
Informatics in Education, 2024, Vol. 0, No. 0, 0–0 1
© 2024 Vilnius University
DOI: https://doi.org/10.15388/infedu.2024.17
ACCEPTED VERSION (WITHOUT THE JOURNAL LAYOUT).

Analysis and Evaluation of a Searchable Exercise
Repository for Training Java Programming

Arjan J.F. KOK1,∗, Lex BIJLSMA1, Cornelis HUIZING2, Ruurd
KUIPER2,1, Harrie PASSIER1

1 Department of Computer Science, Faculty of Science, Open Universiteit, Heerlen, The
Netherlands

2 Faculty of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven,
The Netherlands

e-mail: Arjan.Kok@ou.nl, Lex.Bijlsma@ou.nl, C.Huizing@tue.nl, R.Kuiper@tue.nl,
Harrie.Passier@ou.nl

Received: July 2023

Abstract. This paper presents the first experiences of the use of an online open-source repository
with programming exercises. The repository is independent of any specific teaching approach. Stu-
dents can search for and select an exercise that trains the programming concepts that they want to
train and that only uses the programming concepts they already know, then submit their solutions,
and get automatic feedback from the system. We analyzed quantitatively how students used the sys-
tem by inspecting the logged actions of the students using the system. We also did a qualitative
analysis by interviews, to find out how the students appreciated the use of the repository and to get
feedback for improvements. We focused on how students select exercises as finding the exercise that
fulfils the training needs of a student is the innovative part of our repository.
Key words: Computer science education, programming, exercise repository, exercise selection,
tool evaluation.

1. Introduction

Learning programming implies doing many programming exercises. For students to obtain
the right training, there is a high demand for a large number of good quality programming
exercises. Creating good quality exercises is not easy and a time consuming task for teach-
ers. Sharing exercises between teachers of different institutions can be a solution to reduce
the time for creating exercises by individual teachers. Giving feedback on the solutions of
students is another time consuming task and should be automated.

The Structured Exercise Repository with automated Feedback (?) provides an online
open source repository of Java programming exercises. Teachers at different institutions
can upload their exercises to this system. Students can search for exercises that match their

∗Corresponding author.

https://doi.org/10.15388/infedu.2024.17


2 A.J.F. Kok et al.

training needs, submit their solutions, and inspect the automatic feedback they get from
the system.

The SERF repository differs from other systems that enable students to do exercises
(see for an overview of these systems ? and ?) in the way the students select their exercises.
In most other systems, the teacher selects the exercises the student has to solve, or the
student can select the exercise from one or more lists, where exercises are grouped by one
specific concept. For example when the concept array is chosen, all exercises training use
of the array are shown. In some cases, an extra difficulty level is shown. However, these
approaches do not take into account the use of combined concepts and the concepts a
student has not mastered yet.

The SERF repository enables to match the training needs and the existing knowledge
level of a student with the appropriate exercises more precisely. Each exercise in the repos-
itory is tagged with the concepts it trains and the prior knowledge needed to be able to
solve the exercise. For example, an exercise may train several concepts like while, method
and object, and may require prior knowledge like a thorough understanding of boolean
conditions, and a glancing acquaintance with the main method as occurring in template
code. A student searching for an exercise can specify the concepts he/she wants to train, for
example loops. The repository will then show the appropriate exercises, with the knowl-
edge each exercise requires. To reduce the set of exercises to the ones the student is able to
do, the student can also specify the concepts he/she is not familiar with or has not mastered
yet. The repository will then exclude all exercises that require knowledge of these unfamil-
iar concepts from the list of appropriate exercises. For example, when the student specifies
that he/she has not mastered the concept object, the repository excludes all exercises that
use objects. This way the repository is independent of specific teaching approaches (like
the order of concepts introduced in a course). It accommodates, for instance, both ‘objects
first’ and ‘objects late’ courses equally well. Therefore it is possible that teachers using
different teaching approaches all can contribute exercises to the system. Through the ad-
vanced search method, one or more exercises will pop-up when the student is ready to
solve it/them.

This search approach is not restricted to programming exercises. For any knowledge
domain, where students have to search for exercises in a repository, based on concepts and
existing knowledge of the student, this search mechanism can be applied.

Solutions to exercises can be submitted and, using teacher defined test cases, feedback
is given to the student. Submitting solutions to the exercises and the form of feedback of the
repository is similar to that provided by the online tool ?. The feedback shows compilation
problems, and when these are not present, the problems with the functionality, mostly in
the form of expected versus calculated output.

Our research goal is to obtain insight in the use of the repository by students and
find directions for improvement of the system. To obtain this insight we want answers
to questions like: Do students use the repository as intended? Do they use the advanced
search function? What do students like and dislike? What can be improved?

We propose an evaluation methodology to get answers to these questions. For this
evaluation students are offered the repository during first-year programming courses at



3

three different institutions. The exercises are supplied by several teachers of two of these
institutions. At all institutions the use of the repository is voluntary. It provides extra train-
ing in addition to the exercises normally used in the courses. The use of the repository is
observed quantitatively in terms of logged actions of students: number of searches, selec-
tions, submissions, etc. Interviews are conducted to supplement the results of the quanti-
tative analysis with qualitative information. These interviews provide revealing anecdotal
information.

