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Abstract. Programming students need to be informed about plagiarism and collusion. Hence, we
developed an assessment submission system to remind students about the matter. Each submission
will be compared to others and any similarities that do not seem a result of coincidence will be
reported along with their possible reasons. The system also employs gamification to promote early
and unique submissions. Nevertheless, the system might put unnecessary pressure as coincidental
similarities can still be reported. Further, it does not specifically cover self-plagiarism. We revisit the
system and shift our focus to report simulated similarities from student own submission instead of
reporting actual similarities across submissions. According to our evaluation with 390 students and
five quasi-experiments, students with simulated similarities are slightly more aware of plagiarism
and collusion, self-plagiarism in particular. Their awareness of the matter is somewhat acceptable
(around 75%) and they see the benefits of our assessment submission system.
Key words: code similarity, simulation, plagiarism, collusion, programming.

1. Introduction

In software development industry, code reuse is common for time-efficiency (Haefliger et
al., 2008) as not all parts of the software are written from scratch. Consequently, such a
reuse is promoted in academia. However, a number of limitations are imposed to ensure
that the reuse still supports student learning process (Zander et al., 2019).

Any reuse instances should be acknowledged (Pangestu and Simon, 2021) so that it
is not perceived as a breach of academic integrity in programming (Simon et al., 2013).
If the reused code is stolen from the original author(s), the breach is called plagiarism
(Fraser, 2014). Otherwise, it is collusion.

To mitigate the incidence of plagiarism and collusion, instructors need to educate stu-
dents about the matter and penalize those who breach academic integrity (Karnalim et al.,
2019). The former is usually conducted manually at the beginning of the course or before
issuing an assessment. The latter is conducted after the due date of assessments at which
all submissions are checked for originality. An automated similarity detector is typically
employed and suspicious submissions are manually investigated.
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We previously developed an assessment submission system (referred as INIT-SYS)
(Karnalim et al., 2023) that can help instructors in educating students about plagiarism
and collusion. Each time a student submits their work, it will be compared with other
submissions and any superficial similarities will be reported along with their possible
reasons. INIT-SYS employs gamification to further promote student engagement. Students
with INIT-SYS have better awareness of plagiarism and collusion. Further, they are less
likely to engage in such misconducts.

Despite the benefits, the current system has two limitations. First, as the system is
fully automated and long similarities can still be coincidental, the reported similarities
are sometimes not evident for raising suspicion. This might put unnecessary pressure to
students who are not involved in plagiarism and collusion, affecting their awareness of
the matter. It can also reduce the credibility of the system in reporting similarities though
students have already been informed that the detection is intentionally designed to be less
accurate (so that they cannot learn to trick common similarity detectors for identifying pla-
giarism and collusion). Second, as the system only report similarities across submissions
in a particular assessment, our previous studies show that students have low awareness of
self-plagiarism.

In response to the aforementioned gaps, we revisit INIT-SYS and shift our focus from
reporting actual similarities to simulated similarities (referred as SIMU-SYS). For each
submitted work, a simulation about superficial code similarities will be generated by dis-
guising some parts of the code. In such a manner, no pressure is given to students who
are not involved in plagiarism and collusion. Further, the credibility of the system is not
harmed as it focuses on simulated similarities. In addition, students are expected to have
higher awareness of self-plagiarism since the simulation is based on their own code.

Our study has three research questions:

• RQ1: Are students with SIMU-SYS more aware of plagiarism and collusion, self-
plagiarism in particular than students with INIT-SYS?

• RQ2: How aware are students with SIMU-SYS about plagiarism and collusion? Is it
affected by their programming skill?

• RQ3: What are student perspective about the benefits of SIMU-SYS?

RQ1 aims to highlight any similarities and differences of SIMU-SYS compared to its
predecessor (INIT-SYS). It measures whether students with simulated similarities have
better awareness of plagiarism and collusion than those with actual similarities. The dis-
cussion covers not only general awareness but also awareness of self-plagiarism, which
was low for students with actual similarities. RQ2 aims to capture overall awareness of
plagiarism and collusion mainly resulted from the use of SIMU-SYS, while considering
programming skill. It specifically reports which awareness aspects of plagiarism and col-
lusion that are high and low. The former is useful to know the strengths of SIMU-SYS
while the latter can be a reference for further improvement. RQ3 provides supportive evi-
dences about the benefits of SIMU-SYS via a questionnaire survey. It summarise student
confirmation about such benefits.
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2. Related Work

Academic integrity refers to actions that promote honesty, trust, fairness, respect, respon-
sibility, and courage (ICAI, 2018). Honesty can be demonstrated by being truthful and
giving appropriate credits. Trust can be demonstrated by clearly stating expectation and
being transparent in any processes. Fairness can be demonstrated by being consistent and
objective. Respect can be demonstrated by showing empathy and promoting active feed-
back. Responsibility can be demonstrated by being accountable for own actions. Courage
can be demonstrated by dealing with discomfort for something right.

