
Informatics in Education, 2024, Vol. 23, No. 3, 679–718
© 2024 Vilnius University
DOI: 10.15388/infedu.2024.22

679

“Hear” and “Play” Students Misconceptions on 
Concurrent Programming using Sonic Pi 

Daniele TRAVERSARO*, Giorgio DELZANNO, Giovanna GUERRINI 
DIBRIS – Università degli Studi di Genova, via Dodecaneso 35, Genova, Italy 
e-mail: daniele.traversaro@dibris.unige.it, giorgio.delzanno@unige.it,  
giovanna.guerrini@unige.it 

Received: August 2023

Abstract. Concurrency is a complex to learn topic that is becoming more and more relevant, 
such that many undergraduate Computer Science curricula are introducing it in introductory 
program ming courses. This paper investigates the combined use of Sonic Pi and Team-Based 
Learning to mitigate the difficulties in early exposure to concurrency. Sonic Pi, a domain-specific 
music lan guage, provides great support for “playing” with concurrency, and “hearing” common 
problems such as data races and lack of synchronization among different concurrent threads. 
More specifically, the paper focuses on students’ misconceptions regarding concurrency in Sonic 
Pi and com pares them to those arising in traditional concurrent programming languages. In ad-
dition, it pre liminarily explores knowledge transfer from Sonic Pi to C/C++. The approach has 
been applied in two teaching experiments with undergraduate students in our University involv-
ing 184 participants. Our investigations bring out the need to address misconceptions through 
targeted interventions for a clear understanding of concurrent programming concepts. Sonic Pi’s 
simplified abstraction and domain-specific flavor has demonstrated to be effective, expecially for 
first-year students. 

Keywords: computer science education, concurrent programming, concurrency education, multi-
threading, misconceptions in programming. 

1. Introduction 

Background and Motivations. Concurrent programming is a technique in which two 
or more executions threads start, run in parallel or in an interleaved fashion through 
context switching, and complete in an overlapping time period by managing access to 
shared re sources. Multi-threading can be compared to a pianist playing a piano with both 
hands. Instructions run in parallel on a single processing unit. The threads may work on 
different instructions (such as the pianist playing two separate musical pieces), but work 

* Corresponding author.



D. Traversaro, G. Delzanno, G. Guerrini680

with the same resources and processing power. Concurrent programs can execute mul-
tiple tasks at once, e.g., writing a file on disk while appending new items. Concurrency, 
however, introduces nondeterminism: the exact order in which tasks are scheduled is 
not known in advance. Furthermore, the interleaving of instructions of different execu-
tion threads may yield an exponential number of possible schedules. It is often the case 
that some sched ules will lead to correct outcomes and others will not. Thus, it becomes 
necessary for programmers to express constraints to prevent the system from allowing 
schedules that yield incorrect outcomes. 

In the past, due to its complexity, concurrency was typically introduced at advanced 
levels of computer science (CS) curricula. However, due to its growing importance, 
e.g., event-driven programming and multi-core computing, several universities are now 
re thinking their approach and starting to introduce concurrency in introductory courses, 
in some cases adopting simplified concurrency models (Strömbäck (2023); Ernst and 
Steven son (2008)). Despite this, students often struggle to understand concurrency, 
which can be particularly challenging when introduced early in the curriculum. Conse-
quently, there is a need for research aimed at effectively introducing concurrency and 
supporting students in building and refining their viable mental models. 

This paper investigates the use of Sonic Pi to mitigate the difficulties in early expo-
sure to concurrency. Sonic Pi (Aaron et al. (2016)) is a domain-specific programming 
language and code-based music tool where musical concepts, and specifically those 
re lated to multi-threading, are aligned with programming ideas. The Sonic Pi program-
ming tasks have been collocated within a collaborative framework based on the Team-
Based Learning (TBL) pedagogy. They focused on code comprehension and code com-
position and targeted common misconceptions about concurrent programming. 

The approach, based on an interdisciplinary pedagogy for early exposure to concur-
rency by combining music and programming activities, has been applied to two teaching 
experiments for undergraduate CS students, more precisely 130 first-year students in 
the context of an annual first-year course that focuses on teaching students the funda-
mentals of computer architecture design for modern microprocessors (CA – Computer 
Architecture) and 54 third-year students in the context of a third-year, second-semester 
course that fo cuses specifically on the design and analysis of algorithms for concurrent 
and distributed systems (CP – Concurrent Programming). 

Research Questions. Based on previous research on concurrency education in tradi-
tional programming languages, our research questions are: 

Do misconceptions and mistakes in Sonic Pi correspond to misconceptions and  ●
mis takes in traditional concurrent programming languages? Does the use of Sonic 
Pi help the students face common misconceptions and mistakes in concurrent pro-
gramming? Is this more helpful for early-stage programmers? 
Can we apply knowledge transfer from Sonic Pi to more traditional programming  ●
lan guages such as C and C++? What is the effect in terms of learning outcomes? 

Contributions. The contribution of this paper is twofold. Firstly, it presents an introduc-
tory approach to concurrency based on Sonic Pi, aimed at undergraduate students, and 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 681

shares all the detailed information and materials so that other lecturers can replicate the 
activities. This teaching format is based on our extensive research and classroom experi-
mentation over the past three years, which has provided a solid foundation. Secondly, 
the paper explores students’ misconceptions about concurrency that emerged during the 
ex periments. By collecting and analyzing team responses and tasks, we delve into stu-
dents’ problem-solving strategies, comparing them to experiences with those based on 
traditional programming languages. 

Design. The choice of the Sonic Pi programming language is due to several reasons. 
As mentioned in Aaron et al. (2014a), “Sonic Pi was designed to teach a large num-
ber of computing concepts covered in the new UK computing curriculum introduced 
in Septem ber 2014. Examples of these concepts are conditionals, iteration, variables, 
functions, algorithms, and data structures. We also extend beyond these to provide 
educators with an opportunity to introduce concepts that we believe will play an in-
creasingly important role in future programming contexts such as multi-threading and 
hot-swapping of code.” 

Sonic Pi offers distinct advantages over traditional computing methods to facilitate 
the early introduction of multi-threading. The inherent concurrency of music creation 
(e.g., several instruments that synchronize on a rhythm and melody) and the simplicity 
of the tool can provide a natural and immersive learning experience for concurrency. In 
partic ular, live coding and auditory output, two key features of Sonic Pi, provide great 
support for “playing” with concurrency, and “hearing” data races and other common 
mistakes. To our knowledge, this study represents the first attempt to use Sonic Pi for 
these learning goals at the university level. 

The proposed teaching format is based on our previous research and experiments 
started in the academic year 2019/2020. We started by experimenting with the use of 
Sonic Pi with TBL to increase learning motivation and curiosity among freshmen by 
in troducing them to advanced topics (Traversaro et al., 2020) and then in academic 
year 2021/22 specifically focused their use for concurrency, with third-year students 
enrolled in the CP and CSE (Computer Science Education) courses, with the primary 
learning objec tive of introducing students to the concept of multi-threading in Python 
(Delzanno et al., 2023, 2024). The two units proposed in this paper, and experimented 
during the 2022/23 academic year, are based on our previous experience. They represent 
the culmination of our efforts to introduce concurrency in a creative way and to address 
misconceptions in concurrency education. 

The program comprehension and composition tasks in Sonic Pi have been designed 
taking into account common misconceptions observed both in our previous teaching 
expe rience and in the literature on concurrency education, in particular, those arising 
from the mixing of concepts from concurrency and the underlying computational models 
(Ström bäck, 2023), which seem to be particularly challenging for students. 

Experimental Evaluation. To assess the effectiveness of the activity in terms of en-
gagement and appreciation we considered students’ overall perceptions through a post-
questionnaire; to evaluate the effectiveness in terms of learning outcomes, we consid-
ered TBL data, in particular team responses to the TBL tasks. 



D. Traversaro, G. Delzanno, G. Guerrini682

In addition, we wanted to gather preliminary empirical evidence on the transferabil-
ity of the concurrent programming knowledge, skills, and abilities that students acquire 
in our Sonic Pi-based learning environment to other traditional programming languages, 
such as C. Knowledge transfer is crucial for effective learning, but it can pose chal-
lenges and lead to misconceptions for several reasons, such as differences in the underly-
ing notional ma chines (NM) of the programming languages considered. To investigate 
knowledge trans fer, we designed a written test consisting of three exercises in either C or 
pseudocode, focusing on concurrency aspects covered in the music code-based domain. 
The test was administered one week after the experiment. 

Plan of the Paper. In Section 2, we discuss related work. In Section 3, we present the 
teaching format of our experimental activities. In Section 7.1, we give details on popu-
lation, setting and preparation aterial of the experiments. In Section 5 and 6, we give all 
details of the design of the TBL experiments (RAT Quiz and Team app) for University 
students. In Section 7.2, we present an aggregate analysis of data collected via quizzes, 
tests and questionnaires. In Section 8, we discuss findings and implications. In Section 9, 
we address conclusions and future works. 

2. Related Work 

This section presents related work, by surveying approaches combining music and cod-
ing, approaches for teaching concurrency, focusing on the most common misconcep-
tions related to concurrency, and finally introducing knowledge transfer. 

2.1. Music and Coding in CS Education 

This section discusses the use of live coding and musical approaches in CS education, 
along with supporting tools and languages for teaching concurrency. Live coding in-
volves the real-time manipulation of running programs to generate live auditory or 
visual effects, with the coding process becoming an integral part of the performance 
(Blackwell et al., 2022). From a pedagogical perspective, live coding provides immedi-
ate feedback and enhanced interactivity, making it a valuable tool for teaching computer 
programming. In particular, live music coding allows abstract programming concepts to 
be presented in a more natural way through music. 

In recent years, live music coding has gained prominence in interdisciplinary con-
texts, particularly in the field of STEAM education (Burnard et al., 2016). This ap-
proach has proven successful in teaching programming in both introductory and ad-
vanced program ming courses (Hamer, 2004). Furthermore, the integration of music 
and CS has been found to enhance students’ appreciation, motivation, and engagement 
in the learning pro cess (Heines et al., 2009). The authors of (Herman, 2012) highlight 
the effectiveness of domain-specific programming platforms in promoting intrinsic 
motivation and posi tive attitudes towards learning CS. In Hamer (2004), the authors 
present an approach to teaching design patterns and other programming topics (data 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 683

structures, grammars, pars ing, and formal proofs) using a music composition project. 
A summer camp is presented in Lusa Krug et al. (2023), designed with a “Code Beats” 
approach, where students learn fundamental programming concepts to make music us-
ing a domain-specific tool that provides immediate feedback and hints for learning. The 
experiment seemed to in crease student interest, motivation and engagement. Finally, 
in Ruthmann et al. (2010) Scratch music coding capabilities are used to teach basic 
programming concepts. There are a number of educational code-based music creation 
tools, such as JythonMusic2, EarS ketch3, TunePad4 and Sonic Pi5. Sonic Pi, developed 
in 2012 with the UK’s new primary and secondary computing curriculum in mind, has 
proved effective in introducing live music coding to primary schools (Aaron et al., 
2016). It also appears to be effective in promoting positive attitudes towards program-
ming among middle school students (Petrie, 2022). Furthermore, the use of multimedia 
computer contexts in teaching introductory programming across educational levels has 
shown positive effects on pass and retention rates (Simon et al., 2010). 

