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Abstract. Programming students need to be informed about plagiarism and collusion. Hence, we 
developed an assessment submission system to remind students about the matter. Each submission 
will be compared to others and any similarities that do not seem a result of coincidence will be 
reported along with their possible reasons. The system also employs gamification to promote early 
and unique submissions. Nevertheless, the system might put unnecessary pressure as coincidental 
similarities can still be reported. Further, it does not specifically cover self-plagiarism. We revisit 
the system and shift our focus to report simulated similarities from student own submission in-
stead of reporting actual similarities across submissions. According to our evaluation with 390 stu-
dents and five quasi-experiments, students with simulated similarities are slightly more aware of 
plagiarism and collusion, self-plagiarism in particular. Their awareness of the matter is somewhat 
acceptable (around 75%) and they see the benefits of our assessment submission system. 
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1. Introduction 

In software development industry, code reuse is common for time-efficiency (Haefliger 
et al., 2008) as not all parts of the software are written from scratch. Consequently, such 
a reuse is promoted in academia. However, a number of limitations are imposed to en-
sure that the reuse still supports student learning process (Zander et al., 2019). 

Any reuse instances should be acknowledged (Pangestu and Simon, 2021) so that it 
is not perceived as a breach of academic integrity in programming (Simon et al., 2013). 
If the reused code is stolen from the original author(s), the breach is called plagiarism 
(Fraser, 2014). Otherwise, it is collusion. 

To mitigate the incidence of plagiarism and collusion, instructors need to educate 
stu dents about the matter and penalize those who breach academic integrity (Karnalim 
et al., 2019). The former is usually conducted manually at the beginning of the course or 
before issuing an assessment. The latter is conducted after the due date of assessments 
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at which all submissions are checked for originality. An automated similarity detector is 
typically employed and suspicious submissions are manually investigated. 

We previously developed an assessment submission system (referred as INIT-SYS) 
(Karnalim et al., 2023) that can help instructors in educating students about plagiarism 
and collusion. Each time a student submits their work, it will be compared with other 
submissions and any superficial similarities will be reported along with their possible 
reasons. INIT-SYS employs gamification to further promote student engagement. Stu-
dents with INIT-SYS have better awareness of plagiarism and collusion. Further, they 
are less likely to engage in such misconducts. 

Despite the benefits, the current system has two limitations. First, as the system is 
fully automated and long similarities can still be coincidental, the reported similarities 
are sometimes not evident for raising suspicion. This might put unnecessary pressure to 
students who are not involved in plagiarism and collusion, affecting their awareness of 
the matter. It can also reduce the credibility of the system in reporting similarities though 
students have already been informed that the detection is intentionally designed to be 
less accurate (so that they cannot learn to trick common similarity detectors for iden-
tifying pla giarism and collusion). Second, as the system only report similarities across 
submissions in a particular assessment, our previous studies show that students have low 
awareness of self-plagiarism. 

In response to the aforementioned gaps, we revisit INIT-SYS and shift our focus 
from reporting actual similarities to simulated similarities (referred as SIMU-SYS). 
For each submitted work, a simulation about superficial code similarities will be gen-
erated by dis guising some parts of the code. In such a manner, no pressure is given to 
students who are not involved in plagiarism and collusion. Further, the credibility of 
the system is not harmed as it focuses on simulated similarities. In addition, students 
are expected to have higher awareness of self-plagiarism since the simulation is based 
on their own code. 

Our study has three research questions: 
RQ1: ●  Are students with SIMU-SYS more aware of plagiarism and collusion, self-
plagiarism in particular than students with INIT-SYS? 
RQ2: ●  How aware are students with SIMU-SYS about plagiarism and collusion? 
Is it affected by their programming skill? 
RQ3: ●  What are student perspective about the benefits of SIMU-SYS? 

RQ1 aims to highlight any similarities and differences of SIMU-SYS compared to its 
predecessor (INIT-SYS). It measures whether students with simulated similarities have 
better awareness of plagiarism and collusion than those with actual similarities. The dis-
cussion covers not only general awareness but also awareness of self-plagiarism, which 
was low for students with actual similarities. RQ2 aims to capture overall awareness of 
plagiarism and collusion mainly resulted from the use of SIMU-SYS, while considering 
programming skill. It specifically reports which awareness aspects of plagiarism and 
col lusion that are high and low. The former is useful to know the strengths of SIMU-SYS 
while the latter can be a reference for further improvement. RQ3 provides supportive 
evi dences about the benefits of SIMU-SYS via a questionnaire survey. It summarise 
student confirmation about such benefits. 
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2. Related Work 

Academic integrity refers to actions that promote honesty, trust, fairness, respect, 
respon sibility, and courage (ICAI, 2018). Honesty can be demonstrated by being 
truthful and giving appropriate credits. Trust can be demonstrated by clearly stating 
expectation and being transparent in any processes. Fairness can be demonstrated by 
being consistent and objective. Respect can be demonstrated by showing empathy and 
promoting active feed back. Responsibility can be demonstrated by being accountable 
for own actions. Courage can be demonstrated by dealing with discomfort for some-
thing right. 

