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Abstract. In this study, we aimed to investigate the impact of cooperative learning on the 

computational thinking skills and academic performances of middle school students in 

the computational problem-solving approach. We used the pretest-posttest control group 

design of the quasi-experimental method. In the research, computational problem-solving 

activities regarding 6th graders' goals of the "heat and matter" unit, were applied 

individually by Group 1 and cooperative learning by Group 2. These activities required 

students to use computational thinking skills and code using the Python programming 

language. The study involved 34 students from the 6th grade of a private middle school 

located in the capital city of Turkey. The Computational Thinking Test (CTt) and an 

academic achievement test were used as pre-tests and post-tests to monitor students' 

computational thinking skills and academic performances. Additionally, computational 

problem-solving activities were scored to track the progress of students' computational 

thinking abilities. Non-parametric Mann Whitney U and Wilcoxon T-tests were utilized 

to analyze the progression of pupils' computational thinking abilities and academic 

success, and ANCOVA was used to analyze CTt scores. Qualitative data were collected 

through semi-structured interviews at the end of the process to determine students' views 

on the computational problem-solving process. Results revealed a significant increase in 

students' academic achievement and computational thinking skills in both groups. A 

comparison of post-test scores showed no significant difference between groups. It is 

anticipated that the research results will make meaningful contributions to the literature 

concerning the progress of computational thinking skills in secondary school students. 

Keywords: science education, computational thinking, cooperative learning, middle 

school students. 

 

Introduction 

Developing students' 21st-century skills and giving them greater importance within 

curricula has gained increased emphasis in recent years (Nouri et al., 2020). The 

International Society for Technology in Education (ISTE, 2016) asserts that the role of 
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computers and automation systems in our lives is expanding and highlights the necessity 

to enhance students' abilities as “digital citizens, knowledge constructors, innovative 

designers, computational thinkers, creative communicators, global collaborators, and 

empowered learners”. The International Association for the Evaluation of Educational 

Achievement (IEA) evaluates the computer and information literacy levels and 

computational thinking skills of students as part of the International Computer and 

Information Literacy Study (ICILS) (Fraillon, et al., 2019). Within the context of ICILS, 

computer and information literacy refers to a student's capacity to apply computer 

technology to gather, organize, and manipulate information. Computational thinking 

skills are the cognitive skills used for programming computers or digital devices and 

developing applications (Fraillon et al., 2019). Wing (2008), a key figure in the debate 

around integrating computational thinking into education programs beyond computer 

science courses, believes that everyone should learn to use the methods and approaches 

of computer science. According to Gülbahar et al. (2019), individuals with computer-like 

information-processing abilities can display competence in problem-solving, critical 

thinking, and lifelong learning. In particular, there is substantial research in the context 

of secondary school science education investigating the teaching of computational 

thinking (Basu et al., 2016; Grover, 2017; Ogegbo & Ramnarain, 2022). While these 

discussions continue, there is inadequate evidence in the literature regarding the efficacy 

of the collaborative approach to cultivate computational thinking skills in secondary 

school students.  

Computational science education is defined as an interdisciplinary field that includes the 

disciplines of mathematics, natural sciences, computer science, and educational sciences 

and benefits from the power of all these fields (Yasar, et al., 2000). In this context, 

computational physics education (Ayars, 2013; Backer, 2007; Chabay & Sherwood, 

2008; Landau, et al, 2009; Landau, et al., 2015), computational chemistry education 

(Perrin et al, 2014: Pickard et al., 2014; Johnson & Engel, 2011; Miller et al., 2014) and 

computational biology education (Fox & Ouellette, 2013; Rubinstein & Chor, 2014) have 

gained momentum in recent years. Landau, et al. (2009) suggested that computational 

science education should be built on problem-solving and stated that although it includes 

fewer theoretical science lessons compared to pure science education, it offers much more 

effective and meaningful learning due to the integration of science, mathematics, and 

computer science. Therefore, this study investigates the impact of the collaborative 

approach in computational problem solving on the academic achievement of middle 

school students in science courses, as well as their computational thinking skills 

development. 

 

Theoretical Framework 

Computational Thinking 

Wing (2008) defines computational thinking as "... is taking an approach to solving 

problems, designing systems, and understanding human behaviour that draws on 

concepts fundamental to computing" (p. 3717). According to Wing, the main purpose of 

acquiring this skill is to provide a multidimensional thinking skill in solving problems in 



 

 

different areas of life. Barr et al. (2011) considered computational thinking as a problem-

solving process and formulated it to include the following skills; 

• “Formulating problems in a way that enables us to use a computer and other tools to 

help solve them” 

• “Logically organizing and analyzing data” 

• “Representing data through abstractions, such as models and simulations” 

• “Automating solutions through algorithmic thinking (a series of ordered steps)” 

• “Identifying, analyzing, and implementing possible solutions with the goal of 

achieving the most efficient and effective combination of steps and resources” 

• “Generalizing and transferring this problem-solving process to a wide variety of 

problems” (p. 21) 

Many studies in the literature define computational thinking as a problem-solving process 

(Grover & Pea, 2018; Weintrop, et al., 2016; Yadav, et al., 2014; ISTE, 2016), and it 

usually encompasses several sub-skills such as decomposition, abstraction, algorithm 

design, automation, data collection, data analysis, data representation, simulation, 

parallelization, and generalization (Barr & Stephenson, 2011; Conery et al., 2011; Park 

& Jeon, 2015). The International Computer and Information Literacy Study (ICILS) 2018 

assessment framework defines computational thinking (CT) as "an individual's ability to 

recognise aspects of real-world problems that are amenable to computational 

formulation and to evaluate and develop algorithmic solutions to these problems so that 

the solutions can be operationalised with a computer" (Fraillon et al. 2019, p. 27). 

According to the ICILS 2018 framework, ICT consists of two parts: conceptualizing 

problems and operationalizing solutions. The three dimensions that make up the 

conceptualizing problems part are: knowing about and understanding digital systems, 

formulating and analyzing problems, and collecting and representing relevant data. The 

two dimensions that make up the operationalization of solutions are the planning and 

evaluation of solutions and the development of algorithms, programs, and interfaces. 

Computational Problem Solving 

Computational science is an interdisciplinary field comprising the disciplines of 

mathematics, natural sciences, computer science, and educational sciences, leveraging the 

strengths of each (Yasar et al., 2000). Landau et al. (2015) proposed that computational 

science education should be founded upon problem-solving. They noted that despite 

involving fewer theoretical science lessons than pure science education, computational 

science education facilitates more efficient and significant learning by incorporating 

science, mathematics, and computer science. At present, it is necessary to discuss how to 

provide computational science education in secondary schools, as the current literature 

predominantly concentrates on science education in upper secondary schools (Pickard et 

al., 2014; Miller et al., 2014). At this point, computational problem-solving appears as an 

effective tool. Problem-based learning is a curriculum-based, student-centered approach 

that enables individuals to conduct research and inquiry, combine theory and practice, 

and use their knowledge and skills to solve existing problems (Savery, 2015). Besides 

computational thinking involves formulating problems appropriately to solve them with 

tools and methods such as computers and data analysis, finding possible solutions, and 

using these solutions to solve other similar problems (Barr, et al., 2011; Wing, 2008). In 

this respect, it can be stated that computational thinking is a problem-solving process 



 

 

closely related to computer science, and according to Grover and Pea (2018), problem 

formulation is an important part of this problem-solving process. Since a computer is not 

required to formulate a solution in a problem-solving process, computational thinking can 

be taught without using a computer. For this reason, there are different computational 

thinking teaching approaches from preschool to high school level, either plugged-in or 

unplugged (Lee & Junoh, 2019). In summary, computational problem-solving does not 

only involve the act of computer programming. According to Dierbach (2012), two things 

are needed to solve a problem computationally: a solution proposal that covers all relevant 

aspects of the problem and an algorithm that can solve the problem using this solution 

proposal. Dierbach (2012) defines the computational problem-solving process as follows; 

1. Analyze problem 

a. Clearly understand problem 

b. Know what constitutes a solution 

2. Describe data and algorithms 

a. Determine what time of data is needed 

b. Determine how data is to be structured 

c. Find and/or design appropriate algorithms 

3. Implement program 

a. Represent data within programming language 

b. İmplement algorithms in programming language 

4. Test and debug 

a. Test the program on a selected set of problem instances 

b. Correct and understand causes of any errors found “ 

 

Cooperative Learning 

Cooperative learning is a teaching strategy in which students undertake their own and 

their peers' learning by working in small groups (Johson & Johnson, 1999; Slavin, 1999). 

