed Hypothesis 2.0 (There is no evidence that the PF-based programming
course can impact on students’ CPS skills in a Korean elementary school.) and adopted
Hypothesis 2.1 (The PF-based programming course can impact on students’ CPS skills
in a Korean elementary school.).

In conclusion, PF-based programming instruction was effective in helping elemen-
tary students to develop CT and CPS skills through programming education. Students
repeatedly experienced the process of generating, failing, improving, and retrying differ-
ent solutions in an atmosphere that allowed them to fail at solving problems, and finally
to solve problems successfully, rather than following the teacher’s model solution.

5.2. Discussions

We analyzed why the productive failure was effective in improving computational
thinking. First, ill-structured and authentic problems were more effective in develop-
ing abstract thinking, which requires students to understand and analyze the problem
and extract the key elements needed to solve it. On the other hand, structured problems
were less effective in developing abstraction thinking because they were presented in
a way that made it easier for students to understand the problem and extract the key
elements. Second, productive failure encourages students to select problem-solving
methods and appropriate algorithms and represent them in different ways. It can be
interpreted that these helped students improve their computational thinking. However,
in the lecture-based course, students were expected to copy exemplary solutions, which
limited the development of computational thinking. Third, failure is allowed in the
process of implementing problem-solving methods in a programming language, which
effectively enhances automation thinking.

We analyzed why productive failure was highly effective in improving creative
problem-solving. First, scenario-type authentic problems were influential in motivat-
ing students to learn. Second, creating an atmosphere where students were allowed
to fail in an activity that involved generating multiple solutions and expressing them
in a programming language was effective in promoting divergent thinking and under-
standing and mastery of knowledge and skills in a specific field. Productive failure
allows students to fail and experience multiple attempts rather than pushing them to
succeed in solving a problem. As students’ divergent thinking improved, they be-
came actively involved in the process of modifying and improving their own or their
group’s solutions, ultimately leading to a more successful outcome. Fourth, in the
consolidation steps, critical and logical thinking was promoted through activities that
involved comparing their solutions to those of others. We observed that students also
practiced comparing multiple solutions to find the similarities and the differences
through discussion and determined which solution was more efficient in synthesizing
all findings through discussion. These activities helped them discover what makes a
problem solution effective, which was effective in improving their creative problem-
solving skills (Bae, 2006).

D. Lee, Y. Lee406

We found that computational thinking skills improved significantly with a direct in-
structional programming course. This is consistent with previous research showing that
block based programming languages are effective in improving computational thinking
in elementary school students (Zhang and Nouri, 2019). However, the effect size showed
that productive failure was more effective than creative problem-solving and did not
show a significant increase in the direct instructional programming course. The reason
for this is that the textbook presented structured problems that were not authentic, which
did not trigger students’ motivation. Also, the teacher taught the target concepts in a
direct teaching method at the beginning of the class. The following activities also didn’t
provide the opportunities to explore various solutions. Therefore, it failed to improve
students’ divergent thinking.

In conclusion, we found that the productive failure-based approach to programming
education in elementary school is effective in fostering computational thinking and cre-
ative problem solving. Students repeatedly experienced the process of generating, fail-
ing, improving, and retrying different solutions in an atmosphere that allowed them to
fail at solving problems rather than just following the teacher’s model answer to succeed
in solving problems. In this learning process, students were able to use computational
thinking skills naturally and exercise their creative problem-solving skills in finding ef-
ficient ways to solve problems.

5.3. Recommendations

Based on the results, we propose the following recommendations for future work.
First, a follow-up study should be conducted to expand the topics and contents and
generalize the effectiveness of the PF-based programming instruction proposed in this
study. Second, specific teaching strategies need to be developed to encourage students
in the process. PF relies on teacher strategies, such as creating a learning atmosphere
that allows students to fail and provides emotional support. If students are frustrated
by failure and give up on problem solving, learning will not progress. Therefore, de-
tailed teacher prompts and feedback must be provided to keep students on track. In ad-
dition, when conducting group activities in programming instruction, student grouping
can act as a variable that affects learning (Son and Sohn, 2014). Therefore, teachers
should use specific strategies for group formation and group interactions such as dis-
cussion. Finally, there is a need to develop a variety of topics and problems and ma-
terials to implement PF-based programming instruction. The essence of a PF strategy
is to present ill-structured and authentic problems, thereby motivating, engaging, and
encouraging higher-order thinking. So, it should be developed for different levels of
students, subjects, and areas of interest. To this end, PF-based programming instruc-
tion should be suggested as an effective way to teach programming in materials such
as textbooks.

Productive Failure-based Programming Course to Develop Computational Thinking ... 407

References

Bae, Y. (2006). Robot Programming Education Model in Ubiquitous Environment for Enhancement of Cre-
ative Problem-solving Ability. Korea National University of Education. Cheongju.
http://www.riss.kr/link?id=T10372477

Bransford, J., Schwartz, D. (1999). Rethinking transfer: A simple proposal with multiple implications (Vol.
24). Washington DC: American Educational Research Association.

Cangelosi, J. (1990). Designing Tests for Evaluating Student Achievement. Longman Publishing Group.
Cho, S.H. (2002). Brief Creative Problem Solving Test Development Study (II) (CR2002-43).
DeCaro, M.S., Rittle-Johnson, B. (2012). Exploring mathematics problems prepares children to learn from

instruction. Journal of Experimental Child Psychology, 113(4), 552–568.
diSessa, A.A. (2006). A History of Conceptual Change Research: Threads and Fault Lines. In The Cambridge

Handbook of: The Learning Sciences. (pp. 265–281). Cambridge University Press.
Han Sung, K. (2021). Exploring Implications for Revision of Informatics Curriculum Based on Computing

Curricula 2020: Focusing on Articulation Analysis [Exploring Implications for Revision of Informatics
Curriculum Based on Computing Curricula 2020: Focusing on Articulation Analysis]. The Journal of
Korean Association of Computer Education, 24(2), 105–117.