Section 2 describes related work. In section 3 we describe the SERF repository in more
detail. It shows how a teacher can add an exercise to the repository and how a student can
select an exercise and submit a solution for it. Section 4 describes the methodology used
to analyze the system. Section 5 shows the results of this analysis. A discussion of these
results, and ideas for future work are given in section 6.

2. Related work

A large number of systems for automated assessment of programming exercises exist.
Several literature reviews give an overview of these systems, for example (?????). These
reviews classify these systems based on technical and pedagogical features.

? describes the characteristics of the systems by dynamic (e.g. functionality and ef-
ficiency) versus static (e.g. coding style, metrics) assessment, automatic versus semi-
automatic assessment, and formative versus summative assessment. ? further discuss the
features and approaches supported by automated assessment tools. Included features are
which programming languages are supported, whether the system can interoperate with
a learning management system, how tests are defined, how resubmissions are controlled,
whether there is a possibility for manual assessment after automated assessment, how se-
curity is guaranteed, whether the system is freely available for others, and how to assess
special types of programming assignments. ? classify the tools based on how and which
feedback is generated. A recent and comprehensive overview of the state of art of auto-
mated assessment tools in computer education is given by ?. Their focus is on five aspects
of these tools, namely supported exercise domains, testing techniques utilized, security
measures adopted, feedback produced, and the information they offer the instructor to
understand and optimize learning.

This last topic, the collection and analysis of data about the behavior and actions of
students (learning analytics), can be used to optimize the learning process of students and
to improve the tools used. Examples of these data are submission history and completed
tasks. Some learning analytics tools collect data of more fine-grained event streams, for
example, every key-press made while a student is working on a task (?). Insight is gained
into the extent to which students work on assignments that are not submitted. If only
submissions are stored, no trace of such work is recorded, and the students that struggle
on an assignment but never submit it are out of scope. Another development is that the
analysis of collected data makes it possible to relate observational data, i.e. the time spent
to complete exercises, coding style and ratio of syntax errors, to study success, final grades
and learning motivation (??).



4 A.J.F. Kok et al.

The repository presented and evaluated in this paper can be categorized as an automatic
formative assessment tool that provides feedback regarding compiling and functional er-
rors on (re-)submissions of Java programming assignments. It collects data of the actions
of the students which enables analysis of the tool and the student’s progress. The inno-
vative feature of the repository is the search mechanism by which students can select the
appropriate assignments.

Several exploratory studies evaluating the usefulness and effectiveness of assessment
tools have been done. Some of them, e.g. ?, use surveys amongst students and/or teach-
ers, to find out whether the tools were helpful in learning and/or teaching programming.
Others, e.g. ??, analyze the data collected by the system, showing how students used the
system. Like ?, we evaluate our repository both by surveys and by analyzing the collected
data. Of course, we emphasize in our evaluation the analysis of the unique search mecha-
nism.

3. The SERF repository

The Structured Exercise Repository with automated Feedback (SERF) is an online
database containing Java exercises to support training of (Java) OO programming skills
(?). To make the repository teaching-approach independent, there is no approach-linked
ordering or grouping of the exercises, but the SERF repository has a search function based
on tags that enables to select individual exercises by training desire. To provide training
in a manner that needs relatively little teacher support, e.g., in an online setting, solu-
tions to the exercises can be submitted by a student to the SERF repository. JUnit tests are
performed on the solutions, generating automatic feedback.

A short description of the ideas is given below. More details can be found in ?.

3.1. Adding exercises

A teacher submits an exercise description, a code template, knowledge tags, and the unit
tests to test the solutions of students to the system. The knowledge tags describe which
knowledge is trained by this exercise and which knowledge a student needs to solve the
exercise successfully. Template code consists minimally of the signatures of the methods
the student has to write for the exercise. The exact signatures are needed to apply the unit
tests for feedback.

To ensure the quality of the repository, each exercise is reviewed by another teacher
before it is made available to the students.

3.2. Tags and the knowledge graph

To enable to select individual exercises for the desired training and to indicate which
knowledge is needed to solve the exercise successfully, tags are used. A tag is a word
that characterizes a (programming) knowledge item. The set of tags in our system for Java
is the, carefully selected, set of words that identify programming knowledge items that



5

pertain to Java. Syntactic (e.g. while) as well as semantic or conceptual (e.g. repetition)
knowledge items are used.

Knowledge tags can be applied at two levels. A ‘needs’ tag indicates that the student
needs to know everything about the knowledge item and can apply it. A ‘uses’ tag indi-
cates that the student needs some glancing acquaintance of the item. For instance, anyone
writing a Java program with a main function will encounter the terms public and static,
without the need to understand their full meaning.