For an activity to be cooperative, it must have five basic elements: positive 

interdependence, individual responsibility, face-to-face stimulating interaction, social 

skills, and group processing (Johson & Johnson, 1999). From this point of view, there are 

different perspectives on the source of student success in cooperative learning. The 

motivational perspective argues that students' motivation to complete the task is the 

driving force and believes that other processes are driven by motivation. According to the 

social cohesion perspective, the effect of cooperative learning on student achievement is 

mediated by group spirit and cohesion, and believes that the quality of group interaction 

is largely determined by group cohesion. The cognitive perspective argues that 

interactions between students will increase student achievement for reasons related to the 

mental processing of information rather than motivations, and according to this 

perspective, the opportunity for students to learn from each other mediates the 

construction of knowledge (Slavin, 2015). The literature provides evidence that 

collaborative learning positively supports students' academic achievement (Dheeraj & 

Kumari, 2013; Parveen & Batool, 2012; Vaughan, 2002). 



 

 

Purpose and Significance of the Study 

Since computational thinking is defined as a problem-solving approach and the effect of 

cooperative learning on academic achievement and attitude is well known, the effect of 

cooperative learning on teaching programming has been examined in some studies. Tsai 

(2002) explored the impact of strategic learning and cooperative learning on the computer 

performance, attitudes, and anxiety levels of junior high school students in Taiwan. The 

findings indicate a significant increase in computer anxiety among students in the 

cooperative learning group when compared to those in the control group. This reflects 

that the students tended to have higher anxiety towards using and learning computers in 

cooperative learning. In another study, Garcia (2021) investigated the impact of 

collaborative learning through the use of the Jigsaw Technique (JT) on the education of 

university-level novice programmers in computer programming. As a result of the 

research, he reported that the attitudes and academic achievement of students exposed to 

collaborative teaching increased. Li et al. (2022) explored the role of socially shared 

regulation on computational thinking performance in cooperative learning.  In the 

experimental group students learned under the socially shared regulation of learning 

(SSRL) condition. The results showed that the students in the experimental group 

significantly outperformed their counterparts. Zhou and Tsai (2023) explored the effects 

of socially shared learning regulation (SSRL) on the computational thinking, learning 

motivation, engagement, and academic achievement of university students in 

collaborative learning by teaching (CLBT). Based on the results, the scores of the 

experimental class with SSRL in CLBT were significantly higher than those of the control 

class. Furthermore, the students in the experimental class significantly improved their 

computational thinking (algorithmic thinking, critical thinking, and problem-solving), 

intrinsic motivation, engagement, and academic achievement compared to those in the 

control class. As can be seen, the studies in the literature have mostly focused on college 

and university-level students, there is not enough evidence on the performance of younger 

students in cooperative learning. Furthermore, the context of the studies focuses on 

computer science teaching, whereas in this research we are experimenting with an 

approach that integrates computer science with secondary school science. Another 

rationale for conducting the study is that students' motivation for cooperative learning in 

Turkey may be different due to cultural reasons. We believe that the findings of this study 

are important for future studies. In this study, we aimed to investigate the impact of 

cooperative learning on the computational thinking skills and academic performances of 

middle school students in the computational problem-solving approach. 

Research Questions 

The research problem for this research aims to investigate whether there is a significant 

statistical difference in academic achievement and computational thinking skills when 

comparing groups who complete the computational problem-solving approach 

collaboratively and individually at the 6th-grade level. 

RQ 1. Is there a statistically significant difference between the academic achievement test 

pre-test and post-test scores of the students in the groups in which the computational 

problem-solving approach was carried out collaboratively and individually? 



 

 

RQ 2. Is there a statistically significant difference between the computational thinking 

test pre-test and post-test scores of the students in the groups in which the computational 

problem-solving approach was carried out collaboratively and individually? 

RQ 3. What are the student reflections of students in collaborative and individual groups 

about the computational problem-solving process? 

 

Method 

In this study, we aimed to investigate the impact of collaborative and individual 

computational problem-solving approaches on the academic achievement and 

computational thinking skills of middle school students. To achieve this, we employed a 

pretest-posttest control group design as part of the quasi-experimental method (Fraenkel 

et al., 2012) and this design is depicted below. 

Table 1: Research design 

  Pre-test Treatment Post-test 

Group 1  

(Individual)  

Computational Thinking Test 

(CTt) Computational Problem 

Solving (Individual) 

Computational 

Thinking Test (CTt) 

Academic Achievement Test 
Academic 

Achievement Test 

Group 2  

(Cooperative) 

Computational Thinking Test 

(CTt) 
Cooperative 

Computational Problem 

Solving  

Computational 

Thinking Test (CTt) 

Academic Achievement Test 
Academic 

Achievement Test 

 

To determine whether computational problem solving improves students' academic 

achievement and computational thinking skills, classes from 6th grade were selected as 

individual and cooperative study groups. The same program and measurement tools were 

applied to both study groups under the same conditions. The developed program is related 

to the density topic of matter and heat unit and covers the 6th-grade level acquisitions. In 

addition, the student standards are defined by the ISTE (2016). The program based on 

computational problem-solving practices was implemented in both groups under the same 

conditions. In Group 1, a cooperative learning approach was used, while in Group 2, 

students worked individually. To eliminate the threat of internal validity, the applications 

were conducted by a science teacher and a computer teacher in both groups. The science 

teacher had no prior knowledge of Python and computational problem-solving. Therefore, 

training was given to the teacher before the applications. This training was carried out 

through the activities developed for the students. The Python coding activities of the 

students were carried out in the computer laboratory under the supervision of the science 

teacher and the computer teacher. The computer teacher had prior knowledge of block 

coding, algorithms, and Python. 

 



 

 

 

Participants 

The study group for this research was determined using a convenient sampling method. 

The research was conducted with two 6th-grade classes at a private secondary school in 

the Capital city of Turkey during the 2022-2023 academic year spring semester. The 

current study involved a total of 34 students, comprising 10 girls and 6 boys from group 

1, and 7 girls and 11 boys from group 2, as well as the science teacher of these classes. 

The age range of the students in the classes selected by the purposive sampling method is 

12-13 years. The ratios of male and female students in the study groups were not 

intervened. The necessary permissions were obtained from the Provincial Directorate of 

National Education and the school administration. In the current study, it was determined 

that students had prior knowledge about block coding and that students played block 

coding games within the scope of the computer course. The distribution of the students 

within the study group is outlined in Table 2.  

Table 2 

Study group 

 
Girls Boys Total 

Group 1 (Individual) 10 6 16 

Group 2 (Cooperative)  7 11 18 

Total 17 17 34 

The age range of the students in the study group was 12-13 years. There was no definite 

ratio in the number of boys and girls, and the groups were not intervened in terms of 

gender. The study was carried out by obtaining the necessary permissions from the 

Provincial Directorate of National Education and the school administration regarding the 

study to be carried out after the research on the determined school. Semi-structured 

interviews were conducted with the science teacher and computer teacher face-to-face or 

online at a specified time.  