Plagiarism and collusion are common breaches of academic integrity in program-
ming. They typically happen due to opportunities, student pressure, and student 
misrationaliza tion (Albluwi, 2019). Students can be tempted to do plagiarism or col-
lusion if there are opportunities to do so. Such opportunities can be reduced by per-
sonalizing assessments (Bradley, 2020), varying assessments across course offerings 
(Simon, 2017), or generat ing different assessments for each student (Spinellis et al., 
2007). It is also possible to introduce post authentication for student works. Students 
can be required to present their work (Halak and El-Hajjar, 2016) or to have one-on-
one interview with the instructor (Grunwald et al., 2015). 

To help instructors identifying plagiarism and collusion cases, an automated simi-
larity detector can be employed. Adkins and Joyner (2022) presented a comprehen-
sive workflow about the use, especially to deal with large classes. Programming simi-
larity detectors are similar to those of text except that they focus more on comparing 
student submissions to one another rather than comparing those to sources from the 
internet (Folt`ynek et al., 2019; Lee et al., 2023). The programming similarity detec-
tors can employ conventional matching algorithms (Karnalim et al., 2022a), informa-
tion retrieval algorithms (Ullah et al., 2021), clustering algorithms (Cheers and Lin, 
2023; Ďuračík et al., 2020), or classifi cation algorithms (Hosam et al., 2022). MOSS 
(Schleimer et al., 2003) and JPlag (Prechelt et al., 2002) are two common examples 
of publicly available similarity detectors. 

It is worth noting that Artificial Intelligence (AI) disrupts programming educa-
tion (Prather et al., 2023). It can provide more opportunities to cheat (or at least to 
disguise the plagiarism or the collusion act) (Orenstrakh et al., 2023). Students can 
use Large Lan guage Models (LLMs) like Github Copilot (Dakhel et al., 2023) or 
ChatGPT (Kocoń et al., 2023) to inappropriately help them completing assessments. 
They can also employ code obfuscation tools (Huang et al., 2023) to disguise simi-
larities between the copied work and its original. A number of AI assistance detectors 
have been developed but their effectiveness is satisfactory (Orenstrakh et al., 2023). 
Further improvements are needed. 

Students can be stressed due to pressure, tempting them to do plagiarism or col-
lusion (Hellas et al., 2017). Pressure regarding task difficulty can be minimized by 
breaking down large assessments to many smaller assessments (Allen et al., 2018). 
Time pressure can be addressed by promoting early submissions via additional incen-
tives (Spacco et al., 2013). 
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Students can be involved in plagiarism or collusion if the act is justified with wrong 
rationales (e.g., reusing code from previous assessments without acknowledgment is 
ac ceptable as many students do it). Student misrationalization is generally addressed by 
informing students about academic integrity (Simon et al., 2018). Students need to be 
ex plicitly aware about which acts constitute of plagiarism or collusion. This can be part 
of the curriculum or the course syllabus (Greening et al., 2004). However, in practice, 
such information is briefly delivered either at the beginning of the course or right after 
issuing an assessment (Simon et al., 2018). 

A number of tools have been developed to remind students about academic integrity 
and the futility of the breaches. Tsang et al. (2018) introduced a mobile application that 
contains modules about ethics. It is also featured with a number of quizzes to test student 
awareness of the matter. 

Le et al. (2013) showed the futility of code disguises by allowing students to access 
MOSS and JPlag similarity reports before final submission. This can inform students 
that many superficial and syntactical changes will not fool common similarity detectors, 
dis couraging them to be involved in plagiarism and collusion. 

Karnalim and Simon (2020) also presented a tool for showing the futility of code dis-
guises. The tool accepts a code file and then disguises some parts of it. Unlike common 
code obfuscation tools, it ensures that the disguised parts are still readable. Since the tool 
can be independently used, the disguises are limited to superficial variations. 

We developed an assessment submission system that reports relatively long similar-
ities and their possible reasons per submission (referred as INIT-SYS) (Karnalim et al., 
2023). Short similarities are likely to be a result of coincidence, not plagiarism and col-
lusion (Mann and Frew, 2006). They might be a result of compilation requirement, le-
gitimately copied code, intuitive implementation, and suggested implementation (Simon 
et al., 2020). For the purpose of privacy, all information about other students would be 
anonymized. If no similarities could be reported, a simulation would be generated with 
comparable information. 

To promote student engagement, gamification was employed. Students earned game 
points and badges by submitting work as unique and as early as possible. Uniqueness 
aimed to discourage the incidence of plagiarism and collusion while earliness aimed to 
reduce time pressure, a reason to plagiarize or collude. Ten students with the highest 
game points would be shown in the leaderboard and non-game incentives (bonus marks 
or e-money) would be provided for those in top five. 

According to our evaluation, students with INIT-SYS were more aware of program-
ming plagiarism and collusion than those with the conventional approach (i.e., manually 
informed by the instructors). Further, they were less likely to engage in plagiarism and 
collusion as their submitted programs had lower similarity and fewer cases of plagia-
rism and collusion were identified. In addition, they completed assessments earlier and 
engaged more with INIT-SYS. 
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3. Method 

This section discusses about SIMU-SYS, our modified assessment submission system 
and how to address the three research questions. 

