
Informatics in Education, 2024, Vol. 23, No. 4, 735–765 735
© 2024 Vilnius University
DOI: https://doi.org/10.15388/infedu.2024.25

A Transformation of the Way of Thinking
Key Principles in Programming Education Inspired by Pascal

Valentina DAGIENĖ, Gintautas GRIGAS, Tatjana JEVSIKOVA
Vilnius University, Institute of Data Science and Information Technologies
e-mail: valentina.dagiene@mif.vu.lt, gintautas.grigas@mif.vu.lt, tatjana.jevsikova@mif.vu.lt

Abstract. The work of Niklaus Wirth, designer of the Pascal programming language, has led to the
introduction of programming in schools in many countries often leading to a transformation in the
way of thinking. In this article, we provide a retrospective analysis of the Lithuanian experience
driven by Pascal and discuss the main ideas about teaching programming originating from this
experience. We conducted a qualitative study by means of interviews with experts involved in the
development of programming education during its early phases to examine their memories and
perspectives.

Programming education in Lithuania started with the Pascal-inspired Young Programmers’ School
by Correspondence, founded in 1981, which had a great influence on the Lithuanian programming
elite. For this purpose, a compiler for a subset of Pascal was developed for students taking their first
steps towards programming, or more precisely, algorithmic thinking.

Many innovations were developed and brought into practice. The ones that have proved their
worth and have not lost their relevance are the subject of this article. These include assessing
program text readability, cultivating programming style, program reading tasks, creative thinking
tasks, problem-solving approaches, detailed compiler error messages, automatic error fixing, and
compiler advice to novice programmers. While some concepts became obsolete with technological
advancements, others remain relevant, directly or as inspiration for new ideas, forming the basis of
this study.
Key words: Pascal, Young Programmers’ School, programming education, informatics.

1. Introduction

Pascal, a distinguished programming language that served in education for many years, was
designed in 1968 at ETH Zurich by Niklaus Wirth, with the goal of encouraging novices
to apply good programming practices by using structured programming. Pascal had a big
influence on programming education in many countries. In Lithuania, Pascal was chosen
as a language to communicate with big machines and express algorithms, especially for
secondary school students. It was the backbone of the Young Programmers’ School by
Correspondence (Dagys et al., 2006).

Informatics, including programming, started to be taught in all Lithuanian schools
in 1986, but interest in teaching algorithms and programming had been shown almost a

https://doi.org/10.15388/infedu.2024.25

736 V. Dagienė et al.

decade earlier. Eager teachers stepped forward to teach it on their own. However, there
were only a few of them.

The notion of making programming accessible to all students in Lithuania was first
proposed in the late 1970s by Laimutis Telksnys. After long discussions and experiments,
Pascal was chosen as programming language. A compiler was developed by the first
two authors and Alma Petrauskienė, and in 1981 the Young Programmers’ School by
Correspondence was established. Numerous innovations stemmed from this initiative,
which are crucial to emphasize and analyse in contemporary times.

This article retrospectively analyses the experience of Lithuania in the emergence of
programming education, highlighting the fundamental principles that came into practice
with the adoption of Wirth’s Pascal.

The research questions of this study are the following:

• RQ1. What were the most important innovative ideas that arose during the early stages
of the introduction of programming education in Lithuania?

• RQ2. What factors influenced the success of programming education, its emergence,
and establishment in Lithuanian schools?

To address these research questions, a retrospective analysis of experiences, memories,
communications, and publications has been conducted by utilizing reflection and qualitative
analysis methods.

First, in Section 2, the background is presented, and the most important initiatives in
programming education are reflected on. In Section 3, the methodology of our qualitative
study is outlined. During the interviews, 11 experts – the first programming teachers,
teachers who taught in the Young Programmers’ School, and the younger-generation
teachers who taught programming with Pascal, provide their insights. The results of the
expert interviews are presented in Section 4. Finally, the findings of the whole study are
discussed.