Implementation 

In the current research, a program was designed by considering the outcomes of the 2018 

science curriculum (MoNE, 2018) and ISTE (2016) student standards together. The four 

objectives of the "Density" topic of the "Matter and Heat" unit in the 6th-grade level of 

the science curriculum were taken as a basis. In addition, four standards under the title of 

"computational thinker" in the ISTE Student Standards were used. These standards and 

the outcomes taken from the science curriculum are presented in Table 3. A total of eight 

lessons containing these objectives were developed. The first 5 lessons in the prepared 

program were conducted by the science teacher in the science classroom. The researchers 

participated in these lessons as observers and supported the science teacher to carry out 

the implementation as planned. The last three lessons included computational problem-

solving applications and students were required to code using Python. Therefore, these 



 

 

lessons were conducted in the computer laboratory under the leadership of a computer 

teacher (see Appendix 3). The science teacher and a researcher were involved in this 

process and supported student work. The total implementation lasted 6 weeks including 

the pre-test and post-test applications. In each lesson, the tasks to be completed by the 

students were defined (see Table 3). Since the lessons lasted 35 minutes in the school 

where the implementation took place, all implementations were determined to fit this 

duration. In each lesson, special areas were defined for students to write their solutions 

related to the computational problem-solving stages along with the instructions prepared 

for them. Some examples of the designed activity sheets are shown in the appendix.  

The Python coding activities of the students were carried out through 

https://www.onlinegdb.com. The student activity sheets consisted of steps appropriate to 

the computational problem-solving process and each step required the use of one or more 

of the computational thinking skills (see Table 3). Students carried out their 

computational problem-solving processes on these activity sheets. The last three activity 

sheets, "What is it made of?", "Which liquid where?" and "Who sinks and who swims?" 

were collected and scored to provide evidence about the development of students' 

computational thinking skills, because, in the last three activities, students were expected 

to use their previously acquired computational problem-solving skills in problem 

situations. The problem situations were prepared following the objectives in the science 

curriculum and activities in the science textbook were redesigned according to the 

computational problem-solving process.   

In group 1, activity sheets (see Appendix 2) were provided for each student in Group 1 

and the students completed these activities individually. During this time, care was taken 

to answer the students' questions individually as much as possible. Students did not 

discuss or exchange ideas in small groups. One computer was allocated to each student 

in the computer lab. The students in Group 1 completed their studies on the computers 

individually. In Group 2, students were divided into groups of 4 or 5 students at the 

beginning of the process. An activity sheet was provided for each group. Students 

progressed by discussing and making joint decisions at each stage of the process. In Group 

2, the cooperative learning groups were formed by the science teacher and special 

attention was paid to heterogeneous groups in terms of gender and academic achievement. 

In Group 2 (cooperative), a computer was provided to each group of students, and after 

the students decided on their algorithm designs together, they coded on this computer. To 

monitor the development of students' computational problem-solving skills, the 

framework defined by Dierbach (2012) was taken as a basis. This framework consists of 

analyzing a problem, describing data and algorithms, implementing a program, and 

testing and debugging dimensions. Therefore, in this current research, to monitor students' 

computational problem-solving skills, we scored students' performances in three 

dimensions; algorithm design, flow chart, and Python coding. Algorithm design refers to 

students' development of a systematic for problem-solving based on the stages of 

analyzing the problem and describing data. Flow chart refers to creating the algorithm of 

this solution and visualizing (abstraction) it. Finally, python is associated with coding, 

implementing a program, and testing and bugging. 

https://www.onlinegdb.com/


 

 

Table 3  

Program design and objectives 

Lessons Objectives and applications Science Education Program Goals (MoNE, 2018) & ISTE Standards CT Skills 

Lesson 1 Pattern identification and abstraction:  

A table containing the mass, volume, and density of some 

substances was presented to the students. The students tried to 

discover the relationship between these properties of 

substances. Then they were asked to define the concept of 

"density" in their own words. Then they tried to express this 

relationship mathematically. 

F.6.4.2.1. Defines density. 

 

ISTE / 1.5.a. Students formulate problem definitions suited for technology-assisted 

methods such as data analysis, abstract models, and algorithmic thinking in exploring and 

finding solutions. 

Pattern 

Recognition,  

Abstraction 

Lesson 2 Algorithms and flow charts:  

Algorithms and their types were introduced to the students. 

Students' algorithm writing skills were developed with the 

activities "Write the algorithm of the things you do from the 

moment you wake up until you come to school" and "Write an 

algorithm to prepare your favorite sandwich". 

- 

 

ISTE / 1.5.c. Students break problems into component parts, extract key information, and 

develop descriptive models to understand complex systems or facilitate problem-solving. 

 

Pattern 

Recognition,  

Algorithm 

Design 

Lesson 3 Using algorithms and flow charts in problem-solving.  

Students were given a problem situation about recycling. The 

students were asked to prepare an algorithm to solve the 

problem of incorrect disposal of garbage in recycling bins and 

to express it with a flow chart. 

- 

 

ISTE / 1.5.c. Students break problems into component parts, extract key information, and 

develop descriptive models to understand complex systems or facilitate problem-solving. 

Decomposition,  

Pattern 

Recognition,  

Algorithm 

Design 

Lesson 4 Turning algorithms into pseudocodes:  

Within the scope of the student camp activity, students were 

given a list of rules to be followed, firstly, they were provided 

to write an algorithm by examining these guidelines. Then, 

they were trained to convert these algorithms into pseudo 

codes. In this activity, “if” condition was used for the first time. 

- 

 

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to 

develop a sequence of steps to create and test automated solutions. 

Algorithm 

Design,  

Coding and 

debugging 

Lesson 5 Introduction to Python:  

Students were introduced to the Python coding language and 

coding activities were carried out at a simple level. Coding 

activities were carried out in the computer lab of the school, 

students wrote Python codes on https://www.onlinegdb.com, 

and student work was monitored on this platform. In this study, 

especially, print, sort, if, else structures, and basic arithmetic 

operations were studied. 

 

- 

 

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to 

develop a sequence of steps to create and test automated solutions. 

Algorithm 

Design,  

Coding and 

debugging 

https://www.onlinegdb.com/


 

 

Lesson 6 Computational Problem Solving 1: What is it made of? 

The students tried to find out what the objects with known 

values were made of. The students were first asked to examine 

all the data in the given density table, sort out the unnecessary 

data, and then analyze the problem by dividing it into small 

pieces. Then, they prepared an algorithm to determine which 

material the objects were made of and wrote Python code 

according to this algorithm. In this activity, students were 

expected to use "int", "input", "print" and "if" 

F.6.4.2.1. Defines density. 

    a. Emphasize that density is a distinguishing property of matter. 

    b. Use g/cm3 as the unit of density.  

F.6.4.2.2. Calculates the densities of various substances as a result of the experiments 

he/she designs. 

ISTE / 1.5.a. Students formulate problem definitions suited for technology-assisted 

methods such as data analysis, abstract models and algorithmic thinking in exploring and 

finding solutions. 

ISTE / 1.5.b. Students collect data or identify relevant data sets, use digital tools to analyze 

them, and represent data in various ways to facilitate problem-solving and decision-

making. 

ISTE / 1.5.c. Students break problems into component parts, extract key information, and 

develop descriptive models to understand complex systems or facilitate problem-solving. 

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to 

develop a sequence of steps to create and test automated solutions. 