3.1. SIMU-SYS, The Assessment Submission System 

We further developed our assessment submission system (INIT-SYS) so that it reports 
sim ulated similarities instead of the actual ones (SIMU-SYS). This is expected to in-
crease stu dent awareness of plagiarism and collusion since no pressure is given to stu-
dents who are not involved in plagiarism and collusion. It cam also promote awareness 
of self-plagiarism as simulated similarities are entirely generated from student own 
submissions. 

SIMU-SYS accepts Java or Python submissions at which each submission can be a 
regular code file or a zip file with multiple code files. For the latter, all contained files 
will be concatenated prior processed. Fig. 1 shows the submission page and it is as-
signed with a public link generated for each assessment. If the student has not logged 
in, they need to enter username and password along with their work. Otherwise, they 
can simply upload the work. 

Each time a student submits their work, a number of code segments will be selected 
from the submission in three steps. First, the submission is converted to code tokens 
with the help of ANTLR (Parr, 2013). Second, code segments are formed by taking any 
iden tifier tokens that are at the start of code line, and merge all of their following tokens 
till the length is no less than eight program statements and the last token is at the end of 
code line. This way, the reported code segments do not look like coincidental matches. 
Although students are informed that the reported similarities are part of simulation, it is 
still important to ensure that the report is somewhat evident. Eight program statements 
is defined as the minimum size threshold based on our manual observation on previous 

Fig. 1. Submission page of the system. 
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ex periments (Karnalim et al., 2023). Third, up to three formed segments are then ran-
domly selected. We limit the formed segments only to those that occur in less than half 
of the submissions of all students. Otherwise, they are likely to be a result of legitimately 
copi able code (e.g., code for libraries or base structure) or common ways to solve a task 
(e.g., code for insertion sort in a task about implementing the sort). 

The selected code segments are then disguised. However, the applied disguises are 
lim ited to superficial variations nullified by common similarity detectors: comments, 
white space, identifier names, constants, and some primitive data types (exclusive to 
Java). Knowledge about such disguises are harmless for students. In total, there are 
54 disguises: 24 are about comments, six are about white space, nine are about identifier 
names, two are about data types, and 13 are about constants. Full list of the disguises 
can be seen in our previous work (Karnalim et al., 2022b). Fig. 2 shows an example of 
the code dis guises. The left side is the original code while the right side is the disguised 
one. Both are semantically the same and they only differ in the capitalization, the blank 
newlines, and the identifier names. 

A report containing the submission, its disguised version, and information about pro-
gramming plagiarism and collusion will be generated and its public unique link will be 
sent to the submitter via email. An example of the report can be seen in Fig. 3. A menu 

Fig. 2. Example of code disguises focusing on superficial variations. 

Fig. 3. Example of simulation report.
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bar is shown on top at which the submitter can jump to the code quality report (will be 
discussed briefly later), go back to the previous page, or move to the dashboard page. If 
not logged in, the link to the dashboard page is replaced with a link for login. The top-left 
panel contains metadata of the submission and general knowledge of plagiarism and col-
lusion. The top-right panel lists the disguised code segments. If one of them is selected, 
the segment will be highlighted in the submitted code panel, its disguised version will 
be shown on the code counterpart example, and its explanation of the disguises will be 
displayed on the similarity explanation panel. The same behavior occurs when a code 
segment is selected from the submitted code panel. 

We acknowledge the importance of warning students who are clearly involved in 
pla giarism and collusion. Hence, if a submission has at least half of its content similar to 
other submissions and the similarities are not common across all submissions, involved 
students will be warned by reporting actual similarities. 

Before a simulation is generated, the submission is compared to other submissions 
that have been already submitted for given assessment. The comparison works in four 
stages. First, the submission is converted to syntax tree, a representation that can capture 
program structure, with ANTLR. The syntax tree is then linearised to token strings by 
concatenating N tokens in a preorder manner. N represents approximate number of to-
kens for eight program statements; it is defined as 80 for Java and 40 for Python. Second, 
the token strings are compared to those of other submissions and they will be marked 
as matches if found. Third, any matches that can be found in at least half of all submis-
sions are ignored as they are likely to be coincidental. Fourth, for each submission, any 
remaining adjacent matches are merged and if all matches take more than half of that 
submission, a similarity report will be generated. 

The similarity report will be generated in the same manner as the simulation report 
except that the selected code segments are actual similarities. Further, the disguises are 
derived from variations between the selected code segments and their match counter-
parts. For example, if a code segment is considered as a match with that of another 
submission and its variations are comments and white space, then the disguises can be 
about removing all comments and adding more blank lines. 

The similarity report contains comparable information to that of simulation report. 
However, the disguised contents are replaced with actual similarities from other submis-
sions. An example of the similarity report can be seen in Fig. 4. General metadata and 
justifications of reporting can be seen on the top-left panel. The submitted code can be 
seen on the bottom-left panel. If a code segment is selected, the segment will be high-
lighted in red instead of green (as in the simulation report). This informs the student that 
the reported similarities are real, not just a simulation. Selecting a code segment will 
also trigger the system to show the segment’s disguised version (on the code counterpart 
ex ample panel) and its explanation (on the similarity explanation panel). A table listing 
all reported code segments is provided on the top-right panel. The menu bar is similar to 
that of the simulation report. 