2. Background and Experience Analysis

In 1977, Laimutis Telksnys raised the idea that it would be useful to allow all Lithuanian
school students to get acquainted with programming (at least in clubs or extracurricular
activities). A working group at the Institute of Mathematics and Cybernetics was set up by
initiative of the second author to prepare a curriculum and tools, and representatives from
various universities where programming was already taught were invited.

The first important issue that arose was the programming language for teaching, with
Algol 60 and Fortran being the dominant languages at that time. The new language PL/1
was spreading rapidly. PL/1 had a compiler for computers used in the Soviet Union in
1968–1998 – United System of Electronic Computing Machines or ES EVM (compatible
with IBM System/360 and IBM System/370). Lithuania was still occupied and could not
buy foreign-made computing machines. PL/1 language subsets PL/k with k = 1, . . . , 8

were developed for teaching in Canada and the US (Holt et al., 1977). Pascal was known

A Transformation of the Way of Thinking 737

Fig. 1. A letter from Niklaus Wirth about Pascal subset for teaching in schools

very little in Lithuania at this time, and the computing machines produced and widely used
in the Soviet Union did not have a Pascal compiler.

Thus, at that time, there was a fierce debate among scientists in Lithuania with respect
to which language to use for teaching: PL/1 or Pascal. The circumstances favoured PL/1.
It was agreed to start writing educational material and lessons to teach programming.
However, as the lessons started to be written, the weaknesses of PL/1 and the strengths of
Pascal gradually became apparent. After many discussions and a lot of experimentation in
lesson writing, Pascal was adopted.

We initiated a communication with Niklaus Wirth asking for advice, and for the source
code of the Pascal compiler, suitable for teaching. To our surprise, the answer to our letter
came shortly afterwards (see Figure 1), and we received Pascal-S, a subset of Pascal’s

738 V. Dagienė et al.

compiler for students, written in the programming language. But to compile it, it was
necessary to have a full-language compiler. The ES EVM computers did not have one, but
there was a PL/1 language compiler. So we used the PL/1 language to develop the Pascal-S
compiler.

While teaching the students, we noticed that the data types that were very useful for
teaching programming and that were part of Pascal (enumeration and set data types) were
not included in Pascal-S. We asked Wirth whether it would be appropriate to include these
data types in the subset of Pascal we were designing, and he agreed to it.

The Pascal language was designed with the intention that structured programs written
in it could not only be executed by computers but also comprehended easily by humans.
Leveraging this philosophy, we utilized Pascal to install what we termed “programming
culture” or style, encompassing algorithmic thinking and creativity. When assessing stu-
dents’ programs, we not only considered the outcomes produced by the computer but also
evaluated the clarity and readability of the program text. Later, a relationship between
programming style and errors was investigated (Grigas, 1995).

Furthermore, we took the initiative to co-author several exercise books aimed at teaching
programming, in which a significant portion of the exercises comprised “reading” tasks (see
Appendix A). These exercises were designed to enhance students’ ability to interpret and
understand existing programs, thereby fostering a deeper understanding of programming
concepts.

Our goal was to bring computer programs closer to humans so that they are not just
perceived as code that only the computer and author can understand. In Lithuanian, a
program is not even called code. For example, the international project Code Week in
Lithuanian is called “Programavimo savaitė” (Programming week). In this context, the
concept of a correspondence school for young programmers was conceived. Subsequently,
these objectives were introduced at a conference in Sofia, Bulgaria (Grigas, 1989), held
simultaneously with the first International Olympiad in Informatics (IOI), and published in
the journal Informatics (Grigas, 1990). We view programming not as an end in itself, but
rather as an intermediary tool to foster creative thinking, intelligence, and work discipline.

The main goals and tools of teaching concerned with computers and informatics in
school were the following: (a) Creative Thinking; (b) Problem Solving; (c) Programming;
(d) Programming Languages; and (e) Computers and Software.

Each item may be considered as a goal. Each item but the first one may be considered
as a tool to achieve the goal indicated by the preceding item.