 

Decomposition,  

Pattern 

Recognition,  

Abstraction,  

Algorithm 

Design,  

Coding and 

debugging 

Lesson 7 Computational Problem Solving 2: Which liquid where? 

In this problem, students were asked to solve how four 

immiscible liquids would be ordered when placed in the same 

container. Students were presented with a table of liquids and 

their densities, and they were expected to create an algorithm 

for the positions of four randomly selected liquids in the 

container and write Python code according to this algorithm. 

They were especially expected to use "list" and "sort" 

structures to solve the problem. 

F.6.4.2.3. Compares the densities of insoluble liquids in each other by experimenting. 

ISTE / 1.5.a. Students formulate problem definitions suited for technology-assisted 

methods such as data analysis, abstract models and algorithmic thinking in exploring and 

finding solutions. 

ISTE / 1.5.b. Students collect data or identify relevant data sets, use digital tools to analyze 

them, and represent data in various ways to facilitate problem-solving and decision-

making. 

ISTE / 1.5.c. Students break problems into component parts, extract key information, and 

develop descriptive models to understand complex systems or facilitate problem-solving. 

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to 

develop a sequence of steps to create and test automated solutions. 

 

Decomposition,  

Pattern 

Recognition,  

Abstraction,  

Algorithm 

Design,  

Coding and 

debugging 

Lesson 8 Computational Problem Solving 3: Who sinks and who 

swims? 

The students were given a table containing the mass and 

volume values of the objects named K, L, M, and N and were 

expected to write a code to determine which objects would 

float in water and which objects would sink in water. In the 

coding phase, students were expected to write a code that 

calculates the density of the object by using the mass and 

volume values entered and decides whether the object will sink 

or float by comparing it with the density of water. Students 

especially used "input", "if", and "print" structures. 

F.6.4.2.1. Defines density. 

   a. Emphasize that density is a distinguishing feature of matter. 

F.6.4.2.2. Calculates the densities of various substances as a result of the experiments 

he/she designs. 

ISTE / 1.5.a. Students formulate problem definitions suited for technology-assisted 

methods such as data analysis, abstract models and algorithmic thinking in exploring and 

finding solutions. 

ISTE / 1.5.b. Students collect data or identify relevant data sets, use digital tools to analyze 

them, and represent data in various ways to facilitate problem-solving and decision-

making. 

ISTE / 1.5.c. Students break problems into component parts, extract key information, and 

develop descriptive models to understand complex systems or facilitate problem-solving. 

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to 

develop a sequence of steps to create and test automated solutions. 

Decomposition,  

Pattern 

Recognition,  

Abstraction,  

Algorithm 

Design,  

Coding and 

debugging 

 



 

 

The elements that could threaten the internal validity of the research were carefully controlled. In both group 1 

and group 2, the pre-test and post-test and all the applications including the planned activities were carried out by 

the science teacher of the school with the support of the computer teacher. The researchers were only involved in 

the process as observers and only provided support to the teachers when necessary. Before the implementation, 

the teachers were informed about the whole process, and their permissions were obtained. Since the science 

teacher's prior knowledge about computational thinking was very low, she was given a short training and the points 

to be considered while conducting the studies were explained. In Group 2 (cooperative), student study groups were 

formed by the science teacher before the implementation, and care was taken to ensure that the groups were 

heterogeneous. Students did not change their groups throughout the process. In both study groups, the same 

activities were carried out simultaneously by the same teachers. 

Data collection and analyses 

To examine the effect of the program developed in this study on the computational thinking skills and academic 

achievement of secondary school students, the computational thinking test and academic achievement test were 

applied as pre-test and post-test. Academic achievement test pre-test and post-test applications (paper-pencil tests) 

were carried out in the classroom environment and lasted 30 minutes. The pre-test and post-test applications of the 

computational thinking test were prepared in the form of Google Forms and applied in the computer laboratory. 

The applications lasted 40 minutes. In addition to these, the students' computational problem-solving activity 

papers were collected and scored and the development of students' computational thinking skills was monitored. 

For this purpose, a rubric developed within the scope of this research was used. Information about the data 

collection tools is detailed below. 

Computational Thinking Test (CTt): The Computational Thinking Test (CTt) developed by Román-González, 

Pérez-González and Jiménez-Fernández (2016) consists of 28 multiple-choice items that include problem 

situations based on block-based coding on the code.org website. CTt was designed according to guidelines for 

teaching and measuring CS (Buffum et al., 2015), and defines computational thinking as "... the ability to formulate 

and solve problems based on fundamental concepts of computation and using the inherent logic of programming 

languages" (Román-González, et al., 2017) The test was administered to a sample of 1,251 Spanish students from 

5th to 10th grades and the Cronbach's Alpha reliability of the test was found to be α = 0.793. The average difficulty 

index of the test items was reported as p = 0.59. For the adaptation of the scale into Turkish, 120 secondary school 

students studying in a different private school were reached. The item statistics obtained in the pilot study are 

presented in Table 3. Although there was a slight decrease in item statistics after the Turkish adaptation, it was 

evaluated that the test is a valid and reliable tool for monitoring students' computational thinking skills.  

Academic Achievement Test: Within the scope of the research, an academic achievement test was developed to 

monitor students' academic achievement in density. The test was designed as a multiple-choice exam consisting 

of 20 questions. To ensure the content validity of the test, the opinions of two field experts were obtained and the 

test items were revised in line with these opinions. The test was applied to an equivalent sample (n = 48) before 

the application and item statistics were checked. The descriptive analysis results of the pilot application of the 

academic achievement test are given in Table 4. 

Table 4 

Computational Thinking Test Pilot Application Descriptive Statistics 

Test Statistics CTt  Academic Achievement Test 

N 120 48 

Min. 7 8,00 

Max. 28 20,00 

Mean 14,43 14,43 

Standard deviation 4,36 3,97 

Mean Item Difficulty Index 0,65 0,72 

Mean Item Discrimination Index 0,36 0,45 

KR-20 (Alpha) 0,75 0,86 

KR-21 0,69 0,78 

 



 

 

Computational Problem Solving (CPS) Rubric: The activity papers of CPS 1, CPS 2, and CPS 3 in which the 

students were involved in computational problem-solving practices were collected and scored with a rubric. 

Algorithm design, constructing flow charts, and Python coding phases of the activities were scored as separate 

sub-dimensions in cooperative and individual study groups. The rubric is given in Appendix 1. 

Semi-structured Interviews: Qualitative data were collected through semi-structured interviews at the end of the 

process in order to determine the views of the students participating in the research (cooperative and individual) 

on the computational problem-solving process. Semi-structured interview questions are presented in Appendix 2. 

In the study, SPSS 24 was used to analyze all the data obtained from the tests.  In the analyses, it was determined 

that the data obtained from the academic achievement test were not suitable for normal distribution. For this reason, 

the Mann Whitney U Test and Wilcoxon Signed Ranks Test were used to determine whether the difference 

between the mean academic achievement scores in individual and collaborative groups was significant. It was 

determined that the data obtained from the computational thinking test were coherent with the normal distribution. 

In addition, since a significant difference was found between the CTt pre-test scores of the groups, the ANCOVA 

test was applied to determine whether there was a statistically significant difference between the post-test scores. 

Nonparametric tests were applied for the scores obtained from the information processing problem-solving rubric. 

Internal and External Reliability, Ethics 

The necessary permissions were obtained from the Hacettepe University Ethics Commission and Ankara 

Provincial Directorate of National Education. Before the research, students and parents were informed about the 

applications, and their permission to participate in the application was obtained. The measurement tools applied 

within the scope of the study were appropriate in terms of validity and reliability and appropriate analysis 

techniques were applied to the collected data. 