We allow resubmission by default. However, instructors can still identify students 
at tempting to evade detection of plagiarism and collusion since they have access to all 
sub missions. 
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To further promote student engagement, both SIMU-SYS and INIT-SYS can be fea-
tured with gamification. Per assessment, each student gets game points that are equiva-
lent to the percentage of uniqueness times 100 plus number of hours before the deadline. 
If a student has more than one submission, the points will be averaged. Top-10 students 
with the highest game points will be shown in a leaderboard. 

Students can also obtain badges by fulfilling certain conditions. There are a total of 
19 badges. Twelve of them are based on self-progress like submitting a work or opening 
simulation reports. Six badges are based on competition like submitting the most unique 
submissions. The remaining one is based on group progress; participating in reaching 
expected cumulative uniqueness points for an assessment. Each badge equals to 100 
game points. 

SIMU-SYS and INIT-SYS are not intended to help students trick the detection of 
pla giarism and collusion with common detectors such as MOSS and JPlag. All reported 
vari ations are limited to superficial level and they are commonly nullified by such de-
tectors. Further, as our system immediately reports the similarities, the detection is less 
accurate; it does not rely on a complete set of submissions. In addition, no information 
about other involved students are reported. 

It is worth noting that SIMU-SYS and and INIT-SYS aim to remind students about 
plagiarism and collusion. It does not replace the role of instructors maintaining aca-
demic integrity in their courses. Instructors still need to inform students about the matter 
manu ally at the beginning of the course or prior issuing an assessment. They are also 
expected to penalize students who are involved in plagiarism and collusion according 
to the course policy. All submissions need to be compared one another with a common 
detection tool after the due date and any suspicious submissions should be manually 
checked for the possibility of misconducts. 

Since SIMU-SYS was derived from INIT-SYS, they both essentially have similar 
fea tures. In addition to shifting from reporting actual similarities to the simulated ones, 
SIMU-SYS also has several exclusive features. First, instructors and students can be 

Fig. 4. Example of similarity report. 
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co instructors for other courses. This facilitates team teaching and involvement of tu-
tors. Second, assessments can be set to accept late submissions. This might be needed 
for as sessments with lenient deadline. Third, for each assessment, the system lists stu-
dents who have not submitted the work. Instructors might use that information to re-
mind the students. Fourth, a code quality report with static analysis will be provided for 
each submission. The analysis covers 32 Java code quality issues and 20 Python code 
quality issues. Further de tails can be seen on its corresponding publication (Karnalim 
et al., 2022b). 

In terms of aspects of academic integrity, SIMU-SYS can promote trust (being trans-
parent about expectation of plagiarism and collusion), honesty (stressing the need to put 
appropriate credit), and responsibility (being accountable for own plagiarism acts). 

3.2. Experimental Setup 

Six programming courses employed SIMU-SYS in 2022 and its predecessors (INIT-
SYS with or without gamification) in 2021. The details can be seen in Table 1. The 
courses were from either information technology (IT) or information system (IS) major. 
IT ma jor is more focused to algorithms and programming while IS major is focused 
on system and business analysis. They are both enrolled by undergraduates and are 
expected to be completed in four years (including thesis). Programming level 1 refers 
to the first pro gramming course in the major; programming level 2 refers to the second 
programming course; programming level advanced refers to a programming course 
offered near the end of the study (third year). While level 1 can be referred as CS1, 
level 2 cannot be referred as CS2 (Hertz, 2010) since for IS major, it is object oriented 
programming instead of data structure. 

For IT major, introductory programming is the first programming course for stu-
dents. It covers variables, branching, looping, functions, array, matrix, searching, and 
sorting in Python. One lab and one homework assessments were given weekly; the for-
mer should be completed in a two-hour lab sessions while the latter could be completed 
at home in given week. The course was enrolled by 55 students in 2022 and 45 students 

Table 1
Involved courses with their students and responses; 2022 offerings employ SIMU-SYS 
while 2021 offerings employ its predecessor (INIT-SYS with or without gamification)

Course Prog. level 2022 2021 
Students Responses Students Responses 

IT introductory programming 1 55 45 45 43 
IT data structure 2 34 29 33 31 
IT machine intelligence Adv 33 28 NA NA 
IS introductory programming 1 38 25 35 30 
IS object oriented programming 2 42 34 37 31 
IS business application prog. Adv 19 11 19 15 



O. Karnalim634

in 2021. The former employed SIMU-SYS while the latter employed INIT-SYS but 
without gamification. 

Data structure is the second IT programming course and it covers linear data struc-
tures, linked list in particular. Per week, students were expected to complete one lab and 
one homework assessments covering the same task: implementing a data structure in 
Python. Homework assessments were intended to encourage students completing their 
work that could not be completed in a two-hour lab session. The 2022 batch has 34 stu-
dents enrolled while the 2021 batch only has 33 students. SIMU-SYS was used in 2022 
while INIT-SYS was used in 2021. 