A computer together with its operating system and other software may be considered
as an ultimate goal or as a tool for all its applications (i.e., for the automation of different
information processing tasks). It is a tool for the execution of the programming language
commands. A language itself may be considered as an ultimate goal (by many teachers
of programming, unfortunately) or as a tool for another goal – programming as such.
Programming itself may be treated not only as a goal but also as a tool to achieve yet
another goal – problem-solving or creative thinking.

The subject and its didactics may be built with any of these goals in mind, using the
items following them as tools. The higher the goal the greater the possibility to develop the

A Transformation of the Way of Thinking 739

Fig. 2. Textbooks and exercise books on how to use Pascal for teaching programming in schools

intellectual capabilities of the student; the lower the goal the more possibilities to convey
empirical or technical knowledge.

Teaching was accompanied by experimentation. The training course was updated
approximately every other year. But one thing remained constant throughout, namely
the programming culture, which was assessed by analysing the texts of the programs
written by the students. Such an assessment requires more effort from the teacher than
checking the results obtained from the computer. However, the students learn to write
more comprehensible program texts and to make fewer mistakes. The programs they create
acquire a lasting value for the creation of other programs.

If students need to program in another language in the future, the programming culture
inherited from Pascal will help them there, too. This means that the first programming
skills acquired using Pascal are worth acquiring in any case.

We (the first two authors and a few other researchers) have authored several books
focused on Pascal or using Pascal as the language for teaching programming (see Figure 2).
In 1986, the inaugural informatics teaching journal was launched: a compact black-and-
white booklet comprising roughly 100 pages (see Figure 3). Catering to both educators
and inquisitive school students, the magazine circulated three issues annually until 2001,
when it evolved into an international scientific journal titled Informatics in Education.

With the introduction of informatics, including programming, into all Lithuanian
schools, the universal, free-for-all initial teaching of programming has lost its relevance.
However, the experience has survived and is being passed on to schools and universities.
The localization of Free Pascal and the Component Pascal compilers can be seen as a
continuation of Lithuanian programming traditions.

740 V. Dagienė et al.

Fig. 3. The first informatics didactics journal was established in Lithuania in 1986

Other activities include the Bebras Challenge (Dagienė and Futschek, 2008; Dagienė
and Stupurienė, 2016; Dagienė and Sentance, 2016), aiming to promote informatics and
computational thinking among school students all over the world. The Bebras Challenge
has involved around 4 million students from nearly 70 countries by records of 2024.1

One more activity is localization, making the interface of software clear and under-
standable to humans, as well as all the texts and other resources.

We wrote here mainly about our work, and less about that of Niklaus Wirth. But if it
had not been for his enormous contributions to the creation of Pascal and the teaching of
programming, our work would not exist.

2.1. Establishment of the Young Programmers’ School by Correspondence

From 1979 to 1981, a small group of researchers from the Institute of Mathematics and
Informatics led by the second author organised programming lessons and invited 10 schools
from different parts of Lithuania to take part in a teaching experiment.

On 27 January 1981, the Young Programmers School by Correspondence named JPM
(acronym for “Jaunųjų programuotojų mokykla” in Lithuanian) was launched. So 1981 is
treated as the foundation year of the JPM.

The Ministry of Education of Lithuania approved the teaching materials and tasks for
publication in the most popular youth daily newspaper of that time (“Komjaunimo tiesa,”
Figure 4).

The JPM training course has been held every other year for more than 20 years. Although
teaching programming in schools started later than in other countries (such as Poland,
Estonia, Russia, and Canada), the interesting tasks attracted many eager learners, making

1https://www.bebras.org/statistics

https://www.bebras.org/statistics

A Transformation of the Way of Thinking 741

Fig. 4. The daily newspaper in which the programming lessons were published several times per month from
1981 to 1985. The logo of the Young Programmers’ School is visible on the left side: JPM – letters J, P, and M
combined.

the JPM a popular institution in the country. This success was also due to the excellence of
Wirth’s Pascal.

Ordinary postal service (surface mail) was used for communication between teachers
and school students. In the early 1980s, the JPM was the only educational institution
enabling to get a primary acquaintance with algorithms and computer programming for
most students in Lithuania, especially for those living in provinces.