Findings 

The academic achievement test developed in this study was used to monitor the academic achievement of middle 

school students in computational problem-solving. Firstly, the normality of the data obtained from this test was 

analyzed. Table 5 shows the descriptive statistics values for the academic achievement test pre-test and post-test 

applications. 

Table 5  

Academic Achievement Test Pre-Test – Post-Test Applications Descriptive Statistics 

  Mean sd Min. Max. Skewness Kurtosis 

Pre-test 
Individual 10,60 1,28 8 13 -0,53 0,87 

Cooperative 13,86 2,98 8 18 -0,30 -0,81 

Post-test 
Individual 18,82 1,60 14 20 -1,90 4,45 

Cooperative 19,36 1,15 16 20 -2,25 5,37 
 

The descriptive statistics values of the academic achievement test showed that the skewness and kurtosis values 

of the test were not suitable for normal distribution. More evidence was needed to examine the suitability of the 

academic achievement test pre-test and post-test scores of the groups for parametric statistics. For this reason, 

normality tests of the academic achievement test results were examined. The normality test results of the test are 

presented in Table 6. 

Table 6 

Academic Achievement Test Normality Test Results 

Group 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistics sd p Statistics sd p 

Pre-test 
Individual 0,215 17 ,036 0,896 17 ,057 

Cooperative 0,162 14 ,200 0,931 14 ,318 

Post-test 
Individual 0,241 17 ,010 0,748 17 ,000 

Cooperative 0,355 14 ,000 0,638 14 ,000 



 

 

 

The normality test results of the academic achievement test showed that the post-test scores of both groups were 

not suitable for normal distribution. Therefore, nonparametric tests were used to examine whether there was a 

significant difference between the academic achievement test pre-test and post-test scores of the groups. To 

monitor the students' computational thinking skills, the Computational Thinking Test (CTt) was used as a pre-test 

and post-test. Descriptive statistics values of the pre-test and post-test applications of the Computational Thinking 

Test (CTt) are given in Table 7.  

Table 7 

Descriptive Statistics of CTt Pre-Test and Post-Test Applications 

  Mean sd Min. Max. Skewness Kurtosis 

Pre-test 
Individual 15,13 3,63 8 21 -0,22 -0,65 

Cooperative 18,30 4,35 10 25 -0,47 -0,97 

Post-test 
Individual 19,75 4,46 9 26 -0,85 0,73 

Cooperative 21,06 3,60 14 26 -0,41 -0,45 
 

According to Table 7, the skewness and kurtosis values of the pre-test and post-test scores of the Computational 

Thinking Test were coherent with normal distribution.  However, normality tests of the test results were examined 

to obtain more evidence about whether the score distributions were suitable for parametric statistics. The normality 

test results of the pretest and posttest data are presented in Table 8. 

Table 8 

CTt Normality Test Statistics  

 

Group 

Kolmogorov-Smirnov Shapiro-Wilk 

Statistics sd p Statistics sd p 

Pre-test 
Individual 0,180 16 ,173 0,956 16 ,587 

Cooperative 0,203 17 ,060 0,918 17 ,138 

Post-test 
Individual 0,173 16 ,200 0,948 16 ,454 

Cooperative 0,133 17 ,200 0,945 17 ,387 
 

When the normality results of the Computational Thinking Test were analyzed, it was determined that the data 

obtained from the pre-test and post-test applications of the groups were coherent with the normal distribution. For 

this reason, parametric tests were used to examine whether there was a significant difference between the scores 

obtained by the groups from the pre and post-tests of the Computational Thinking Test.  

Findings Regarding Research Question 1 

Since the pre-test and post-test results of the Academic Achievement Test of the students in Group 2 (cooperative) 

were not suitable for normal distribution, the pre-test and post-test scores were analyzed by the Wilcoxon Signed 

Rank Test. The test results are given in Table 9. 

Table 9  

Cooperative Group Academic Achievement Test Wilcoxon Signed Ranks Test Results 

 
N Mean of Ranks Sum of Ranks 

Post-test – Pre-test 
Negative Rank 0a 0,00 0,00 

Positive Rank 14b 7,50 105,00 

Ties 0c   

Total 14   

a. Post-Test < Pre-Test 

b. Post-Test > Pre-Test 

c. Post-Test = Pre-Test 

 



 

 

The number of subjects (N), Mean Ranks, and Sum of Ranks for Negative Ranks, Positive Ranks, and those with 

the same value (Ties) between the pre-test and post-test scores of the Academic Achievement Test are given in 

Table 8. Table 8 shows that the post-test scores of all students were higher than the pre-test scores (positive rank 

N = 14). The z value (-3,31) calculated to examine whether these variables were significant was found to be 

significant (p = 0,001; p<0,05). Since the pre-test and post-test results of the Academic Achievement Test of the 

students in Group 1 (individual) were not suitable for normal distribution, the pre-test and post-test scores were 

analyzed with the Wilcoxon Signed Rank Test. The test results are given in Table 10. 

Table 10 

Individual Group Academic Achievement Test Wilcoxon Signed Ranks Test Results 

 N Mean of Ranks Sum of Ranks 

Post-test – Pre-test 
Negative Rank 0a 0,00 0,00 

Positive Rank 17b 9,00 153,00 

Ties 0c   

Total 17   

a. Post-Test < Pre-Test 

b. Post-Test > Pre-Test 

c. Post-Test = Pre-Test 
 

Table 9 shows that the post-test scores of all students were higher than the pre-test scores (positive rank N = 17). 

The Z value calculated to examine whether these variables were significant or not was -3,64 and the significance 

was found to be p = 0,000 (p<0,05). As a result, it was determined that the increase in the posttest scores of Group 

1 was significant.  Mann-Whitney U test was used to examine whether there was a significant difference between 

the Academic Achievement Test post-test results of the students in Group 1 and Group 2. The ranks of the post-

test scores of the groups are given in Table 11. 

Table 11 

Ranks of Group 1 and Group 2 Posttest Scores 

 N Mean of Ranks Sum of Ranks 

Post-test 
Individual 17 14,50 246,50 

Cooperative 14 17,82 249,50 

Total 31   
 

The Mann-Whitney U test analyses (U=93,50, p=0,265) performed to examine the difference between the post-

test scores of Group 1 and Group 2 showed that there was no statistically significant difference between the two 

groups in terms of post-test scores (Z = -1,115, p < .05). 

Findings Regarding Research Question 2 

To monitor the development of computational thinking skills of the students participating in the study, both CTt 

was used as a pre-test and post-test and the computational problem-solving activity sheets were scored and 

analyzed with the rubric. To examine whether there was a statistically significant difference between the CTt pre-

test and post-test scores of the students in Group 1 and Group 2, the pre-tests of the groups were first analyzed. 

The results of the Independent Groups t-test conducted to test whether there was a statistically significant 

difference between the pre-test scores of the groups are given in Table 12. 

Table 12 

Independent Groups t-Test Results of CTt Pre-Test Results of Groups 

  N Mean sd df t p 

Pre-test 
Individual 16 15,13 3,63 

31 -2,26 ,030 
Cooperative 17 18,29 4,35 

 

Table 12 reveals that there is a statistically significant difference between the pre-test scores of the groups. 

ANCOVA was applied by determining the pre-test scores as covariates against the possibility that the possible 



 

 

difference between the post-test scores of the groups in the Computational Thinking Test was due to the pre-test 

scores. Before ANCOVA, test scores were examined for compliance with variance analysis assumptions. The data 

obtained from the Computational Thinking Test are continuous variables and the test scores are suitable for normal 

distribution. In addition, the homogeneity of the variances of the test scores was examined by Levene's test and it 

was determined that the variances of the post-test scores were homogeneous (F = 0,614, p = 0,439). ANCOVA 

results of the groups' posttest scores of the Computational Thinking Test are given in Table 13. 