Machine intelligence is an advanced programming course for IT undergraduates, typ-
ically offered to third-year students. The assessments were designed similarly to those of 
data structure except that the topics were about implementing artificial intelligence with 
some Python libraries. SIMU-SYS was employed to the 2022 batch with 33 students. 
None of its predecessors were employed in the 2021 batch and thus such a batch is not 
included in our analysis. 

Introductory programming is also the first programming course for IS major. The 
as sessment design was the same with that of IT introductory programming. However, 
search ing and sorting were excluded, and the solutions should be written in both Java 
and Python. Thirty-eight students enrolled to the 2022 batch with SIMU-SYS while 
thirty-three stu dents enrolled to the 2021 batch with INIT-SYS. 

Object oriented programming is the second IS programming course, covering object 
oriented concepts in Java (including classes, inheritance, and polymorphism), graphical 
user interface (GUI) with Java Swing, and databases with SQL. It employed the same 
as sessment design as IT introductory programming. For GUI-related assessments, both 
lab and homework assessments covered the same task. It was intended to encourage 
students completing their work that could not be completed in the lab session. The 2022 
batch has 42 students using SIMU-SYS while the 2021 batch has 37 students using 
INIT-SYS but without gamification. 

Business application programming is an advanced IS programming course covering 
Java application with databases. The assessment design was similar to that of IT data 
structure. Both 2022 and 2021 batches have 19 students; the former employed SIMU-
SYS while the latter employed INIT-SYS but without gamification. 

For all offerings, students were informed about academic integrity at the beginning of 
the course. Sometimes, instructors reminded them about the matter while completing as-
sessments. Either SIMU-SYS or INIT-SYS was used for all programming assessments. 

Submissions were checked for plagiarism and collusion with the help of an auto-
mated similarity detector. Any submissions with high similarity were reported and then 
manually investigated by the instructor(s) or the tutor(s). Students who seemed to be 
involved in plagiarism or collusion would get zero marks for their corresponding assess-
ments and they would be reminded. If such misconducts were repeated, heavier penalties 
would be applied. 

Appropriate ethics approval has been granted for the study. Anonymous collective 
analysis is permitted. Analysis was performed with the help of Microsoft Excel and data 
collection was performed with the help of Google Form. 
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3.3. Addressing RQ1:  
Awareness of Plagiarism and Collusion on Simulated Similarities 

RQ1 is about whether students with simulated similarities are more aware of pla-
giarism and collusion, self-plagiarism in particular than students with actual simi-
larities. This was addressed via quasi-experiments comparing students with simulated 
similarities to those with actual similarities. Five 2022 course offerings (which were 
with simulated similari ties, SIMU-SYS) were paired with their corresponding 2021 
offerings (which were with actual similarities). Both 2022 and 2021 offerings have 
comparable number of students (see Table 1) and comparable assessment designs. IT 
machine intelligence was excluded since its 2021 offering employed neither SIMU-
SYS nor INIT-SYS. 

At the end of each course offering, students were invited to complete a voluntary 
sur vey about plagiarism and collusion. It consisted of 11 scenarios at which students 
needed to determine whether the scenarios were academically acceptable. They could 
choose ‘do not know’ if they were uncertain about the response. The scenarios can be 
seen in Table 2. These questions mainly cover honesty and responsibility aspects of 
academic integrity while some of them implicitly cover trust. S01 and S02 are about 
contract cheating, pur chasing code or paying someone to do the work. S03 is about self-
plagiarism, reusing own work without sufficient acknowledgment. S04 is about general 
plagiarism. S05 is about disguising copied work. S06 is about partial copying. S07 and 
S08 are about discussion for completing the work. S09 and S10 are about asking help 
for troublesome code. S11 is about replicating features. Correct responses were derived 
from similar survey used in our previous study (Karnalim et al., 2023) and discussed 
among instructors of 2022 and 2021 course offerings. S01–S06 and S10 are not aca-
demically acceptable for individual assessments while the rest are. 

Table 2
Survey scenarios about programming plagiarism and collusion (Karnalim et al., 2023)

ID Scenario 

S01 Purchasing code written by other students to incorporate into your own work 
S02 Paying another student to write the code and submitting it as your own work 
S03 Basing an assessment largely on work that you wrote and submitted for a previous course, without 

acknowledging this 
S04 Incorporating the work of another student without their permission 
S05 Copying another student’s code and changing it so that it looks quite different 
S06 Copying an early draft of another student’s work and developing it into your own 
S07 Discussing with another student how to approach a task and what resources to use, then devel oping the 

solution independently 
S08 Discussing the detail of your code with another student while working on it 
S09 Showing troublesome code to another student and asking them for advice on how to fix it 
S10 Asking another student to take troublesome code and get it working 
S11 After completing an assessment, adding features that you noticed when looking at another stu dent’s 

work 
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Number of responses per course offering can be seen in Table 1. The proportion to 
total students is relatively high. The responses were then analyzed in two steps. First, the 
average percentage of correct responses for both 2022 and 2021 offerings were calcu-
lated as a whole set of questions and individually. Second, for each course, its responses 
from 2022 offering was compared to those of 2021 offering; all significant differences 
(validated with an unpaired two-tailed t-test with 95% confidence rate) were reported 
and discussed. 