To convey the foundations of contemporary programming methodology to the students
of the JPM, theoretical knowledge is necessary as well. However, for most children, theory
is less attractive than practical activities. Thus, the basic principles of the theory were
delivered indirectly through problem solving. The set of programming problems was chosen
in accordance with the requirements driven by good programming style and creativity
(Grigas, 1990).

All the teaching materials of the JPM until 1993 consisted of several teaching chap-
ters: (1) names, variables, values, assignment statements, and sequences of statements;
(2) branches of actions; (3) repetitions of actions; (4) programs and their executing by
computers; (5) logical values; (6) functions and procedures; (7) recursion; (8) discrete data
types; (9) real numbers and records; (10) arrays; (11) programming methodology (i.e.,
style); and (12) program design.

A challenge in introducing students to programming was choosing integers as the
primary data type in the first chapters, with real numbers introduced as late as possible.
This sequence for teaching numerical data types was motivated by the following reasons:
(1) the results of operations with data types of countable (discrete) values can always be
exactly defined; (2) the arithmetic of integers is easily understood by younger students;
and (3) integers are used in the majority of interesting problems. The Pascal operations
div and mod are widely used in algorithms for such problems.

Since 1981, there have been significant changes in the way informatics is taught,
particularly programming, driven by the increasing availability of computers in educational
institutions and the introduction of informatics as a compulsory subject in secondary

742 V. Dagienė et al.

Fig. 5. The fragment of the newspaper with the sixth lesson introducing a loop

schools. These changes had a considerable effect on the aim and motivation of teaching at
the JPM (Dagys and Klupšaitė, 1993; Dagienė, 1999).

The primary course of programming used to be published in the daily newspaper
(see Figure 5), one lesson per week during four months (1981 January – May, 1983
September – December, and 1985 September – December). The lessons covered all the
material in programming needed for beginners: text and tasks for self-control as well as
certification tests. The JPM lessons in the newspaper were the only possible way to get
primary acquaintance with computers and programming for many youngsters at that time.

The primary course of programming covered only four chapters of the JPM curriculum:
all operations with integer values, assignment statements, a sequence of statements, and
conditional and loop statements. Program execution by a computer was discussed as well.
Students were taught to solve interesting and attractive problems by algorithmic approaches
(Dagys, 1994). Tests were presented about once per month so that the students studying
the first part of this course could carry out four or five tests in total.

Since 1986, informatics as a new subject has been introduced into all schools in Lithua-
nia. All students have a chance to learn basic ideas of programming in the corresponding
lessons. This led to some changes in the work of the JPM. The first part lost its scien-
tific popularization component, because all the students learned about programming and
computers in schools. There was no more need to publish programming lessons in the
newspaper.

In the 1993/1994 school year, the JPM was reorganized once again (Dagys, 1994). The
main reason for the reorganization was the above-mentioned increase in the number of
computers in schools and the arranging of national Olympiads in Informatics. The studies
were divided into two parts (courses): (1) constructs of algorithms and programming, and
(2) methods of algorithms. The enrolment into the JPM School has become to be performed
once a year.

Tasks in the first part were not difficult to solve. Reading (analysing) tasks made up a
quarter of each student’s homework. All the tasks aimed to develop reasonable thinking.

A Transformation of the Way of Thinking 743

The first part of the course covered the whole curriculum of the JPM and consisted of five
training chapters and a test: (1) algorithms, variables, and assignment statements; (2) control
structures: conditional, compound, and loop statements; (3) functions and procedures, and
recursion; (4) scalar (simple) data types; and (5) data structures. Homework for each chapter
consisted of ten tasks: to write and analyse algorithms. The tasks to students and their
solutions to teachers were sent by land mail. The solutions were analysed, mistakes were
thoroughly indicated, and these solutions had to be returned to the students. Simultaneously
the students received the homework task for the next chapter. The solution of each task
consisted of three parts: (1) a verbal description of the solution idea; (2) an algorithm; and
(3) an informal verification of the algorithm.