2.2. Concurrency Education 

In the field of concurrency education, several studies have focused on analyzing program-
ming errors made by students. One study examined errors in specific concurrent assign-
ments (Lönnberg, 2006), while another conducted a phenomenographic study to under-
stand how students develop concurrent programs (Lönnberg, 2006). Additionally, the 
analysis of final written exams from concurrent and operating systems courses aimed to 
identify common misconceptions among students (Strömbäck et al., 2019). Finally, em-
pirical research at the secondary school level has investigated students’ perspectives on 
the correctness of concurrent programs (Kolikant, 2005a; Ben-Ari and Kolikant, 1999). 

Constructivism emphasizes that learners actively construct knowledge based on their 
prior experience, rather than passively receiving it from teachers. However, learners of-
ten develop mental models that are not viable, i.e., inaccurate, incomplete, and based on 
superficial understanding. The constructive researchers suggest that teachers explicitly 
in troduce the notional machine (NM), an idealized computer that represents the prop-
erties implied by the constructs of the programming language. The NM helps learners 
develop valid mental models and improve their understanding of programming concepts 
(Sorva, 2013; du Boulay, 1986; du Boulay et al., 1981). 

Concurrency poses challenges as it involves non-determinism, making it difficult 
to test program correctness by running them. Unlike sequential programming, concur-
rency requires a more formal and reasoned approach, demanding students to develop 
viable men tal models of concurrent program execution. In addition, students are ex-
pected to possess a solid understanding of fundamental concepts like variable scope, 
parameter passing, aliasing, references, and pointers, which are considered threshold 

2 https://jythonmusic.me/ 
3 https://earsketch.gatech.edu/landing/#/ 
4 https://tunepad.live/ 
5 https://sonic-pi.net



D. Traversaro, G. Delzanno, G. Guerrini684

concepts – challenging concepts that require significant development or revision of 
specific areas of the mental model. Mastery of these concepts enables students to rec-
ognize connections with other programming concepts (Boustedt et al., 2007; Ström-
bäck, 2023). 

Given the complexity involved, concurrent programming has traditionally been 
cov ered in advanced courses that require strong programming skills, such as operating 
sys tems courses or other advanced electives. However, the increasing importance of 
concur rency, as discussed in the previous section, has prompted the CS education com-
munity to address concurrency in introductory courses. This has led to a reevaluation of 
curricula and the emergence of new pedagogical approaches (Strömbäck, 2023). 

Over the past few decades, several tools have been developed to aid students in 
learn ing about concurrency. Eludicate (Hunter and Exton, 2002) and Atropos (Lönn-
berg et al., 2011) are examples of tools that allow students to capture and visualize con-
current object-oriented execution. However, these tools lack active interaction with the 
visual ization, which diminishes engagement and learning impact, as argued by Sorva 
(Sorva, 2013). To address this limitation, other tools have been introduced, such as 
The Dead lock Empire6, an online educational game specifically designed for learning 
concurrency. Progvis (Strömbäck et al., 2022) is another tool that enables visualization 
of the interac tion between concurrency and fundamental programming concepts like 
scope, parameter passing, and references. 

In addition to these tools, older examples include Linda (Carriero and Gelernter, 
1989) and Multi-Logo (Resnick, 1990). Linda is a coordination language that supports 
concurrency, and Multi-Logo is a concurrent extension of Logo, which was experiment-
ed in primary schools where students had to control simple robotic devices constructed 
from LEGO® 

bricks. 
In principle, formal concurrency models may be considered as possible NMs to be 

used to reason on concurrent executions abstracting away from the syntax of a particular 
programming language. Process calculi such as CSP (Hoare, 1978) and CCS (Milner, 
1989) and graphical concurrency models such as Petri nets (Petri and Reisig, 2008), are 
well-known abstract models used to represent concurrent computations as mathematical 
objects and to reason about their properties (Lamport, 2009). 

For instance, in (Ben-Ari, 1990), Mordechai Ben-Ari adopts a logic-based approach 
based on automata, temporal properties and model checking to reason about properties 
such as mutual exclusion, starvation, and deadlock interleaved with practical examples 
of concurrent programming libraries in Java and Ada. 

2.3. Common Misconceptions in Concurrent Programming 

Misconceptions in concurrent programming can often lead to subtle and hard-to-debug 
issues. In this section, we consider misconceptions related to basic and advanced con-
cepts in concurrent programming. 

6 https://github.com/deadlockempire/deadlockempire.github.io 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 685

Many students struggle with synchronization problems, and part of this may lie in 
their understanding of the prerequisites that are crucial to concurrent programming. In 
fact, students may struggle not only with concurrency concepts but also with threshold 
concepts about the underlying computational model. 

As discussed, e.g., in (Strömbäck, 2023; Strömbäck et al., 2019), students often 
struggle with the scope of variables, mistakenly believing that local variables are shared 
between threads or concurrent function calls. This misconception stems from a failure 
to distinguish between different instances of function calls and to recognize that each 
in stance has its own set of local variables. 

Other misconceptions include the belief in global locks as protectors of code rather 
than protectors of specific resources, which stems from a non-viable mental model that 
focuses on code rather than data. Additional common misconceptions concern correct-
ness (Kolikant, 2005b), believing that a concurrent program only needs to work most 
of the time rather than all of the time. They may rely on trial and error for debugging, 
ignoring the concept of interleaving, which is difficult for many students to grasp. It has 
also been found that many students experience the program in terms of the program text 
rather than its dynamic execution (Strömbäck et al., 2019). 

In addition, students find it difficult to identify concurrency problems and formulate 
synchronization goals (Kolikant, 2004). However, once synchronization goals are iden-
tified, they generally succeed in implementing solutions that meet those goals. However, 
in one study (Strömbäck et al., 2019), students struggled to associate shared data with 
appropriate synchronization primitives, such as using multiple locks to protect the same 
instance in different situations. 

Students often believe that using synchronization primitives, such as locks or sema-
phores, ensures thread safety (Herlihy and Shavit, 2012). Students need to under stand 
the importance of correct synchronization placement, avoiding race conditions, and un-
derstanding the semantics of different synchronization mechanisms. 

Another misconception relates to memory models, where students often assume se-
quential consistency (Herlihy and Shavit, 2012). This misconception may stem from 
concurrency courses that focus on context switching on a single CPU and neglect other 
scenarios involving weaker memory models. 

A further common misconception about concurrency, unrelated to the basic con-
cepts, is that adding concurrency to a program will automatically improve perfor-
mance (Sutter, 2005). In fact, concurrency introduces additional complexity, so it is 
important for stu dents to understand that performance improvement depends on sev-
eral factors, such as the nature of the problem, the hardware, and the efficiency of the 
concurrency design. 

Lastly, although it is not necessary to know object-oriented programming (OOP) 
to work with concurrency, it was observed that a non-viable mental model of OOP 
can lead to misconceptions in identifying shared data and synchronization mechanisms 
since some OOP concepts are also relevant to concurrency (e.g. confusing class and 
instance, which is similar to confusing instances of a function call, values, and refer-
ences, etc.). 



D. Traversaro, G. Delzanno, G. Guerrini686

Finally, it is important to note that these misconceptions may vary according to 
pro gramming language, individual experience, and educational context. Nevertheless, 
inves tigating these misconceptions can help to better know student understanding and 
improve future concurrency education. 

2.4. Knowledge Transfer 

Knowledge transfer refers to the application of skills (or knowledge, strategies, ap-
proaches, or habits) learned in one context to a novel context (Ambrose et al., 2010). In 
particular, we refer to the knowledge domain transfer (Barnett and Ceci, 2002), which 
is the process of applying previously acquired knowledge and skills from one context to 
another (in the same or a different discipline). In our case, concurrent programming con-
cepts and concurrent problem-solving strategies facilitate the learning and adoption of 
concurrency in another programming language. However, transferring knowledge from 
a language such as Sonic Pi to more traditional textual languages such as C and C++ can 
be challenging due to differences in their NMs. We are not currently aware of any exist-
ing research that explores this specific scenario, and further research is needed to under-
stand the effectiveness and challenges of knowledge transfer in this learning context. 

Extensive research into the transition from block-based to text-based languages has 
highlighted differences in syntax, mental models, misconceptions, program comprehen-
sion, and learning outcomes (Krishnamurthi and Fisler, 2019). However, current research 
seems to point in the direction of a positive transfer between block-based and text-based 
languages (Weintrop and Wilensky, 2019). 

Learning a second programming language can be challenging (Guzdial, 2015), even 
for experienced developers, because of the need to adapt mental models to new lan-
guage features (Shrestha et al., 2022). However, in some cases, programmers moving 
from one language to another, such as from C# to Ruby, chose to start from scratch, 
ignoring prior knowledge, which mitigated the effects of cross-language interference 
(Shrestha et al., 2022). 

3. Preliminaries 

Our proposal relies on a combination of Sonic Pi and Team-Based Learning (TBL) as the 
teaching format. The resulting learning experience combines hands-on programming ac-
tivities with collaborative learning. In this section, we focus on the preliminary notions 
at the basis of the proposed approach, namely, Sonic Pi and Team-Based Learning. 

3.1. Sonic Pi and Concurrency 

Sonic Pi is a domain-specific language for manipulating synthesizers through time. 
It can also be viewed as a code-based musical creation and performance tool, where 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 687

each musical concept corresponds to a programming idea. The music domain allows 
for a pedagogy that focuses on the problem (concurrency) rather than the programming 
language, proposing real-world examples that are inherently multithreaded. From this 
perspective, Sonic Pi seems to be naturally constructionist7 (the “building material” 
(Papert, 1980)) to learn concurrency), as Papert’s computational thinking stresses the 
importance of the computer as a powerful meta-tool for “making the abstract concrete” 
(Lodi and Martini, 2021). 

From a technical point of view, Sonic Pi is based on the Ruby programming lan-
guage, inheriting its simple syntax. It offers an intuitive and user-friendly integrated 
development environment (IDE) for creating music. Furthermore, Sonic Pi provides au-
ditory output feedback, allowing users to hear the sound generated by their programs 
in real time. This audio feedback, combined with textual program output and compiler 
error/warning mes sages, offers immediate and tangible results, enhancing the learning 
experience. These characteristics make Sonic Pi a language with a steep learning curve, 
extremely effective in adapting to different learning goals and environments, and in tai-
loring topics to students’ interests and attitudes (Aaron et al., 2016). 

