
Informatics in Education, 2024, Vol. 00, No. 00, –

© 2024 Vilnius University
DOI: 10.15388/infedu.2025.01

ACCEPTED VERSION (WITHOUT THE JOURNAL LAYOUT).

The Effect of Cooperative Learning on Academic

Performances and Computational Thinking Skills in the

Computational Problem-Solving Approach

İrem Nur ÇELİK1, Kaan BATI2

1 Hacettepe University, Graduate School of Educational Sciences, Ankara, Turkey,

iremnceliik@gmail.com, https://orcid.org/0009-0004-8482-8928
2 Hacettepe University, Faculty of Education, Department of Mathematics and Science

Education, Ankara, Turkey, kaanbati@gmail.com, https://orcid.org/0000-0002-6169-

7871

Received: September 2023

Abstract. In this study, we aimed to investigate the impact of cooperative learning on the

computational thinking skills and academic performances of middle school students in

the computational problem-solving approach. We used the pretest-posttest control group

design of the quasi-experimental method. In the research, computational problem-solving

activities regarding 6th graders' goals of the "heat and matter" unit, were applied

individually by Group 1 and cooperative learning by Group 2. These activities required

students to use computational thinking skills and code using the Python programming

language. The study involved 34 students from the 6th grade of a private middle school

located in the capital city of Turkey. The Computational Thinking Test (CTt) and an

academic achievement test were used as pre-tests and post-tests to monitor students'

computational thinking skills and academic performances. Additionally, computational

problem-solving activities were scored to track the progress of students' computational

thinking abilities. Non-parametric Mann Whitney U and Wilcoxon T-tests were utilized

to analyze the progression of pupils' computational thinking abilities and academic

success, and ANCOVA was used to analyze CTt scores. Qualitative data were collected

through semi-structured interviews at the end of the process to determine students' views

on the computational problem-solving process. Results revealed a significant increase in

students' academic achievement and computational thinking skills in both groups. A

comparison of post-test scores showed no significant difference between groups. It is

anticipated that the research results will make meaningful contributions to the literature

concerning the progress of computational thinking skills in secondary school students.

Keywords: science education, computational thinking, cooperative learning, middle

school students.

Introduction

Developing students' 21st-century skills and giving them greater importance within

curricula has gained increased emphasis in recent years (Nouri et al., 2020). The

International Society for Technology in Education (ISTE, 2016) asserts that the role of

mailto:iremnceliik@gmail.com
https://orcid.org/0009-0004-8482-8928
mailto:kaanbati@gmail.com
https://orcid.org/0000-0002-6169-7871
https://orcid.org/0000-0002-6169-7871

computers and automation systems in our lives is expanding and highlights the necessity

to enhance students' abilities as “digital citizens, knowledge constructors, innovative

designers, computational thinkers, creative communicators, global collaborators, and

empowered learners”. The International Association for the Evaluation of Educational

Achievement (IEA) evaluates the computer and information literacy levels and

computational thinking skills of students as part of the International Computer and

Information Literacy Study (ICILS) (Fraillon, et al., 2019). Within the context of ICILS,

computer and information literacy refers to a student's capacity to apply computer

technology to gather, organize, and manipulate information. Computational thinking

skills are the cognitive skills used for programming computers or digital devices and

developing applications (Fraillon et al., 2019). Wing (2008), a key figure in the debate

around integrating computational thinking into education programs beyond computer

science courses, believes that everyone should learn to use the methods and approaches

of computer science. According to Gülbahar et al. (2019), individuals with computer-like

information-processing abilities can display competence in problem-solving, critical

thinking, and lifelong learning. In particular, there is substantial research in the context

of secondary school science education investigating the teaching of computational

thinking (Basu et al., 2016; Grover, 2017; Ogegbo & Ramnarain, 2022). While these

discussions continue, there is inadequate evidence in the literature regarding the efficacy

of the collaborative approach to cultivate computational thinking skills in secondary

school students.

Computational science education is defined as an interdisciplinary field that includes the

disciplines of mathematics, natural sciences, computer science, and educational sciences

and benefits from the power of all these fields (Yasar, et al., 2000). In this context,

computational physics education (Ayars, 2013; Backer, 2007; Chabay & Sherwood,

2008; Landau, et al, 2009; Landau, et al., 2015), computational chemistry education

(Perrin et al, 2014: Pickard et al., 2014; Johnson & Engel, 2011; Miller et al., 2014) and

computational biology education (Fox & Ouellette, 2013; Rubinstein & Chor, 2014) have

gained momentum in recent years. Landau, et al. (2009) suggested that computational

science education should be built on problem-solving and stated that although it includes

fewer theoretical science lessons compared to pure science education, it offers much more

effective and meaningful learning due to the integration of science, mathematics, and

computer science. Therefore, this study investigates the impact of the collaborative

approach in computational problem solving on the academic achievement of middle

school students in science courses, as well as their computational thinking skills

development.

Theoretical Framework

Computational Thinking

Wing (2008) defines computational thinking as "... is taking an approach to solving

problems, designing systems, and understanding human behaviour that draws on

concepts fundamental to computing" (p. 3717). According to Wing, the main purpose of

acquiring this skill is to provide a multidimensional thinking skill in solving problems in

different areas of life. Barr et al. (2011) considered computational thinking as a problem-

solving process and formulated it to include the following skills;

• “Formulating problems in a way that enables us to use a computer and other tools to

help solve them”

• “Logically organizing and analyzing data”

• “Representing data through abstractions, such as models and simulations”

• “Automating solutions through algorithmic thinking (a series of ordered steps)”

• “Identifying, analyzing, and implementing possible solutions with the goal of

achieving the most efficient and effective combination of steps and resources”

• “Generalizing and transferring this problem-solving process to a wide variety of

problems” (p. 21)

Many studies in the literature define computational thinking as a problem-solving process

(Grover & Pea, 2018; Weintrop, et al., 2016; Yadav, et al., 2014; ISTE, 2016), and it

usually encompasses several sub-skills such as decomposition, abstraction, algorithm

design, automation, data collection, data analysis, data representation, simulation,

parallelization, and generalization (Barr & Stephenson, 2011; Conery et al., 2011; Park

& Jeon, 2015). The International Computer and Information Literacy Study (ICILS) 2018

assessment framework defines computational thinking (CT) as "an individual's ability to

recognise aspects of real-world problems that are amenable to computational

formulation and to evaluate and develop algorithmic solutions to these problems so that

the solutions can be operationalised with a computer" (Fraillon et al. 2019, p. 27).

According to the ICILS 2018 framework, ICT consists of two parts: conceptualizing

problems and operationalizing solutions. The three dimensions that make up the

conceptualizing problems part are: knowing about and understanding digital systems,

formulating and analyzing problems, and collecting and representing relevant data. The

two dimensions that make up the operationalization of solutions are the planning and

evaluation of solutions and the development of algorithms, programs, and interfaces.

Computational Problem Solving

Computational science is an interdisciplinary field comprising the disciplines of

mathematics, natural sciences, computer science, and educational sciences, leveraging the

strengths of each (Yasar et al., 2000). Landau et al. (2015) proposed that computational

science education should be founded upon problem-solving. They noted that despite

involving fewer theoretical science lessons than pure science education, computational

science education facilitates more efficient and significant learning by incorporating

science, mathematics, and computer science. At present, it is necessary to discuss how to

provide computational science education in secondary schools, as the current literature

predominantly concentrates on science education in upper secondary schools (Pickard et

al., 2014; Miller et al., 2014). At this point, computational problem-solving appears as an

effective tool. Problem-based learning is a curriculum-based, student-centered approach

that enables individuals to conduct research and inquiry, combine theory and practice,

and use their knowledge and skills to solve existing problems (Savery, 2015). Besides

computational thinking involves formulating problems appropriately to solve them with

tools and methods such as computers and data analysis, finding possible solutions, and

using these solutions to solve other similar problems (Barr, et al., 2011; Wing, 2008). In

this respect, it can be stated that computational thinking is a problem-solving process

closely related to computer science, and according to Grover and Pea (2018), problem

formulation is an important part of this problem-solving process. Since a computer is not

required to formulate a solution in a problem-solving process, computational thinking can

be taught without using a computer. For this reason, there are different computational

thinking teaching approaches from preschool to high school level, either plugged-in or

unplugged (Lee & Junoh, 2019). In summary, computational problem-solving does not

only involve the act of computer programming. According to Dierbach (2012), two things

are needed to solve a problem computationally: a solution proposal that covers all relevant

aspects of the problem and an algorithm that can solve the problem using this solution

proposal. Dierbach (2012) defines the computational problem-solving process as follows;

1. Analyze problem

a. Clearly understand problem

b. Know what constitutes a solution

2. Describe data and algorithms

a. Determine what time of data is needed

b. Determine how data is to be structured

c. Find and/or design appropriate algorithms

3. Implement program

a. Represent data within programming language

b. İmplement algorithms in programming language

4. Test and debug

a. Test the program on a selected set of problem instances

b. Correct and understand causes of any errors found “

Cooperative Learning

Cooperative learning is a teaching strategy in which students undertake their own and

their peers' learning by working in small groups (Johson & Johnson, 1999; Slavin, 1999).