Plagiarism and collusion are common breaches of academic integrity in programming.
They typically happen due to opportunities, student pressure, and student misrationaliza-
tion (Albluwi, 2019). Students can be tempted to do plagiarism or collusion if there are
opportunities to do so. Such opportunities can be reduced by personalizing assessments
(Bradley, 2020), varying assessments across course offerings (Simon, 2017), or generat-
ing different assessments for each student (Spinellis et al., 2007). It is also possible to
introduce post authentication for student works. Students can be required to present their
work (Halak and El-Hajjar, 2016) or to have one-on-one interview with the instructor
(Grunwald et al., 2015).

To help instructors identifying plagiarism and collusion cases, an automated similarity
detector can be employed. Adkins and Joyner (2022) presented a comprehensive workflow
about the use, especially to deal with large classes. Programming similarity detectors are
similar to those of text except that they focus more on comparing student submissions
to one another rather than comparing those to sources from the internet (Foltỳnek et al.,
2019; Lee et al., 2023). The programming similarity detectors can employ conventional
matching algorithms (Karnalim et al., 2022a), information retrieval algorithms (Ullah et
al., 2021), clustering algorithms (Cheers and Lin, 2023; Ďuračík et al., 2020), or classifi-
cation algorithms (Hosam et al., 2022). MOSS (Schleimer et al., 2003) and JPlag (Prechelt
et al., 2002) are two common examples of publicly available similarity detectors.

It is worth noting that Artificial Intelligence (AI) disrupts programming education
(Prather et al., 2023). It can provide more opportunities to cheat (or at least to disguise
the plagiarism or the collusion act) (Orenstrakh et al., 2023). Students can use Large Lan-
guage Models (LLMs) like Github Copilot (Dakhel et al., 2023) or ChatGPT (Kocoń et
al., 2023) to inappropriately help them completing assessments. They can also employ
code obfuscation tools (Huang et al., 2023) to disguise similarities between the copied
work and its original. A number of AI assistance detectors have been developed but their
effectiveness is satisfactory (Orenstrakh et al., 2023). Further improvements are needed.

Students can be stressed due to pressure, tempting them to do plagiarism or collusion
(Hellas et al., 2017). Pressure regarding task difficulty can be minimized by breaking down
large assessments to many smaller assessments (Allen et al., 2018). Time pressure can be
addressed by promoting early submissions via additional incentives (Spacco et al., 2013).

Students can be involved in plagiarism or collusion if the act is justified with wrong
rationales (e.g., reusing code from previous assessments without acknowledgment is ac-
ceptable as many students do it). Student misrationalization is generally addressed by in-
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forming students about academic integrity (Simon et al., 2018). Students need to be ex-
plicitly aware about which acts constitute of plagiarism or collusion. This can be part of
the curriculum or the course syllabus (Greening et al., 2004). However, in practice, such
information is briefly delivered either at the beginning of the course or right after issuing
an assessment (Simon et al., 2018).

A number of tools have been developed to remind students about academic integrity
and the futility of the breaches. Tsang et al. (2018) introduced a mobile application that
contains modules about ethics. It is also featured with a number of quizzes to test student
awareness of the matter.

Le et al. (2013) showed the futility of code disguises by allowing students to access
MOSS and JPlag similarity reports before final submission. This can inform students that
many superficial and syntactical changes will not fool common similarity detectors, dis-
couraging them to be involved in plagiarism and collusion.

Karnalim and Simon (2020) also presented a tool for showing the futility of code dis-
guises. The tool accepts a code file and then disguises some parts of it. Unlike common
code obfuscation tools, it ensures that the disguised parts are still readable. Since the tool
can be independently used, the disguises are limited to superficial variations.

We developed an assessment submission system that reports relatively long similar-
ities and their possible reasons per submission (referred as INIT-SYS) (Karnalim et al.,
2023). Short similarities are likely to be a result of coincidence, not plagiarism and col-
lusion (Mann and Frew, 2006). They might be a result of compilation requirement, le-
gitimately copied code, intuitive implementation, and suggested implementation (Simon
et al., 2020). For the purpose of privacy, all information about other students would be
anonymized. If no similarities could be reported, a simulation would be generated with
comparable information.

To promote student engagement, gamification was employed. Students earned game
points and badges by submitting work as unique and as early as possible. Uniqueness
aimed to discourage the incidence of plagiarism and collusion while earliness aimed to
reduce time pressure, a reason to plagiarize or collude. Ten students with the highest game
points would be shown in the leaderboard and non-game incentives (bonus marks or e-
money) would be provided for those in top five.

According to our evaluation, students with INIT-SYS were more aware of program-
ming plagiarism and collusion than those with the conventional approach (i.e., manually
informed by the instructors). Further, they were less likely to engage in plagiarism and
collusion as their submitted programs had lower similarity and fewer cases of plagiarism
and collusion were identified. In addition, they completed assessments earlier and engaged
more with INIT-SYS.