Sonic Pi is officially distributed for Microsoft Windows, Mac OS X and Raspberry 
Pi OS (but there are also unofficial distributions for Linux). Compared to other live cod-
ing languages, it is very easy to install, as it provides an all-in-one installer and does not 
require a separate interpreter. Once inside Sonic Pi, there is no need to route audio to 
channels: just the command “play” followed by a note number is enough to create the 
sound. Sonic Pi does not use the usual pitch classifications found in live coding, such as 
the frequency swing in SuperCollider, but assigns a number to each key of a standard 
piano (Harazim, 2017). Sonic Pi takes advantage of the speed of modern processors in 
assuming that a sequence of instructions, as those depicted in Fig. 1 (A), are likely to 
be executed so quickly in succession that they will be perceived as a chord, and not as 
an arpeggio. An arpeggio form can be achieved by “sleeping” the current thread for a 
number of seconds as in Fig. 1 (B). The notion of sleep is similar to that of the standard 
POSIX sleep operation that suspends execution for the specified time. Sonic Pi 2.0 has 
introduced special semantics that avoid drifting due to delays (thread scheduling and 
invocation of the POSIX sleep operation) (Aaron et al., 2014b). 

Finally, Sonic Pi supports various APIs, allowing users to interact with other plat-
forms and expand its capabilities, such as the python-sonic interface.

Due to these factors, Sonic Pi is an ideal tool for teaching both the fundamentals of 
computer programming, such as iterations, selections, functions, and data structures, 
as well as advanced concepts like concurrency and scope rules. One of the unique ad-
vantages of Sonic Pi is its ability to synchronize and audibly perceive different musical 
instruments, allowing learners to “feel” local and global objects in action. 

The language offers several interesting concurrent features, such as the in_thread 
and live_loops control constructs, which are interpreted across multiple concur-
rent threads. The live_loop construct is the key to mastering live coding with Sonic 
Pi. For instance, consider the following program in Fig. 1 (C). Here we create a bass 

7 Constructionism is a learning theory created by Seymour Papert and based on the educational paradigm of 
Piaget’s constructivism. Its most famous application is Logo. 



D. Traversaro, G. Delzanno, G. Guerrini688

drum beating by repeating the sample :bd_haus forever. Thanks to hot-swapping 
code live loops can be redefined on-the-fly while still running. The in_thread con-
struct resem bles traditional thread-spawning operations in languages such as C. For 
instance, consider the following program in Fig. 1 (D). Here the MIDI note 30 is played 
at the same time as the sample :drum heavy kick with half a second between 
each onset. 

These programming abstractions provide an intuitive introduction to concurrency, 
even for novice programmers who are guided by sound and perception. The resulting 
programs can therefore be validated with a sense of rhythm and melody. 

Sonic Pi provides the cue and synch functions to create synchronized music pat-
terns between threads and/or live loops and avoid drifting effects. The cue sync mecha-
nism is very similar to the notifyAll() and wait() methods of the Condition 
objects of other concurrent programming languages, such as Python and Java. Finally, 
Sonic Pi uses a lock-based synchronization mechanism, providing the get and set 
functions to prevent race conditions. It also utilizes a global memory store called Time 
State, where threads and live loops can share data. 

Overall, Sonic Pi’s combination of auditory feedback, intuitive concurrency features, 
and synchronization mechanisms makes it an effective tool for introducing concurrency 
and other programming concepts. 

3.2. Team-Based Learning (TBL) 

To support a collaborative learning environment, we used the TBL teaching methodol-
ogy. This approach encourages collaboration between team members, and healthy com-
petition between teams, and enriches the learning environment with gamification ele-
ments. All these characteristics made TBL consistent with Papert’s constructionist idea 
of the impor tance of students’ social and effective involvement in the construction of a 
computational artifact (Lodi and Martini, 2021). Collaborative learning has been widely 
explored in CS education and there is extensive literature on its benefits. In particular, 
TBL has been shown to be effective in preventing student dropout and improving exam 

A B C D

play 52
play 55
play 59

play 52
sleep 1
play 55
sleep 1
play 59

live_loop :flibble do
  sample :bd_haus, rate: 1
  sleep 0.5
end

in_thread
  loop do
    play 30
    sleep 0.5
  end
end

in_thread
  loop do
    sample :drum_heavy_kick
    sleep 0.5
  end
end

Fig. 1. Some examples of Sonic Pi programs and instructions.



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 689

pass rates in CS1 courses (Simon et al., 2010). In addition, a qualitative study has shown 
that TBL is highly rewarding and engaging for students enrolled in CS1 courses (Kirk-
patrick, 2017). 

TBL is a strategy that enables students to follow a structured process to improve 
their engagement and the quality of their learning. It consists of modules that can be 
taught in a three-step cycle: pre-class preparation, in-class Readiness Assurance Process 
(RAP), and application-focused exercise (Team APP). More specifically, TBL has five 
essential components plus an optional peer evaluation phase. It begins with individual 
study outside the classroom, followed by a multiple-choice test (RAT), first individually 
and then in teams who must agree on answers. The RAP phase ends with immediate 
feedback (usually through scratch cards, which add a playful component to the learn-
ing), a possible team appeal and a class discussion with the instructors. This is followed 
by the team application (APP), which is an open-book task where each team works on 
the same exercise and has to give an answer at the same time. Finally, the teams discuss 
and compare their solutions in plenary. This phase can be done with different discussion 
techniques, such as the gallery walk, where each team presents its solution in a kind of 
poster session. 

Technically, we designed RAT quizzes on the course Moodle page. Immediate feed-
back was given at the end of the team quiz. In addition, we proposed a digital gallery 
walk using Padlet8, an online bulletin board tool that allows team solutions to be shared 
with the whole class. 

4. Learning Content and Material 

The design focused on the goal of introducing students to the concept of concurrency 
through a series of short practical tasks, each designed to address specific misconcep-
tions about concurrency and basic programming concepts, allowing students to gradually 
build their understanding while addressing specific misconceptions, including variable 
scope, function calls, parameter passing, race conditions, correctness, and synchroniza-
tion goals. Some tasks focused on program comprehension, while others involved code 
writing. Pro gram comprehension tasks (Izu et al., 2019) are a constructionist approach 
to teaching programming, where the learner interacts with an artifact representing the 
program, for example, a piece of code. Through this interaction, the learner is stimulated 
to build and refine their viable mental model of the underlying NM. 

4.1. Preparation Material: Pre-class, Quizzes and Tasks 

Concerning preparation material, in the Section 5 and 6, we will give a detailed descrip-
tion of the RAT quizzes and the Team App tasks designed for our lectures. The material 
is part of the documentation provided before and during the activities 

8 https://it.padlet.com 



D. Traversaro, G. Delzanno, G. Guerrini690

To ensure adequate preparation and familiarisation with the TBL methodology and 
the Sonic Pi language, we introduced students to these topics one week prior to the in-
class activity. We assigned the following pre-class materials: 

Sonic Pi Tutorial ● 9 (a full integrated tutorial that provides a comprehensive intro-
duction to Sonic Pi, assuming no prior knowledge of coding or music). 
Multimedia footage of live coding performances, available on the Sonic Pi web- ●
site. 
Slides explaining the TBL methodology.  ●

All preparatory materials were uploaded to the course Moodle page for easy student 
ac cess. We estimated that students would need about 2–3 hours of individual study to 
com plete the preparation before the class sessions. 

5. RAT Quiz 

We designed an identical RAT quiz for both activities, consisting of five multiple-choice 
questions, that assessed participants’ understanding of Sonic Pi language syntax and 
con currency concepts. Following the principles of TBL, the quiz was initially completed 
in dividually and then retaken in teams. The results of these individual and team RATs 
were collected for information purposes only. As they served as a preparatory tool for 
the subse quent team application phase and were completely independent of the research 
question, they were not statistically validated or included in the data analysis. Neverthe-
less, the results suggest a general trend towards improved performance in teams com-
pared to indi vidual attempts. A detailed breakdown of the RAT results can be found in 
the Appendix A

The five questions of the Rat quiz are discussed in the rest of the section. 

5.1. Quiz 1: Hear Thread Creation 

Consider the following program: 

live_loop :foo do 
    play 60 
    sleep 1 
end 

When the program runs, you hear a basic beep every beat. Change 
the note 60 to 65 in the editor without stopping the program. What 
happens? 

It raises a RunTime error.•	
It forks the main thread and creates two new ones. One will play 60 •	
and the other 65. This is live coding.
No effect on execution. This is live coding.•	
It changed•	  automatically without missing a beat. This is live coding.

In Quiz 1, we highlight a distinguishing feature of Sonic Pi, i.e., the dynamic manage-
ment of code updates, a key point for live coding sessions. Among the multiple choices, 
only the last answer is correct. Indeed hot code-swapping ensures that the behavior of the 
thread is automatically updated. This feature is at the basis of live coding in Sonic Pi. 

9 https://sonicpi.net/tutorial 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 691

5.2. Quiz 2: Hear Interleavings

Consider the following code:
live_loop :foo do
         play 50
         sleep 1
end 

sample :drum_cymbal_open

What happens if you run it? 
All the code after the loop is not exe cuted. •	
The loop and the sample are executed si multaneously. •	
The drum cymbal open sample is played while the •	
loop is “asleep”. 
The loop will repeat 50 times and then play the •	
sample. 

In Quiz 2, the attention is focused on the difference between sequential and concur-
rent execution flow. Here the second answer is the correct one. Indeed, the live loop 
con struct starts a concurrent thread which repeatedly plays note 50 while the main pro-
gram continues to the sample.

5.3. Quiz 3: Hear the Differences between Threads and Loops

Consider the following code: 
live_loop :foo do 
   sample :ambi_choir 
   sleep 0.5 
end 

in_thread do 
   sample :ambi_drone 
end 

What happens if you run it? 
The sample in the •	 live loop com mand is played 
repeatedly, while the sample in the in_thread 
command is played only once.
It is not possible to execute both a thread and a live loop •	
concurrently (runtime er ror). 
Both the live loop and the thread sample are played •	
infinitely. 
Only the live loop will be executed.•	

In Quiz 3, the attention is focused on the difference between threads and iterative 
task. The live loop command starts a concurrent thread which repeatedly executes 
its body. The in_thread command requires an explicit loop inside its body to repeat 
a command more than once. Therefore, the first answer is the correct one.

5.4. Quiz 4: Listen to Data Races

Consider the following code: 
live_loop :setter do 
   set :foo, rrand(70, 130) 
   sleep 1 
end 

live_loop :getter do 
   puts get[:foo] 
   sleep 0.5 
end

What are the Set and Get functions of the Sonic Pi meant 
for? 

They allow threads to access a shared resource in a •	
thread-safe way, but mutual exclusion is not guaranteed. 
They allow threads to access a shared resource in a •	
thread-safe way, with guaranteed mutual exclusion. 
They are used to produce non deterministic program •	
behaviour. 
They are used to manipulate objects whose scope is •	
restricted to a single thread or function. 



D. Traversaro, G. Delzanno, G. Guerrini692

In Quiz 4, we stress the importance of using thread-safe read/write operations in 
program with multiple threads. The commands set and get have been introduced 
to atomically modify data structures in Sonic pi. Therefore, the second answer is the 
correct one.

5.5. Quiz 5: Avoid Drifting 

Given the following code: 
live_loop :foo do 
   use_synth :prophet 
   play 20 
   sleep 8 
   cue :f 
end 

sleep 0.3

live_loop :bar do 
   sync :f 
   sample :bd_haus 
   sleep 0.5 
end

Are the two live loops synchronized? 
The two live loops are out of phase due to the 0.3 sleep between •	
the two live loops. 
The two live loops are synchronised be cause the i-th iteration of •	
the live loop :bar is synchronised with the i-th iter ation of the 
loop :foo via sync, which waits for the cue :f event. 
The code is incorrect and will not be ex ecuted. •	
The two live loops are not synchronised because the •	 get and 
set methods are not used.