For an activity to be cooperative, it must have five basic elements: positive

interdependence, individual responsibility, face-to-face stimulating interaction, social

skills, and group processing (Johson & Johnson, 1999). From this point of view, there are

different perspectives on the source of student success in cooperative learning. The

motivational perspective argues that students' motivation to complete the task is the

driving force and believes that other processes are driven by motivation. According to the

social cohesion perspective, the effect of cooperative learning on student achievement is

mediated by group spirit and cohesion, and believes that the quality of group interaction

is largely determined by group cohesion. The cognitive perspective argues that

interactions between students will increase student achievement for reasons related to the

mental processing of information rather than motivations, and according to this

perspective, the opportunity for students to learn from each other mediates the

construction of knowledge (Slavin, 2015). The literature provides evidence that

collaborative learning positively supports students' academic achievement (Dheeraj &

Kumari, 2013; Parveen & Batool, 2012; Vaughan, 2002).

Purpose and Significance of the Study

Since computational thinking is defined as a problem-solving approach and the effect of

cooperative learning on academic achievement and attitude is well known, the effect of

cooperative learning on teaching programming has been examined in some studies. Tsai

(2002) explored the impact of strategic learning and cooperative learning on the computer

performance, attitudes, and anxiety levels of junior high school students in Taiwan. The

findings indicate a significant increase in computer anxiety among students in the

cooperative learning group when compared to those in the control group. This reflects

that the students tended to have higher anxiety towards using and learning computers in

cooperative learning. In another study, Garcia (2021) investigated the impact of

collaborative learning through the use of the Jigsaw Technique (JT) on the education of

university-level novice programmers in computer programming. As a result of the

research, he reported that the attitudes and academic achievement of students exposed to

collaborative teaching increased. Li et al. (2022) explored the role of socially shared

regulation on computational thinking performance in cooperative learning. In the

experimental group students learned under the socially shared regulation of learning

(SSRL) condition. The results showed that the students in the experimental group

significantly outperformed their counterparts. Zhou and Tsai (2023) explored the effects

of socially shared learning regulation (SSRL) on the computational thinking, learning

motivation, engagement, and academic achievement of university students in

collaborative learning by teaching (CLBT). Based on the results, the scores of the

experimental class with SSRL in CLBT were significantly higher than those of the control

class. Furthermore, the students in the experimental class significantly improved their

computational thinking (algorithmic thinking, critical thinking, and problem-solving),

intrinsic motivation, engagement, and academic achievement compared to those in the

control class. As can be seen, the studies in the literature have mostly focused on college

and university-level students, there is not enough evidence on the performance of younger

students in cooperative learning. Furthermore, the context of the studies focuses on

computer science teaching, whereas in this research we are experimenting with an

approach that integrates computer science with secondary school science. Another

rationale for conducting the study is that students' motivation for cooperative learning in

Turkey may be different due to cultural reasons. We believe that the findings of this study

are important for future studies. In this study, we aimed to investigate the impact of

cooperative learning on the computational thinking skills and academic performances of

middle school students in the computational problem-solving approach.

Research Questions

The research problem for this research aims to investigate whether there is a significant

statistical difference in academic achievement and computational thinking skills when

comparing groups who complete the computational problem-solving approach

collaboratively and individually at the 6th-grade level.

RQ 1. Is there a statistically significant difference between the academic achievement test

pre-test and post-test scores of the students in the groups in which the computational

problem-solving approach was carried out collaboratively and individually?

RQ 2. Is there a statistically significant difference between the computational thinking

test pre-test and post-test scores of the students in the groups in which the computational

problem-solving approach was carried out collaboratively and individually?

RQ 3. What are the student reflections of students in collaborative and individual groups

about the computational problem-solving process?

Method

In this study, we aimed to investigate the impact of collaborative and individual

computational problem-solving approaches on the academic achievement and

computational thinking skills of middle school students. To achieve this, we employed a

pretest-posttest control group design as part of the quasi-experimental method (Fraenkel

et al., 2012) and this design is depicted below.

Table 1: Research design

 Pre-test Treatment Post-test

Group 1

(Individual)

Computational Thinking Test

(CTt) Computational Problem

Solving (Individual)

Computational

Thinking Test (CTt)

Academic Achievement Test
Academic

Achievement Test

Group 2

(Cooperative)

Computational Thinking Test

(CTt)
Cooperative

Computational Problem

Solving

Computational

Thinking Test (CTt)

Academic Achievement Test
Academic

Achievement Test

To determine whether computational problem solving improves students' academic

achievement and computational thinking skills, classes from 6th grade were selected as

individual and cooperative study groups. The same program and measurement tools were

applied to both study groups under the same conditions. The developed program is related

to the density topic of matter and heat unit and covers the 6th-grade level acquisitions. In

addition, the student standards are defined by the ISTE (2016). The program based on

computational problem-solving practices was implemented in both groups under the same

conditions. In Group 1, a cooperative learning approach was used, while in Group 2,

students worked individually. To eliminate the threat of internal validity, the applications

were conducted by a science teacher and a computer teacher in both groups. The science

teacher had no prior knowledge of Python and computational problem-solving. Therefore,

training was given to the teacher before the applications. This training was carried out

through the activities developed for the students. The Python coding activities of the

students were carried out in the computer laboratory under the supervision of the science

teacher and the computer teacher. The computer teacher had prior knowledge of block

coding, algorithms, and Python.

Participants

The study group for this research was determined using a convenient sampling method.

The research was conducted with two 6th-grade classes at a private secondary school in

the Capital city of Turkey during the 2022-2023 academic year spring semester. The

current study involved a total of 34 students, comprising 10 girls and 6 boys from group

1, and 7 girls and 11 boys from group 2, as well as the science teacher of these classes.

The age range of the students in the classes selected by the purposive sampling method is

12-13 years. The ratios of male and female students in the study groups were not

intervened. The necessary permissions were obtained from the Provincial Directorate of

National Education and the school administration. In the current study, it was determined

that students had prior knowledge about block coding and that students played block

coding games within the scope of the computer course. The distribution of the students

within the study group is outlined in Table 2.

Table 2

Study group

Girls Boys Total

Group 1 (Individual) 10 6 16

Group 2 (Cooperative) 7 11 18

Total 17 17 34

The age range of the students in the study group was 12-13 years. There was no definite

ratio in the number of boys and girls, and the groups were not intervened in terms of

gender. The study was carried out by obtaining the necessary permissions from the

Provincial Directorate of National Education and the school administration regarding the

study to be carried out after the research on the determined school. Semi-structured

interviews were conducted with the science teacher and computer teacher face-to-face or

online at a specified time.

Implementation

In the current research, a program was designed by considering the outcomes of the 2018

science curriculum (MoNE, 2018) and ISTE (2016) student standards together. The four

objectives of the "Density" topic of the "Matter and Heat" unit in the 6th-grade level of

the science curriculum were taken as a basis. In addition, four standards under the title of

"computational thinker" in the ISTE Student Standards were used. These standards and

the outcomes taken from the science curriculum are presented in Table 3. A total of eight

lessons containing these objectives were developed. The first 5 lessons in the prepared

program were conducted by the science teacher in the science classroom. The researchers

participated in these lessons as observers and supported the science teacher to carry out

the implementation as planned. The last three lessons included computational problem-

solving applications and students were required to code using Python. Therefore, these

lessons were conducted in the computer laboratory under the leadership of a computer

teacher (see Appendix 3). The science teacher and a researcher were involved in this

process and supported student work. The total implementation lasted 6 weeks including

the pre-test and post-test applications. In each lesson, the tasks to be completed by the

students were defined (see Table 3). Since the lessons lasted 35 minutes in the school

where the implementation took place, all implementations were determined to fit this

duration. In each lesson, special areas were defined for students to write their solutions

related to the computational problem-solving stages along with the instructions prepared

for them. Some examples of the designed activity sheets are shown in the appendix.

The Python coding activities of the students were carried out through

https://www.onlinegdb.com. The student activity sheets consisted of steps appropriate to

the computational problem-solving process and each step required the use of one or more

of the computational thinking skills (see Table 3). Students carried out their

computational problem-solving processes on these activity sheets. The last three activity

sheets, "What is it made of?", "Which liquid where?" and "Who sinks and who swims?"

were collected and scored to provide evidence about the development of students'

computational thinking skills, because, in the last three activities, students were expected

to use their previously acquired computational problem-solving skills in problem

situations. The problem situations were prepared following the objectives in the science

curriculum and activities in the science textbook were redesigned according to the

computational problem-solving process.

In group 1, activity sheets (see Appendix 2) were provided for each student in Group 1

and the students completed these activities individually. During this time, care was taken

to answer the students' questions individually as much as possible. Students did not

discuss or exchange ideas in small groups. One computer was allocated to each student

in the computer lab. The students in Group 1 completed their studies on the computers

individually. In Group 2, students were divided into groups of 4 or 5 students at the

beginning of the process. An activity sheet was provided for each group. Students

progressed by discussing and making joint decisions at each stage of the process. In Group

2, the cooperative learning groups were formed by the science teacher and special

attention was paid to heterogeneous groups in terms of gender and academic achievement.

