
Informatics in Education, 2024, Vol. 23, No. 4, 719–721 719
© 2024 Vilnius University

Preface
Designing or Choosing Languages for Teaching Programming

Juraj HROMKOVIČ, Dennis KOMM
Department of Computer Science, ETH Zurich, Switzerland
e-mail: juraj.hromkovic@inf.ethz.ch, dennis.komm@inf.ethz.ch

Dedicated to Niklaus Emil Wirth (15 February 1934 – 1 January 2024)

N iklaus Wirth, one of the most influential pioneers of computer science,
passed away in Zurich on January 1st of this year. His contributions to software
engineering and especially to programming languages are fundamental, unique,

and simply amazing. And they have had a huge impact on computer science education
worldwide. His concept of simplicity and transparency has changed the style of program-
ming and moved technical coding to enjoyable, creative work. This opened a new dimen-
sion in education. Learning by creative work, developing one’s own products, and then
starting to investigate their functionality and properties in order to work on their improve-
ments in a never-ending loop.

With this special issue we are thanking Niklaus Wirth for his pioneering work in the
development of programming languages and in informatics education, and saluting his
life’s work.

The main goal of this special issue “How to Design or Choose Languages for Teaching
Programming” is not to survey the contributions of Wirth to science and engineering, but
to honor his unmeasurable impact on programming education and to learn from this for
the development of programming languages for schools.

Wirth was a personality who influenced the style of programming as nobody before and
after. This was acknowledged by him receiving the Turing award in 1984 “for developing
a sequence of innovative computer languages, EULER, ALGOL-W, Pascal, MODULA
and Oberon.” While the second editor fondly remembers writing Pascal code (after an
admittedly rather long episode of producing non-structured and harmfully GOTO-heavy
BASIC programs) and sharing it with his friends, the first editor had the privilege of know-
ing Wirth personally and discussing computer science education with him in particular.

In these discussions, Wirth always underlined the fact that one of his main goals for
developing programming languages was to provide novices with well understandable and
structured access to learn to program. Interestingly, at the beginning he rejected bringing



720 J. Hromkovič, D. Komm

programming to high schools with the argument that the teachers cannot master this task
satisfactorily and that it would be better to start learning programming by professionals at
universities to avoid that students develop misconceptions.

Ironically, with developing his probably most famous programming language, named
after Blaise Pascal, Wirth himself invented the main ingredient to disprove his “hypothe-
sis,” and teaching programming to high school students became a success story in many
countries – as attested by some of the contributions to this special issue.

Of course, being a serious scientist who can be convinced by (in this case particularly
strong) evidence, Wirth changed his mind and advocated and supported the introduction
of computer science to high school curricula. Finally, he even agreed to annually award the
Niklaus Wirth Award to the best high school projects in Switzerland related to informatics
and took part in the celebrations.

Nevertheless, he was quite surprised when we started teaching programming to young
kids in primary schools, and he told us that he will observe it from a distance. We were
looking forward to discussing this issue with him after successful implementation in Swiss
schools during the celebration of his 90th birthday. Unfortunately we did not get the
chance.

Wirth became famous for his call for simplicity and clarity in programming (and de-
sign in general), and this call is our main message for this special issue on programming
education. The contributions to this issue are devoted mainly to the following aspects of
teaching to program:

1. To present the history of introducing Pascal to programming courses in high schools
and using Pascal in programming competitions, and to explain why Pascal has been so
successful and appreciated.

2. To highlight and summarize the merit of the design of Pascal and related languages,
and to explain their values in comparison with previous languages.

3. To discuss how to design new programming languages exclusively for education.

Both editors are very thankful for the great privilege to present eight papers that were
very carefully selected and each fall into one or more of the above three categories.

Walter Gander was a colleague of Niklaus Wirth at ETH Zurich, as well es a very
close friend. In his paper (pages 783–790), he designs a novel recursive algorithm for
quadrature in Pascal. In the introduction, he also provides some historical background on
the early years of the language. Complementing, Tobias Kohn and Jacqueline Staub, both
ETH alumni, take a deep dive into the history of Pascal and its place in the programming
language landscape (pages 837–868). In particular, they compare Pascal with Python and
analyze their common roots, similarities, and differences.

Two papers discuss the impact that Pascal had in particular in Eastern European coun-
tries in the 1980s and 1990s. Valentina Dagienė, Gintautas Grigas, and Tatjana Jevsikova
describe (pages 735–765) in a lot of fascinating detail how Pascal shaped early program-
ming education in Lithuania. Maciej Sysło tells the exciting story of the central role Pascal
played in Poland (pages 869–882), and why it was the language of choice for many who
took part in competitive programming.



Preface 721

Photo by Andreas Bucher / ETH Zurich

Three of the papers do not directly address Pascal, but introduce programming lan-
guages that follow the above call for simplicity. Paul Biberstein, Thomas Castleman, Lum-
ing Chen, and Shriram Krishnamurthi present CODAP Transformers (pages 723–734),
which adds functions to the CODAP programming environment with a focus on data sci-
ence education. Judith Gal-Ezer and Smadar Szekely introduce the gaming platform Spark
by MyQ (pages 767–781) that aims at fostering computational problem-solving abilities
in school students of grades four and beyond. In an autoethnographic paper, Felienne Her-
mans describes the history of her programming language Hedy (pages 791–822), and what
drove her design decisions, in particular why her language is built around cognitive load
theory.

Finally, Michael Kölling zooms out and looks at the bigger picture of programming
education and the design of programming languages (pages 823–836). His conclusion is
that there will never be “the” programming language, and that every generation of learners
needs their own language. Citing from Kohn’s and Staub’s paper: “Even Wirth himself
hoped that Pascal would make way some day to the next steps in evolution and not become
a hindrance to progress itself.” But even if everything is just a snapshot and the world keeps
spinning, Pascal left a giant mark (and is still used by many), and so did Niklaus Wirth.

Within this special issue, the above papers are ordered by the name of their first authors.
We enthusiastically recommend reading all of them, and we promise you will learn new
things with every single one. This was the case for us, and it will be the case for you.

Zurich, November 2024 Juraj Hromkovič and Dennis Komm