In Quiz 5, we stress the importance of time synchronization when reproducing audio 
signals via multiple threads. Due to possible delays in the scheduling of different threads, 
multiple threads executing different music samples repeatedly may get out of synch af ter 
few iterations, i.e. the resulting program can be affected by the drifting problem. To avoid 
this problem, Sonic Pi provides synchronization operations between thread groups. More 
specifically, the commands cue and sync enforce a rendez-vous synchronization in 
between the :foo and :bar threads. Therefore, the second answer is the correct one.

6. Team Application 

In this Section we provide an overview of the team application tasks we developed for 
the TBL units. Tasks 1, 2 and 3 were designed for the CA abd CP units, while tasks 4, 5, 
6 and 7 were specifically designed for CP students. The team app tasks included a va riety 
of question formats, including multiple-choice questions and open-ended tasks that re-
quired students to implement Sonic Pi code. Each exercise targeted specific misconcep-
tions related to concurrent programming. We focused on a range of concurrent concepts, 
such as data races and synchronization mechanisms, as well as fundamental program-
ming concepts like variable scope and function calls. 

The evaluation criteria are based on the rubric presented in the Appendix D. It is 
im portant to remark that, in presence of multiple execution threads, the traditional 
concepts of variable scope become more complex. In addition to global and block/
function local scope, it is also necessary to consider thread local variables and the 
interplay among all of them. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 693

By embedding concurrent problems within these fundamental programming con-
cepts, we aimed at highlighting the challenges and complications that arise when stu-
dents do not have a clear understanding and a viable mental model of concurrency and 
sequential execution. 

6.1. Task 1: Data Races and Variable Scope, 10 minutes 

Task 1, shown in Fig. 2, is based on of three Sonic Pi codes, namely A, B, and C, and 
on some “voting cards” questions. Each code comprises two threads that access a global 
variable x without any synchronization mechanism. Students were required to select the 
correct answer from the following options. In script A, variable x is thread local, whereas 
in script B and C x is global. Therefore, only A does not present data races as specified 
in the first answer. Furthermore, in B both threads simultaneously update x starting from 
note 40. The data race can be heard as perturbations of note 40. In C the second assign-
ment eventually overwrites the first one and thus, after a sequence of perturbations of note 
40, the program first jumps to the higher note 60 and then the sequence of perturbations 
continues from that note. The task specifically targets misconceptions related to data races 
and the management of global shared resources in a concurrent programming model. 

A B C

in_thread do 
  use_synth :piano 
  x = 40 
  10.times do 
    x += 4 
    sleep 0.5 
    play x 
  end 
end 

in_thread do 
  use_synth :kalimba 
  x = 40 
  10.times do 
    x -= 4 
    sleep 0.5 
    play x 
  end 
end

x = 40 

in_thread do 
  use_synth :piano 
  10.times do 
    X += 4 
    sleep 0.5 
    play x 
  end 
end 

in_thread do 
  use_synth :kalimba 
  10.times do 
    x -= 4 
    sleep 0.5 
    play x 
  end 
end

x = 40 

in_thread do 
  use_synth :piano 
  10.times do 
    X += 4 
    sleep 0.5 
    play x 
  end 
end 

x = 60 

in_thread do 
  use_synth :kalimba 
  10.times do 
    x -= 4 
    sleep 0.5 
    play x 
  end 
end 

Voting cards: Which answer is true? 
In B and C, different threads operate on a common resource and the result depends on the order in which •	
the different threads execute their instructions; 
In A and C, different threads operate on a common resource and the result depends on the order in which •	
the different threads execute their instructions; 
In all three programs, there are no resources shared between threads; •	
In A and C, there are no resources shared between threads. The result depends on the order in which the •	
instructions of the different threads are executed. 

Fig. 2. Task 1. 



D. Traversaro, G. Delzanno, G. Guerrini694

6.2. Task 2: Data Races and Function Calls, 10 minutes.

Task 2, shown in Fig. 3, consists of three Sonic Pi programs and some “voting cards” 
questions. Students were required to identify potential data races. The task aimed at ad-
dressing both race conditions and fundamental programming concepts such as variable 
scope, function calls, and parameter passing. To identify a data race, students needed to 
comprehend the scope of variables and function calls within a concurrent scenario. In 
all three programs, there exists a shared resource referred to as x. The first program fea-
tures two threads that access x without any form of mutual exclusion or synchronization 
mechanism. The second program involves the definition of a function with a single for-
mal parameter. This function is called 10 times by the second thread, with the variable 
x passed as an argument by value. Consequently, each function frame possesses its own 
local variable named x. However, as the function is called, the variable x is accessed 
with out any synchronization mechanism in place, which can potentially lead to data 
races. In the third program, a function without parameters is defined and subsequently 
called 10 times by the thread. Each time the function is invoked, it accesses the global 
variable x without any synchronization mechanism in place. 

A B C

x = 40 

in_thread do 
    use_synth :piano 
    10.times do 
      x += 4 
      play x 
      sleep 0.5 
    end
end 

in_thread do 
    use_synth :kalimba 
    10.times do 
      x -= 4
      play x 
      sleep 0.5 
    end
end

x = 40

define :foo do |x|
  x -= 4
  play x 
end 

in_thread do 
    use_synth :piano 
    10.times do 
      x += 4 
      play x 
      sleep 0.5 
    end
end

in_thread do 
    use_synth :kalimba 
    10.times do 
      foo x
    sleep 0.5 
      play x 
    end
end 

x = 40

define :foo do
  x -= 4
  play x 
end 

in_thread do 
    use_synth :piano 
    10.times do 
      x += 4 
      play x 
      sleep 0.5 
    end
end

in_thread do 
  use_synth :kalimba 
  10.times do 
    foo
    sleep 0.5 
  end
end

Voting cards: Which answer is true? 
Mutual exclusion mechanisms are in place in all programs. 1. 
In a program there is only one possible race condition in read/write but not related to multiple writes. 2. 
In programs where the “foo” function or procedure is present, these cannot be done check race condi-3. 
tions. 
Non4. e of the previous answers. 

Fig. 3. Task 2. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 695

6.3. Task 3: Sleep and Data Race, 10 minutes 

Task 3, shown in Fig. 4, presents a multiple-choice question that requires students to 
reason about pausing execution and data races. The table shows the Sonic Pi code for 
this task, the “voting cards questions”, and the “gallery walk”. The code consists of two 
global variables: an array of notes and a counter variable initialized to zero. There is 
also a function with a parameter x, which defines a thread to play the x-th note from the 
array. A loop calls the function three times and increments the counter variable by one. 
The array is global and shared between the threads. However each thread uses the same 
array, i.e., potential race condition on a shared data structure, but with a different index, 
i.e., different cells of the array. Therefore, without any sleep invocation to introduce 
delays in thread execution, the audible output of the program is the E minor chord, i.e., 
the latter answer is correct. 

6.4. Task 4: Thread-safeness, 10 minutes

Task 4, shown in Fig. 5, is an open-ended task requiring students to identify the synchro-
nization goal and implement a thread-safe solution. The task involves a ring vari able, 
which can be seen as a type of linked list, shared by two threads in a non-thread-safe 
manner. One thread sorts the ring, then sleeps for 1 second, and finally plays the notes 
from the ring. The other thread shuffles the ring and then sleeps. Each thread repeats 

use_synth :piano 

note = [52, 55, 59, 40] 
i = 0 

define :foo do |x|
    in_thread do 
        play 
note[x]
    end 
end 

3.times do 
    foo i 
    i += 1 
end 

Voting cards: Which answer is true? 
The program has no race conditions. 1 
The program creates only one thread. 2 
The program plays the notes in the “note” list in sequence. 3 
The program plays the E minor chord. 4 

Gallery walk: Describe in detail the behavior of the script with particular pay attention to the changes to 
the value of the variable “i” and to the possible sequences of notes play. 

Fig. 4. Task 3. 



D. Traversaro, G. Delzanno, G. Guerrini696

this process 10 times in a loop. The current implementation suffers from a race condi-
tion, re sulting in non-deterministic behavior. Sometimes the thread plays the sorted ring, 
while other times it does not. The misconception lies in the identification of the syn-
chronization goals, specifically the shared resource accessed by both threads. Students 
were tasked with identifying the synchronization goals and implementing a thread-safe 
solution to address the race condition. 

Three possible solutions of task 4 are shown in in Fig. 6. 

6.5. Task 5: Locking and Synchronization, 10 minutes

Task 5, shown in Fig. 7, consists in a multiple-choice question, requiring students 
to analyze the lock mechanism and identify the presence of a deadlock. The task 

A B

a = (ring 60, 57, 65) 

in_thread do 
    10.times do 
        a = a.sort 
        print a 
        sleep 1 
        play a 
    end
end

in_thread do 
    10.times do 
        a = a.shuffle 
        sleep 1 
    end
end

Gallery walk: Implement a thread-safe solution for codes A and B using inter-thread synchronization (hint: 
use Sonic Pi thread-safe variables and methods). 

Fig. 5. Task 4. 

a = (ring 60, 57, 65) 
in_thread do 
  10.times do 
    b = get[:asaah] 
    ciao = b.sort 
    print ciao 
    sleep 1 
    play ciao 
  end 
end 

in_thread do 
  10.times do 
    b = a.shuffle 
    set : asaah, b 
    sleep 1 
  end 
end 

a = (ring 60, 57, 65) 
in_thread do 
  10.times do 
    set :a, a.sort 
    print a 
    sleep 1 
    play a 
  end 
end 

in_thread do 
  10.times do 
    sync :a, a.shuffle 
    sleep 1 
  end 
end 

a = (ring 60, 57, 65) 
set :foo, a 
in_thread do 
  10.times do 
    aux = get[:foo] 
    set :foo, aux.sort 
    print get[:foo] 
    sleep 1 
    play get[:foo] 
  end 
end 

in_thread do 
  10.times do 
    aux = get[:foo] 
    set :foo, aux.shuffle 
    sleep 1 
  end 
end

Fig. 6. Task 4 Solutions. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 697

involves a shared resource, represented by the variable “add,” which is accessed by 
multiple threads in a safe manner using the set-get operators of the Sonic Pi time 
state. The task is designed to address misconceptions regarding synchronization 
mechanisms based on message pass ing, specifically the set-get and cue-sync opera-
tions in Sonic Pi. 

Despite the thread-safe use of the shared variable, a deadlock situation arises as 
both threads synchronize using cue and sync on messages “:add” and “:wait,” but 
in a wrong order, i.e., both threads remain blockes on the corresponding sync invo-
cation. 