Simply tagging each exercise with all knowledge needed or used is impractical. An
exercise may require many knowledge items at very different levels. For example, an exer-
cise in which the while is trained, requires also knowledge of boolean expression, which
in turn requires knowledge of boolean and expression. These problems are solved by or-
dering the set of known tags in the system with a prior knowledge order between the
knowledge items. This results in a knowledge graph that records the dependencies be-
tween knowledge items in terms of needs and uses relations. Only dependencies that are
intrinsic to the domain (in our case Java programming) are recorded in the knowledge
graph. That guarantees that the resulting knowledge graph is an acyclic directed graph (in
the direction from high-level concept tags to low-level concept tags) that is independent
of any teaching approach. Details and proof can be found in ?. Our knowledge graph is
specific to Java. However, for similar languages, e.g., Python, similar graphs can easily be
constructed. In fact, for any knowledge domain that has prior knowledge relations between
items in the domain a similar graph can be constructed.

The notion of prior knowledge is used for the tagging of exercises. At submission of
an exercise to the repository, the teacher only needs to provide the top-level tags (needs
and uses tags). All other tags are automatically derived by the system using the knowl-
edge graph. Selecting only top-tags in the ordering for tagging exercises keeps the task
of tagging manageable for the teacher. Note that students do not need to be aware of the
existence of the knowledge graph.

Figure 1 shows the tags of an exercise to write the body of a method that computes
and returns the average of the values in an array. To solve this exercise the student needs
knowledge of arrays, repetition, return and double expression (for the calculation of the
average). The signature of the method is given in the template, so the student needs some
knowledge of the items that are part of this signature, but the student does not need to
write it. Therefore, the knowledge items that are part of the given signature are specified
as ‘uses’ tags. The tags indicated by ‘also needs’ are automatically derived by the system
using the knowledge graph. These items show prior knowledge needed to understand the
teacher provided ‘needs’ concepts. Apart from ‘also needs’ tags the system can also derive
‘also uses’ tags when the student only needs a glancing acquaintance of the derived prior
knowledge.

A student can use the tags to search for the exercises that train the desired knowledge,
but also exclude the exercises for which the student does not have all knowledge (by using
the tags negatively).



6 A.J.F. Kok et al.

Fig. 1. Tags for an exercise.

3.3. Searching for and solving exercises

At the start of a student session, the system shows a list with the names of all available
exercises. The student can browse over the names, and when moving over a name, the tags
(knowledge items) for that exercise are shown, as in figure 1. With a large list of exercises,
finding a suitable exercise this way is time-consuming.

Therefore, students can select one or more tags directly for the knowledge they want to
train. Then, only the exercises in which this knowledge is needed, are shown. The student
can inspect this new list and see what knowledge is needed for each of the exercises by
moving over the exercises’ names of the new list.

When the list is still to large to judge which of exercises in the lists are appropriate, the
student can also select negative tags. The system will then remove all items that require
the direct or indirect knowledge of these negative tags. By repetitively selecting positive
and negative tags, the student will find the most suitable exercises.

Figure 2 shows a situation where a students wants to train iteration over the elements
of an array (positive tags array and repetition), but has at this moment no knowledge of
the switch-statement and the Scanner object (negative tags switch and Scanner). Seven
exercises are available to fulfil the training needs with the student’s current knowledge.

When a student has found a suitable exercise, he/she can open it. The text of the as-
signment and the template code is shown, see figure 3. The student can now complete the
template code to add the requested functionality. When finished entering code, the solu-
tion can be submitted. The system checks the code and gives feedback on the solution.
This feedback consists of a fail/pass indication, any compiler errors, and the results of the
unit test cases. The repository does not grade the submission. When the code does not
pass all tests, the student can adjust the code and resubmit it to iteratively improve the
solution.

4. The evaluation methodology and set-up

This study aims to get insight in the use of the SERF repository. We want answers to the
following research questions:

1. To what extent is the repository used?
2. Do the students use the repository as we expected, i.e. as described in section 3.3?
3. Does the repository support the students in learning programming in Java?
4. How user friendly is the use of the repository?



7

Fig. 2. Searching for an exercise. The tags on the left (array and repetition) are the selected positive tags, the
tags on the right (switch and Scanner) the selected negative tags.

It is important to note that in research question 3 we do not assess enhancement in stu-
dent’s programming skills. That is outside the scope of our current exploratory research.
Our focus is solely on determining whether students perceive improved support for train-
ing solving programming exercises, for example, that they are more confident and are
better prepared for the exam.

We apply quantitative as well as qualitative analysis. The first two questions are an-
swered by the quantitative analysis by means of logged data, the last two by the qualitative
analysis through interviews.

The repository was offered to students following an introductory course in object ori-
ented programming with Java at three different institutes, see Table 1. Students of Insti-
tute A and Institute C study full-time, where most students of Institute B study part-time
alongside a (full-time) job. Each institute uses a different teaching approach, so the order
in which programming concepts are introduced in the courses differ.

The repository was offered at the beginning of the course periods, all of a duration of
three months. Students were introduced to the repository during the first lecture. It was
presented as an option to do exercises in addition to the exercises in the course materials.



8 A.J.F. Kok et al.

Fig. 3. Example of an exercise with a template in which the student can enter the solution.

Table 1
Institutes in the evaluation

name description

Institute A NHL Stenden University of applied sciences
Institute B Open Universiteit Distance education university
Institute C Eindhoven University of Technology University of technology

So it was not obligatory to do these exercises. Scenarios of use were shown: how to search
for exercises that fulfil the training needs, how to exclude exercises requiring unknown
knowledge, how to open an assignment, how to fill in the exercise template, how to submit
a solution, how to get feedback on the solution submitted, how to improve a solution after
feedback, and how to submit the solution again. At the distance university (Institute B), a
recording was made of this meeting. So, students not present at the lecture could watch
this recording later.