In Group 2 (cooperative), a computer was provided to each group of students, and after

the students decided on their algorithm designs together, they coded on this computer. To

monitor the development of students' computational problem-solving skills, the

framework defined by Dierbach (2012) was taken as a basis. This framework consists of

analyzing a problem, describing data and algorithms, implementing a program, and

testing and debugging dimensions. Therefore, in this current research, to monitor students'

computational problem-solving skills, we scored students' performances in three

dimensions; algorithm design, flow chart, and Python coding. Algorithm design refers to

students' development of a systematic for problem-solving based on the stages of

analyzing the problem and describing data. Flow chart refers to creating the algorithm of

this solution and visualizing (abstraction) it. Finally, python is associated with coding,

implementing a program, and testing and bugging.

https://www.onlinegdb.com/

Table 3

Program design and objectives

Lessons Objectives and applications Science Education Program Goals (MoNE, 2018) & ISTE Standards CT Skills

Lesson 1 Pattern identification and abstraction:

A table containing the mass, volume, and density of some

substances was presented to the students. The students tried to

discover the relationship between these properties of

substances. Then they were asked to define the concept of

"density" in their own words. Then they tried to express this

relationship mathematically.

F.6.4.2.1. Defines density.

ISTE / 1.5.a. Students formulate problem definitions suited for technology-assisted

methods such as data analysis, abstract models, and algorithmic thinking in exploring and

finding solutions.

Pattern

Recognition,

Abstraction

Lesson 2 Algorithms and flow charts:

Algorithms and their types were introduced to the students.

Students' algorithm writing skills were developed with the

activities "Write the algorithm of the things you do from the

moment you wake up until you come to school" and "Write an

algorithm to prepare your favorite sandwich".

-

ISTE / 1.5.c. Students break problems into component parts, extract key information, and

develop descriptive models to understand complex systems or facilitate problem-solving.

Pattern

Recognition,

Algorithm

Design

Lesson 3 Using algorithms and flow charts in problem-solving.

Students were given a problem situation about recycling. The

students were asked to prepare an algorithm to solve the

problem of incorrect disposal of garbage in recycling bins and

to express it with a flow chart.

-

ISTE / 1.5.c. Students break problems into component parts, extract key information, and

develop descriptive models to understand complex systems or facilitate problem-solving.

Decomposition,

Pattern

Recognition,

Algorithm

Design

Lesson 4 Turning algorithms into pseudocodes:

Within the scope of the student camp activity, students were

given a list of rules to be followed, firstly, they were provided

to write an algorithm by examining these guidelines. Then,

they were trained to convert these algorithms into pseudo

codes. In this activity, “if” condition was used for the first time.

-

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to

develop a sequence of steps to create and test automated solutions.

Algorithm

Design,

Coding and

debugging

Lesson 5 Introduction to Python:

Students were introduced to the Python coding language and

coding activities were carried out at a simple level. Coding

activities were carried out in the computer lab of the school,

students wrote Python codes on https://www.onlinegdb.com,

and student work was monitored on this platform. In this study,

especially, print, sort, if, else structures, and basic arithmetic

operations were studied.

-

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to

develop a sequence of steps to create and test automated solutions.

Algorithm

Design,

Coding and

debugging

https://www.onlinegdb.com/

Lesson 6 Computational Problem Solving 1: What is it made of?

The students tried to find out what the objects with known

values were made of. The students were first asked to examine

all the data in the given density table, sort out the unnecessary

data, and then analyze the problem by dividing it into small

pieces. Then, they prepared an algorithm to determine which

material the objects were made of and wrote Python code

according to this algorithm. In this activity, students were

expected to use "int", "input", "print" and "if"

F.6.4.2.1. Defines density.

 a. Emphasize that density is a distinguishing property of matter.

 b. Use g/cm3 as the unit of density.

F.6.4.2.2. Calculates the densities of various substances as a result of the experiments

he/she designs.

ISTE / 1.5.a. Students formulate problem definitions suited for technology-assisted

methods such as data analysis, abstract models and algorithmic thinking in exploring and

finding solutions.

ISTE / 1.5.b. Students collect data or identify relevant data sets, use digital tools to analyze

them, and represent data in various ways to facilitate problem-solving and decision-

making.

ISTE / 1.5.c. Students break problems into component parts, extract key information, and

develop descriptive models to understand complex systems or facilitate problem-solving.

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to

develop a sequence of steps to create and test automated solutions.

Decomposition,

Pattern

Recognition,

Abstraction,

Algorithm

Design,

Coding and

debugging

Lesson 7 Computational Problem Solving 2: Which liquid where?

In this problem, students were asked to solve how four

immiscible liquids would be ordered when placed in the same

container. Students were presented with a table of liquids and

their densities, and they were expected to create an algorithm

for the positions of four randomly selected liquids in the

container and write Python code according to this algorithm.

They were especially expected to use "list" and "sort"

structures to solve the problem.

F.6.4.2.3. Compares the densities of insoluble liquids in each other by experimenting.

ISTE / 1.5.a. Students formulate problem definitions suited for technology-assisted

methods such as data analysis, abstract models and algorithmic thinking in exploring and

finding solutions.

ISTE / 1.5.b. Students collect data or identify relevant data sets, use digital tools to analyze

them, and represent data in various ways to facilitate problem-solving and decision-

making.

ISTE / 1.5.c. Students break problems into component parts, extract key information, and

develop descriptive models to understand complex systems or facilitate problem-solving.

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to

develop a sequence of steps to create and test automated solutions.

Decomposition,

Pattern

Recognition,

Abstraction,

Algorithm

Design,

Coding and

debugging

Lesson 8 Computational Problem Solving 3: Who sinks and who

swims?

The students were given a table containing the mass and

volume values of the objects named K, L, M, and N and were

expected to write a code to determine which objects would

float in water and which objects would sink in water. In the

coding phase, students were expected to write a code that

calculates the density of the object by using the mass and

volume values entered and decides whether the object will sink

or float by comparing it with the density of water. Students

especially used "input", "if", and "print" structures.

F.6.4.2.1. Defines density.

 a. Emphasize that density is a distinguishing feature of matter.

F.6.4.2.2. Calculates the densities of various substances as a result of the experiments

he/she designs.

ISTE / 1.5.a. Students formulate problem definitions suited for technology-assisted

methods such as data analysis, abstract models and algorithmic thinking in exploring and

finding solutions.

ISTE / 1.5.b. Students collect data or identify relevant data sets, use digital tools to analyze

them, and represent data in various ways to facilitate problem-solving and decision-

making.

ISTE / 1.5.c. Students break problems into component parts, extract key information, and

develop descriptive models to understand complex systems or facilitate problem-solving.

ISTE / 1.5.d. Students understand how automation works and use algorithmic thinking to

develop a sequence of steps to create and test automated solutions.

Decomposition,

Pattern

Recognition,

Abstraction,

Algorithm

Design,

Coding and

debugging

The elements that could threaten the internal validity of the research were carefully controlled. In both group 1

and group 2, the pre-test and post-test and all the applications including the planned activities were carried out by

the science teacher of the school with the support of the computer teacher. The researchers were only involved in

the process as observers and only provided support to the teachers when necessary. Before the implementation,

the teachers were informed about the whole process, and their permissions were obtained. Since the science

teacher's prior knowledge about computational thinking was very low, she was given a short training and the points

to be considered while conducting the studies were explained. In Group 2 (cooperative), student study groups were

formed by the science teacher before the implementation, and care was taken to ensure that the groups were

heterogeneous. Students did not change their groups throughout the process. In both study groups, the same

activities were carried out simultaneously by the same teachers.

Data collection and analyses

To examine the effect of the program developed in this study on the computational thinking skills and academic

achievement of secondary school students, the computational thinking test and academic achievement test were

applied as pre-test and post-test. Academic achievement test pre-test and post-test applications (paper-pencil tests)

were carried out in the classroom environment and lasted 30 minutes. The pre-test and post-test applications of the

computational thinking test were prepared in the form of Google Forms and applied in the computer laboratory.

The applications lasted 40 minutes. In addition to these, the students' computational problem-solving activity

papers were collected and scored and the development of students' computational thinking skills was monitored.

For this purpose, a rubric developed within the scope of this research was used. Information about the data

collection tools is detailed below.

Computational Thinking Test (CTt): The Computational Thinking Test (CTt) developed by Román-González,

Pérez-González and Jiménez-Fernández (2016) consists of 28 multiple-choice items that include problem

situations based on block-based coding on the code.org website. CTt was designed according to guidelines for

teaching and measuring CS (Buffum et al., 2015), and defines computational thinking as "... the ability to formulate

and solve problems based on fundamental concepts of computation and using the inherent logic of programming

languages" (Román-González, et al., 2017) The test was administered to a sample of 1,251 Spanish students from

5th to 10th grades and the Cronbach's Alpha reliability of the test was found to be α = 0.793. The average difficulty

index of the test items was reported as p = 0.59. For the adaptation of the scale into Turkish, 120 secondary school

students studying in a different private school were reached. The item statistics obtained in the pilot study are

presented in Table 3. Although there was a slight decrease in item statistics after the Turkish adaptation, it was

evaluated that the test is a valid and reliable tool for monitoring students' computational thinking skills.