6.6. Task 6: Thread-Local Scope, 20 minutes 

Task 6, shown in Fig, 8, involves completing the Sonic Pi code using three threads and 
parameter passing functions to generate an ordered sequence of audible notes. Under-
standing thread synchronization and scope rules for variables and synthesizers is crucial 
to solving the task. In particular, synthesizers are global but thread-local, whereas vari-
ables can be shared between threads and be local within a function. This task requires a 
higher level of understanding from students. Success in these tasks requires mastery of 
skills and the ability to apply theoretical knowledge creatively. 

set :add, 40 

live_loop :producer do 
  note = set :add, get[:add]+20 
  play note 
  synch :wait 
  sleep 0.5 
end 

live_loop :consumer do 
  sync :add 
  note = set :add, get[:add]-20
  play note 
  synch :wait 
  sleep 0.5 
end 

Voting cards: Which answer is true? 
There exists an execution in which a thread fails and never obtains a resource (starvation). 1 
There exists an execution in which a thread eventually obtains a resource. 2 
There exists an execution in which the threads fails, and block each other, e.g., waiting for a resource 3 
or message (deadlock). 
The program does not presents the above mentioned behaviours. 4 

Fig. 7. Task 5.



D. Traversaro, G. Delzanno, G. Guerrini698

6.7. Task 7: Master/Slaves Synchronization, 20 minutes 

Task 7, shown in Fig. 9, simulates a memory barrier, where four threads, including 
three musicians and a conductor, interact. The musicians synchronize to play a mel-
ody, while the conductor pauses the other threads when a counter variable reaches a 
certain value. After a set time, the conductor sends a message for the threads to re-
sume playing. The task requires students to synchronize the musicians and implement 
the behavior of the conductor thread, responsible for setting the tempo for the other 
threads. 

x = ???__1__???
use_synth :beep
define :f do |x|
  define :g1 do |y|
    x = y + ???__2__???
    play x
  end
  play x
  sleep 2
  g1 x
end

define :g do |n|
  n = n + ???__3__???
  play n
end

define :h do
  x = x + ???__4__???
  play x
end

define :j do |x|
  x = x + ???__5__???
end

define :p do |x|
  use_synth :chipbass
end

define :q do ???__V__???
  x = x + ???__6__???
end

define :z do
  x = x + ???__7__???
  play x
end
in_thread do
  2.times do
    play x
    sleep 2
    x = x + ???__8__???
  end
  f x
  sleep 2
  g x
  sleep 2
  h
  sleep 2
  j x
  cue :tick
  sync :tick3
  ???__A__???
end
in_thread do
  sync :tick
  2.times do
    ???__B__???
    x = x + ???__9__???
    play x
    sleep 2
  end
  cue :tick2
end
in_thread do
  sync :tick2
  p x
  q ???__W__???
  z
  print x
  sleep 2
  cue :tick3
end

Voting cards: Which answer is true? Determine the sequence of notes 50 54 58 62 66 70 74 78 82 86 by 
replacing ???__i__??? With the appropriate values/instructions. Also determine the instructions (or none) 
to write instead of ???__A__??? And ???__B__??? To play notes 74 and 78 with the dark_ambience synth 
and note 86 with the beep synth. 

Fig. 8. Task 6. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 699

Given the following melody (theme from Super Mario Bros.):
play_pattern_timed([nil,nil,:e5,:ds5,:d5,:b4,nil,:c5
nil,:e4,:f4,:g4,nil,:c4,:e4,:f4,
nil,nil,:e5,:ds5,:d5,:b4,nil,:c5,
nil,:f5,nil,:f5,:f5,nil,nil,nil,
nil,nil,:e5,:ds5,:d5,:b4,nil,:c5,
nil,:e4,:f4,:g4,nil,:c4,:e4,:f4,
nil,nil,:gs4,nil,nil,:f4,nil,nil,
:e4,nil,nil,nil,nil,nil,nil,nil], [0.2])

Credits: https://gist.github.com/xavriley/87ef7548039d1ee301bb 
The musicians are synchronized with each other, who are in turn synchronized by the conductor, who sets 
the tempo (locks and unlocks everyone). 
Hint: consider a pattern with controllers (sync/cue) 
1° thread/live loop 
use_bpm 100
use_synth :pulse
use_synth_defaults release: 0.2, mod_rate: 5, amp: 0.6
play_pattern_timed([nil,nil,:e5,:ds5,:d5,:b4,nil,:c5, nil,:e4,:f4,
:g4,nil,:c4,:e4,:f4, nil,nil,:e5,:ds5,:d5,:b4,nil,:c5, nil], [0.25])

2° thread/live loop 
use_synth :tri
use_synth_defaults attack: 0, sustain: 0.1, decay: 0.1, 
                   release: 0.1, amp: 0.4
play_pattern_timed([nil,:f5,nil,:f5,:f5,nil,nil,nil], [0.25])

3° thread/live loop 
use_synth :tri
use_synth_defaults attack: 0, sustain: 0.1, decay: 0.1, 
                   release: 0.1, amp: 0.4
play_pattern_timed([nil,nil,:gs4,nil,nil,:f4,nil,nil, :e4,
  nil,nil,nil,nil,nil,nil,nil], [0.25])

4° thread/live loop (“maestro d’orchestra”)
# Do stuffs

Fig. 9. Task 7. 

7. Experimental Evaluation 

In this section we describe the two teaching experiments realized to evaluate the ap-
proach, first presenting the setting and then the obtained results. 

7.1. Experimental Set-Up 

The first experiment involved third-year students enrolled in the CP course, while the 
second experiment involved first-year students enrolled in the CA course on computer 
architectures. The two courses have the following characteristics: 

The CP course is a third-year, second-semester course that focuses specifically on  ●
the design and analysis of algorithms for concurrent and distributed systems. It 
has a unique position in our B.Sc. program in CS as the only course dedicated en-



D. Traversaro, G. Delzanno, G. Guerrini700

tirely to concurrent programming. Students enrolled in this course have advanced 
knowledge in several ar eas, including programming (non-concurrent), databases, 
networks, and architectures. 

This foundational knowledge serves as a basis for exploring the intricacies of 
concurrent programming and gaining a deeper understanding of its principles and 
applications. 
The CA course is an annual first-year course that focuses on teaching students  ●
the funda mentals of computer architecture design for modern microprocessors. 
Throughout the course, students gain knowledge and skills in several areas, in-
cluding assembler lan guages, number representation and arithmetics, combinato-
rial and sequential circuits, and processor and memory hierarchies. 

From the 2022/2023 academic year, students have been introduced to concurrency 
through our experimental approach and then with a very brief introduction to multi-
threading in C/C++ using the pthread and std:thread libraries. It is important to 
note that stu dents enrolled in the CA course already have one semester of experience in 
imperative programming using C++. 

The CP students are referred to as the P1 population, while the CA students are 
referred to as the P2 population. Specifically, P1 consisted of 54 third-year students 
(divided into 10 teams), while P2 consisted of 130 third-year students (divided into 34 
teams). 

Both experiments described in the paper were conducted during the second semester 
of the 2022/2023 academic year. The first experiment took place at the beginning of the 
CP course, where students were introduced to concurrency concepts. The second exper-
iment was conducted in April, just before students in the CA course were introduced to 
multi-threading in C. The timing of these experiments allowed students to gain a basic 
understanding of concurrency through the Sonic Pi-based approach, before delving into 
multi-threading in other languages. 

The activities did not contribute to the student’s final summative assessment. Instead, 
they had formative value, serving as learning experiences and opportunities for students 
to develop their understanding of concurrent programming concepts. 

As is usual in the application of TBL, the primary objective in the group forma-
tion process was to balance the skill sets of the different groups. Specifically, we chose 
the fol lowing dimensions: prior knowledge of concurrent programming and Sonic Pi or 
similar domain-specific languages. 

During the activities, we collected team APP tasks to analyze students’ understand-
ing of concurrency and any misconceptions that might arise, according to the rubric 
de scribed in Appendix D. We also collected data through an anonymous individual post-
questionnaire on students’ appreciation/perception of the activity. Finally, we collected 
the results of a post-individual test to investigate knowledge transfer. The test consisted 
of three exercises formulated either in pseudocode or in the C programming language. 
These exercises proposed a similar concurrency scenario, but in other languages, and 
pro vided practical opportunities for students to apply their understanding of concurrency 
in a different learning context. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 701

Technically, the final questionnaire and the “knowledge transfer” test were developed 
using Google Forms, which provides a user-friendly interface for data collection. The 
questionnaire and the test can be found in the Appendix B and Appendix C. The TBL 
quizzes were developed using the Moodle platform, which provides a comprehensive set 
of features for online learning and assessment. In addition, we used platforms such as 
Wooclap10 and Padlet to collect the team task solutions and responses. These platforms 
provided a col laborative environment where teams could share and submit their solu-
tions, encouraging student engagement and teamwork. Overall, the combination of these 
tools facilitated efficient data collection and supported the interactive and collaborative 
aspects of the learning activities. 

7.2. Experimental Results 

The questions included in the RAT quiz have been carefully selected based on a refine-
ment process of similar past activities conducted with Sonic Pi. The test aims to assess 
the students’ understanding of some basic concepts related to concurrency and live cod-
ing, which are essential for completing the Team App tasks in the TBL module. Due to 
time constraints and the structure of the TBL module, only 5 questions were chosen, 
each fo cusing on independent concepts. The data collected from the quiz were not used 
to answer the research questions, but are reported for completeness to present the full 
material of the TBL activity, as the quiz served as a preparation tool for the subsequent 
Team App phase. Notably, the repeated quiz within the team generally yielded better 
results. However, it was not our intention to statistically validate this result using psy-
chometric or other tech niques to assess validity and reliability, as these data were not 
used in the research study. The results are reported in the Appendix A as additional mate-
rial for completeness only. In the following section we focus our attention on the results 
obtained for the Team APP tasks. 

7.3. Team APP Results 

We conducted both item and code analyses of the team tasks to identify potential errors 
and misconceptions. Specifically, for multiple-choice questions, we tried to identify pat-
terns in incorrect answers to determine which concepts were common misconceptions. 
For tasks that required students to write code, we analyzed their solutions to identify 
specific errors. 

The results are presented per task, each time distinguishing between the CA and CP 
scenarios. 

Task 1. 60% of the CA teams answered the first question correctly. However, 13% 
incor rectly voted that the threads in the first and third programs use a shared resource, 
resulting in a nondeterministic program. In addition, 7% incorrectly voted that there are 

10  https://www.wooclap.com 



D. Traversaro, G. Delzanno, G. Guerrini702

no shared resources in any of the programs, making them deterministic. Finally, 20% 
voted that the first and third programs had no shared resources and were therefore not 
deterministic. These responses highlight misconceptions around the concept of shared 
resources, espe cially in the first exercise where the misconception is “reinforced” by a 
variable scope error (confusing local scope with global scope). In the second exercise, 
it is clear that there is a lack of clarity among these teams on the definition of a shared 
resource. There is also a misunderstanding about the meaning of a deterministic pro-
gram, since a program can be non-deterministic even without shared resources between 
threads. Finally, the last answer reveals a misconception of both shared resources be-
tween threads and variable scope, where local variables with the same name are mistak-
enly considered to be shared between threads. 

The CP scenario is significantly different, with 90% of the teams answering correctly. 
Only 10% voted for the response that all three programs do not have shared resources. 