ICT, K.M. o. S. a. (2020). Innovate Korea 2045 : Challenges and Changes for the Future. Sejong: Korea
Ministry of Science and ICT Retrieved from
https://www.kistep.re.kr/boardDownload.es?bid=0003&list_no=39882&seq=12345

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379–424.
Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38, 523–550.
Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 1008–1022.
Kerrigan, J., Weber, K., Chinn, C.A. (2021). Effective collaboration in the productive failure process. The

Journal of Mathematical Behavior, 63, 100892.
Kim, Y. (2019). Development of Achievement Criteria and an Assessment Tool to Measure Computational

Thinking (Publication Number the degree of Master of Education) Seoul National University of Educa-
tion]. Seoul. http://www.riss.kr/link?id=T15342908

Lee, D., Yi, S., Lee, Y. (2022). A Study of Domestic Programming Education in Elementary School Based
on Systematic Literature Review [A Study of Domestic Programming Education in Elementary School
Based on Systematic Literature Review]. The Journal of Korean Association of Computer Education,
25(6), 35–50. DOI: 10.32431/kace.2022.25.6.003

Lee, D.K. (2016). Alternatives to P value: confidence interval and effect size. Korean Journal of Anesthesiol-
ogy, 69(6), 555–562.

Marton, F. (2006). Sameness and difference in transfer. The Journal of the Learning Sciences, 15(4), 499–
535.

Ministry of Education, K. (2015a). The 2015 Revised Curriculum. Sejong: Korea Ministry of Education.
Ministry of Education, K. (2015b). The 2015 Revised Curriculum of Practical Art. Sejong: Korea Ministry

of Education.
Oldridge, M. (2017). Is it about coding? No. It’s about computational thinking. In.
Papavlasopoulou, S.G., Michail N. Jaccheri, Letizia. (2019). Exploring children’s learning experience in

constructionism-based coding activities through design-based research. Computers in Human Behavior,
99, 415–427. https://doi.org/10.1016/j.chb.2019.01.008

Pewkam, W., Chamrat, S. (2022). Pre-Service Teacher Training Program of STEM-based activities in Com-
puting Science to Develop Computational Thinking. Informatics in Education, 21(2), 311–329.

Piaget, J. (1964). Cognitive Development in Children: Development and Learning. Journal of Research in
Science Teaching, 2, 176–186.

Ritter, F., Standl, B. (2023). Promoting Student Competencies in Informatics Education by Combining Se-
mantic Waves and Algorithmic Thinking. Informatics in Education, 22(1), 141–160.
https://doi.org/10.15388/infedu.2023.07

Schlegel, M. (1995). A Handbook of Instructional and Training Program Design.
Schwartz, D.L., Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encour-

aging original student production in statistics instruction. Cognition and Instruction, 22(2), 129–184.
Shih, W.-C. (2019). Integrating computational thinking into the process of learning artificial intelligence.

Proceedings of the 3rd International Conference on Education and Multimedia Technology, New York.
Silapachote, P., Srisuphab, A. (2017). Engineering courses on computational thinking through solving prob-

lems in artificial intelligence.

D. Lee, Y. Lee408

Snedecor, G.W., Cochran, W.G. (1980). Statistical method 7th Ed. The Iowa state university press, Ames,
Iowa, USA, 1980, 39–63.

Son, K.H., Sohn, W.S. (2014). The Development and Application to Computer Programming Education using
Arduino. The Journal of Education, 34(3), 159–179.
https://scholar.kyobobook.co.kr/article/detail/4050025409434

Soojin, J. (2017). Design and effect of development-oriented model for developing computing thinking in
SW education. Journal of The Korean Association of Information Education, 21(6), 619–627.

Taguma, M., Barrera, M. (2019). OECD Future of Education and Skills 2030: Curriculum Analysis.
https://www.oecd.org/education/2030-project/

VanLehn, K., Siler, S., Murray, C., Yamauchi, T., Baggett, W.B. (2003). Why do only some events cause
learning during human tutoring? Cognition and Instruction, 21(3), 209–249.

Yoo, S. (2021). SPSS Statistical Analysis for Writing a Thesis [SPSS statistical analysis for writing a thesis].
Hwangsogirlum Academy.

Youngsik, J. (2018). The Problems and Improvement of the SW Education Policy in Elementary School.
Proceedings of Journal of The Korean Association of Information Education, 9(1), 91–97.

Zeng, D. (2013). From Computational Thinking to AI Thinking. IEEE Intelligent Systems, 28(06), 2–4.
Zhang, L., Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9.

Computers & Education, 141, 103607.
https://doi.org/https://doi.org/10.1016/j.compedu.2019.103607

D. Lee is a Ph.D. student in the Department of Computer Education at the Korea Na-
tional University of Education, as well as a teacher at the public elementary school in
Korea. The field of her scientific activity to date covers the areas of computer science
education, Artificial intelligence convergence education and Learning science.

Y. Lee is a Ph.D. in the Department of Computer Science at the University of Minnesota
in the U.S. and is currently a professor of computing education at the Korea National
University of Education. The field of his scientific activity to date covers intelligent
systems, learning science, information education, and artificial intelligence education.
He has served as the Korean representative of the TC3: Education Subcommittee, which
conducts educational research from computer science to AI at the International Federa-
tion for Information Processing (IFIP).