3. Method

This section discusses about SIMU-SYS, our modified assessment submission system and
how to address the three research questions.
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Fig. 1. Submission page of the system

3.1. SIMU-SYS, The Assessment Submission System

We further developed our assessment submission system (INIT-SYS) so that it reports sim-
ulated similarities instead of the actual ones (SIMU-SYS). This is expected to increase stu-
dent awareness of plagiarism and collusion since no pressure is given to students who are
not involved in plagiarism and collusion. It cam also promote awareness of self-plagiarism
as simulated similarities are entirely generated from student own submissions.

SIMU-SYS accepts Java or Python submissions at which each submission can be a
regular code file or a zip file with multiple code files. For the latter, all contained files will
be concatenated prior processed. Figure 1 shows the submission page and it is assigned
with a public link generated for each assessment. If the student has not logged in, they
need to enter username and password along with their work. Otherwise, they can simply
upload the work.

Each time a student submits their work, a number of code segments will be selected
from the submission in three steps. First, the submission is converted to code tokens with
the help of ANTLR (Parr, 2013). Second, code segments are formed by taking any iden-
tifier tokens that are at the start of code line, and merge all of their following tokens till
the length is no less than eight program statements and the last token is at the end of
code line. This way, the reported code segments do not look like coincidental matches.
Although students are informed that the reported similarities are part of simulation, it is
still important to ensure that the report is somewhat evident. Eight program statements is
defined as the minimum size threshold based on our manual observation on previous ex-
periments (Karnalim et al., 2023). Third, up to three formed segments are then randomly
selected. We limit the formed segments only to those that occur in less than half of the
submissions of all students. Otherwise, they are likely to be a result of legitimately copi-
able code (e.g., code for libraries or base structure) or common ways to solve a task (e.g.,
code for insertion sort in a task about implementing the sort).
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Fig. 2. Example of code disguises focusing on superficial variations

The selected code segments are then disguised. However, the applied disguises are lim-
ited to superficial variations nullified by common similarity detectors: comments, white
space, identifier names, constants, and some primitive data types (exclusive to Java).
Knowledge about such disguises are harmless for students. In total, there are 54 disguises:
24 are about comments, six are about white space, nine are about identifier names, two
are about data types, and 13 are about constants. Full list of the disguises can be seen in
our previous work (Karnalim et al., 2022b). Figure 2 shows an example of the code dis-
guises. The left side is the original code while the right side is the disguised one. Both are
semantically the same and they only differ in the capitalization, the blank newlines, and
the identifier names.

A report containing the submission, its disguised version, and information about pro-
gramming plagiarism and collusion will be generated and its public unique link will be
sent to the submitter via email. An example of the report can be seen in Figure 3. A menu
bar is shown on top at which the submitter can jump to the code quality report (will be
discussed briefly later), go back to the previous page, or move to the dashboard page. If
not logged in, the link to the dashboard page is replaced with a link for login. The top-left
panel contains metadata of the submission and general knowledge of plagiarism and col-
lusion. The top-right panel lists the disguised code segments. If one of them is selected,
the segment will be highlighted in the submitted code panel, its disguised version will
be shown on the code counterpart example, and its explanation of the disguises will be
displayed on the similarity explanation panel. The same behavior occurs when a code
segment is selected from the submitted code panel.

We acknowledge the importance of warning students who are clearly involved in pla-
giarism and collusion. Hence, if a submission has at least half of its content similar to
other submissions and the similarities are not common across all submissions, involved
students will be warned by reporting actual similarities.

Before a simulation is generated, the submission is compared to other submissions
that have been already submitted for given assessment. The comparison works in four
stages. First, the submission is converted to syntax tree, a representation that can capture
program structure, with ANTLR. The syntax tree is then linearised to token strings by
concatenating N tokens in a preorder manner. N represents approximate number of tokens
for eight program statements; it is defined as 80 for Java and 40 for Python. Second, the
token strings are compared to those of other submissions and they will be marked as
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Fig. 3. Example of simulation report

matches if found. Third, any matches that can be found in at least half of all submissions are
ignored as they are likely to be coincidental. Fourth, for each submission, any remaining
adjacent matches are merged and if all matches take more than half of that submission, a
similarity report will be generated.

The similarity report will be generated in the same manner as the simulation report
except that the selected code segments are actual similarities. Further, the disguises are
derived from variations between the selected code segments and their match counterparts.
For example, if a code segment is considered as a match with that of another submission
and its variations are comments and white space, then the disguises can be about removing
all comments and adding more blank lines.

The similarity report contains comparable information to that of simulation report.
However, the disguised contents are replaced with actual similarities from other submis-
sions. An example of the similarity report can be seen in Figure 4. General metadata and
justifications of reporting can be seen on the top-left panel. The submitted code can be
seen on the bottom-left panel. If a code segment is selected, the segment will be high-
lighted in red instead of green (as in the simulation report). This informs the student that
the reported similarities are real, not just a simulation. Selecting a code segment will also
trigger the system to show the segment’s disguised version (on the code counterpart ex-
ample panel) and its explanation (on the similarity explanation panel). A table listing all
reported code segments is provided on the top-right panel. The menu bar is similar to that
of the simulation report.