Task 2. In task 2, 48% of CA teams answered correctly. 19% voted that in the programs 
where the function “foo” is defined, there cannot be any race conditions. This highlights 
a poor understanding of the program, as there are still data races present in the second 
program. There is a misconception that, because it is pass-by-value, a race condition 
can never occur regardless of the context. Additionally, 5% of the teams voted that all 
programs have a mutual exclusion mechanism for accessing the shared resource. In this 
case, it is evident that there is a lack of understanding of concurrent mental models, 
where it is not clear what a synchronization mechanism is for protecting access to a re-
source. Finally, 29% voted that no answer was correct, failing to recognize the presence 
of a data race in the second program as well. 

In this case, the results for CP are different. The percentage of correct answers is 
lower, standing at 30%. 70% of the teams voted that none of the answers were correct, 
thus failing to recognize the existence of a data race in the second program. 

Task 3. In task 3, 67% of the CA teams and 78% of the CP teams answered correctly, 
stating that the output was the chord of A minor. However, 27% of the CA teams (and 
22% of the CP teams) failed to recognize the presence of a race condition, and during 
the plenary discussion, the misconception emerged that a data race is necessary for a 
race condition to occur. Finally, 6% of the CA teams answered that the notes are always 
played in the same order, indicating that their mental model associates an implicit se-
quential order to the creation and execution of the three threads, thus not recognizing 
the race condition. 

Task 4. Tasks from 4 onwards are exclusive to the CP experiment. Fig. 6 displays three 
solutions to task 4, which encompass all the other cases. All teams recognized the prob-
lem (the thread orders the list but it is not always played in order) and applied a strategy 
to solve it. However, in the solution on the left, the correct synchronization objective 
was not identified. The solution was devised based on basic knowledge, which involved 
creating local copies of the shared variable but failed to eliminate the underlying race 
condition. In the center solution, there is a partially correct approach, but it exhibits mis-
conceptions regarding synchronization mechanisms, as both a lock and a wait signal are 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 703

utilized, al beit the wait signal is used incorrectly. Finally, the right solution demonstrates 
a correct approach (excluding some syntax errors) where locking mechanisms are ap-
plied to the shared resource. 

Task 5. In Task 5, 50% of the teams identified the deadlock situation. 10% described it 
as starvation, while 30% believed that one of the two threads would eventually get all the 
resources. Finally, 10% answered that it was something else. In this case, the students 
displayed an inaccurate mental model of program execution, failing to recognize that the 
two threads were stuck waiting for resources held by each other, preventing any progress 
in the program. 

Task 6 & 7. All teams successfully completed Task 6 with the correct solution. During 
the activity, there were some challenges related to the specific scope rules of Sonic Pi. 
However, once the dual scope of synthesizers and variables was clarified by us, no fur-
ther issues arose. The teams effectively utilized the knowledge acquired from previous 
tasks. Task 7, on the other hand, proved to be more challenging as it was a less guided 
exercise compared to the previous one. It required a deep understanding of thread syn-
chronization mechanisms and the management of a shared resource. Not all teams sub-
mitted a solu tion as they were unable to translate the problem into a practical solution. 
Others partially implemented a solution where the conductor coordinates the various 
threads but fails to pause/resume execution in a “memory barrier” style. Only one group 
managed to success fully implement the required solution. Team results can be found in 
the Appendix E. 

7.3.1. Final Questionnaire 

CA. A total of 23 people responded to the final CA questionnaire. None had any previ-
ous experience of concurrent programming and Sonic Pi or Ruby. For the question “I 
think the musical approach with Sonic Pi is useful for understanding concurrency” [A] 
the median is 4. For the question “I think the activity was effective in introducing and/or 
deepening some concepts of concurrent programming” [B] the median is 3. In particular, 
the students who gave a negative or neutral answer to question A were the same students 
who gave a neutral or negative answer to question B. Fig. 10 shows the distribution of 
responses on a Likert scale from 1 to 5. 

Participants commented that the activity was useful for understanding the impor-
tance and benefits of concurrent programming, learning a new programming language, 
under standing the concept of threads and synchronization, and improving their knowl-
edge of concurrent programming. 

74% of participants found the activity to be at an appropriate level of challenge, 22% 
found it difficult and the remaining 4% found it easy. Regarding the time allotted for 
the activity, 65% of participants felt it was sufficient, while 35% expressed the wish for 
more time to complete the tasks. In terms of individual preparation, 6 people consider 
that they have prepared adequately for the activity, 14 do not know, and 3 insufficiently. 
Finally, 22% of students found the teamwork experience very useful, 30% useful, 26% 
neutral, 13% not very much, and 9% not at all. 



D. Traversaro, G. Delzanno, G. Guerrini704

CP. The final CP questionnaire was completed by 16 students. Of these, 44% had 
previ ous work experience in concurrent programming and 30% had used Sonic Pi in the 
CSE course. For the question “I think the musical approach with Sonic Pi is useful for 
un derstanding concurrency” [A] the median is 4. For the question “I think the activity 
was effective in introducing and/or deepening some concepts of concurrent program-
ming” [B] the median is 4. In particular, students who gave a negative or neutral re-
sponse to one ques tion were the same as those who gave a neutral or negative response 
to the other question. 

Fig. 11 shows the distribution of responses on a Likert scale from 1 to 5. In addition, 
several students commented that the approach provided a useful introduction to concur-
rency and offered a clear practical example. In addition, 80% of the students reported 
that they found the level of difficulty of the activity to be fair, while 18% found it to be 
difficult. Regarding the time allocated, 70% of the students felt that it was fair, while the 
remaining students expressed a preference for more time to complete the tasks. In terms 

Fig. 10. CA final questionnaire. 

Fig. 11. CP final questionnaire. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 705

of individ ual preparation, 44% people consider that they have prepared adequately for 
the activity, 31% do not know, and 25% insufficiently. Finally, 25% of students found the 
teamwork experience very useful, and 75% useful. 

7.3.2. Assessing Knowledge Transfer 

CA. Only 6 students answered the first exercise correctly. In particular, most of the 
in correct answers revealed a mental model still based on sequential execution, where 
note 60 would be played only after the other thread had played notes 45 and 50, thus 
describ ing deterministic behavior. One student confused the behavior of the “cue” with 
that of “synth”, while two students confused “in_thread” with “live_loops”, stating that 
the sound would be repeated an infinite number of times. Finally, one student replied that 
only notes 45 and 60 would be played. 

In the second exercise, in pseudo-code, all but one of the CA students correctly 
iden tified the possible scenarios. Only one student said that the program always gener-
ates an error. 

In the third exercise, using C with the pthread library, 80% of the CA students an-
swered that the program was not deterministic. However, only 15% of them correctly 
identified the possible outputs of the program. The remaining students recognised the 
correct outputs but also added the combination 0 0 or 0 1 10, which are impossible as 
they can never occur. These answers once again highlight the problem of misconceptions 
about basic concepts, particularly references and pointers. 

CP. In the CP experiment, 7 out of 15 students solved the first exercise correctly, 
while the others either did not answer or considered a sequential model. The second 
exercise was solved correctly by all students. Finally, 80% answered the third exercise 
correctly (non-deterministic and correct output), while the remaining students judged 
the behavior of the program to be non-deterministic. 

8. Discussion 

TBL Methodology. An innovative aspect of our approach is the adoption of a TBL 
ped agogy. This method combines elements typical of flipped classroom with individual 
and team activities in a series of focused tasks that perfectly fit our goal, i.e., exploring 
concur rency misconceptions and common mistakes. The strict integration of the activ-
ity with the considered courses, e.g., knowledge transfer in order to formulate problems 
seen in Sonic Pi in the languages adopted in the courses, feedback on the proposed 
quiz and task to the student involved in the course, combined with a generally positive 
evaluation of the activ ity represents a first step towards the stable application in a future 
edition of our bachelor degree. TBL results and post-questionnaires allowed us to per-
form a quantitative and qualitative analyses of the outcome of our experiments. It is also 
important to remark that the population considered in our experiments consisted of 184 
university students. Fur thermore, the proposed method is the result of a refinement along 
three different academic years involving around 400 students in total. 



D. Traversaro, G. Delzanno, G. Guerrini706

Sonic Pi for Introducing Concurrency. In our opinion, there are several reasons for 
adopting Sonic Pi as an introductory language for concurrency. First of all, music 
provides a stimulating and creative domain in which to start “thinking concurrently”. 
Furthermore, Sonic Pi is based on Ruby with advanced programming aspects such as 
thread-local vari ables and hot-swapping code, thus representing a stimulating language 
for university stu dents. The sound manipulation library is interesting by itself since it 
provides operations to create new sounds, to modify, combine, and reproduce music 
samples. As in nested variable scopes, filter declarations can be nested to create a sort 
of effect scope that can be confined within a single thread. Concerning programming 
constructs, another distinguish ing feature is that Sonic Pi provides constructs at differ-
ent abstraction levels for creating asynchronous threads: the in_thread command 
is closer to the C pthread_create invocation but with a much simpler syntax; the 
live_loop embeds a built-in infinite loop and, thus, it resembles the typical demon 
pattern used in the most common system programs. Hot-swapping code makes the editor 
a very effective tool for experimenting with all features of the Sonic Pi programming 
language and, in particular, with those re lated to concurrency and synchronization. 

In our concurrency misconception exploration, the possibility of using sound and 
mu sic creation not only as the target of a given exercise but also as a concrete means 
to hear anomalies (e.g., data races, missing synchronization, out-of-order executions) 
turned out to be a key ingredient of our experiments. For instance, we exploited this 
feature in different tasks included in the Team App, e.g., to hear the difference between 
a correct program (which expected result is to reproduce a chord) and an incorrect one 
(which result is a random sequence of the notes in the chord). 

Being a domain-specific language can be seen as a possible downside for using Son-
ic Pi to introduce concurrency in the first year of undergraduate courses. Introductory 
courses are typically based on widespread languages such as C and C++ and are mainly 
focused on programming methodologies and data structures. To overcome this problem, 
in our experiments, Sonic Pi has been introduced in the context of a mini-course together 
with the TBL method. Together they were also meant as innovative methods to stimulate 
the students’ attention and learning process. 

Data Analysis. The results obtained from the tasks highlight the presence of miscon-
ceptions among the participants, both about the pure concurrent concept and about fun-
damental programming concepts within a concurrent scenario. For example, participants 
showed a lack of clarity in distinguishing between local and global scope and in under-
standing how shared resources affect program behavior, and some others mistakenly 
be lieved that certain programming mechanisms, such as pass-by-value, could eliminate 
the possibility of race conditions. 

The results seem to highlight the importance of addressing misconceptions with tar-
geted, guided interventions aimed at making concepts and scenarios about concurrent 
programming explicit. Furthermore, the plenary discussion generated during the activity 
could help participants in consolidating their understanding and develop a viable mental 
model. A notable finding is that addressing misconceptions is also useful for third-year 
students, where one might expect them to have acquired advanced programming skills. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 707

In terms of knowledge transfer, it appears that students found it easier to align their 
existing mental model of programs in Sonic Pi with the pseudo-code representation. On 
the other hand, the exercises using C syntax required more effort in terms of adapting a 
mental model from one programming language to another with a different NM. 