Table 13 

ANCOVA Results of Groups' Computational Thinking Test Posttest Scores 

 Sum of 

Squares 
df Mean of Squares F p Eta Square 

Corrected model 246,37 2 123,18 13,50 ,000 ,474 

Intercept 138,86 1 138,85 15,22 ,001 ,337 

Pre-test 232,25 1 232,25 25,45 ,000 ,459 

Group 5,09 1 5,09 0,55 ,461 ,018 

Error 273,70 30 9,12    

Total 11286,00 33     

Corrected Total 520,06 32     

 

When Table 13 is analyzed, it is seen that when the pre-test scores of the groups are controlled, there is no 

significant difference between the post-test scores. This result shows that both individual and collaborative 

computational problem-solving practices increased the students' computational thinking skills, but at the end of 

the practice, there was no statistically significant difference between the computational thinking skills of the 

students in both groups. To monitor the development of students' computational thinking skills, computational 

problem-solving activities were also scored with a rubric. The descriptive statistical values of the scores of the 

students in both groups are presented in Table 14. 

Table 14 

Descriptive Statistics of Groups' Scores of Computational Problem-Solving Sub-dimensions 

Individual 
N Mean sd Min. Max. 

Percentiles 

%25 %50 %75 

C
P

S
 1

 Algorithm Design 1 16 6,19 0,91 5 8 5,25 6,00 7,00 

Flow Chart 1 16 6,75 1,23 5 9 5,25 7,00 7,75 

Python Coding 1 16 5,19 1,42 3 8 4,00 5,00 6,00 

C
P

S
 2

 Algorithm Design 2 16 6,63 1,31 4 9 6,00 7,00 7,75 

Flow Chart 2 16 6,63 1,40 4 9 5,25 7,00 8,00 

Python Coding 2 16 6,31 1,25 5 10 5,25 6,00 7,00 

C
P

S
 3

 Algorithm Design 3 16 7,69 1,62 5 10 6,00 8,00 9,00 

Flow Chart 3 16 7,69 1,13 5 9 7,00 8,00 8,75 

Python Coding 3 16 7,81 1,87 4 10 7,00 8,00 9,00 

Cooperative       

C
P

S
 1

 Algorithm Design 1 18 7,00 0,59 6 8 7,00 7,00 7,00 

Flow Chart 1 18 7,22 0,42 7 8 7,00 7,00 7,25 

Python Coding 1 18 5,18 0,78 4 6 4,75 5,00 6,00 

C
P

S
 2

 Algorithm Design 2 18 7,77 1,43 6 10 6,75 8,00 8,50 

Flow Chart 2 18 7,16 0,78 6 8 6,75 7,00 8,00 

Python Coding 2 18 6,44 1,09 5 8 5,75 6,00 7,25 

C
P

S
 3

 Algorithm Design 3 18 8,55 1,46 6 10 8,25 9,00 9,25 

Flow Chart 3 18 8,83 0,75 8 10 8,00 9,00 9,25 

Python Coding 3 18 7,83 0,78 7 9 7,00 8,00 8,25 



 

 

Wilcoxon Signed Ranks Test, one of the nonparametric statistics, was used to determine whether the change in the 

scores of the groups in the sub-dimensions of computational problem-solving was significant. Pairwise 

comparisons between the scores of the students in Group 1 on the sub-dimensions of computational problem-

solving are given in Table 15. 

Table 15 

Wilcoxon Test Results of Problem-Solving Sub-dimensions in Individual Group 

 N Mean of Ranks  Sum of Ranks Z p 

Algorithm Design 1 – 

Algorithm Design 2  

Negative Rank 3 5,00 15,00 -1,706 ,088 

Positive Rank 8 6,38 51,00   

Ties 5     

Total 16     

Algorithm Design 2 – 

Algorithm Design 3 
Negative Rank 2 3,50 7,00 -2,553 ,011 

Positive Rank 10 7,10 71,00   

Ties 4     

Total 16     

Algorithm Design 1 – 

Algorithm Design 3 
Negative Rank 1 4,00 4,00 -3,096 ,002 

Positive Rank 13 7,77 101,00   

Ties 2     

Total 16     

Flow Chart 1 – Flow 

Chart 2  

Negative Rank 6 7,50 45,00 -0,484 ,628 

Positive Rank 6 5,50 33,00   

Ties 4     

Total 16     

Flow Chart 2 – Flow 

Chart 3 
Negative Rank 1 8,00 8,00 -2,471 ,013 

Positive Rank 11 6,36 70,00   

Ties 4     

Total 16     

Flow Chart 1 – Flow 

Chart 3 
Negative Rank 1 7,50 7,50 -2,319 ,020 

Positive Rank 10 5,85 58,50   

Ties 5     

Total 16     

Python Coding 1 – 

Python Coding 2  

Negative Rank 1 3,50 3,50 -3,020 ,003 

Positive Rank 12 7,29 87,50   

Ties 3     

Total 16     

Python Coding 2 – 

Python Coding.3 
Negative Rank 1 2,50 2,50 -2,888 ,004 

Positive Rank 11 6,86 75,50   

Ties 4     

Total 16     

Python Coding 1 – 

Python Coding 3 
Negative Rank 0 ,00 ,00 -3,555 ,000 

Positive Rank 16 8,50 136,00   

Ties 0     

Total 16     

 

When Table 15 is analyzed, it is understood that the scores obtained by the students in Group 1 from the sub-

dimensions of computational problem-solving increased significantly. Although there was no significant 

difference between the first and second measurements in the sub-dimensions of algorithm design, flow chart, and 

python coding, it is understood that the students' scores increased significantly in the third measurement compared 

to the previous measurements. This difference can be interpreted as that the students got used to the process over 

time and were able to manage the computational problem-solving process better. The difference between the scores 



 

 

obtained by the students in Group 2, in which the applications were carried out collaboratively, from the sub-

dimensions of computational problem solving was similarly analyzed by the Wilcoxon Signed Rank Test, and the 

results of the analysis are presented in Table 16. 

Table 16 

Wilcoxon Test Results of Problem-Solving Sub-dimensions in Cooperative Group 

 N Mean of Ranks  Sum of Ranks Z p 

Algorithm Design 1 – 

Algorithm Design 2  

Negative Rank 4 2,50 10,00 -2,070 ,038 

Positive Rank 7 8,00 56,00   

Ties 7     

Total 18     

Algorithm Design 2 – 

Algorithm Design 3 
Negative Rank 4 5,50 22,00 -2,003 ,045 

Positive Rank 10 8,30 83,00   

Ties 4     

Total 18     

Algorithm Design 1 – 

Algorithm Design 3 
Negative Rank 4 4,00 16,00 -3,071 ,002 

Positive Rank 14 11,07 155,00   

Ties 0     

Total 18     

Flow Chart 1 – Flow 

Chart 2  

Negative Rank 4 4,00 16,00 -0,378 ,705 

Positive Rank 3 4,00 12,00   

Ties 11     

Total 18     

Flow Chart 2 – Flow 

Chart 3 
Negative Rank 0 ,00 ,00 -3,461 ,001 

Positive Rank 15 8,00 120,00   

Ties 3     

Total 18     

Flow Chart 1 – Flow 

Chart 3 
Negative Rank 0 ,00 ,00 -3,831 ,000 

Positive Rank 18 9,50 171,00   

Ties 0     

Total 18     

Python Coding 1 – 

Python Coding 2  

Negative Rank 0 ,00 ,00 -3,508 ,000 

Positive Rank 15 8,00 120,00   

Ties 3     

Total 18     

Python Coding 2 – 

Python Coding.3 
Negative Rank 0 ,00 ,00 -3,852 ,000 

Positive Rank 18 9,50 171,00   

Ties 0     

Total 18     

Python Coding 1 – 

Python Coding 3 
Negative Rank 0 ,00 ,00 -3,874 ,000 

Positive Rank 18 9,50 171,00   

Ties 0     

Total 18     

 