For IT data structure and IS introductory programming, the 2021 offerings employed 
INIT-SYS. Hence, any differences can be treated as a result of showing simulated simi-
larities instead of the actual ones. However, for IT introductory programming, IS object 
oriented programming, and IS business application programming, the 2021 offerings 
em ployed INIT-SYS without gamification. The differences can be a result of introducing 
gam ification in addition to showing simulated similarities. On INIT-SYS experiments, 
students with gamification had slightly higher awareness of plagiarism and collusion 
especially S01 than students without gamification (Karnalim et al., 2023). Hence, any 
improvements on overall percentage of correct responses and S01 would not be entirely 
linked to the impact of showing simulated similarities in the analysis. 

While it is interesting to measure student awareness of plagiarism and collusion 
based on the number of identified cases, it was not possible as 2022 offerings were de-
livered in a hybrid manner (both online and onsite) while 2021 offerings were delivered 
fully online. Onsite sessions were more supervised and instructors could consider more 
information such as student behavior and interactions for identifying cases of plagiarism 
and collusion. 

Being more aware of plagiarism and collusion, students are expected to promote at 
least three aspects of academic integrity: trust, honesty, and responsibility. 

This experiment was different to that from our previous study (Karnalim et al., 2023). 
Our current experiment was more focused on measuring the impact of shifting from re-
porting actual similarities (INIT-SYS) to reporting simulated similarities (SIMU-SYS). 
Our previous experiment was more focused on measuring the impact of gamification and 
employing INIT-SYS. Further, our previous experiment relied on data collected one year 
earlier. Any differences observed from our current experiment were more likely to be a 
result of shifting from actual to simulated similarities. 

3.4. Addressing RQ2:  
Overall Degree of Awareness of Plagiarism and Collusion 

RQ2 is about degree of awareness of students with simulated similarities regarding pla-
giarism and collusion, and whether it is affected by students’ programming skill. This 
was addressed with the same survey for addressing RQ1. However, only percentages of 
cor rect responses of 2022 course offerings (SIMU-SYS) were reported. Further, they 
were grouped based on the course programming level (1, 2, or advanced). Scenarios with 
the highest percentages of correct responses would be discussed along with scenarios 
with the lowest percentages of correct responses. To test the effect of programming 



Simulating Similarities to Maintain Academic Integrity in Programming 637

skill, results for each programming level would be compared to those of its lower level. 
Any statistical differences were validated with an unpaired two-tailed t-test with 95% 
confidence rate. 

This experiment was exclusive to our current study. Similar to RQ1, students with 
high awareness of plagiarism and collusion might be able to promote trust, honesty, and 
responsibility. 

3.5. Addressing RQ3:  
Benefits of Our Assessment Submission System that Reports Simulated Similarities? 

RQ3 is about student perspective regarding the benefits of our assessment submission 
system that reports simulated similarities (SIMU-SYS). This was addressed by asking 
six additional survey questions (see Table 3) along with the RQ1 survey for 2022 course 
offerings that employed SIMU-SYS. For S12-S16, students needed to show their agree-
ment toward a particular statement in a 5-point Likert scale (1 for ‘strongly disagree’, 
2 for ‘disagree’, 3 for ‘neutral’, 4 for ‘agree’, and 5 for ‘strongly agree’). The results 
would be analyzed based on the average score of the Likert scale. Any phrases of ‘as-
sessment submission system‘ referred to SIMU-SYS, the system they were using. 

S12 and S13 were about the goals of SIMU-SYS: helping students to understand 
pla giarism and collusion; and discouraging them to be involved in such misconducts. 
S14 asked about how reasonable the reported similarities, whether they were justifiable. 
S15 asked about how helpful information given in the simulation reports. S16 was es-
sentially the same to S15 except that it was for the similarity reports. S17 was the only 
question where students could choose one or more responses. It asked about factors af-
fecting coin cidental similarities. The options were derived from a study about common 
code (Simon et al., 2020): compilation requirement, legitimately copied code, intuitive 
implementation, suggested implementation, trivial tasks, and strongly directed assess-
ment specifications. An ‘other’ option was also provided so that students could list their 
own reasons if any. The responses would be analyzed based on occurrence frequencies. 

This experiment was exclusive to our current study. By explicitly acknowledging the 
benefits of SIMU-SYS, students are expected to have values in trust and honesty. 

Table 3
Survey questions about student perspectives

ID Statement 

S12 The assessment submission system helps me to understand plagiarism and collusion 
S13 The assessment submission system discourages me to be involved in plagiarism and collusion 
S14 Both reported simulated and actual similarities are reasonable for raising suspicion 
S15 Information given in simulated similarities are helpful for me to understand plagiarism and collusion 
S16 Information given in actual similarities are helpful for me to understand plagiarism and collu sion 
S17 Based on your observation on the reported similarities, which factors can entail coincidental 

similarities? 
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4. Results and Discussion 

This section reports our findings from addressing the research questions and discusses 
them. 