Academic Achievement Test: Within the scope of the research, an academic achievement test was developed to

monitor students' academic achievement in density. The test was designed as a multiple-choice exam consisting

of 20 questions. To ensure the content validity of the test, the opinions of two field experts were obtained and the

test items were revised in line with these opinions. The test was applied to an equivalent sample (n = 48) before

the application and item statistics were checked. The descriptive analysis results of the pilot application of the

academic achievement test are given in Table 4.

Table 4

Computational Thinking Test Pilot Application Descriptive Statistics

Test Statistics CTt Academic Achievement Test

N 120 48

Min. 7 8,00

Max. 28 20,00

Mean 14,43 14,43

Standard deviation 4,36 3,97

Mean Item Difficulty Index 0,65 0,72

Mean Item Discrimination Index 0,36 0,45

KR-20 (Alpha) 0,75 0,86

KR-21 0,69 0,78

Computational Problem Solving (CPS) Rubric: The activity papers of CPS 1, CPS 2, and CPS 3 in which the

students were involved in computational problem-solving practices were collected and scored with a rubric.

Algorithm design, constructing flow charts, and Python coding phases of the activities were scored as separate

sub-dimensions in cooperative and individual study groups. The rubric is given in Appendix 1.

Semi-structured Interviews: Qualitative data were collected through semi-structured interviews at the end of the

process in order to determine the views of the students participating in the research (cooperative and individual)

on the computational problem-solving process. Semi-structured interview questions are presented in Appendix 2.

In the study, SPSS 24 was used to analyze all the data obtained from the tests. In the analyses, it was determined

that the data obtained from the academic achievement test were not suitable for normal distribution. For this reason,

the Mann Whitney U Test and Wilcoxon Signed Ranks Test were used to determine whether the difference

between the mean academic achievement scores in individual and collaborative groups was significant. It was

determined that the data obtained from the computational thinking test were coherent with the normal distribution.

In addition, since a significant difference was found between the CTt pre-test scores of the groups, the ANCOVA

test was applied to determine whether there was a statistically significant difference between the post-test scores.

Nonparametric tests were applied for the scores obtained from the information processing problem-solving rubric.

Internal and External Reliability, Ethics

The necessary permissions were obtained from the Hacettepe University Ethics Commission and Ankara

Provincial Directorate of National Education. Before the research, students and parents were informed about the

applications, and their permission to participate in the application was obtained. The measurement tools applied

within the scope of the study were appropriate in terms of validity and reliability and appropriate analysis

techniques were applied to the collected data.

Findings

The academic achievement test developed in this study was used to monitor the academic achievement of middle

school students in computational problem-solving. Firstly, the normality of the data obtained from this test was

analyzed. Table 5 shows the descriptive statistics values for the academic achievement test pre-test and post-test

applications.

Table 5

Academic Achievement Test Pre-Test – Post-Test Applications Descriptive Statistics

 Mean sd Min. Max. Skewness Kurtosis

Pre-test
Individual 10,60 1,28 8 13 -0,53 0,87

Cooperative 13,86 2,98 8 18 -0,30 -0,81

Post-test
Individual 18,82 1,60 14 20 -1,90 4,45

Cooperative 19,36 1,15 16 20 -2,25 5,37

The descriptive statistics values of the academic achievement test showed that the skewness and kurtosis values

of the test were not suitable for normal distribution. More evidence was needed to examine the suitability of the

academic achievement test pre-test and post-test scores of the groups for parametric statistics. For this reason,

normality tests of the academic achievement test results were examined. The normality test results of the test are

presented in Table 6.

Table 6

Academic Achievement Test Normality Test Results

Group
Kolmogorov-Smirnov Shapiro-Wilk

Statistics sd p Statistics sd p

Pre-test
Individual 0,215 17 ,036 0,896 17 ,057

Cooperative 0,162 14 ,200 0,931 14 ,318

Post-test
Individual 0,241 17 ,010 0,748 17 ,000

Cooperative 0,355 14 ,000 0,638 14 ,000

The normality test results of the academic achievement test showed that the post-test scores of both groups were

not suitable for normal distribution. Therefore, nonparametric tests were used to examine whether there was a

significant difference between the academic achievement test pre-test and post-test scores of the groups. To

monitor the students' computational thinking skills, the Computational Thinking Test (CTt) was used as a pre-test

and post-test. Descriptive statistics values of the pre-test and post-test applications of the Computational Thinking

Test (CTt) are given in Table 7.

Table 7

Descriptive Statistics of CTt Pre-Test and Post-Test Applications

 Mean sd Min. Max. Skewness Kurtosis

Pre-test
Individual 15,13 3,63 8 21 -0,22 -0,65

Cooperative 18,30 4,35 10 25 -0,47 -0,97

Post-test
Individual 19,75 4,46 9 26 -0,85 0,73

Cooperative 21,06 3,60 14 26 -0,41 -0,45

According to Table 7, the skewness and kurtosis values of the pre-test and post-test scores of the Computational

Thinking Test were coherent with normal distribution. However, normality tests of the test results were examined

to obtain more evidence about whether the score distributions were suitable for parametric statistics. The normality

test results of the pretest and posttest data are presented in Table 8.

Table 8

CTt Normality Test Statistics

Group

Kolmogorov-Smirnov Shapiro-Wilk

Statistics sd p Statistics sd p

Pre-test
Individual 0,180 16 ,173 0,956 16 ,587

Cooperative 0,203 17 ,060 0,918 17 ,138

Post-test
Individual 0,173 16 ,200 0,948 16 ,454

Cooperative 0,133 17 ,200 0,945 17 ,387

When the normality results of the Computational Thinking Test were analyzed, it was determined that the data

obtained from the pre-test and post-test applications of the groups were coherent with the normal distribution. For

this reason, parametric tests were used to examine whether there was a significant difference between the scores

obtained by the groups from the pre and post-tests of the Computational Thinking Test.

Findings Regarding Research Question 1

Since the pre-test and post-test results of the Academic Achievement Test of the students in Group 2 (cooperative)

were not suitable for normal distribution, the pre-test and post-test scores were analyzed by the Wilcoxon Signed

Rank Test. The test results are given in Table 9.

Table 9

Cooperative Group Academic Achievement Test Wilcoxon Signed Ranks Test Results

N Mean of Ranks Sum of Ranks

Post-test – Pre-test
Negative Rank 0a 0,00 0,00

Positive Rank 14b 7,50 105,00

Ties 0c

Total 14

a. Post-Test < Pre-Test

b. Post-Test > Pre-Test

c. Post-Test = Pre-Test

The number of subjects (N), Mean Ranks, and Sum of Ranks for Negative Ranks, Positive Ranks, and those with

the same value (Ties) between the pre-test and post-test scores of the Academic Achievement Test are given in

Table 8. Table 8 shows that the post-test scores of all students were higher than the pre-test scores (positive rank

N = 14). The z value (-3,31) calculated to examine whether these variables were significant was found to be

significant (p = 0,001; p<0,05). Since the pre-test and post-test results of the Academic Achievement Test of the

students in Group 1 (individual) were not suitable for normal distribution, the pre-test and post-test scores were

analyzed with the Wilcoxon Signed Rank Test. The test results are given in Table 10.

Table 10

Individual Group Academic Achievement Test Wilcoxon Signed Ranks Test Results

 N Mean of Ranks Sum of Ranks

Post-test – Pre-test
Negative Rank 0a 0,00 0,00

Positive Rank 17b 9,00 153,00

Ties 0c

Total 17

a. Post-Test < Pre-Test

b. Post-Test > Pre-Test

c. Post-Test = Pre-Test

Table 9 shows that the post-test scores of all students were higher than the pre-test scores (positive rank N = 17).

The Z value calculated to examine whether these variables were significant or not was -3,64 and the significance

was found to be p = 0,000 (p<0,05). As a result, it was determined that the increase in the posttest scores of Group

1 was significant. Mann-Whitney U test was used to examine whether there was a significant difference between

the Academic Achievement Test post-test results of the students in Group 1 and Group 2. The ranks of the post-

test scores of the groups are given in Table 11.

Table 11

Ranks of Group 1 and Group 2 Posttest Scores

 N Mean of Ranks Sum of Ranks

Post-test
Individual 17 14,50 246,50

Cooperative 14 17,82 249,50

Total 31

The Mann-Whitney U test analyses (U=93,50, p=0,265) performed to examine the difference between the post-

test scores of Group 1 and Group 2 showed that there was no statistically significant difference between the two

groups in terms of post-test scores (Z = -1,115, p < .05).

Findings Regarding Research Question 2

To monitor the development of computational thinking skills of the students participating in the study, both CTt

was used as a pre-test and post-test and the computational problem-solving activity sheets were scored and

analyzed with the rubric. To examine whether there was a statistically significant difference between the CTt pre-

test and post-test scores of the students in Group 1 and Group 2, the pre-tests of the groups were first analyzed.

The results of the Independent Groups t-test conducted to test whether there was a statistically significant

difference between the pre-test scores of the groups are given in Table 12.