A manual describing how to use the repository was available to the students via both
the repository itself and the courses’ websites. Lecturers from Institute A and Institute B
provided the students with an overview of the meaningful prior knowledge search terms
for each unit of study, as an aid in the search for suitable exercises in specific areas when
studying the course.

During the course period the following actions of students were logged:

• Access of the main page with the overview of all exercises.
• Adding or removing a search tag to the search, both positive (exercise should train this

knowledge) or negative (exercise should not require this knowledge).
• Opening an exercise, where the student gets the complete text of the exercise and a



9

template to fill in the solution.
• Editing a solution.
• Submission of a solution, including the code the student provided and the feedback

from the system.

All logged actions are time stamped. Therefore we can deduce all kinds of information
from these logged actions, for example, did the student select the exercise by browsing the
complete list, or did the student select the assignment after searching using tags, and if so,
which tags the student used. A quantitative analysis of the logs of the actions can be found
in section 5.1. With the logged data we are able to answer the first two research questions.

After the course period, a subset of participants was interviewed using a semi-
structured interview to obtain more in-depth knowledge of the students’ experiences with
the repository. The interview guide followed during the interviews can be found in ap-
pendix A. All interviews were conducted by two interviewers, one mainly the panel chair
and one mainly making notes. All interview sessions were recorded. A qualitative analysis
of the repository based on the answers from the students during these interviews can be
found in section 5.2. This qualitative analysis answers research questions three and four.
Participation in the interviews was voluntary.

Some notes on the implementation of the evaluation:

• The course of Institute A started first, and provided the first logged data. We noticed
that not all important information to do a proper evaluation was logged. Therefore the
logged data of this first run are not used in the quantitative analysis. The interviews with
the Institute A students are included in the qualitative analysis. We used the acquired
results of Institute A to improve the repository, mainly by extending the logging, for the
evaluation runs at Institute B and Institute C.

• Due to COVID19, the students at Institute C were, atypically, forced to online instruc-
tion and use of the repository. Students at Institute B are used to online instruction.

5. Analysis of use of the repository

The courses at Institute B and Institute C where scheduled from September 2020 until
November 2020. In that period the SERF database contained 39 exercises, constructed
and reviewed by lecturers from both institutions.

Table 2 shows the number of students that were offered the repository versus the num-
ber of students that actually used the repository. Students used the repository less than
expected. We have no direct explanation. It might be that the courses themselves contain
sufficient exercises, so most students have no need for extra exercises (although each year
several students ask for extra exercises). Or maybe the students do not have the time to do
extra (not scheduled) exercises. An important part of the Institute B students already has
experience with programming and some even program for their profession. These students
have, in general, no problem passing the exam of the course, and therefore, do not need
extra training. This might explain the lower participation of Institute B students compared
to Institute C students.



10 A.J.F. Kok et al.

Table 2
Student participation

students Institute B Institute C

offered repository 173 350
accessed repository 31 18% 94 27%

5.1. Quantitative analysis

We analyzed the logging from September 2020 until January 2021. That includes the use
of the repository by students that failed their first exam and prepared for a second exam.

5.1.1. Executed actions
Table 3 shows the most important actions executed by the students. It shows for each type
of action (search, open and submit):

• the number of individual students that executed this type of action,
• the number of individual exercises on which this type of action was executed,
• the total number of actions of this type summed over all students.

The first line with totals shows the total of all students that used the repository, the
number of available exercises in the repository, and the total number of all actions by all
students. Note that this total number of all actions is larger than the sum of the different
categories (search, open, submit), as we also logged other actions (edit, feedback, ...) that
are ignored in this evaluation.

Table 3
Student actions

Institute B Institute C
action students exercises actions students exercises actions
total 31 39 1573 94 39 1471
search

total 16 52% 167 11% 27 29% 135 9%
positive 13 42% 75 5% 25 29% 95 6%
negative 10 32% 71 5% 3 3% 32 2%
positive + negative 6 19% 21 1% 2 2% 8 1%

open
total 26 84% 29 74% 488 31% 63 67% 36 92% 509 35%
without search 19 52% 24 62% 385 24% 60 64% 35 90% 482 33%
after search 14 45% 19 49% 103 7% 12 13% 12 31% 27 2%

submit
total 19 61% 24 62% 409 26% 31 33% 28 72% 362 25%
without search 14 45% 20 51% 302 19% 23 24% 27 69% 312 21%
after search 9 29% 13 33% 74 5% 4 4% 3 8% 11 1%
without edit 15 48% 17 44% 33 2% 19 20% 17 43% 39 3%

Searching
Finding a suitable exercise can be done in two ways: using the search function by selecting
positive and negative tags, or browsing through the complete list of exercises (where the
tags are also shown, so students see directly the prior knowledge needed for an exercise).