Since the second course of the JPM was meant for the most advanced students to teach
them algorithms, they had to be selected in one way or another. The selection was supposed
to be performed by a test that contained fifteen to twenty tasks. However, only half of them
were randomly selected, and then reviewed and evaluated. Each task was scored 10 points
independently of its complexity. A test was regarded as passed if it scored at least 75 % of
the points. Only a successful student could continue his studies in the second course of the
JPM.

The second part consisted of five homework tasks classified according to the nature of
the algorithms’ methods. Usually, there were five topics (they could be slightly different
each year), e.g., (1) large numbers; (2) units of measurement (regular and irregular), number
systems, and calendars; (3) searching for solutions, backtracking methods, and puzzles,
(4) codes and ciphers, and finding and correcting mistakes in data; (5) data sorting; (6)
dynamic programming; and (7) graph algorithms.

Three types of tasks were presented: to create an algorithm, to analyse an algorithm,
and to develop a complete program. Five tasks were presented in one homework. The
solution of each task consisted of two parts: 1) verbal description of an idea of solution,
and 2) algorithm itself. Students who gained 60 % of the points were considered to finish
the JPM successfully.

During the 34 years of the JPM’s existence, over 7 000 school students were introduced
to programming basics. The JPM is one of the long-existing schools with programming
available for all school students. The main issues can be highlighted following the long
experiences in teaching programming:

• Attention to the programming and algorithmic style as a part of information culture.
Meaningful names of variables, procedures, and other objects are selected and com-
mented.

• Introducing so-called reading tasks. Analysing algorithms is proven an important way
of learning programming (Cheah, 2020; McGill and Volet, 1997; Nielson et al., 1999;
Robins et al., 2003). By reading a task, a more complicated algorithm can be introduced.

• Priority is given to tasks that require creativity in programming.
• Teaching programming rather than a programming language. The latter is just a tool for

writing programs, not a teaching goal.

The School of Young Programmers triggered several scientific and methodological
articles, books, contests, and other activities. The team at the research institute was enthu-

744 V. Dagienė et al.

siastically inspired by the idea of contributing to computing education at schools despite
the lack of even the most elementary resources: in the entire institute there was only one
typewriter with Lithuanian font, and a huge electronic computing machine type VS EVM
without terminals; the timetable to use this machine was strictly enforced, a researcher
could get access to the computing machine for about two hours weekly.

2.2. Development of Pascal Compilers

The Pascal subset compiler we developed was intended for beginning programmers who
might be presenting their work to a computer for the first time. The compiler provided many
error messages with explanations, printed the original data and the results side by side,
and corrected proofreading errors found during syntactic analysis. There were even some
features implemented, such as that if the value to be assigned to a variable could not be
calculated, the compiler would assign a default value and continue executing the program.
This was done with the aim of detecting as many errors as possible (computer execution
time was expensive). Such errors and their correction were reported to the program author.

In the late 1980s, when the JPM was being developed, ES EVM computers were
common. As mentioned above, they did not have a Pascal compiler, but we needed one for
the JPM. Therefore, a team at the Institute of Mathematics and Informatics took it upon
themselves to develop a Pascal compiler for teaching purposes.

The capabilities of the ES EVM computing machines were not great. In consultation
with Niklaus Wirth, we decided to develop a Pascal subset compiler incorporating the
elements needed for teaching programming. To reduce the workload, we decided to make
an interpreting compiler consisting of two parts: a compiler that translates the program
from Pascal into an intermediate language and an interpreter that executes the intermediate
language. The compiler was implemented by the two Vilnius University students Alma
Baliūnaitė (Petrauskienė) and Valentina Piekaitė (Dagienė), under the guidance of Gintautas
Grigas, and the interpreter by the two students Remigijus Petrauskas and Arvydas Salda,
under the direction of Vladas Tumasonis. We wrote the compiler in PL/1, but decided
to program the interpreter in Assembler, fearing that the PL/1 language would be too
slow. Programming in Assembler was much more complicated and time-consuming. We
implemented the interpreter in PL/1 for a temporary job and found that it was fast enough
and there was no longer any temporariness.