According to Table 16, it is understood that the scores obtained by the students in Group 2 from the sub-dimensions 

of computational problem-solving increased significantly. Similar to the measurement results of group 1 

(individual), it was found that the students in group 2 (cooperative) tended to get higher scores throughout the 

process. However, the striking result here is that the sub-dimensional scores of the students in the cooperative 

groups showed a significant difference from the first measurements. This situation can be interpreted as that 

students support each other's learning in cooperative groups. Since the development of students' computational 

thinking skills was observed in both groups, it was examined whether there was a difference between these 



 

 

developments. The difference between the scores obtained by the students in Group 1 and Group 2 from the sub-

dimensions of computational problem solving was analyzed by the Kruskal Wallis Test and the results of the 

analysis are presented in Table 17. 

Table 17 

Kruskal Wallis Test Results for Problem Solving Sub-dimensions in Individual and Cooperative Groups  

Compare of Groups N Mean of Ranks Chi-square df p 

Algorithm Design 1 
Individual 16 12,91 7,531 1 ,006 

Cooperative 18 21,58    

Total 34     

Algorithm Design 2 
Individual 16 13,81 4,368 1 ,037 

Cooperative 18 20,78    

Total 34     

Algorithm Design 3 
Individual 16 14,63 2,699 1 ,100 

Cooperative 18 20,06    

Total 34     

Flow Chart 1 
Individual 16 15,69 1,327 1 ,249 

Cooperative 18 19,11    

Total 34     

Flow Chart 2  
Individual 16 15,50 1,320 1 ,251 

Cooperative 18 19,28    

Total 34     

Flow Chart 3 
Individual 16 12,44 6,605 1 ,003 

Cooperative 18 22,00    

Total 34     

Python code 1  
Individual 16 17,31 0,012 1 ,914 

Cooperative 18 17,67    

Total 34     

Python code 2   
Individual 16 16,50 0,330 1 ,566 

Cooperative 18 18,39    

Total 34     

Python code 3 
Individual 16 18,50 0,326 1 ,568 

Cooperative 18 16,61    

Total 34     

 

Table 17 shows that only in the algorithm design sub-dimension, the students in the collaborative group showed 

higher performance, while there was no significant difference between the scores of the groups in the other sub-

dimensions. In both groups (groups 1 and 2), students showed a significant increase in scores throughout the 

process. At the end of the process, we found that the scores achieved by the students did not differ significantly 

from each other. On the other hand, students working in cooperative groups were more advantageous. Especially 

at the beginning of the process, students in cooperative groups progressed faster by supporting each other in 

comprehending the computational problem-solving process. 

Findings Regarding Research Question 3 

During in-class observations, we observed that the students who worked cooperatively spent a little more time 

designing their algorithms and creating flow charts, but reached a common conclusion through discussions. 

Students who worked individually also created their algorithms correctly most of the time and progressed at their 

own pace. However, we noticed that they used less data when formulating problems. In the python coding 

dimension, we observed that students who were interested and excited about coding were more productive when 

working individually. Some motivated students working in collaborative groups requested to work individually 

because they wanted to express their ideas freely. This was an unexpected situation for us. The students who 

worked individually had more chances to try more as they worked without time constraints while writing their 



 

 

codes with Python. They spent discussion time trying different situations in coding. This was also true for 

debugging; in collaborative groups, the source of the error was discovered more quickly, but it was observed that 

each student wanted to try different ideas when the code gave an error, which led to a loss of time. According to 

the observations made during the lesson, it was observed that the interest and motivation of the students working 

in co-operation were higher. 

The results obtained from the interviews with the students showed that the students in both groups had a positive 

view of the process. They stated that the anxiety they experienced about coding at the beginning of the process 

decreased during the process. One of the students expressed this situation as follows; "I think it was fun, the lessons 

were different, I was scared when you said that we would solve problems by coding in this lesson, but I think it 

was easy, sometimes I try to code something myself now" (G2/S3 - Group 2 - Student 3). In the interviews, the 

opinions of the students about what they had the most difficulty in the process were collected. The students mostly 

stated that they had difficulty in finding the source of the error (debugging) if the codes they wrote did not work. 

For example, one of the students expressed himself as follows; "I had the most difficulty when the codes I wrote 

did not work, I asked for help from my teachers when I could not run the code, but there were also times when I 

solved it myself, then I felt very happy” (G1/S4). Although we provided Python coding language training to the 

students throughout the process, they made mistakes while transferring correctly designed algorithms to the code. 

The errors were usually script-related and this problem could not be fully resolved during the process. In addition, 

the students stated that they had problems in using the symbols in the flow chart. According to the results obtained 

from the interviews, the flow chart step was the most boring part for them. They stated that coding on the computer 

(python coding step) was cooler. Students often expressed that they enjoyed the python coding step much more 

and as the activities progressed, it was observed that they preferred to use the time they allocated from algorithm 

design and flow chart steps in the coding part. The computer teacher stated that the students shared their questions 

with him during lunch breaks and even experimented on the codes they wrote in computer classes where the 

application was not carried out. When the students were asked to make critical reflections during the interviews, 

one of them responded as follows: “we were able to do the algorithm design and flowcharts with my friends, but 

it would be better if I had the chance to do the coding myself” (I2/S13). These kinds of views were predominant 

and we interpreted this as students wanting to be alone on the computer.  

The students' experiences also supported their interest in computers. During the interviews, a student in group 2 

stated as follows; ‘the computer lesson is very fun and, in the lesson, hmmm I started to try different codes on the 

computer. Maybe I will do something myself in the future, maybe I will do something like a web page’ (G2/S7). In 

addition, the students thought that the experience they had and the skills they acquired were valuable. We observed 

that some students' career expectations could be shaped in this direction. The school we conducted the study was 

a private school and students and families were aware of this issue. This may be a factor for students' interest, but 

during the interviews, a student expressed himself as follows; “yes, I think coding will be of great importance in 

my future life, my family supports me in this regard, I already liked science class, but it is more fun now” (G1/S6). 

In our interviews, we determined that the students in both groups were interested in coding. This process was very 

enjoyable for them. The clearest finding that we determined by the purpose of the study was that although group 

work was effective, students demanded and preferred to work individually in the coding step. 

 

Results and Discussions 

In this study, we aimed to investigate the impact of cooperative learning on the computational thinking skills and 

academic performances of middle school students in the computational problem-solving approach. Before the 

study, we had predicted that the computational thinking skills and academic achievement of the students would be 

higher in the group in which the computational problem-solving instruction was carried out cooperatively because 

according to the cognitive perspective of cooperative learning, the opportunity for students to learn from each 

other mediates the construction of knowledge (Slavin, 2015). According to Gillers (2014), in cooperative learning, 

students need to coordinate group interactions and also take responsibility for other members to learn. According 

to cooperative learning, when students understand that individual contributions improve the group's performance, 

they are willing to carry out their responsibilities.  However, the results of the study showed that the academic 

achievement and computational thinking skills of students in both individual and cooperative groups increased 

significantly throughout the implementation.  When the academic achievement post-test scores of the groups were 

compared, no significant difference was found between the post-test scores. In other words, the academic 

achievement of the students increased at a similar level in the groups in which the collaborative and individual 



 

 

applications were carried out. When the development of the groups' computational thinking skills was analyzed, 

no statistically significant difference was found between the post-test scores when the pre-test scores were 

controlled. This result indicates that both individual and collaborative computational problem-solving practices 

increased students' computational thinking skills, but there was no statistically significant difference between the 

computational thinking skills of the students in both groups at the end of the practice. The results obtained from 

the scoring of the activity papers showed that the scores of the students in both groups in the sub-dimensions of 

computational problem solving increased significantly, only in the algorithm design sub-dimension the students in 

the collaborative group showed higher performance, and there was no significant difference between the scores of 

the groups in the other sub-dimensions.  