11

• Only a limited number of students actually finds an exercise through the search func-
tion (= open after search). Of them, only a few use the combined positive and negative
search. That is rather disappointing as this kind of search should lead the student to
the most suitable exercises. Also the number of search actions is rather low, as finding
one exercise is an incremental process that consists of several individual actions. Each
addition of a positive or negative search tag is counted as one action.

• Most students find an exercise by selecting it from the complete list of exercises (=
open without search). Supposedly, the prior knowledge information displayed during
browsing is sufficient to select the requested exercise. In that case the tagging is used in
another way than we expected.

At this moment the number of exercises in the repository is limited to 39. Therefore,
browsing to find an exercise is manageable. We expect that with more exercise in the
repository the need for the search function, including combined tagging, increases.

Opening and submitting
On average 70% of the times an exercise is opened, the student also submits a solution
(after editing this solution).

Remarkable is the rather large number of submissions of an exercise without editing.
That means that students submit the given template of the solution. We think that there
are two explanations for this behavior:

• Students only explore the system and are not interested in seriously training their pro-
gramming skills at this time.

• Students want a hint to the solution before they try to make their own solution to the
exercise. When a student submits a solution to an exercise, he/she gets some feedback,
e.g. what the correct output should be.

Difference between institutes
There are some differences between Institute B and Institute C students:

• On average an Institute B student executes more actions (±50 total actions per student)
than an Institute C student (±15 per student). For all separate types of actions, we also
see that Institute B students execute more actions.

• The percentage of students that uses the search function is larger for Institute B students
(52%) than for Institute C students (29%). Also more Institute B students than Institute
C students use a negative search. It seems that Institute B students are better instructed
to use all aspects of the repository.

• There is a rather large group of students (16% Institute B, 33% Institute C) that only
opens the repository and browses the list of exercises, but never opens an exercise.

• After opening an exercise, institute B students submit a solution more often than In-
stitute C students. Not only the percentage of submit actions compared to the open ac-
tions is higher (77% versus 63%), but also the percentage of students that submit after
opening (73% versus 49%). So, student C student more often only inspect the exercise
without solving it.



12 A.J.F. Kok et al.

• Institute C students open more different exercises and submit more solutions to them
from the collection of all available exercises (36-28) than Institute B students (29-24).
An explanation is that several exercises require prior knowledge of a Java class (Scan-
ner) that is used at the start of the Institute C course. As this knowledge is not part of the
Institute B course, Institute B students are less inclined to select these exercises. The
tag helps Institute B students to ignore these exercises.

5.1.2. Student behavior
Not only the number of actions is important, but also the sequence of the actions of each
individual student and the actual search tags used enable us to explain the behavior of the
students. Therefore we also scanned the logged data. In general, we found two types of
behavior:

• A large group of students only explores the repository. They browse through the ex-
ercises. Some of them open a few exercises, sometimes use a search tag (mostly ran-
domly), sometimes submit the template but never do a serious attempt to solve an exer-
cise. Several of these students exactly copied the actions from the instruction material.
Most of them accessed the repository only once (of which several at the day of the
instruction). Evidently, for these students the repository does not have added value.

• A limited group of ‘serious’ students (8 of 31 for Institute B, 9 of 94 for Institute C)
shows the expected training behavior. They access the repository more than once during
the course, and do several serious attempts to submit a good solution to more than one
exercise. A number of these students even used the search facilities. Table 4 shows the
actions of the students in this group. The differences between the two institutes are much
smaller for this group than for all students. It only remains remarkable that the serious
Institute C students almost do not use the search function.

Table 4
Student actions; serious students only

Institute B Institute C
action students exercises actions students exercises actions
total 8 39 1156 9 39 913
search

total 7 88% 98 8% 4 44% 10 1%
positive 6 75% 48 4% 3 33% 9 1%
negative 6 75% 38 3% 1 11% 1 0%
positive + negative 3 38% 12 1% 0 0% 0 0%

open
total 8 100% 27 69% 399 35% 9 100% 32 82% 316 35%
without search 8 100% 24 62% 320 28% 9 100% 32 82% 314 34%
after search 6 75% 15 38% 79 7% 1 11% 1 3% 2 0%

submit
total 8 100% 23 59% 347 30% 9 100% 26 67% 261 29%
without search 8 100% 20 51% 260 22% 8 89% 25 64% 233 26%
after search 6 75% 11 28% 64 6% 1 11% 1 3% 2 0%
without edit 7 88% 12 36% 23 2% 8 89% 13 33% 26 3%



13

5.1.3. Student-exercise submissions
Table 5 shows the statistics of how students dealt with the different exercises, both for all
students, and for the serious students only.

Table 5
Student-exercise submission statistics

Institute B Institute C
students all serious all serious
number of students that submitted an exercise 19 8 31 9
number of unique student-exercise submission combinations 65 52 78 47
number of different exercises a student submitted

maximum 17 17 24 24
average 3.4 6.5 2.5 5.2

number of submissions of student to make one exercise
maximum 28 28 22 22
average 6.3 6.7 4.6 5.6

Figures 4 and 5 show for each exercise the number of students that made a submission
for this exercise (did at least one submission), respectively the total number of submissions
for this exercise. In both figures all students are counted (so not only the serious students).
The exercises are in alphabetical order, the same order in which the exercises are shown to
the students when they are browsing through the exercises. Note that exercises for which
no solutions are submitted are not shown in these figures.