4.1. Awareness of Plagiarism and Collusion on Simulated Similarities 

Fig. 5 shows that students with simulated similarities (SIMU-SYS) had slightly better 
awareness of plagiarism and collusion to students with actual similarities (INIT-SYS 
with or without gamification). In IS introductory programming and IS object oriented 
program ming, overall percentage of correct responses was increased in a statistically 
significant manner by 6% (p = 0.03) and 11% (p = 0.01) respectively. Increase on IS 
object oriented programming was larger since the differences between both groups also 
included gamifi cation, which seemed to positively affect overall awareness (Karnalim 
et al., 2023). The improvement was not substantial since in both SIMU-SYS and INIT-
SYS, each student still got a similarity report (regardless whether it was just a simula-
tion or not) at which they could learn about plagiarism and collusion. 

Students with simulated similarities had better awareness of self-plagiarism. 
S03 ex perienced statistically significant improvement on three quasi-experiments: 
IT introduc tory programming (p = 0.01 with 27% improvement), IT data structure 
(p < 0.01 with 40% improvement), and IS introductory programming (p = 0.01 with 
23% improvement). In simulated similarities, students were explicitly informed that 
the disguised code were from their own submissions. They might realize that code 
similarities could be a result of reusing own code and such reuse needed acknowledg-
ment. 

Fig. 5. Statistically significant changes from quasi-experiments; SIMU-SYS vs INIT-SYS; 
IP refers to introduc tory programming, DS refers to data structure, OOP refers to object 

oriented programming, and BAP refers to business application programming. 
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When other scenarios were individually analyzed, students with simulated similari-
ties occasionally had higher awareness on not purchasing code (S01), not paying another 
stu dent to complete assessments (S02), and replicating features (S11). S01 improved 
aware ness might be a result of higher engagement introduced by gamification (Karnalim 
et al., 2023), not replacing actual similarities with the simulated ones. 

S02 and S11 were improved since students involved in plagiarism and collusion 
would feel more warned. SIMU-SYS only generated actual similarities for obvious cas-
es of pla giarism and collusion. Submission written by another student (S02) was likely 
to be obvi ously similar to their own. Replicating features (S11) did not always entail the 
same code, although it was only applicable for complex features. As seen in Table ??, 
S11 awareness was increased on IS business application programming (an advanced 
course) but it was reduced on IT introductory programming. 

Other scenarios at which students with simulated similarities occasionally had lower 
awareness on are not incorporating another student’s work without permission (S04), not 
using another student’s draft as the basis of work (S06), and not asking another student 
to fix the code (S10). SIMU-SYS seldom reported S04, S06 and S10 as actual similari-
ties as they did not entail excessive similarities. 

S08 awareness was decreased on IT data structure since assessments of students with 
simulated similarities were slightly more constrained: class and method names were de-
fined. To avoid suspicion of plagiarism and collusion, students might be more reluctant 
to discuss the details of their work. The solutions were more likely to be similar although 
the similarities were common and would not reported. 

Fig. 6. Student awareness of plagiarism and collusion per programming level  
(1, 2, or advanced).
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4.2. Overall Degree of Awareness of Plagiarism and Collusion 

Fig. 6 depicts that in general, student awareness of plagiarism and collusion was some what 
acceptable: 74% for level 1 programming courses, 76% for level 2 programming courses, and 
76% for advanced level programming courses. They were comparable across programming 
levels; an unpaired two-tailed t-test with 95% confidence rate showed that the differences 
were insignificant. Student awareness was not heavily affected by program ming skill. 

For level 1 programming (IT and IS introductory programming), students were the 
most aware of S09 (97%), S02 (96%), S04 (96%), and S07 (96%). Students were aware 
that discussing how to approach a task (S07) and asking for advice (S09) were both 
al lowed as the code was still written independently. They were also aware that incorpo-
rating another student’s work (S04) was not acceptable though it was seldom reported 
by SIMU SYS. Some students might be aware about the matter since permission was 
expected when using other students’ work. In IT introductory programming, S04 aware-
ness was reduced when actual similarities were replaced with the simulated ones (see 
Table ??. However, the awareness was still relatively high (88%). 

Paying another student to complete an assessment (S02) was another scenario at 
which students were most aware of. The submission could be excessively similar to that 
student’s own and then reported by the system. 

Although students had higher awareness of self-plagiarism (S03), the percentage of 
correct responses was still relatively low (33%). SIMU-SYS should be updated so that it 
can report historical similarities across assessments and even course offerings. Student 
awareness of not using another student’s draft as the basis of their work (S06) and not 
asking another student to fix troublesome code (S10) were also relatively low. This was 
probably because both scenarios seldom resulted in excessive similarities. Another way 
to inform students about the matter is needed on SIMU-SYS. 

As seen in Fig. 6, students in level 2 programming courses had comparable aware-
ness to those of students in level 1 courses. S02, S04, S07, and S09 were scenarios stu-
dents most aware of while S03, S06, and S10 were scenarios students least aware of. 

When observed per scenario, students in level 2 programming courses had lower 
awareness of discussing the details of the code while working on it (S08) than students 
in level 1 courses (p = 0.04). The assessments introduced structures and templates to 
follow. Some students might be worried that such a discussion could result in similar 
solutions, though common code was automatically excluded by SIMU-SYS. 

Introduced structures and templates to follow were also the reason why students 
in level 2 programming courses were more aware of not asking another student to fix 
the code (S10 with p = 0.04). The resulted code was more likely to be similar to the 
student’s. 