We allow resubmission by default. However, instructors can still identify students at-
tempting to evade detection of plagiarism and collusion since they have access to all sub-
missions.

To further promote student engagement, both SIMU-SYS and INIT-SYS can be fea-
tured with gamification. Per assessment, each student gets game points that are equivalent
to the percentage of uniqueness times 100 plus number of hours before the deadline. If a
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Fig. 4. Example of similarity report

student has more than one submission, the points will be averaged. Top-10 students with
the highest game points will be shown in a leaderboard.

Students can also obtain badges by fulfilling certain conditions. There are a total of
19 badges. Twelve of them are based on self-progress like submitting a work or opening
simulation reports. Six badges are based on competition like submitting the most unique
submissions. The remaining one is based on group progress; participating in reaching
expected cumulative uniqueness points for an assessment. Each badge equals to 100 game
points.

SIMU-SYS and INIT-SYS are not intended to help students trick the detection of pla-
giarism and collusion with common detectors such as MOSS and JPlag. All reported vari-
ations are limited to superficial level and they are commonly nullified by such detectors.
Further, as our system immediately reports the similarities, the detection is less accurate;
it does not rely on a complete set of submissions. In addition, no information about other
involved students are reported.

It is worth noting that SIMU-SYS and and INIT-SYS aim to remind students about
plagiarism and collusion. It does not replace the role of instructors maintaining academic
integrity in their courses. Instructors still need to inform students about the matter manu-
ally at the beginning of the course or prior issuing an assessment. They are also expected
to penalize students who are involved in plagiarism and collusion according to the course
policy. All submissions need to be compared one another with a common detection tool
after the due date and any suspicious submissions should be manually checked for the
possibility of misconducts.

Since SIMU-SYS was derived from INIT-SYS, they both essentially have similar fea-
tures. In addition to shifting from reporting actual similarities to the simulated ones,
SIMU-SYS also has several exclusive features. First, instructors and students can be co-
instructors for other courses. This facilitates team teaching and involvement of tutors.
Second, assessments can be set to accept late submissions. This might be needed for as-
sessments with lenient deadline. Third, for each assessment, the system lists students who
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Table 1
Involved courses with their students and responses; 2022 offerings employ SIMU-SYS while 2021 offerings

employ its predecessor (INIT-SYS with or without gamification)

Course Prog. level 2022 2021
Students Responses Students Responses

IT introductory programming 1 55 45 45 43
IT data structure 2 34 29 33 31
IT machine intelligence Adv 33 28 NA NA
IS introductory programming 1 38 25 35 30
IS object oriented programming 2 42 34 37 31
IS business application prog. Adv 19 11 19 15

have not submitted the work. Instructors might use that information to remind the students.
Fourth, a code quality report with static analysis will be provided for each submission. The
analysis covers 32 Java code quality issues and 20 Python code quality issues. Further de-
tails can be seen on its corresponding publication (Karnalim et al., 2022b).

In terms of aspects of academic integrity, SIMU-SYS can promote trust (being trans-
parent about expectation of plagiarism and collusion), honesty (stressing the need to put
appropriate credit), and responsibility (being accountable for own plagiarism acts).

3.2. Experimental Setup

Six programming courses employed SIMU-SYS in 2022 and its predecessors (INIT-SYS
with or without gamification) in 2021. The details can be seen in Table 1. The courses
were from either information technology (IT) or information system (IS) major. IT ma-
jor is more focused to algorithms and programming while IS major is focused on system
and business analysis. They are both enrolled by undergraduates and are expected to be
completed in four years (including thesis). Programming level 1 refers to the first pro-
gramming course in the major; programming level 2 refers to the second programming
course; programming level advanced refers to a programming course offered near the end
of the study (third year). While level 1 can be referred as CS1, level 2 cannot be referred
as CS2 (Hertz, 2010) since for IS major, it is object oriented programming instead of data
structure.

For IT major, introductory programming is the first programming course for students.
It covers variables, branching, looping, functions, array, matrix, searching, and sorting in
Python. One lab and one homework assessments were given weekly; the former should be
completed in a two-hour lab sessions while the latter could be completed at home in given
week. The course was enrolled by 55 students in 2022 and 45 students in 2021. The former
employed SIMU-SYS while the latter employed INIT-SYS but without gamification.

Data structure is the second IT programming course and it covers linear data structures,
linked list in particular. Per week, students were expected to complete one lab and one
homework assessments covering the same task: implementing a data structure in Python.
Homework assessments were intended to encourage students completing their work that
could not be completed in a two-hour lab session. The 2022 batch has 34 students enrolled
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while the 2021 batch only has 33 students. SIMU-SYS was used in 2022 while INIT-SYS
was used in 2021.