Fig. 4. For each exercise the number of students that submitted a solution

As expected both figures have more or less the same shape: when more students start
with an exercise, the total number of submissions is larger. Some observations can be
made:



14 A.J.F. Kok et al.

Fig. 5. For each exercise the total number of submit actions

• The number of students and number of submissions are highest for exercises 1 and 2.
Most likely this is caused by the fact that these exercises are the first a student sees
(exercises are shown in alphabetical order), when exercises are selected by browsing
through the complete list of exercises (instead of by selecting tags), what most student
do. However, both exercises are not very difficult and require not much prior knowledge.
That might also be a reason why these exercises are used most.

• There is a number of exercises solved only by Institute C students (exercises 14, 17, 18,
20, 26, 28 and 30). Earlier, it is mentioned that these exercises contained prior knowl-
edge not known by Institute B students. Remarkable is that Institute C students did only
a few submissions for these exercises.

• There is a number of exercises made only by Institute B students (exercises 23, 24,
25, and 32). Closer inspection shows that three of them are exercises that were made
especially to support Institute B students at the start of the course. This indicates that
students can find the exercises that suit them.

5.2. Qualitative analysis

After the students used the SERF repository, six students were interviewed, about 20 min-
utes per student: four students of Institute B and two students of Institute A. Due to the
COVID19 pandemic, we couldn’t interview students from Institute C. The selected stu-
dents were ‘serious’ students. What follows is a summary of the results per main question.
The interview set up can be found in appendix A.

Opinion on functionality of the repository
All students regard the repository as ‘good’ and ‘supportive’. Exercises show clearly ‘what
is the exercise about’: ‘not only array, but array with a for statement’. The repository is
easy to use: ‘I did not need help for using the tool’, ‘no supervision was needed’, ‘it was
a practical tool, easier than expected’.



15

Generally, students find the relevant exercises and mention they experienced the search
function positively: ‘The tool is conveniently arranged, the tags, searching an exercise is
clear’. For some of them, it is difficult at the beginning: ‘I did not understand it completely
because all the terms were new, for example Scanner, but later I did understand it, due to
explanation and knowing the concepts’. Clearly, this student does not understand the use of
the search function of the repository, as he/she could have excluded the concepts he/she
is not familiar with. In this case the student should have used tag ‘Scanner’ negatively.
Two students sometimes experience difficulties with finding the right assignments: ‘...
extra explanation is needed to be able to find the right exercise’. One of them mentions a
solution: ‘... each exercise can be provided with a number, so that my teacher can point
easily to an exercise ...’. Again, these students do not understand the use of the repository.
It is the intention of the repository that each student can find their own exercises using the
tags.

One student says: ‘I had to check many tags to select an exercise. This works in the
end well. I got the exercises I want to make. In CodingBat this works more easier, because
there the exercises are grouped in categories.’ However, the repository already provides
this kind of functionality. The student can find the exercises in a category by selecting the
tag representing this category.

One student misses a selection on level of difficulty. One student says: ’I did not use the
search options of the search function. I think it can be useful, ... The number of exercises
was not big, with more exercises I will use the functionality’.

Opinion on the content of the database
All students experience the collection of exercises as ‘good’, ‘very good’ or ‘relevant’.
One student says: ‘All the topics were in the system. I did not miss a topic’. Another
student says: ‘The number of exercises was not huge, but the exercises are challenging in
comparison to CodingBat’.

Four students experience the exercises as clear: ‘the exercises were clear’, ‘description,
everything was written down good’ and ‘no difficulties in understanding’.

Some students encounter difficulties with the exercises: ‘Exercises can be more con-
cretely formulated’ and ‘Formulation is good, but not complete. For example, you have to
consider robustness, but this was not clear from the exercise description. You can express
this using some levels’. One student says: ‘It was always clear what to do, but not always
which output was expected. Hints can be helpful here’.

Generally, the degree of difficulty is appreciated. One student says: ‘The exercises are
a bit difficult. Some easier ones should be added’. Students often mentioned CodingBat
spontaneously and compared the SERF repository with it. Students mention further that
SERF has a greater variety of assignments with a higher level of complexity. Codingbat
on the other hand has more exercises, but these are often similar to each other and are of
a low level of complexity.

Topics missed are Java’s memory model and GUI programming with Swing. Both top-
ics are important parts of the Java course of Institute B. Also, the number of exercises about
designing and implementing classes, i.e. adding methods, constructors, and attributes, is



16 A.J.F. Kok et al.

experienced as low. It should be noted that it is difficult to automatically test the results of
these kinds of exercises. It borders on what is technically possible and feasible in practice.

Opinion on the feedback
Two students are positive about the feedback functionality: ‘It was good, you get insight
in the quality of your solution, for example the solution can be less complex or you missed
test cases’ and ‘In comparison with CodingBat it is more clear. Besides correctness you
get also information about the quality of the your solution. But, more feedback is desirable,
although I know that will be a difficult job.’.