Table 12

Independent Groups t-Test Results of CTt Pre-Test Results of Groups

 N Mean sd df t p

Pre-test
Individual 16 15,13 3,63

31 -2,26 ,030
Cooperative 17 18,29 4,35

Table 12 reveals that there is a statistically significant difference between the pre-test scores of the groups.

ANCOVA was applied by determining the pre-test scores as covariates against the possibility that the possible

difference between the post-test scores of the groups in the Computational Thinking Test was due to the pre-test

scores. Before ANCOVA, test scores were examined for compliance with variance analysis assumptions. The data

obtained from the Computational Thinking Test are continuous variables and the test scores are suitable for normal

distribution. In addition, the homogeneity of the variances of the test scores was examined by Levene's test and it

was determined that the variances of the post-test scores were homogeneous (F = 0,614, p = 0,439). ANCOVA

results of the groups' posttest scores of the Computational Thinking Test are given in Table 13.

Table 13

ANCOVA Results of Groups' Computational Thinking Test Posttest Scores

 Sum of

Squares
df Mean of Squares F p Eta Square

Corrected model 246,37 2 123,18 13,50 ,000 ,474

Intercept 138,86 1 138,85 15,22 ,001 ,337

Pre-test 232,25 1 232,25 25,45 ,000 ,459

Group 5,09 1 5,09 0,55 ,461 ,018

Error 273,70 30 9,12

Total 11286,00 33

Corrected Total 520,06 32

When Table 13 is analyzed, it is seen that when the pre-test scores of the groups are controlled, there is no

significant difference between the post-test scores. This result shows that both individual and collaborative

computational problem-solving practices increased the students' computational thinking skills, but at the end of

the practice, there was no statistically significant difference between the computational thinking skills of the

students in both groups. To monitor the development of students' computational thinking skills, computational

problem-solving activities were also scored with a rubric. The descriptive statistical values of the scores of the

students in both groups are presented in Table 14.

Table 14

Descriptive Statistics of Groups' Scores of Computational Problem-Solving Sub-dimensions

Individual
N Mean sd Min. Max.

Percentiles

%25 %50 %75

C
P

S
 1

 Algorithm Design 1 16 6,19 0,91 5 8 5,25 6,00 7,00

Flow Chart 1 16 6,75 1,23 5 9 5,25 7,00 7,75

Python Coding 1 16 5,19 1,42 3 8 4,00 5,00 6,00

C
P

S
 2

 Algorithm Design 2 16 6,63 1,31 4 9 6,00 7,00 7,75

Flow Chart 2 16 6,63 1,40 4 9 5,25 7,00 8,00

Python Coding 2 16 6,31 1,25 5 10 5,25 6,00 7,00

C
P

S
 3

 Algorithm Design 3 16 7,69 1,62 5 10 6,00 8,00 9,00

Flow Chart 3 16 7,69 1,13 5 9 7,00 8,00 8,75

Python Coding 3 16 7,81 1,87 4 10 7,00 8,00 9,00

Cooperative

C
P

S
 1

 Algorithm Design 1 18 7,00 0,59 6 8 7,00 7,00 7,00

Flow Chart 1 18 7,22 0,42 7 8 7,00 7,00 7,25

Python Coding 1 18 5,18 0,78 4 6 4,75 5,00 6,00

C
P

S
 2

 Algorithm Design 2 18 7,77 1,43 6 10 6,75 8,00 8,50

Flow Chart 2 18 7,16 0,78 6 8 6,75 7,00 8,00

Python Coding 2 18 6,44 1,09 5 8 5,75 6,00 7,25

C
P

S
 3

 Algorithm Design 3 18 8,55 1,46 6 10 8,25 9,00 9,25

Flow Chart 3 18 8,83 0,75 8 10 8,00 9,00 9,25

Python Coding 3 18 7,83 0,78 7 9 7,00 8,00 8,25

Wilcoxon Signed Ranks Test, one of the nonparametric statistics, was used to determine whether the change in the

scores of the groups in the sub-dimensions of computational problem-solving was significant. Pairwise

comparisons between the scores of the students in Group 1 on the sub-dimensions of computational problem-

solving are given in Table 15.

Table 15

Wilcoxon Test Results of Problem-Solving Sub-dimensions in Individual Group

 N Mean of Ranks Sum of Ranks Z p

Algorithm Design 1 –

Algorithm Design 2

Negative Rank 3 5,00 15,00 -1,706 ,088

Positive Rank 8 6,38 51,00

Ties 5

Total 16

Algorithm Design 2 –

Algorithm Design 3
Negative Rank 2 3,50 7,00 -2,553 ,011

Positive Rank 10 7,10 71,00

Ties 4

Total 16

Algorithm Design 1 –

Algorithm Design 3
Negative Rank 1 4,00 4,00 -3,096 ,002

Positive Rank 13 7,77 101,00

Ties 2

Total 16

Flow Chart 1 – Flow

Chart 2

Negative Rank 6 7,50 45,00 -0,484 ,628

Positive Rank 6 5,50 33,00

Ties 4

Total 16

Flow Chart 2 – Flow

Chart 3
Negative Rank 1 8,00 8,00 -2,471 ,013

Positive Rank 11 6,36 70,00

Ties 4

Total 16

Flow Chart 1 – Flow

Chart 3
Negative Rank 1 7,50 7,50 -2,319 ,020

Positive Rank 10 5,85 58,50

Ties 5

Total 16

Python Coding 1 –

Python Coding 2

Negative Rank 1 3,50 3,50 -3,020 ,003

Positive Rank 12 7,29 87,50

Ties 3

Total 16

Python Coding 2 –

Python Coding.3
Negative Rank 1 2,50 2,50 -2,888 ,004

Positive Rank 11 6,86 75,50

Ties 4

Total 16

Python Coding 1 –

Python Coding 3
Negative Rank 0 ,00 ,00 -3,555 ,000

Positive Rank 16 8,50 136,00

Ties 0

Total 16

When Table 15 is analyzed, it is understood that the scores obtained by the students in Group 1 from the sub-

dimensions of computational problem-solving increased significantly. Although there was no significant

difference between the first and second measurements in the sub-dimensions of algorithm design, flow chart, and

python coding, it is understood that the students' scores increased significantly in the third measurement compared

to the previous measurements. This difference can be interpreted as that the students got used to the process over

time and were able to manage the computational problem-solving process better. The difference between the scores

obtained by the students in Group 2, in which the applications were carried out collaboratively, from the sub-

dimensions of computational problem solving was similarly analyzed by the Wilcoxon Signed Rank Test, and the

results of the analysis are presented in Table 16.

Table 16

Wilcoxon Test Results of Problem-Solving Sub-dimensions in Cooperative Group

 N Mean of Ranks Sum of Ranks Z p

Algorithm Design 1 –

Algorithm Design 2

Negative Rank 4 2,50 10,00 -2,070 ,038

Positive Rank 7 8,00 56,00

Ties 7

Total 18

Algorithm Design 2 –

Algorithm Design 3
Negative Rank 4 5,50 22,00 -2,003 ,045

Positive Rank 10 8,30 83,00

Ties 4

Total 18

Algorithm Design 1 –

Algorithm Design 3
Negative Rank 4 4,00 16,00 -3,071 ,002

Positive Rank 14 11,07 155,00

Ties 0

Total 18

Flow Chart 1 – Flow

Chart 2

Negative Rank 4 4,00 16,00 -0,378 ,705

Positive Rank 3 4,00 12,00

Ties 11

Total 18

Flow Chart 2 – Flow

Chart 3
Negative Rank 0 ,00 ,00 -3,461 ,001

Positive Rank 15 8,00 120,00

Ties 3

Total 18

Flow Chart 1 – Flow

Chart 3
Negative Rank 0 ,00 ,00 -3,831 ,000

Positive Rank 18 9,50 171,00

Ties 0

Total 18

Python Coding 1 –

Python Coding 2

Negative Rank 0 ,00 ,00 -3,508 ,000

Positive Rank 15 8,00 120,00

Ties 3

Total 18

Python Coding 2 –

Python Coding.3
Negative Rank 0 ,00 ,00 -3,852 ,000

Positive Rank 18 9,50 171,00

Ties 0

Total 18

Python Coding 1 –

Python Coding 3
Negative Rank 0 ,00 ,00 -3,874 ,000

Positive Rank 18 9,50 171,00

Ties 0

Total 18

According to Table 16, it is understood that the scores obtained by the students in Group 2 from the sub-dimensions

of computational problem-solving increased significantly. Similar to the measurement results of group 1

(individual), it was found that the students in group 2 (cooperative) tended to get higher scores throughout the

process. However, the striking result here is that the sub-dimensional scores of the students in the cooperative

groups showed a significant difference from the first measurements. This situation can be interpreted as that

students support each other's learning in cooperative groups. Since the development of students' computational

thinking skills was observed in both groups, it was examined whether there was a difference between these

developments. The difference between the scores obtained by the students in Group 1 and Group 2 from the sub-

dimensions of computational problem solving was analyzed by the Kruskal Wallis Test and the results of the

analysis are presented in Table 17.