The compiler has been customized to cater primarily to beginner programmers but
remains suitable throughout the entire learning process. In comparison to Pascal S, it
included features such as set and enumeration types, and it provided sample information
essential for novice programmers venturing into programming and computing for the first
time. Furthermore, the compiler displayed input data and corresponding results side by
side, enabling students to discern the relationship between them. Additionally, the compiler
not only detected errors in the program but also attempted to rectify many of them (see
Figure 6).

The first computers received by Lithuanian schools were BK-0010. These machines
did not have a monitor and came with a mini-TV. They had only 64 kB of RAM, 48 kB

A Transformation of the Way of Thinking 745

Fig. 6. Explanations: (1) The specific letters of the Lithuanian alphabet were obtained by printing a letter without
a diacritical mark and adding a mark similar to a diacritical mark (an apostrophe or a comma) in its place. (2)
An unlimited number of programs can be given to the computer in one task. (3) Headings. (4) Print not only
the final data (results) but also the original data so that the student can see from which original data the results
were derived when looking for errors. (5) At the beginning and end of the original data set, the rows of asterisks
identifying the columns of the perforator are printed, so that if students need to correct the data, they can see
which columns of the perforator have been punctured. (6) The compiler reports the error detected, corrects it,
and looks for new errors. (7) The maximum number of errors to be searched can be set. (8) After the first error is
detected, the values of the variables at the time are printed; this may help to find the cause of the error. (9) The
compiler message that the error may have been corrected incorrectly and may have caused secondary errors. (10)
Undefined values of variables that were found.

of which were used for the operating system. So only 16 kB remained available, and it
was a challenge to fit the compiler and its necessary ancillaries into this space. However,
Albertas Dinda, a teacher at the Zigmas Žemaitis Secondary School in the small town
Švenčionys, decided to make such a compiler freely available. Only a small subset of
Pascal was indeed realized (Dinda, 1990). There were only integer, Boolean, and char data

746 V. Dagienė et al.

types. And there were quantitative restrictions: the maximum number of names was 16, the
total maximum number of characters used in symbolic constants was 256, the Write and
Writeln procedures could not specify formats (a fixed number of positions was allocated:
integer – 18, char – 1, Boolean – 6), and there was a minimal program writer (editor). All
this was called MIKROPAS (a combination of MIKRO and Pascal).

Although the compiler was very limited, it was sufficient for an introductory 13-lesson
course (Dagienė, 1989), based on the newspaper lessons of the JPM published in 1981,
1983, and 1985. This was achieved according to the following principle: to put into the
product (in this case, the training course and the compiler) all that is needed and nothing
that is not.

In 2001, Component Pascal was adopted in Lithuania, a component building system
BlackBox with a Component Pascal compiler was localized, and a teaching module was
developed and suggested for schools (Grigas and Jevsikova, 2001).

Component Pascal, building upon the traditions of Pascal, Modula-2, and Oberon,
emerged as a versatile language with a broad scope (Oberon Microsystems, 2001). Its
key features encompass block structure, modularity, separate compilation, robust static
typing coupled with comprehensive type checking extending across module boundaries,
type extension facilitated by methods, dynamic module loading, and integrated garbage
collection. Through type extension, Component Pascal adopts an object-oriented approach
where objects represent variables of abstract data types containing private data and asso-
ciated procedures. Abstract data types are defined as extensible records. With a focus on
complete type safety and a dynamic object model, Component Pascal positions itself as a
language that can be used for component-based development.

Close to the Pascal programming language used in schools, it incorporated modern
features for learning object-oriented and component programming. In the Lithuanian
localization, the Component Pascal system brought big advantages for teaching and learning
purposes due to the ability to use all Lithuanian alphabet letters (including those with
diacritic marks) in the names of variables and other objects. This feature made algorithms
even closer to human language by the ability to use mnemonic names (Jevsikova, 2007).