The other students are less positive about the feedback functionality: ‘I often found it
disappointing, it was not clear what was wrong’, ‘The feedback was very short, you have
to find out things yourself’, ‘Compile errors were clear, but the messages about semantic
errors were not clear’, ‘Codingbat gives more information by showing all test cases and
indicating which of the test cases succeed or not succeed’. Indeed, there is a difference in
feedback between assignments at the moment. In some assignments, the feedback is based
on only one test case.

It appears that feedback is appreciated even in the present limited form. It also is clear
that the quality of feedback is important for student use and acceptance. It would be useful
to invest more research effort in both clarifying what exactly the student needs are and how
to provide for these in the tool. Improvement of feedback is surely planned as future work.
We will discuss this issue further in Section 6.

Opinion on added value for study
All students find the SERF repository helpful for their study: ‘It is helpful to understand
the subjects’, ‘more opportunity for practicing’, ‘I advise this tool to others’.

Advice on future improvements
Students mention three improvements:

1. More explanation and supervision, for example by means of a video, especially at the
beginning about the use of the tags.

2. More connection between the repository and the course: which exercises can be made
after a certain chapter?

3. The possibility to get the standard solution in case you are not able to solve an exercise.

Improvements 1 and 2 were present at Institute B. There was a video recording avail-
able of the meeting in which the use of the SERF repository was shown. For each learning
unit of the course a list of the relevant tags was provided.

Concerning improvement 2, one can doubt whether the student understands the tool.
The student should know which topics have been lectured and can therefore search for
those topics with those tags.



17

6. Discussion and future work

6.1. Discussion

In section 4 we formulated our research questions. We now discuss the answers to these
questions.

To what extent is the repository used?
Each year students ask their teachers for supplementary exercises. So we expected that they
would benefit from a repository with extra exercises. However, the repository is less used
than expected. Only 24% of the students accessed the repository, and more dramatically,
only 3% used the repository seriously to train their skills by accessing the repository more
than once and submitting several solutions to the exercises. There might be several reasons
why students do not use the repository:

• The courses themselves contain sufficient exercises. This is in contrast with the demand
for more exercises by a few students each year. Maybe we overestimated the number of
students that needs extra exercises. Also, a number of students, especially from Institute
B, already has programming experience and do not need extra training.

• Students do not have the time to do extra exercises.
• The repository is not easy to use or students do not know how to use the tool.
• The exercises in the repository are not interesting or not of the correct level. However,

all interviewed students were satisfied with the collection of exercises.

The last two items might explain why students only investigate the repository and not
continue submitting solutions.

Do the students use the repository as expected?
Generally, the students do not use the repository as expected. The main feature of our
repository, the search function, is not used (as much) as we expected. However, students
find the exercises they want to make by browsing through the list of exercises. Apparently,
at this moment the information during browsing, that includes the learning goals and prior
knowledge, is sufficient to find the suitable exercises. The analysis shows that some ex-
ercises are mainly used by Institute B students and other mainly by Institute C students,
according to the order of instruction of the concepts in both courses. The tags assigned to
the exercises seem to work, but in another way than expected. Likely the search function
will be used better when the number of exercises in the repository increases.

From the interviews it became clear that a few students did not understand the ideas
behind the repository, and therefore did not use is as required. Institute B students that got
the most elaborate instruction used the repository more in accordance with our expecta-
tions than Institute C students. Clearly, good instruction is important.

Does the repository support the students in learning programming in Java?
All interviewed students regard the repository as useful and an added value to their study.
However, the interviewed students are all students that used the repository extensively. We
do not know the meaning of the students that did not use the repository.



18 A.J.F. Kok et al.

How user friendly is the use of the repository?
In general students regard the repository to be easy to use and user friendly.

Other observations
Apart from the answers tot the research questions, the execution of the evaluation and the
analysis produced other remarks and insights.

Students ask for easier small exercises. We agree that more small exercises that are
focused on one concept, so with only one (or a few) top-level tag(s), will benefit the range
of exercises in the repository, and will help the student master that concept.

Students miss some topics in the repository. The missed topics are primarily issues
regarding the design of the program. For feedback we use JUnit that tests input-output
combinations independently of the design of the program. We have to conclude that we
cannot give automatic feedback on exercises that focus on design, where students have to
design classes and their methods, as long as we only use JUnit for feedback.

A suggestion is made to add difficulty levels to the exercises. However, difficulty is
subjective. Therefore it is hard to assign a difficulty level to an exercise. Also, because we
support different orders in which concepts are treated, an exercise can be difficult for a
student of one course, while the same exercise can be easy for a student of another course.
On the other hand, students already have an indication of the difficulty of an exercise: the
number and complexity of the concepts (tags) assigned to it.

The quality of the feedback differs from exercise to exercise. For some of the exercises
it is minimal (result of one test case without any explanation), while for others it is very
extensive (results of several test cases including some explanation). There is a review
process before an exercise is submitted, but apparently the test code and feedback is not
always reviewed properly. The review process should be applied more strictly.

6.2. Future work

Current evaluation of the repository has led to several directions of future work. We will
improve the repository to make it more interesting for students to use it. This means im-
proving the tooling, the exercises and procedures how to use the repository. And after
the improvements we have to evaluate whether they contributed to the acceptance of the
repository by the students.