Machine intelligence is an advanced programming course for IT undergraduates, typ-
ically offered to third-year students. The assessments were designed similarly to those of
data structure except that the topics were about implementing artificial intelligence with
some Python libraries. SIMU-SYS was employed to the 2022 batch with 33 students. None
of its predecessors were employed in the 2021 batch and thus such a batch is not included
in our analysis.

Introductory programming is also the first programming course for IS major. The as-
sessment design was the same with that of IT introductory programming. However, search-
ing and sorting were excluded, and the solutions should be written in both Java and Python.
Thirty-eight students enrolled to the 2022 batch with SIMU-SYS while thirty-three stu-
dents enrolled to the 2021 batch with INIT-SYS.

Object oriented programming is the second IS programming course, covering object
oriented concepts in Java (including classes, inheritance, and polymorphism), graphical
user interface (GUI) with Java Swing, and databases with SQL. It employed the same as-
sessment design as IT introductory programming. For GUI-related assessments, both lab
and homework assessments covered the same task. It was intended to encourage students
completing their work that could not be completed in the lab session. The 2022 batch has
42 students using SIMU-SYS while the 2021 batch has 37 students using INIT-SYS but
without gamification.

Business application programming is an advanced IS programming course covering
Java application with databases. The assessment design was similar to that of IT data
structure. Both 2022 and 2021 batches have 19 students; the former employed SIMU-SYS
while the latter employed INIT-SYS but without gamification.

For all offerings, students were informed about academic integrity at the beginning
of the course. Sometimes, instructors reminded them about the matter while completing
assessments. Either SIMU-SYS or INIT-SYS was used for all programming assessments.

Submissions were checked for plagiarism and collusion with the help of an automated
similarity detector. Any submissions with high similarity were reported and then manually
investigated by the instructor(s) or the tutor(s). Students who seemed to be involved in
plagiarism or collusion would get zero marks for their corresponding assessments and
they would be reminded. If such misconducts were repeated, heavier penalties would be
applied.

Appropriate ethics approval has been granted for the study. Anonymous collective
analysis is permitted. Analysis was performed with the help of Microsoft Excel and data
collection was performed with the help of Google Form.

3.3. Addressing RQ1: Awareness of Plagiarism and Collusion on Simulated Similarities

RQ1 is about whether students with simulated similarities are more aware of plagiarism
and collusion, self-plagiarism in particular than students with actual similarities. This was
addressed via quasi-experiments comparing students with simulated similarities to those
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Table 2
Survey scenarios about programming plagiarism and collusion (Karnalim et al., 2023)

ID Scenario

S01 Purchasing code written by other students to incorporate into your own work
S02 Paying another student to write the code and submitting it as your own work
S03 Basing an assessment largely on work that you wrote and submitted for a previous course,

without acknowledging this
S04 Incorporating the work of another student without their permission
S05 Copying another student’s code and changing it so that it looks quite different
S06 Copying an early draft of another student’s work and developing it into your own
S07 Discussing with another student how to approach a task and what resources to use, then devel-

oping the solution independently
S08 Discussing the detail of your code with another student while working on it
S09 Showing troublesome code to another student and asking them for advice on how to fix it
S10 Asking another student to take troublesome code and get it working
S11 After completing an assessment, adding features that you noticed when looking at another stu-

dent’s work

with actual similarities. Five 2022 course offerings (which were with simulated similari-
ties, SIMU-SYS) were paired with their corresponding 2021 offerings (which were with
actual similarities). Both 2022 and 2021 offerings have comparable number of students
(see Table 1) and comparable assessment designs. IT machine intelligence was excluded
since its 2021 offering employed neither SIMU-SYS nor INIT-SYS.

At the end of each course offering, students were invited to complete a voluntary sur-
vey about plagiarism and collusion. It consisted of 11 scenarios at which students needed
to determine whether the scenarios were academically acceptable. They could choose ‘do
not know’ if they were uncertain about the response. The scenarios can be seen in Table
2. These questions mainly cover honesty and responsibility aspects of academic integrity
while some of them implicitly cover trust. S01 and S02 are about contract cheating, pur-
chasing code or paying someone to do the work. S03 is about self-plagiarism, reusing own
work without sufficient acknowledgment. S04 is about general plagiarism. S05 is about
disguising copied work. S06 is about partial copying. S07 and S08 are about discussion
for completing the work. S09 and S10 are about asking help for troublesome code. S11
is about replicating features. Correct responses were derived from similar survey used in
our previous study (Karnalim et al., 2023) and discussed among instructors of 2022 and
2021 course offerings. S01-S06 and S10 are not academically acceptable for individual
assessments while the rest are.

Number of responses per course offering can be seen in Table 1. The proportion to
total students is relatively high. The responses were then analyzed in two steps. First, the
average percentage of correct responses for both 2022 and 2021 offerings were calculated
as a whole set of questions and individually. Second, for each course, its responses from
2022 offering was compared to those of 2021 offering; all significant differences (validated
with an unpaired two-tailed t-test with 95% confidence rate) were reported and discussed.