Students in advanced level programming courses had comparable overall awareness 
of plagiarism and collusion to those in level 2 programming courses. Statistically sig-
nificant differences were only observed on S04 (p < 0.01) and S08 (p = 0.04). Students 
in advanced level programming had lower awareness of not incorporating the work 
of another student (S04) than those in level 2 programming. Advanced assessments 
expected long solutions; incorporating another student’s work was less likely to be 
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reported as the proportion of the incorporated work toward the whole submission was 
typically small. 

Students in advanced level programming had higher awareness of discussing the 
de tails of the code while working on it (S08). Advanced assessments expected complex 
solutions with many variations. It was unlikely that such a discussion would result in the 
same solutions. 

4.3. Benefits of the Assessment Submission System that Reports  
Simulated Similarities 

Fig. 7 shows that students generally agreed that SIMU-SYS helped them to understand 
programming plagiarism and collusion (S12 with 4.1 of 5). It prevented them from doing 
such misconduct (S13 with 4.4 of 5). SIMU-SYS informed students about plagiarism 
and collusion and that information might discourage them to do plagiarism or collusion. 
Both goals of SIMU-SYS were acknowledged by the students. 

Students benefited from both simulation reports (S15 with 4 of 5) and similarity 
reports (S16 with 3.9 of 5). These reports provided information about plagiarism and 
collusion, and some examples of code similarities. The reported similarities looked rea-
sonable for them (S14 with 3.8 of 5). The similarities were unlikely to be a result of 
coincidence and they were relatively long. 

Students were aware that coincidental similarities can be a result of legitimately 
copied code (71%), suggested implementation (74%), trivial tasks (74%), and strongly 
directed assessment specifications (72%) However only some of them were aware that 
compilation requirement (56%) and intuitive implementation (36%) could also entail co-
incidental sim ilarities. Instructors might want to remind them about the matter in some 
assessments. 

Four ‘other’ responses were discovered. One of them could be mapped to intuitive 
implementation while the other three were about using the same code from internet 

Fig. 7. Student perspective of benefits of SIMU-SYS. 
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(2%). Search engines might recommend the same site for students while addressing a 
particular programming issue. Instructors might inform students that this case might 
happen but it was acceptable so long as the use of the resource was allowed and ac-
knowledged. 

4.4. Discussion 

RQ1 asks whether students with simulated similarities are more aware of plagiarism 
and collusion, self-plagiarism in particular than students with actual similarities. Our 
experi ments showed that students with simulated similarities are a little bit more aware 
of pla giarism and collusion. In two of five quasi-experiments, the overall awareness 
was slightly increased (9% in average). They were also more aware of self-plagiarism 
as in three quasi-experiments, such awareness was improved by 30% in average. 

Students with SIMU-SYS can be more aware of not purchasing code, not paying an-
other student to complete assessments, and replicating features. However, they might be 
less aware of not incorporating another student’s work without permission, not using an-
other student’s draft as the basis of work, and not asking another student to fix the code. 
Each was confirmed by one quasi-experiment. 

RQ2 asks how aware students with simulated similarities about plagiarism and col-
lusion and whether it is affected by their programming skill. Our surveys reported that 
such students are somewhat aware of plagiarism and collusion with around 75% cor-
rect responses. The overall degree of awareness was comparable one another across 
program ming levels with no statistical significance was found. Students at a particular 
program ming level might have better awareness on some scenarios than another. 

RQ3 asks for supportive evidences about the benefits of SIMU-SYS. Our surveys 
showed that students generally agreed that SIMU-SYS helped them to understand pla-
giarism and collusion, discouraging them to do both misconducts. They believed both 
simulation and similarity reports are helpful. Further, the reported simulated and actual 
similarities look reasonable. Students were aware that coincidental similarities can oc cur 
due to various reasons including legitimately copied code, suggested implementation, 
trivial tasks, and strongly directed assessment specifications. 

5. Limitations 

Our study has a number of limitations. First, while students with SIMU-SYS were treated 
similarly to those with INIT-SYS, we acknowledged that the reported differences might 
be slightly affected by change in the course delivery mode, from online (2021) to hy-
brid (2022). Second, though the study was performed on six courses, these courses were 
from a single institution in a particular country. The findings might not be applicable to 
other courses and institutions. Third, like many quasi-experiments, we acknowledge that 
unknown external factors might affect our findings. 
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6. Conclusions and Future Work 

We present SIMU-SYS, an assessment submission system that simulates similarities 
in stead of reporting the actual ones. Our evaluation shows that such a modification 
slightly increase student awareness of plagiarism and collusion, self-plagiarism in 
particular. Stu dents are relatively aware of plagiarism and collusion with around 75% 
correct response rate and it is only slightly affected by programming skill. They also 
agreed about the ben efits of SIMU-SYS and they are aware of some reasons for coin-
cidental similarities. 

For future work, we plan to further promote student awareness of plagiarism and 
col lusion by employing small quizzes as part of the gamification. This might encourage 
stu dents to think further about the matter. We are also interested to replicate the study in 
other courses and institutions with the same course delivery mode. 
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