Tool improvement
We discovered that quite a lot of information was present in the logs, but also that some
was missing. The logging of a submission should therefore be extended with a ‘pass’ noti-
fication. Then we can measure the progress of individual students, and also get information
on the suitability of exercises, for example the average number of submissions before an
exercise is successfully solved.

Apart from functional correctness, a submission by a student can also be judged on
programming style. We will integrate a tool that assesses the submission on programming
style, for example ?. As different institutions impose different requirements for program-
ming style we will investigate the possibility to automatically apply the style rules imposed



19

by the institute of the student. For students of unknown institutions a default set of rules
will be used.

Improvement of contents of repository
The evaluation made clear that one of the most important tasks is to increase the number
of exercises. For these new exercises the following conditions should apply:

• The new exercises should include many small exercises that focus on one concept only.
• The feedback of all exercises should be as extensive as possible. For example, all results

of all test cases should be shown at each submission. So when one test fails, all other
tests should still be executed. Furthermore the reason for failing to pass a test should be
explained if possible.

Extended evaluation
When all previously mentioned improvements have been implemented, the evaluation as
described in section 4 will be extended and repeated, to see whether the improvements
made the repository more interesting for the students, and whether they will use it as we
expect. This time, apart from interviews with a number of serious students, we will also
perform a survey among all students of all relevant courses, to get more information, for
example why students do not use the repository.

The SERF tool is currently used in the teaching at the developing institutes. Several
other institutes have expressed interest in deploying the tool. We will support and monitor
such use continuously, for further improvement and development of the tool as well as for
the important aim to build a substantial repository of shared exercises.

A. Appendix: Interview guide

Each interview consisted of questions in five categories. Each category consisted of one
main question that always was asked. Depending on the answers, one or more of the sub
questions were asked to get a deeper insight into student’s opinion:

Functionality SERF repository. What is your opinion on the functionality of the repos-
itory, i.e. what was good, what did put you off, what did you miss, what happened?

• Did you you find the relevant exercises?
• In particular, was the search function satisfactory?
• Went things well/wrong in searching to exercises?
• Did you use the exclude option?
• Did you use the knowledge graph?
• If so, how? If not, why not?
• Did you do the exercises in the repository or first in your own system.

Content of the repository. What is your opinion on the content of the database?

• Where the exercises useful and/or relevant?



20 A.J.F. Kok et al.

• Did you miss exercises on a specific subject?
• Was the quality of the formulation of the exercises sufficient?

Quality of the feedback. What is your opinion on the feedback?

• Was the feedback relevant?
• Was the quality of the feedback sufficient?

Impact on study. Did the repository help you with your study?

• Would you advice it to other students?

Improvements. Do you have any advice on future improvements?

Acknowledgements

This work has been done in the context of the SERF project that has been funded by
SURF in the ‘stimuleringsregeling Open en online onderwijs’ 2018. We would like to
thank Stefano Schivo and Nikè van Vugt-Hage (Open Universiteit) for helping us making
and reviewing exercises for the repository, and Erik Scheffers (Eindhoven University of
Technology) for implementing the tool.

Arjan Kok is assistant professor computer science at the Open Universiteit, where he is
responsible for courses on object oriented programming. He studied computer science at
the Delft University of Technology, The Netherlands. He received his Ph.D. in computer
graphics from the same university. Before he joined the Open Universiteit, he worked on
computer graphics and virtual reality as software engineer in industry, as research scientist
for TNO, and as assistant professor at the Eindhoven University of Technology.

Lex Bijlsma is professor emeritus of computer science at the Open Universiteit. After
obtaining a Ph.D. in mathematics at University of Amsterdam in 1978, he has worked in
both mathematics and computer science at the Institut des Hautes Etudes Scientifiques
(Bures-sur-Yvette, France), and at universities in Eindhoven and Utrecht (Netherlands),
and Cochabamba (Bolivia).

Cornelis (Kees) Huizing works at the Eindhoven University of Technology as teacher
and researcher in computer science and education of computer science. His research is
about formal verification of programs with tooling and about teaching of programming.
His next interest is to apply program derivation and other formal techniques in the teaching
of programming.

Ruurd Kuiper worked at the Mathematical Centre (Amsterdam) and Victoria University
(Manchester), and currently works at the Eindhoven University of Technology and the
Open Universiteit. Research is centered around the concepts of decomposition and ab-
straction: for programming and specification languages, semantics, logics, proof systems
and tooling. The next interest is to apply these concepts in the various stages and at various



21

levels in programming and development. The final challenge is to teach programming and
program development based on such insights: identify and articulate guiding principles,
design exercises, and support the learning process with tooling.

Harrie Passier is assistant professor computer science at the Open Universiteit. He has
experience in teaching object oriented programming, functional programming, web pro-
gramming, object oriented design, and software engineering. His research interests in-
clude the use of procedural guidance in software development, testing and refactoring.


	Introduction
	Related work
	The SERF repository
	Adding exercises
	Tags and the knowledge graph
	Searching for and solving exercises

	The evaluation methodology and set-up
	Analysis of use of the repository
	Quantitative analysis
	Executed actions
	Student behavior
	Student-exercise submissions

	Qualitative analysis

	Discussion and future work
	Discussion
	Future work

	Appendix: Interview guide