For IT data structure and IS introductory programming, the 2021 offerings employed
INIT-SYS. Hence, any differences can be treated as a result of showing simulated simi-
larities instead of the actual ones. However, for IT introductory programming, IS object
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oriented programming, and IS business application programming, the 2021 offerings em-
ployed INIT-SYS without gamification. The differences can be a result of introducing gam-
ification in addition to showing simulated similarities. On INIT-SYS experiments, students
with gamification had slightly higher awareness of plagiarism and collusion especially S01
than students without gamification (Karnalim et al., 2023). Hence, any improvements on
overall percentage of correct responses and S01 would not be entirely linked to the impact
of showing simulated similarities in the analysis.

While it is interesting to measure student awareness of plagiarism and collusion based
on the number of identified cases, it was not possible as 2022 offerings were delivered in a
hybrid manner (both online and onsite) while 2021 offerings were delivered fully online.
Onsite sessions were more supervised and instructors could consider more information
such as student behavior and interactions for identifying cases of plagiarism and collusion.

Being more aware of plagiarism and collusion, students are expected to promote at
least three aspects of academic integrity: trust, honesty, and responsibility.

This experiment was different to that from our previous study (Karnalim et al., 2023).
Our current experiment was more focused on measuring the impact of shifting from re-
porting actual similarities (INIT-SYS) to reporting simulated similarities (SIMU-SYS).
Our previous experiment was more focused on measuring the impact of gamification and
employing INIT-SYS. Further, our previous experiment relied on data collected one year
earlier. Any differences observed from our current experiment were more likely to be a
result of shifting from actual to simulated similarities.

3.4. Addressing RQ2: Overall Degree of Awareness of Plagiarism and Collusion

RQ2 is about degree of awareness of students with simulated similarities regarding pla-
giarism and collusion, and whether it is affected by students’ programming skill. This was
addressed with the same survey for addressing RQ1. However, only percentages of cor-
rect responses of 2022 course offerings (SIMU-SYS) were reported. Further, they were
grouped based on the course programming level (1, 2, or advanced). Scenarios with the
highest percentages of correct responses would be discussed along with scenarios with the
lowest percentages of correct responses. To test the effect of programming skill, results
for each programming level would be compared to those of its lower level. Any statistical
differences were validated with an unpaired two-tailed t-test with 95% confidence rate.

This experiment was exclusive to our current study. Similar to RQ1, students with
high awareness of plagiarism and collusion might be able to promote trust, honesty, and
responsibility.

3.5. Addressing RQ3: Benefits of Our Assessment Submission System that Reports
Simulated Similarities?

RQ3 is about student perspective regarding the benefits of our assessment submission
system that reports simulated similarities (SIMU-SYS). This was addressed by asking
six additional survey questions (see Table 3) along with the RQ1 survey for 2022 course
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Table 3
Survey questions about student perspectives

ID Statement

S12 The assessment submission system helps me to understand plagiarism and collusion
S13 The assessment submission system discourages me to be involved in plagiarism and collusion
S14 Both reported simulated and actual similarities are reasonable for raising suspicion
S15 Information given in simulated similarities are helpful for me to understand plagiarism and

collusion
S16 Information given in actual similarities are helpful for me to understand plagiarism and collu-

sion
S17 Based on your observation on the reported similarities, which factors can entail coincidental

similarities?

offerings that employed SIMU-SYS. For S12-S16, students needed to show their agree-
ment toward a particular statement in a 5-point Likert scale (1 for ‘strongly disagree’, 2
for ‘disagree’, 3 for ‘neutral’, 4 for ‘agree’, and 5 for ‘strongly agree’). The results would
be analyzed based on the average score of the Likert scale. Any phrases of ‘assessment
submission system‘ referred to SIMU-SYS, the system they were using.

S12 and S13 were about the goals of SIMU-SYS: helping students to understand pla-
giarism and collusion; and discouraging them to be involved in such misconducts. S14
asked about how reasonable the reported similarities, whether they were justifiable. S15
asked about how helpful information given in the simulation reports. S16 was essentially
the same to S15 except that it was for the similarity reports. S17 was the only question
where students could choose one or more responses. It asked about factors affecting coin-
cidental similarities. The options were derived from a study about common code (Simon et
al., 2020): compilation requirement, legitimately copied code, intuitive implementation,
suggested implementation, trivial tasks, and strongly directed assessment specifications.
An ‘other’ option was also provided so that students could list their own reasons if any.
The responses would be analyzed based on occurrence frequencies.

This experiment was exclusive to our current study. By explicitly acknowledging the
benefits of SIMU-SYS, students are expected to have values in trust and honesty.

4. Results and Discussion

This section reports our findings from addressing the research questions and discusses
them.