Generalizability of Results. First, the tasks may not cover all aspects of concurrent 
pro gramming, and the results may not fully capture students’ overall understanding of 
con currency. Our tasks were designed with only a few misconceptions in mind. As a 
result, the assessment of students’ understanding is based on their responses to specific 
tasks and may not reflect their overall understanding of concurrent programming con-
cepts. In addi tion, the sample size in both experiments may not be representative of the 
entire student population, which may limit the generalizability of the results, especially 
for the knowl edge transfer part. In fact, only a small fraction of the students responded 
to the final questionnaire, which limits the significance of the results. Therefore, the 
generalizability of the knowledge transfer results should be interpreted with caution 
and further research is needed. 

9. Conclusions 

In this paper, we presented an introductory approach to concurrency aimed at exploring 
undergraduate students’ misconceptions using the Sonic Pi language so as to exploit 
the natural connection between multi-threading and live music coding. In our view, this 
paper serves as a pilot study and provides preliminary evidence for the CS education 
community. 

More specifically, we have discussed the methodology adopted in our experiments 
and the population settings, the material developed for the RAT quiz and Team app 
activities, and commented on the data collected before, during, and after the activities. 
The experi ment comprises a further transfer learning experiment designed via a series of 
exercises proposed both in Sonic Pi and more traditional multi-threaded programming 
languages such as C and C++. 

Promising initial results from questionnaires and tasks provide strong motivation for 
us to delve deeper into live music coding and targeted exercises, particularly those re-
lated to program comprehension. Our results are consistent with the existing literature on 
mis conceptions, suggesting that students may face challenges not only in grasping con-
cepts related to concurrency but also in understanding fundamental principles underlying 
the computational model. These considerations also apply to third-year students, leading 
us to reflect on the pedagogy of programming education in our undergraduate program. 

In particular, the results of the Team Apps and the plenary discussion seem to suggest 
that a focus on mental models is beneficial in improving concurrency education, both 
to teach viable mental models and to present specific cases where common non-viable 
mental models are inappropriate and lead to misconceptions. 

The results of the knowledge transfer test are quite encouraging, at least for the 
pseudo code scenario, but future research is needed. 



D. Traversaro, G. Delzanno, G. Guerrini708

Based on the first year’s results, we believe that the proposed approach could also 
be valuable in secondary education, especially in high schools with a focus on STEAM 
education or in vocational schools specializing in technology-related fields. 

Finally, future experiments will provide fertile ground to further investigate the ef-
fectiveness of our approach and to analyze and address other misconceptions that are not 
included in the current research. 

Note on Human Participants 

The participants gave their consent to the use of the solutions of the proposed exercises 
for scientific research purposes only. Concerning ethical issues, the requirement for ap-
proval was waived by the research ethics committee of our University for activities 
proposed within modules dedicated to innovative teaching methods designed with the 
support of the University teaching and learning center, such as those presented in this 
paper. The reason is that the sole goal of these modules is to improve the learning of 
students through specific training activities strictly related to the topics of the courses, 
and the correspond ing research aims at measuring their effectiveness. Data privacy and 
retention is ensured by collecting and maintaining anonymized data. 

Disclosure statement 

No potential conflict of interest was reported by the authors. 

Data availability 

The data that support the findings of this study are openly available on Github: 
https://github.com/MaterialeInformatica/TemporaryRepoSonicPi 

References 

Aaron, S., Blackwell, A.F., Burnard, P. (2016). The development of Sonic Pi and its use in educational part-
nerships: Co-creating pedagogies for learning computer programming. Journal of Music Technology and 
Education, 9(1), 75–94. 

Aaron, S., Orchard, D.A., Blackwell, A.F. (2014a). Temporal semantics for a live coding language. In: 
McLean, A., Sperber, M., Nilsson, H. (Eds.), Proceedings of the 2nd ACM SIGPLAN international work-
shop on Func tional art, music, modeling & design, FARM@ICFP 2014, September 1–3, 2014. ACM, 
Gothenburg, Sweden, pp. 37–47. 

Aaron, S., Orchard, D.A., Blackwell, A.F. (2014b). Temporal semantics for a live coding language. In: 
McLean, A., Sperber, M., Nilsson, H. (Eds.), Proceedings of the 2nd ACM SIGPLAN international work-
shop on Func tional art, music, modeling & design, FARM@ICFP 2014, September 1–3, 2014. ACM, 
Gothenburg, Sweden, pp. 37–47. 

Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovett, M.C., Norman, M.K. (2010). How learning works: 
Seven research-based principles for smart teaching. John Wiley & Sons. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 709

Barnett, S.M., Ceci, S.J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer. 
Psychological bulletin, 128(4), 612. 

Ben-Ari, M. (1990). Principles of concurrent and distributed programming. PHI Series in computer science. 
Prentice Hall, US. 978-0-13-711821-2. 

Ben-Ari, M., Kolikant, Y.B. (1999). Thinking Parallel: The Process of Learning Concurrency. SIGCSE Bull., 
31(3), 13–16. 

Blackwell, A.F., Cocker, E., Cox, G., McLean, A., Magnusson, T. (2022). Live Coding: A User’s Manual. The 
MIT Press, Boston. 9780262372633. 

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J.E., Ratclife, M., Sanders, K., Zander, C. (2007). 
Thresh old Concepts in Computer Science: Do They Exist and Are They Useful? In: Proceedings of the 
38th SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’07. Association for Com-
puting Machinery, New York, NY, USA, pp. 504–508. 1595933611. 

Burnard, P., Lavicza, Z., Philbin, C.A. (2016). Strictly Coding: Connecting Mathematics and Music through 
Digital Making. In: Torrence, E., Torrence, B., Séquin, C., McKenna, D., Fenyvesi, K., Sarhangi, R. 
(Eds.), Proceedings of Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture. Tessel-
lations Pub lishing, Phoenix, Arizona, pp. 345–350. 978-1-938664-19-9. 

Carriero, N., Gelernter, D. (1989). Linda in Context. Commun. ACM, 32(4), 444–458. 
https://doi.org/10.1145/63334.63337 

Delzanno, G., Guerrini, G., Traversaro, D. (2024). Exploring Student Misconceptions about Concurrency Us-
ing the Domain-Specific Programing Language "Sonic Pi". In: Stephenson, B., Stone, J.A., Battestilli, L., 
Rebelsky, S.A., Shoop, L. (Eds.), Proceedings of the 55th ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE 2024, Volume 2, Portland, OR, USA, March 20–23, 2024. ACM, pp. 1622–1623. 
https://doi.org/10.1145/3626253.3635521

Delzanno, G., Guerrini, G., , Traversaro, D. (2023). Sonic TBL: Un Percorso Sonico da Creatività a Didattica 
dell’Informatica. In: Gentile, E., Monga, M. (Eds.), Attidella IEdizionedel ConvegnoItalianosulla Didat-
tica dell’Informatica, ITADINFO 2023, Bari 13–15 ottobre 2023. Università di Bari, pp. 109–116. 

du Boulay, B. (1986). Some Difficulties of Learning to Program. Journal of Educational Computing Re-
search, 2(1), 57–73. 

du Boulay, B., O’Shea, T., Monk, J. (1981). The black box inside the glass box: presenting computing con-
cepts to novices. International Journal of Man-Machine Studies, 14(3), 237–249. 
https://doi.org/10.1016/S0020-7373(81)80056-9 

Ernst, D., Stevenson, D. (2008). Concurrent CS: preparing students for a multicore world. ACM SIGCSE 
Bulletin, 40, 230–234. https://doi.org/10.1145/1384271.1384333 

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for everyone. 
Synthesis Lectures on Human-Centered Informatics, 8(6), 1–165. 

Hamer, J. (2004). An Approach to Teaching Design Patterns Using Musical Composition. In: Proceedings 
of the 9th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education. 
ITiCSE ’04. Association for Computing Machinery, New York, NY, USA, pp. 156–160. 1581138369. 

Harazim, M. (2017). //This is a Comment: Music, Computers and Culture in Live Coding. PhD thesis, The 
University of Edinburgh. 

Heines, J.M., Greher, G.R., Kuhn, S. (2009). Music performamatics: interdisciplinary interaction. In: Fitzger-
ald, S., Guzdial, M., Lewandowski, G., Wolfman, S.A. (Eds.), Proceedings of the 40th SIGCSE Technical 
Symposium on Computer Science Education, SIGCSE 2009, March 4–7, 2009. ACM, Chattanooga, TN, 
USA, pp. 478–482. https://doi.org/10.1145/1508865.1509029

Herlihy, M., Shavit, N. (2012). The Art of Multiprocessor Programming, Revised Reprint (1st ed.). Morgan 
Kaufmann Publishers Inc., San Francisco, CA, USA. 9780123973375. 

Herman, G.L. (2012). Designing contributing student pedagogies to promote students’ intrinsic motivation to 
learn. Computer Science Education, 22(4), 369–388. 

Hoare, C.A.R. (1978). Communicating Sequential Processes. Commun. ACM, 21(8), 666–677. 
Hunter, A., Exton, C. (2002). Elucidate: employing information visualisation to aid pedagogy for students. 

In: Marsico, M.D., Levialdi, S., Panizzi, E. (Eds.), Proceedings of the Working Conference on Advanced 
Visual Interfaces, AVI 2002, Trento, Italy, May 22–24, 2002. ACM, Italy, pp. 343–344. 

Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R., Gutica, M., Heinemann, B., Kraemer, E., Lonati, 
V., Mirolo, C., et al.(2019). Fostering program comprehension in novice programmers-learning activities 
and learning trajectories. In: Proceedings of the Working Group Reports on Innovation and Technology in 
Com puter Science Education, ITiCSE-WGR ’19. ACM, Aberdeen, Scotland, UK, pp. 27–52. 



D. Traversaro, G. Delzanno, G. Guerrini710

Kirkpatrick, M.S. (2017). Student Perspectives of Team-Based Learning in a CS Course: Summary of Quali-
tative Findings. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science 
Education. SIGCSE ’17. Association for Computing Machinery, New York, NY, USA, pp. 327–332. 
9781450346986. 

Kolikant, Y.B. (2004). Learning concurrency: evolution of students’ understanding of synchronization. 
Interna tional Journal of Human-Computer Studies, 60(2), 243–268. 

Kolikant, Y.B. (2005a). Students’ Alternative Standards for Correctness. In: Proceedings of the First Interna-
tional Workshop on Computing Education Research. ICER ’05. Association for Computing Machinery, 
New York, NY, USA, pp. 37–43. 1595930434. 

Kolikant, Y.B. (2005b). Students’ alternative standards for correctness. In: Anderson, R.J., Fincher, S., Guz-
dial, M. (Eds.), International Computing Education Research Workshop 2005, ICER ’05, Seattle, WA, 
USA, October 1–2, 2005. ACM, Seattle, pp. 37–43. 

Krishnamurthi, S., Fisler, K. (2019). Programming Paradigms and Beyond. Cambridge Handbooks in 
Psychol ogy. Cambridge University Press, Cambridge, pp. 377–413. 