Table 17

Kruskal Wallis Test Results for Problem Solving Sub-dimensions in Individual and Cooperative Groups

Compare of Groups N Mean of Ranks Chi-square df p

Algorithm Design 1
Individual 16 12,91 7,531 1 ,006

Cooperative 18 21,58

Total 34

Algorithm Design 2
Individual 16 13,81 4,368 1 ,037

Cooperative 18 20,78

Total 34

Algorithm Design 3
Individual 16 14,63 2,699 1 ,100

Cooperative 18 20,06

Total 34

Flow Chart 1
Individual 16 15,69 1,327 1 ,249

Cooperative 18 19,11

Total 34

Flow Chart 2
Individual 16 15,50 1,320 1 ,251

Cooperative 18 19,28

Total 34

Flow Chart 3
Individual 16 12,44 6,605 1 ,003

Cooperative 18 22,00

Total 34

Python code 1
Individual 16 17,31 0,012 1 ,914

Cooperative 18 17,67

Total 34

Python code 2
Individual 16 16,50 0,330 1 ,566

Cooperative 18 18,39

Total 34

Python code 3
Individual 16 18,50 0,326 1 ,568

Cooperative 18 16,61

Total 34

Table 17 shows that only in the algorithm design sub-dimension, the students in the collaborative group showed

higher performance, while there was no significant difference between the scores of the groups in the other sub-

dimensions. In both groups (groups 1 and 2), students showed a significant increase in scores throughout the

process. At the end of the process, we found that the scores achieved by the students did not differ significantly

from each other. On the other hand, students working in cooperative groups were more advantageous. Especially

at the beginning of the process, students in cooperative groups progressed faster by supporting each other in

comprehending the computational problem-solving process.

Findings Regarding Research Question 3

During in-class observations, we observed that the students who worked cooperatively spent a little more time

designing their algorithms and creating flow charts, but reached a common conclusion through discussions.

Students who worked individually also created their algorithms correctly most of the time and progressed at their

own pace. However, we noticed that they used less data when formulating problems. In the python coding

dimension, we observed that students who were interested and excited about coding were more productive when

working individually. Some motivated students working in collaborative groups requested to work individually

because they wanted to express their ideas freely. This was an unexpected situation for us. The students who

worked individually had more chances to try more as they worked without time constraints while writing their

codes with Python. They spent discussion time trying different situations in coding. This was also true for

debugging; in collaborative groups, the source of the error was discovered more quickly, but it was observed that

each student wanted to try different ideas when the code gave an error, which led to a loss of time. According to

the observations made during the lesson, it was observed that the interest and motivation of the students working

in co-operation were higher.

The results obtained from the interviews with the students showed that the students in both groups had a positive

view of the process. They stated that the anxiety they experienced about coding at the beginning of the process

decreased during the process. One of the students expressed this situation as follows; "I think it was fun, the lessons

were different, I was scared when you said that we would solve problems by coding in this lesson, but I think it

was easy, sometimes I try to code something myself now" (G2/S3 - Group 2 - Student 3). In the interviews, the

opinions of the students about what they had the most difficulty in the process were collected. The students mostly

stated that they had difficulty in finding the source of the error (debugging) if the codes they wrote did not work.

For example, one of the students expressed himself as follows; "I had the most difficulty when the codes I wrote

did not work, I asked for help from my teachers when I could not run the code, but there were also times when I

solved it myself, then I felt very happy” (G1/S4). Although we provided Python coding language training to the

students throughout the process, they made mistakes while transferring correctly designed algorithms to the code.

The errors were usually script-related and this problem could not be fully resolved during the process. In addition,

the students stated that they had problems in using the symbols in the flow chart. According to the results obtained

from the interviews, the flow chart step was the most boring part for them. They stated that coding on the computer

(python coding step) was cooler. Students often expressed that they enjoyed the python coding step much more

and as the activities progressed, it was observed that they preferred to use the time they allocated from algorithm

design and flow chart steps in the coding part. The computer teacher stated that the students shared their questions

with him during lunch breaks and even experimented on the codes they wrote in computer classes where the

application was not carried out. When the students were asked to make critical reflections during the interviews,

one of them responded as follows: “we were able to do the algorithm design and flowcharts with my friends, but

it would be better if I had the chance to do the coding myself” (I2/S13). These kinds of views were predominant

and we interpreted this as students wanting to be alone on the computer.

The students' experiences also supported their interest in computers. During the interviews, a student in group 2

stated as follows; ‘the computer lesson is very fun and, in the lesson, hmmm I started to try different codes on the

computer. Maybe I will do something myself in the future, maybe I will do something like a web page’ (G2/S7). In

addition, the students thought that the experience they had and the skills they acquired were valuable. We observed

that some students' career expectations could be shaped in this direction. The school we conducted the study was

a private school and students and families were aware of this issue. This may be a factor for students' interest, but

during the interviews, a student expressed himself as follows; “yes, I think coding will be of great importance in

my future life, my family supports me in this regard, I already liked science class, but it is more fun now” (G1/S6).

In our interviews, we determined that the students in both groups were interested in coding. This process was very

enjoyable for them. The clearest finding that we determined by the purpose of the study was that although group

work was effective, students demanded and preferred to work individually in the coding step.

Results and Discussions

In this study, we aimed to investigate the impact of cooperative learning on the computational thinking skills and

academic performances of middle school students in the computational problem-solving approach. Before the

study, we had predicted that the computational thinking skills and academic achievement of the students would be

higher in the group in which the computational problem-solving instruction was carried out cooperatively because

according to the cognitive perspective of cooperative learning, the opportunity for students to learn from each

other mediates the construction of knowledge (Slavin, 2015). According to Gillers (2014), in cooperative learning,

students need to coordinate group interactions and also take responsibility for other members to learn. According

to cooperative learning, when students understand that individual contributions improve the group's performance,

they are willing to carry out their responsibilities. However, the results of the study showed that the academic

achievement and computational thinking skills of students in both individual and cooperative groups increased

significantly throughout the implementation. When the academic achievement post-test scores of the groups were

compared, no significant difference was found between the post-test scores. In other words, the academic

achievement of the students increased at a similar level in the groups in which the collaborative and individual

applications were carried out. When the development of the groups' computational thinking skills was analyzed,

no statistically significant difference was found between the post-test scores when the pre-test scores were

controlled. This result indicates that both individual and collaborative computational problem-solving practices

increased students' computational thinking skills, but there was no statistically significant difference between the

computational thinking skills of the students in both groups at the end of the practice. The results obtained from

the scoring of the activity papers showed that the scores of the students in both groups in the sub-dimensions of

computational problem solving increased significantly, only in the algorithm design sub-dimension the students in

the collaborative group showed higher performance, and there was no significant difference between the scores of

the groups in the other sub-dimensions.

Although these findings are similar to the findings of reference studies in the literature (Li et al., 2022; Zhou &

Tsai, 2023), there are some differences. Studies in the literature reveal that students' computational thinking skills

and academic achievement increase significantly in favor of the collaborative group. The findings of this study did

not reveal a statistically significant difference between cooperative and individual teaching groups. One of the

reasons for the lack of the expected difference between the groups may be that the applications carried out were

found to be new and interesting for both student groups. Proponents of problem-based learning assume that the

problem-solving process is an approach that increases student motivation and differences in student motivation

can be measured by situational interest (Rotgans & Schmidt, 2012). Situational interest is a person's immediate

emotional response to certain stimuli in the learning environment (Hidi 1990; Mitchell 1993) and can be increased

by external factors such as well-organized content and challenging problem situations. In particular, we believe

that the coding activities carried out in the computer lab supported the situational interest of the students, which

increased their motivation towards the process. We expect that our prejudices about the cooperative learning group

may be justified with longer-term studies.

According to the data obtained from in-class observations and interviews, students working in collaboration

completed the algorithm and flow diagram steps much faster. Students working individually also needed much

more time, although they designed their algorithms correctly. On the other hand, the demand for individual work

was quite dominant in the Python coding step. Students working individually had the opportunity to test their codes

much more. In the cooperative groups, when the codes they wrote gave errors, each student wanted to try his/her

solution for debugging, which resulted in a loss of time. According to the observations made during the lesson, we

observed that the students who worked collaboratively had higher interest and motivation towards the lesson. This

intuition was strengthened by the students' effort to solve the problem together with their friends and their

acceptance within the group regardless of the result. Studies in the literature reveal that the problem-solving

approach can be effective for students to solve the problems they encounter while coding (Scherer et al., 2020).

Uysal (2014) stated that problem-solving teaching methods can also effectively improve the academic performance

and problem perception of students learning coding. However, although algorithmic thinking seems to be quite

easy in terms of structure determining the instructions and necessary steps is a process that is quite challenging

and requires patience. To reach the result, students need to continue their studies with diligence and determination.

In this process, trying many times and not achieving success causes many people to give up and give up the steps

(Korkmaz et al., 2017). Cooperative learning can be a solution to this problem by supporting students' motivation.

In the context of programming, computational thinking is considered problem-solving (Kalelioğlu et al., 2016),

and problem-solving skills are often associated with non-verbal intelligence (Tsavara et al., 2022). For example,

Marinus et al., 2018 found a positive relationship between programming ability and non-verbal intelligence.