4.1. Awareness of Plagiarism and Collusion on Simulated Similarities

Figure 5 shows that students with simulated similarities (SIMU-SYS) had slightly better
awareness of plagiarism and collusion to students with actual similarities (INIT-SYS with
or without gamification). In IS introductory programming and IS object oriented program-
ming, overall percentage of correct responses was increased in a statistically significant
manner by 6% (p = 0.03) and 11% (p = 0.01) respectively. Increase on IS object oriented
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Fig. 5. Statistically significant changes from quasi-experiments; SIMU-SYS vs INIT-SYS; IP refers to introduc-
tory programming, DS refers to data structure, OOP refers to object oriented programming, and BAP refers to
business application programming

programming was larger since the differences between both groups also included gamifi-
cation, which seemed to positively affect overall awareness (Karnalim et al., 2023). The
improvement was not substantial since in both SIMU-SYS and INIT-SYS, each student
still got a similarity report (regardless whether it was just a simulation or not) at which
they could learn about plagiarism and collusion.

Students with simulated similarities had better awareness of self-plagiarism. S03 ex-
perienced statistically significant improvement on three quasi-experiments: IT introduc-
tory programming (p = 0.01 with 27% improvement), IT data structure (p < 0.01 with
40% improvement), and IS introductory programming (p = 0.01 with 23% improvement).
In simulated similarities, students were explicitly informed that the disguised code were
from their own submissions. They might realize that code similarities could be a result of
reusing own code and such reuse needed acknowledgment.

When other scenarios were individually analyzed, students with simulated similarities
occasionally had higher awareness on not purchasing code (S01), not paying another stu-
dent to complete assessments (S02), and replicating features (S11). S01 improved aware-
ness might be a result of higher engagement introduced by gamification (Karnalim et al.,
2023), not replacing actual similarities with the simulated ones.

S02 and S11 were improved since students involved in plagiarism and collusion would
feel more warned. SIMU-SYS only generated actual similarities for obvious cases of pla-
giarism and collusion. Submission written by another student (S02) was likely to be obvi-
ously similar to their own. Replicating features (S11) did not always entail the same code,
although it was only applicable for complex features. As seen in Table ??, S11 awareness
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Fig. 6. Student awareness of plagiarism and collusion per programming level (1, 2, or advanced)

was increased on IS business application programming (an advanced course) but it was
reduced on IT introductory programming.

Other scenarios at which students with simulated similarities occasionally had lower
awareness on are not incorporating another student’s work without permission (S04), not
using another student’s draft as the basis of work (S06), and not asking another student to
fix the code (S10). SIMU-SYS seldom reported S04, S06 and S10 as actual similarities as
they did not entail excessive similarities.

S08 awareness was decreased on IT data structure since assessments of students with
simulated similarities were slightly more constrained: class and method names were de-
fined. To avoid suspicion of plagiarism and collusion, students might be more reluctant
to discuss the details of their work. The solutions were more likely to be similar although
the similarities were common and would not reported.

4.2. Overall Degree of Awareness of Plagiarism and Collusion

Figure 6 depicts that in general, student awareness of plagiarism and collusion was some-
what acceptable: 74% for level 1 programming courses, 76% for level 2 programming
courses, and 76% for advanced level programming courses. They were comparable across
programming levels; an unpaired two-tailed t-test with 95% confidence rate showed that
the differences were insignificant. Student awareness was not heavily affected by program-
ming skill.

For level 1 programming (IT and IS introductory programming), students were the
most aware of S09 (97%), S02 (96%), S04 (96%), and S07 (96%). Students were aware
that discussing how to approach a task (S07) and asking for advice (S09) were both al-
lowed as the code was still written independently. They were also aware that incorporating
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another student’s work (S04) was not acceptable though it was seldom reported by SIMU-
SYS. Some students might be aware about the matter since permission was expected when
using other students’ work. In IT introductory programming, S04 awareness was reduced
when actual similarities were replaced with the simulated ones (see Table ??. However,
the awareness was still relatively high (88%).

Paying another student to complete an assessment (S02) was another scenario at which
students were most aware of. The submission could be excessively similar to that student’s
own and then reported by the system.

Although students had higher awareness of self-plagiarism (S03), the percentage of
correct responses was still relatively low (33%). SIMU-SYS should be updated so that
it can report historical similarities across assessments and even course offerings. Student
awareness of not using another student’s draft as the basis of their work (S06) and not
asking another student to fix troublesome code (S10) were also relatively low. This was
probably because both scenarios seldom resulted in excessive similarities. Another way
to inform students about the matter is needed on SIMU-SYS.

As seen in Figure 6, students in level 2 programming courses had comparable aware-
ness to those of students in level 1 courses. S02, S04, S07, and S09 were scenarios students
most aware of while S03, S06, and S10 were scenarios students least aware of.

When observed per scenario, students in level 2 programming courses had lower
awareness of discussing the details of the code while working on it (S08) than students in
level 1 courses (p = 0.04). The assessments introduced structures and templates to follow.
Some students might be worried that such a discussion could result in similar solutions,
though common code was automatically excluded by SIMU-SYS.

Introduced structures and templates to follow were also the reason why students in
level 2 programming courses were more aware of not asking another student to fix the
code (S10 with p = 0.04). The resulted code was more likely to be similar to the student’s.