Although these findings are similar to the findings of reference studies in the literature (Li et al., 2022; Zhou & 

Tsai, 2023), there are some differences. Studies in the literature reveal that students' computational thinking skills 

and academic achievement increase significantly in favor of the collaborative group. The findings of this study did 

not reveal a statistically significant difference between cooperative and individual teaching groups.  One of the 

reasons for the lack of the expected difference between the groups may be that the applications carried out were 

found to be new and interesting for both student groups. Proponents of problem-based learning assume that the 

problem-solving process is an approach that increases student motivation and differences in student motivation 

can be measured by situational interest (Rotgans & Schmidt, 2012).  Situational interest is a person's immediate 

emotional response to certain stimuli in the learning environment (Hidi 1990; Mitchell 1993) and can be increased 

by external factors such as well-organized content and challenging problem situations. In particular, we believe 

that the coding activities carried out in the computer lab supported the situational interest of the students, which 

increased their motivation towards the process. We expect that our prejudices about the cooperative learning group 

may be justified with longer-term studies. 

According to the data obtained from in-class observations and interviews, students working in collaboration 

completed the algorithm and flow diagram steps much faster. Students working individually also needed much 

more time, although they designed their algorithms correctly. On the other hand, the demand for individual work 

was quite dominant in the Python coding step. Students working individually had the opportunity to test their codes 

much more. In the cooperative groups, when the codes they wrote gave errors, each student wanted to try his/her 

solution for debugging, which resulted in a loss of time. According to the observations made during the lesson, we 

observed that the students who worked collaboratively had higher interest and motivation towards the lesson. This 

intuition was strengthened by the students' effort to solve the problem together with their friends and their 

acceptance within the group regardless of the result. Studies in the literature reveal that the problem-solving 

approach can be effective for students to solve the problems they encounter while coding (Scherer et al., 2020). 

Uysal (2014) stated that problem-solving teaching methods can also effectively improve the academic performance 

and problem perception of students learning coding. However, although algorithmic thinking seems to be quite 

easy in terms of structure determining the instructions and necessary steps is a process that is quite challenging 

and requires patience. To reach the result, students need to continue their studies with diligence and determination. 

In this process, trying many times and not achieving success causes many people to give up and give up the steps 

(Korkmaz et al., 2017). Cooperative learning can be a solution to this problem by supporting students' motivation. 

In the context of programming, computational thinking is considered problem-solving (Kalelioğlu et al., 2016), 

and problem-solving skills are often associated with non-verbal intelligence (Tsavara et al., 2022). For example, 

Marinus et al., 2018 found a positive relationship between programming ability and non-verbal intelligence. 

Similarly, Çiftci and Bildiren (2020) found positive effects of coding lessons on children's non-verbal cognitive 

abilities. In our study, in parallel with these findings, we found that cooperative learning was more effective in the 

steps where students' verbal interactions were supported (algorithm design and flow chart). In Python coding, that 

is, in the step where non-verbal intelligence was utilized, students preferred individual work more. From this point 

of view, it should be taken into consideration that the measurement tools we used in our study, especially the CTt, 

tested programming skills individually. Although we conducted a collaborative process, we collected our 

quantitative data individually and these findings are limited in evaluating students' collaborative computational 

thinking skills. 

Limitations and Implications 

In this study, the activities developed for the density topic at the 6th-grade level were used. Although the students 

included in the study were familiar with block coding, they were unfamiliar with the computational problem-

solving approach and Python coding language. Before starting the problem-solving process, the students were 



 

 

given exercises on algorithm design, pattern recognition, transforming the algorithm into pseudocode, and Python 

coding language. However, we think that more time should be allocated to these activities. In addition, the 

computer teacher and science teacher working together made it easier for us to manage the process because the 

science teacher did not have enough prior knowledge. We also trained the science teacher before the 

implementation, but she was not competent enough to manage the coding sections. In both groups, the attitude of 

the students towards the process was very positive and they were highly motivated about the implementation. We 

attribute this to the fact that this process was quite new to the students. They also enjoyed doing science-related 

work in the computer lab. Most students expressed that they wanted to sit alone at the computer. In the co-operative 

groups, who would sit at the computer was sometimes a matter of discussion. Although students in both groups 

showed improvement in academic achievement and computational thinking skills, we were a little disappointed 

that they wanted to be alone during the coding steps. We believe that researchers should conduct deeper research 

on this issue. The excitement that the students experienced in the coding part of the activities and the feeling of "I 

succeeded" when they worked on the codes provided them with great happiness and motivation, which caused 

them not to pay much attention to algorithms and flow diagrams and to want to quickly switch to writing code in 

Python. For this reason, a certain amount of time can be allocated for each learning outcome, and as gradual 

progress is made, the time allocated for algorithm and flow diagram learning can be decreased and the time 

allocated for code writing can be increased. This suggestion may change depending on the level of the class and 

the development process of the class. 
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Appendix 

 

Appendix 1. Rubric for Computational Problem-Solving Activity Sheets 

Skills 

Scoring 

Excellent (5) Good (4) Acceptable (3) 
Needs Improvement 

(2) 
Poor (1) 

Algorithm 

Design 

The algorithm is 

completely correct, all 

the steps have been 

completed correctly 

one by one. 

The algorithm is 

correct, but there is 

a lack of 

expression in the 

steps. 

The algorithm is 

logically correct, 

but there are 

deficiencies in 

the process steps. 

The ordering of the 

algorithm steps is 

incorrect and/or there 

are deficiencies, it 

should be improved.   

The algorithm's 

all wrong, and the 

instructions are 

wrong.  

Preparing 

Flow Chart  

All steps in the flow 

diagram are completely 

correct and the 

symbols are correctly 

transferred to the flow 

diagram. 

The flow diagram 

is correct, with no 

missing steps, or 

errors in the use of 

symbols. 

The sequence of 

the flow diagram 

is correct, one or 

several steps are 

missing, and 

there are errors in 

the symbols. 

There are errors in 

the steps and 

symbols of the flow 

diagram. 

The flow diagram 

is logically faulty, 

does not proceed 

sequentially and 

symbols are not 

used. 

Coding and 

Debugging 

The Python code is 

written correctly and 

works very well. 

The Python code is 

complete, but the 

steps are not 

working due to 

minor syntax 

errors. 

Python code is 

written, and 

completed, but 

the steps are 

incorrect. 

Python code was 

tried to be written, 

but there are missing 

and incorrect steps. 

Python code is 

incomplete, not 

written 

 

Appendix 2. Semi-structured Interview Questions 

Q1. What did you do well in this process and why? What were the positive and negative aspects of the process for 

you? 

Q2. In which area did you have more difficulties during this process? 

Q3. At which stage of the process did you need more help?  

Q4. From whom did you get the most support during the process? Did you have any difficulties with this? 

Q5. In which process do you think you should improve yourself more? 

Q6. What would you do differently in your next computational problem-solving study? 

Q7. Do you think you have improved yourself at the end of the process? In which area do you feel better? 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

Appendix 3. Examples of Activity Sheets 

  

  

 

 

 

 

 



 

 

Appendix 4. Photos from implication 
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