Similarly, Çiftci and Bildiren (2020) found positive effects of coding lessons on children's non-verbal cognitive

abilities. In our study, in parallel with these findings, we found that cooperative learning was more effective in the

steps where students' verbal interactions were supported (algorithm design and flow chart). In Python coding, that

is, in the step where non-verbal intelligence was utilized, students preferred individual work more. From this point

of view, it should be taken into consideration that the measurement tools we used in our study, especially the CTt,

tested programming skills individually. Although we conducted a collaborative process, we collected our

quantitative data individually and these findings are limited in evaluating students' collaborative computational

thinking skills.

Limitations and Implications

In this study, the activities developed for the density topic at the 6th-grade level were used. Although the students

included in the study were familiar with block coding, they were unfamiliar with the computational problem-

solving approach and Python coding language. Before starting the problem-solving process, the students were

given exercises on algorithm design, pattern recognition, transforming the algorithm into pseudocode, and Python

coding language. However, we think that more time should be allocated to these activities. In addition, the

computer teacher and science teacher working together made it easier for us to manage the process because the

science teacher did not have enough prior knowledge. We also trained the science teacher before the

implementation, but she was not competent enough to manage the coding sections. In both groups, the attitude of

the students towards the process was very positive and they were highly motivated about the implementation. We

attribute this to the fact that this process was quite new to the students. They also enjoyed doing science-related

work in the computer lab. Most students expressed that they wanted to sit alone at the computer. In the co-operative

groups, who would sit at the computer was sometimes a matter of discussion. Although students in both groups

showed improvement in academic achievement and computational thinking skills, we were a little disappointed

that they wanted to be alone during the coding steps. We believe that researchers should conduct deeper research

on this issue. The excitement that the students experienced in the coding part of the activities and the feeling of "I

succeeded" when they worked on the codes provided them with great happiness and motivation, which caused

them not to pay much attention to algorithms and flow diagrams and to want to quickly switch to writing code in

Python. For this reason, a certain amount of time can be allocated for each learning outcome, and as gradual

progress is made, the time allocated for algorithm and flow diagram learning can be decreased and the time

allocated for code writing can be increased. This suggestion may change depending on the level of the class and

the development process of the class.

References

Ayars, E. (2013). Computational Physics with Python. California State University, Chico.

Backer, A. (2007). Computational physics education with Python. Computing in Science & Engineering, 9(3), 30-

33.

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning

and Leading with Technology, 38(6), 20–23.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the role

of the computer science education community? ACM Inroads, 2(1), 48-54.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying middle school

students’ challenges in computational thinking-based science learning. Research and Practice in Technology

Enhanced Learning, 11(1), 1-35.

Buffum, P.S., Lobene, E.V., Frankosky, M.H., Boyer, K.E., Wiebe, E.N., & Lester, J.C. (2015). A practical guide

to developing and validating computer science knowledge assessments with application to middle school, in:

Proc. 46th ACM Tech. Symp. Comput. Sci. Educ., pp. 622–627. http://dx.doi.org/10.1145/2676723.2677295

Chabay, R., & Sherwood, B. (2008). Computational physics in the introductory calculus-based course. American

Journal of Physics, 76(4), 307-313.

Çiftci, S., & Bildiren, A. (2020). The effect of coding courses on the cognitive abilities and problem-solving skills

of preschool children. Computer Science Education, 30(1), 3–21.
https://doi.org/10.1080/08993408.2019.1696169

Corral, J. M. R., Balcells, A. C., Estevez, A. M., Moreno, G. J., and Ramos, M. J. F. (2014). A game-based

approach to the teaching of object-oriented programming languages. Comput. Educ. 73, 83–92.

https://doi.org/10.1016/j.compedu. 2013.12.013

Dheeraj, D., & Kumari, R. (2013). Effect of co-operative learning on achievement in environmental science of

school student. International Journal of Scientific and Research Publications, 3(2), 1-3.

Dierbach, C. (2012). Introduction to computer science using python: A computational problem-solving focus.

Hoboken: Wiley Publishing.

Fox, J. A., & Ouellette, B. F. (2013). Education in computational biology today and tomorrow. PLoS Comput Biol,

9(12), e1003391.

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed).

McGraw-Hill Humanities/Social Sciences/Languages.

Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Duckworth, D. (2019). Preparing for life in a digital world:

the IEA International Computer and Information Literacy Study 2018 International Report. Amsterdam: IEA.

http://dx.doi.org/10.1145/2676723.2677295
https://doi.org/10.1080/08993408.2019.1696169
https://doi.org/10.1080/08993408.2019.1696169
https://doi.org/10.1016/j.compedu.%202013.12.013

Garcia, M. B. (2021). Cooperative learning in computer programming: A quasi-experimental evaluation of Jigsaw

teaching strategy with novice programmers. Education and Information Technologies, 26(4), 4839-4856.

Gillies, R. (2014). Cooperative learning: developments in research. International Journal of Educational

Psychology, 3(2), 125-140. https://doi.org/10.4471/ijep.2014.08

Grover, S. & Pea, R. (2018). Computational Thinking: A competency whose time has come. In Sentance, S.,

Carsten, S., & Barendsen, E. (Eds), Computer Science Education: Perspectives on teaching and learning,

Bloomsbury.

Grover, S. (2017). Assessing Algorithmic and Computational Thinking in K-12: Lessons from a Middle School

Classroom. In: Rich, P., Hodges, C. (eds) Emerging Research, Practice, and Policy on Computational

Thinking. Educational Communications and Technology: Issues and Innovations. Springer, Cham.

https://doi.org/0.1007/978-3-319-52691-1_17

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. Computer science

education: Perspectives on Teaching and Learning in School, 19, 1257-1258.

Gülbahar, Y., Kert, S. B. & Kalelioğlu, F. (2019). Bilgi işlemsel düşünme becerisine yönelik öz yeterlik algısı

ölçeği: geçerlik ve güvenirlik çalışması. Turkish Journal of Computer and Mathematics Education

(TURCOMAT), 10(1), 1-29. https://doi.org/10.16949/turkbilmat.385097

Hidi, S. (1990). Interest and Its Contribution as a Mental Resource for Learning. Review of Educational Research,

60(4), 549–571.

Hurt, T., Greenwald, E., Allan, S., Cannady, M. A., Krakowski, A., Brodsky, L., Collins, M. A., Montgomery, R.,

& Dorph, R. (2023). The computational thinking for science (CT-S) framework: Operationalizing CT-S for K–

12 science education researchers and educators. International Journal of STEM Education, 10(1), 1.

https://doi.org/10.1186/s40594-022-00391-7

International Society for Technology in Education (ISTE). (2016). ISTE standards for students. Retrieved from:

https://www.iste.org/standards/for-students

Johnson, L. E., & Engel, T. (2011). Integrating computational chemistry into the physical chemistry curriculum.

Journal of Chemical Education, 88(5), 569-573.

Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory into Practice, 38(2), 67–73.

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic

research review. Baltic Journal of Modern Computing, 4(3), 583–596.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking

scales (CTS). Computers in Human Behavior, 72, 558-569.

Landau, R. H., Bordeianu, C. C., & Paez, M. J. (2009). Computational Physics with Python. In The 4th

International Conference on Virtual Learning ICVL.

Landau, R. H., Páez, M. J., & Bordeianu, C. C. (2015). Computational physics: Problem solving with Python. John

Wiley & Sons.

Lee, J., & Junoh, J. (2019). Implementing unplugged coding activities in early childhood classrooms. Early

Childhood Education Journal, 47(6), 709-716.

Li, J., Liu, J., Yuan, R., & Shadiev, R. (2022). The influence of socially shared regulation on computational

thinking performance in cooperative learning. Educational Technology & Society, 25(1), 48-60.

Marinus, E., Powell, Z., Thornton, R., McArthur, G., & Crain, S. (2018). Unravelling the cognition of coding in

3-to-6-year olds. In Proceedings of the 2018 ACM conference on international computing education research

- ICER ’18, august (pp. 133–141). https://doi.org/10.1145/3230977.3230984

Miller, B.T., Singh, R.P., Schalk, V., Pevzner, Y., Sun, J., Miller, C.S., et al. (2014). Web-Based Computational

Chemistry Education with CHARMMing I: Lessons and Tutorial. PLoS Comput Biol 10(7): e1003719.

https://doi.org/10.1371/journal.pcbi.1003719

Mitchell, M. (1993). Situational interest: Its multifaceted structure in the secondary mathematics classroom.

Journal of Educational Psychology, 85(3), 424–436.

https://doi.org/10.4471/ijep.2014.08
https://doi.org/0.1007/978-3-319-52691-1_17
https://doi.org/10.16949/turkbilmat.385097
https://doi.org/10.1186/s40594-022-00391-7
https://doi.org/10.1145/3230977.3230984
https://doi.org/10.1371/journal.pcbi.1003719

MoNE. (2018). Fen Bilimleri Dersi Öğretim Program: 3 - 8 [Science Education Program; 3- 8]. Ankara: MoNE.

Retrieved from: http://mufredat.meb.gov.tr/Dosyalar/201812312311937-

FEN%20BİLİMLERİ%20ÖĞRETİM%20PROGRAMI2018.pdf

Nouri, J., Zhang, L., Mannila, L., and Noren, E. (2020). Development of computational thinking, digital

competence and 21st century skills when learning programming in K-9. Educ. Inq. 11, 1–17.

https://doi.org/10.1080/20004508.2019.1627844

Ogegbo, A. A., & Ramnarain, U. (2022). A systematic review of computational thinking in science classrooms.