Students in advanced level programming courses had comparable overall awareness of
plagiarism and collusion to those in level 2 programming courses. Statistically significant
differences were only observed on S04 (p< 0.01) and S08 (p = 0.04). Students in advanced
level programming had lower awareness of not incorporating the work of another student
(S04) than those in level 2 programming. Advanced assessments expected long solutions;
incorporating another student’s work was less likely to be reported as the proportion of
the incorporated work toward the whole submission was typically small.

Students in advanced level programming had higher awareness of discussing the de-
tails of the code while working on it (S08). Advanced assessments expected complex
solutions with many variations. It was unlikely that such a discussion would result in the
same solutions.

4.3. Benefits of The Assessment Submission System that Reports Simulated Similarities

Figure 7 shows that students generally agreed that SIMU-SYS helped them to understand
programming plagiarism and collusion (S12 with 4.1 of 5). It prevented them from doing
such misconduct (S13 with 4.4 of 5). SIMU-SYS informed students about plagiarism and
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Fig. 7. Student perspective of benefits of SIMU-SYS

collusion and that information might discourage them to do plagiarism or collusion. Both
goals of SIMU-SYS were acknowledged by the students.

Students benefited from both simulation reports (S15 with 4 of 5) and similarity reports
(S16 with 3.9 of 5). These reports provided information about plagiarism and collusion,
and some examples of code similarities. The reported similarities looked reasonable for
them (S14 with 3.8 of 5). The similarities were unlikely to be a result of coincidence and
they were relatively long.

Students were aware that coincidental similarities can be a result of legitimately copied
code (71%), suggested implementation (74%), trivial tasks (74%), and strongly directed
assessment specifications (72%) However only some of them were aware that compilation
requirement (56%) and intuitive implementation (36%) could also entail coincidental sim-
ilarities. Instructors might want to remind them about the matter in some assessments.

Four ‘other’ responses were discovered. One of them could be mapped to intuitive
implementation while the other three were about using the same code from internet (2%).
Search engines might recommend the same site for students while addressing a particular
programming issue. Instructors might inform students that this case might happen but it
was acceptable so long as the use of the resource was allowed and acknowledged.

4.4. Discussion

RQ1 asks whether students with simulated similarities are more aware of plagiarism and
collusion, self-plagiarism in particular than students with actual similarities. Our experi-
ments showed that students with simulated similarities are a little bit more aware of pla-
giarism and collusion. In two of five quasi-experiments, the overall awareness was slightly
increased (9% in average). They were also more aware of self-plagiarism as in three quasi-
experiments, such awareness was improved by 30% in average.

Students with SIMU-SYS can be more aware of not purchasing code, not paying an-
other student to complete assessments, and replicating features. However, they might be
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less aware of not incorporating another student’s work without permission, not using an-
other student’s draft as the basis of work, and not asking another student to fix the code.
Each was confirmed by one quasi-experiment.

RQ2 asks how aware students with simulated similarities about plagiarism and col-
lusion and whether it is affected by their programming skill. Our surveys reported that
such students are somewhat aware of plagiarism and collusion with around 75% correct
responses. The overall degree of awareness was comparable one another across program-
ming levels with no statistical significance was found. Students at a particular program-
ming level might have better awareness on some scenarios than another.

RQ3 asks for supportive evidences about the benefits of SIMU-SYS. Our surveys
showed that students generally agreed that SIMU-SYS helped them to understand pla-
giarism and collusion, discouraging them to do both misconducts. They believed both
simulation and similarity reports are helpful. Further, the reported simulated and actual
similarities look reasonable. Students were aware that coincidental similarities can oc-
cur due to various reasons including legitimately copied code, suggested implementation,
trivial tasks, and strongly directed assessment specifications.

5. Limitations

Our study has a number of limitations. First, while students with SIMU-SYS were treated
similarly to those with INIT-SYS, we acknowledged that the reported differences might
be slightly affected by change in the course delivery mode, from online (2021) to hy-
brid (2022). Second, though the study was performed on six courses, these courses were
from a single institution in a particular country. The findings might not be applicable to
other courses and institutions. Third, like many quasi-experiments, we acknowledge that
unknown external factors might affect our findings.

6. Conclusions and Future Work

We present SIMU-SYS, an assessment submission system that simulates similarities in-
stead of reporting the actual ones. Our evaluation shows that such a modification slightly
increase student awareness of plagiarism and collusion, self-plagiarism in particular. Stu-
dents are relatively aware of plagiarism and collusion with around 75% correct response
rate and it is only slightly affected by programming skill. They also agreed about the ben-
efits of SIMU-SYS and they are aware of some reasons for coincidental similarities.

For future work, we plan to further promote student awareness of plagiarism and col-
lusion by employing small quizzes as part of the gamification. This might encourage stu-
dents to think further about the matter. We are also interested to replicate the study in other
courses and institutions with the same course delivery mode.
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