Lamport, L. (2009). Teaching concurrency. SIGACT News, 40(1), 58–62. 
Lodi, M., Martini, S. (2021). Computational Thinking, Between Papert and Wing. Science & Education, 30. 
Lönnberg, J. (2006). Student Errors in Concurrent Programming Assignments. In: Proceedings of the 6th 

Baltic Sea Conference on Computing Education Research: Koli Calling 2006. Baltic Sea ’06. Association 
for Com puting Machinery, New York, NY, USA, pp. 145–146. 9781450378383. 

Lönnberg, J., Ben-Ari, M., Malmi, L. (2011). Java replay for dependence-based debugging. In: Lourenço, J., 
Farchi, E. (Eds.), Proceedings of the 9th Workshop on Parallel and Distributed Systems: Testing, Analy-
sis, and Debugging, PADTAD 2011. ACM, Toronto, ON, Canada, July 17–21, 2011, pp. 15–25. 
https://doi.org/10.1145/2002962.2002967 

Lusa Krug, D., Zhang, Y., Mouza, C., Barnett, T., Pollock, L., Shepherd, D.C. (2023). Using Domain-Spe-
cific, Immediate Feedback to Support Students Learning Computer Programming to Make Music. In: 
Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1, 
pp. 368–374. 

Milner, R. (1989). Communication and concurrency. PHI Series in computer science. Prentice Hall. 978-0-
13 115007-2. 

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., USA. 
0465046274. 

Petri, C.A., Reisig, W. (2008). Petri net. Scholarpedia, 3(4), 6477. 
https://doi.org/10.4249/scholarpedia.6477 

Petrie, C. (2022). Programming music with Sonic Pi promotes positive attitudes for beginners. Com puters & 
Education, 179, 104409. https://doi.org/10.1016/j.compedu.2021.104409. 
https://www.sciencedirect.com/science/article/pii/S0360131521002864 

Resnick, M. (1990). MultiLogo: A Study of Children and Concurrent Programming. Interactive Learning 
Environments, 1(3), 153–170. https://doi.org/10.1080/104948290010301

Ruthmann, S.A., Heines, J.M., Greher, G.R., Laidler, P., II, C.S. (2010). Teaching computational thinking 
through musical live coding in scratch. In: Lewandowski, G., Wolfman, S.A., Cortina, T.J., Walker, E.L. 
(Eds.), Proceedings of the 41st ACM technical symposium on Computer science education, SIGCSE 2010, 
March 10–13, 2010. ACM, Milwaukee, Wisconsin, USA, pp. 351–355. 

Shrestha, N., Botta, C., Barik, T., Parnin, C. (2022). Here We Go Again: Why is It Difficult for Developers to 
Learn Another Programming Language? Commun. ACM, 65(3), 91–99. 
https://doi.org/10.1145/3511062 

Simon, B., Kinnunen, P., Porter, L., Zazkis, D. (2010). Experience report: CS1 for majors with media com-
putation. In: Ayfer, R., Impagliazzo, J., Laxer, C. (Eds.), Proceedings of the 15th Annual SIGCSE Con-
ference on Innovation and Technology in Computer Science Education, ITiCSE 2010, June 26–30, 2010. 
ACM, Bilkent, Ankara, Turkey, pp. 214–218. https://doi.org/10.1145/1822090.1822151

Sorva, J. (2013). Notional Machines and Introductory Programming Education. ACM Trans. Comput. Educ., 
13(2). https://doi.org/10.1145/2483710.2483713

Strömbäck, F. (2023). Teaching and Learning Concurrent Programming in the Shared Memory Model. PhD 
thesis, Linköping University, Sweden. https://doi.org/10.3384/9789180750011. 
https://nbn-resolving.org/urn:nbn:se:liu:diva-191347

Strömbäck, F., Mannila, L., Kamkar, M. (2022). Pilot Study of Progvis: A Visualization Tool for Ob-
ject Graphs and Concurrency via Shared Memory. In: Proceedingsofthe24th AustralasianComputing 
EducationConfer ence. ACE ’22. Association for Computing Machinery, New York, NY, USA, pp. 123–
132. 9781450396431. https://doi.org/10.1145/3511861.3511885  



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 711

Strömbäck, F., Mannila, L., Asplund, M., Kamkar, M. (2019). A Student’s View of Concurrency – A Study 
of Common Mistakes in Introductory Courses on Concurrency. In: Proceedings of the 2019 ACM Confer-
ence on International Computing Education Research. ICER ’19. Association for Computing Machinery, 
New York, NY, USA, pp. 229–237. 9781450361859. 

Sutter, H. (2005). The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. Dr. Dobb’s 
Journal, 30(3), 202–210. http://www.gotw.ca/publications/concurrency-ddj.htm 

Traversaro, D., Guerrini, G., Delzanno, G. (2020). Sonic Pi for TBL Teaching Units in an Introduc tory Pro-
gramming Course. In: Kuflik, T., Torre, I., Burke, R., Gena, C. (Eds.), Adjunct Publication of the 28th 
ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2020, Genoa, Italy, July 
12–18, 2020. ACM, pp. 143–150. https://doi.org/10.1145/3386392.3399317 

Weintrop, D., Wilensky, U. (2019). Transitioning from introductory block-based and text-based environ-
ments to professional programming languages in high school computer science classrooms. Computers 
& Education, 142, 103646. 

D. Traversaro is a third year PhD students in Computer Science at the University of 
Genova, with a special interest for Computer Science Education. His PhD thesis is fo-
cused on innovative teaching methodologies for university courses in computer science. 
The Phd defense is scheduled in May 2024. 

G. Delzanno is a Professor in Computer Science at the University of Genova. His re-
search interests are related to foundational, applied and educational aspects of computer 
science. 

G. Guerrini is a Professor in Computer Science at the University of Genova. Her re-
search interests are related to database, data warehousing, semantic web, and computer 
science education. 



D. Traversaro, G. Delzanno, G. Guerrini712

Appendix A 

RAT Results 

For the sake of completeness, in this section we discuss the results of the RAT quiz-
zes. 

For CA students, as expected, we found that team scores tended to be higher  ●
than in dividual scores. Specifically, the RAT quiz success rate (i.e., the percent-
age of correct answers) increases from 5.6 for the individual test to 6.5 for the 
team test. Table 1 shows the percentage of total correct answers for each item 
Qi. We found that teams outper formed individuals in all but the first question, 
which was about live coding loops. Specifically, Q1, 19 teams answered cor-
rectly, and 6 students voted for “No effect on execution. This is live coding”, 7 
students voted for “It forks the main thread and creates two new ones. One will 
play 60 and the other 65. This is live coding”, and 1 student voted for “It raises a 
runtime error”. Looking at the individual responses, we can see that the second 
question was the most difficult, which was about live coding with live loops and 
a sample outside the loop. 
For the CP results, Table 2 shows the percentage of total correct answers for each  ●
item Qi for both individuals and teams. It can be seen that the teams achieved 
significantly higher percentages of correct answers than the CA students, per-
forming better in all five questions. For the CP students, the fourth question was 
the most challenging, which was about live coding with live loops and the get/
set synchronization mechanism. 

Table 1
CA individual and Team RAT results

CA 
1
 

2
 

3
 

4
 

5

Individual 75% 37% 49% 44% 60%
Team 59% 63% 59% 63% 81%

Table 2
CP Individual and Team RAT results

CP 
1
 

2
 

3
 

4
 

5

Individual 61% 46% 48% 37% 70%
Team 91% 91% 82% 73% 91%



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 713

Appendix B 

Individual Post-Questionnaire 

I think that the activity was effective in introducing and/or deepening some con- ●
cepts of concurrent programming. Likert scale ranging from 1 to 5. 
I believe that the musical approach with Sonic Pi helps to understand concurrency  ●
in a simple, intuitive, and less abstract way. Likert scale ranging from 1 to 5. 
I think that this activity has mainly helped me to...  ● Open answer. 
I consider the level of difficulty of the suggested exercises to be  ● Easy, Ok, Dif-
ficult. 
I consider the time needed to complete the activity to be  ● Easy, Ok, Difficult. 
I prepared adequately for the class activity.  ● Likert scale ranging from 1 to 5. 
Have you developed concurrent code in school/university or professional proj- ●
ects? Yes (with open answer); No 
Have you ever used the Ruby programming language or the Sonic Pi development  ●
en vironment? Yes; No 
Teamwork was useful and satisfying.  ● Likert scale ranging from 1 to 5. 



D. Traversaro, G. Delzanno, G. Guerrini714

Appendix C

Knowledge Transfer Test 

Fig. 12, Fig. 13, and Fig. 14 show the three exercises of the knowledge transfer test. 

Fig. 12. Exercise 1. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 715

Fig. 13. Exercise 2. 



D. Traversaro, G. Delzanno, G. Guerrini716

Fig. 14. Exercise 3. 



“Hear” and “Play” Students Misconceptions on Concurrent Programming ... 717

Appendix D

Team APP – Evaluation Grid 

The Team APP evaluation grid is based on the rubric shown in the following Table: 

Objective Level 1 Level 2 Level 3 Level 4

Recognizing a 
shared resource 

Does not recog-
nize the presence 
of shared 
resources in the 
exercise 

Recognizes the 
presence of shared 
resources but 
does not handle 
concurrent access 
correctly 

Recognizes 
the presence of 
shared resources 
and implements 
synchronization 
mechanisms to ensure 
concurrent access 

Recognizes the 
presence of shared 
resources, effectively 
implements syn-
chronization mecha-
nisms, and optimizes 
performance

Recognizing 
synchronization 
goals

Does not recog-
nize the need for 
synchronization 
between processes 
or threads

Recognizes the 
need for synch-
ronization but 
implements 
inadequate or 
complex solutions

Recognizes the need 
for synchronization 
and implements 
suitable and under-
standable solutions

Recognizes the need 
for synchronization, 
implements innova-
tive and optimized 
solutions

Recognizing the 
correct visibility 
scope of variables 

Does not under-
stand the concept 
of visibility scope 
of variables in 
concurrent context

Partially 
understands the 
concept of visibility 
scope but makes 
errors in managing 
shared variables

Understands the 
concept of visibility 
scope and properly 
manages shared 
variables among 
threads

Fully understands 
the concept of 
visibility scope and 
implements advanced 
solutions to manage 
shared variables

Recognizing race 
condition 

Does not enco-
unter race condi-
tions and fails to 
resolve them

Identifies race 
conditions but only 
partially resolves 
the problem

Effectively manages 
race conditions in 
most cases

Successfully avoids 
race conditions 
and implements 
preventive solutions

Recognizing 
possible deadlock 
situations 

Does not recog-
nize deadlocks 
and does not 
resolve them

Identifies deadlock 
situations, but with 
some difficulty

Avoids deadlock 
situations and mana-
ges them effectively 
most of the time

Successfully avoids 
deadlock situations 
and implements 
effective preventive 
solutions

Appendix E

Gallery Walk – Team APP Results 

Fig. 15 illustrates the results of the gallery walk for tasks 6 and 7. 



D. Traversaro, G. Delzanno, G. Guerrini718

Fig. 15. Team Task 6 and 7 Solutions.