Studies in Science Education, 58(2), 203-230.

Olelewe, C. J., and Agomuo, E. E. (2016). Effects of B-learning and F2F learning environments on students’

achievement in QBASIC programming. Comput. Educ. 103, 76–86.

https://doi.org/10.1016/j.compedu.2016.09.012

Özdinç, F., Kaya, G., Mumcu, F., & Yıldız, B. (2022) Integration of computational thinking into STEM activities:

an example of an interdisciplinary unplugged programming activity, Science Activities, 59(3), 151-159,

https://doi.org/10.1080/00368121.2022.2071817

Park, S., & Jeon, Y. (2015). Teachers’ perception on computational thinking in science practices. International

Journal of Education and Information Technologies, 9(1), 180–185.

Parveen, Q., & Batool, S. (2012). Effect of Cooperative Learning on Achievement of Students in General Science

at Secondary Level. International Education Studies, 5(2), 154-158.

Perrin, B.S. Jr, Miller, B.T., Schalk, V., Woodcock, H.L., Brooks, B.R., Ichiye, T. (2014). Web-Based

Computational Chemistry Education with CHARMMing III: Reduction Potentials of Electron Transfer

Proteins. PLoS Comput Biol 10(7): e1003739. https://doi.org/10.1371/journal.pcbi.1003739

Pickard, F.C. IV, Miller, B.T., Schalk, V., Lerner, M.G., Woodcock, H.L. III, Brooks, B.R. (2014). Web-Based

Computational Chemistry Education with CHARMMing II: Coarse-Grained Protein Folding. PLoS Comput

Biol 10(7): e1003738. https://doi.org/10.1371/journal.pcbi.1003738

 Román-González, M., Pérez-González, J.-C. & Jiménez-Fernández, C. (2016). Which cognitive abilities underlie

computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human

Behavior, 30, 114.

Román-González, M., Pérez-González, J.-C. & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie

computational thinking? Criterion validity of the Computational Thinking Test, Comput. Hum. Behav. 72,

678–691. http://dx.doi.org/10.1016/j.chb.2016.08.047

Rotgans, J. I., & Schmidt, H. G. (2012). Problem-based Learning and Student Motivation: The Role of Interest in

Learning and Achievement. In G. O’Grady, E. H. J. Yew, K. P. L. Goh, & H. G. Schmidt (Eds.), One-Day,

One-Problem (pp. 85–101). Springer Singapore. https://doi.org/10.1007/978-981-4021-75-3_5

Rubinstein, A., Chor, B. (2014). Computational thinking in life science education. PLoS Comput Biol 10(11):

e1003897. https://doi.org/10.1371/journal.pcbi.1003897

Savery, J. R. (2015). Overview of problem-based learning: definitions and distinctions. Interdisciplinary Journal

of Problem Based Learning, 9(1): 5–15.

Scherer, R., Siddiq, F., and Viveros, B. S. (2020). A meta-analysis of teaching and learning computer

programming: effective instructional approaches and conditions. Comput. Hum. Behav. 109,106349.

https://doi.org/10.1016/j.chb.2020.106349

Slavin, R, E. (1999) Comprehensive approaches to cooperative learning, Theory into Practice, 38(2), 74-79,

https://doi.org/10.1080/00405849909543835

Slavin, R. E. (2015) Cooperative learning in elementary schools, Education 3-13, 43(1), 5-14,

https://doi.org/10.1080/03004279.2015.963370

Tsai, M. J. (2002). Do male students often perform better than female students when learning computers?: A study

of Taiwanese eighth graders' computer education through strategic and cooperative learning. Journal of

Educational Computing Research, 26(1), 67-85.

Tsarava, K., Moeller, K., Román-González, M., Golle, J., Leifheit, L., Butz, M. V., & Ninaus, M. (2022). A

cognitive definition of computational thinking in primary education. Computers & Education, 179, 104425.

http://mufredat.meb.gov.tr/Dosyalar/201812312311937-FEN%20BİLİMLERİ%20ÖĞRETİM%20PROGRAMI2018.pdf
http://mufredat.meb.gov.tr/Dosyalar/201812312311937-FEN%20BİLİMLERİ%20ÖĞRETİM%20PROGRAMI2018.pdf
https://doi.org/10.1080/20004508.2019.1627844
https://doi.org/10.1016/j.compedu.2016.09.012
https://doi.org/10.1080/00368121.2022.2071817
https://doi.org/10.1371/journal.pcbi.1003739
https://doi.org/10.1371/journal.pcbi.1003738
http://dx.doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1007/978-981-4021-75-3_5
https://doi.org/10.1371/journal.pcbi.1003897
https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1080/00405849909543835
https://doi.org/10.1080/03004279.2015.963370

Vaughan, W. (2002) Effects of Cooperative Learning on Achievement and Attitude Among Students of Color,

The Journal of Educational Research, 95(6), 359-364, https://doi.org/10.1080/00220670209596610

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and science classrooms. Journal of Science Education and

Technology, 25(1), 127-147.

Wing, J. M. (2008). Computational thinking and thinking about computing. Phil. Trans. R. Soc. 366, 3717–3725

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary

and secondary teacher education. ACM Transactions on Computing Education, 14(1), 1–16.

https://doi.org/10.1145/2576872

Yasar, O., Rajasethupathy, K. S., Tuzun, R. E., McCoy, R. A., & Harkin, J. (2000). A new perspective on

computational science education. Computing in Science & Engineering, 2(5), 74-79.

Zhou, X., Tsai, CW. (2023) The Effects of Socially Shared Regulation of Learning on the Computational Thinking,

Motivation, and Engagement in Collaborative Learning by Teaching. Educ Inf Technol 28, 8135–8152.

https://doi.org/10.1007/s10639-022-11527-1

https://doi.org/10.1080/00220670209596610
https://doi.org/10.1145/2576872
https://doi.org/10.1007/s10639-022-11527-1

Appendix

Appendix 1. Rubric for Computational Problem-Solving Activity Sheets

Skills

Scoring

Excellent (5) Good (4) Acceptable (3)
Needs Improvement

(2)
Poor (1)

Algorithm

Design

The algorithm is

completely correct, all

the steps have been

completed correctly

one by one.

The algorithm is

correct, but there is

a lack of

expression in the

steps.

The algorithm is

logically correct,

but there are

deficiencies in

the process steps.

The ordering of the

algorithm steps is

incorrect and/or there

are deficiencies, it

should be improved.

The algorithm's

all wrong, and the

instructions are

wrong.

Preparing

Flow Chart

All steps in the flow

diagram are completely

correct and the

symbols are correctly

transferred to the flow

diagram.

The flow diagram

is correct, with no

missing steps, or

errors in the use of

symbols.

The sequence of

the flow diagram

is correct, one or

several steps are

missing, and

there are errors in

the symbols.

There are errors in

the steps and

symbols of the flow

diagram.

The flow diagram

is logically faulty,

does not proceed

sequentially and

symbols are not

used.

Coding and

Debugging

The Python code is

written correctly and

works very well.

The Python code is

complete, but the

steps are not

working due to

minor syntax

errors.

Python code is

written, and

completed, but

the steps are

incorrect.

Python code was

tried to be written,

but there are missing

and incorrect steps.

Python code is

incomplete, not

written

Appendix 2. Semi-structured Interview Questions

Q1. What did you do well in this process and why? What were the positive and negative aspects of the process for

you?

Q2. In which area did you have more difficulties during this process?

Q3. At which stage of the process did you need more help?

Q4. From whom did you get the most support during the process? Did you have any difficulties with this?

Q5. In which process do you think you should improve yourself more?

Q6. What would you do differently in your next computational problem-solving study?

Q7. Do you think you have improved yourself at the end of the process? In which area do you feel better?

Appendix 3. Examples of Activity Sheets

Appendix 4. Photos from implication

About authors

Irem Nur Çelik obtained her undergraduate degree in Science Teaching from the Department of Science Teaching

at Hacettepe University's Faculty of Education in 2020. In 2023, she completed her Master's degree in Science

Education at Hacettepe University. Her Master's thesis focused on computational thinking and coding instruction.

Currently, she is employed as a science teacher in a private middle school, while pursuing her doctoral studies in

Science Education at Hacettepe University.

Kaan Bati, Associate Professor, completed his undergraduate studies at Hacettepe University, Department of

Science Teaching, in 2005. Subsequently, he was employed as a research assistant at Hacettepe University in 2009,

following a period of working as a science teacher in a number of private institutions. In 2010, he was awarded a

Master of Science in Science Education, and in 2014, he was awarded a Doctor of Philosophy in Science Education

by Hacettepe University. Her master's thesis focused on scientific process skills and problem-solving, while her

doctoral thesis addressed modelling, the nature of science and critical thinking. During the 2018-2019 academic

year, he undertook postdoctoral studies at The Ohio State University (USA) as part of the TÜBİTAK 2219A

project. The author, has been employed as an associate professor at Hacettepe University since 2020.