A Free Pascal compiler was localized into Lithuanian and methodological materials
developed (Institute of Mathematics and Informatics, 2004). The localized system supported
the use of the entire Lithuanian alphabet allowing for a natural choice of names (identifiers)
in the program.

2.3. Short Context-Based Reading Tasks

When teaching algorithms, we prioritized cultivating an algorithmic style. Our focus was on
presenting algorithms in a clear and structured manner, ensuring that their texts were well-
layed-out and accompanied by appropriate comments to enhance readability. By adopting
this approach, we sought to influence the broader education of school students. While
others primarily taught how to write algorithms, we took a novel approach by emphasizing
the importance of learning how to read them.

The selection of tasks at the distance education school is very important: they must cover
as many theoretical problems as possible, teach students algorithms and programming

A Transformation of the Way of Thinking 747

methods, and what is most important, allow them to acquire the skills to use them. Modern
computing concepts need to be conveyed to students in an attractive way, what motivated
us to create and adapt interesting tasks from a wide range of fields. The main goal was to
attract students’ attention with intriguing tasks reflecting different areas of life and science,
and to encourage them to solve these tasks in order to learn to program.

While developing the methodology of teaching programming concepts and algorithms
for the JPM, we have raised the principle that it is of high importance to choose and classify
the sets of tasks that would actualize the purposes of both teaching programming/algorithms
and pedagogics. To foster programming skills, we needed well-developed short tasks on
computing concepts that aim to develop algorithmic thinking. A task should have an
easy-to-understand problem statement, and at the same time be complex enough to allow
creativity in the solution process.

The tasks must be selected carefully, considering the different aspects of each problem.
Two large groups of problems were distinguished: (1) so-called reading tasks (for analysing
the text of the program/algorithm and understanding the main ideas behind the solution)
and (2) writing tasks or program/algorithm development tasks.

Some tasks connected with programming and algorithms are similar to mathematical
problems. However, the solutions to traditional mathematical problems are usually short
and written in a single way; that is why it is not necessary to analyse here how the solutions
should be written. The constructs of programming languages are often longer than the
mathematical ones and have a great variety of means of expression. Therefore, it is not
easy for a student to develop an algorithm.

One of the most comfortable and effective ways of learning algorithms is to learn to read
and analyse algorithms written by others. The main issue in the presentation of algorithm
reading tasks is to avoid so-called passive reading. Therefore, it should be demanded to
accomplish certain exercises during the reading.

The reading tasks involve analysing and performing various small tasks, such as finding
errors, filling in blanks, modifying existing text, determining whether multiple algorithms
solve the same problem, and so on. The reading tasks are particularly beneficial for novice
programmers who do not yet possess algorithmic writing skills.

Programming teaching materials were enriched with reading tasks, and most of the
programming manuals we produced at that time had separate chapters on reading tasks.
For example, our book of programming exercises (Dagienė and Grigas, 1992) has 178
reading tasks. Let us give a few examples.

Exercise 1. To calculate the time displayed after one minute, the following procedure is
used. Insert the missing line in place of the ellipses (the “. . .”).

1 procedure time(h, min: integer; var h1, min1: integer);
2 begin
3 min1 := min + 1;
4 h1 := (h + min1 div 60) mod 24;
5 ...
6 end;

748 V. Dagienė et al.

Exercise 2. The lengths of the sides of a triangle, denoted by a, b, and c, are known.
A function is then written to verify if the triangle is equilateral. Simplify the function by
eliminating a component from the logical expression.

1 function triangle(a, b, c: integer) : boolean;
2 begin
3 triangle := (a = b) and (b = c) and (a = c)
4 end;

Exercise 3. A program has been developed to print the prime factors of a given number.
The program is intended to print the prime factors of the given number. However, it contains
errors. Correct them by replacing the two reserved words.

1 program factors;
2 var a, k: integer;
3 begin
4 read(a);
5 for k := 2 to a do
6 if a div k = 0 then
7 begin
8 write(k);
9 a := a mod k

10 end
11 end.

2.4. Comparison of Pascal with Other Programming Languages for Education

Pascal was designed to teach programming. Its constructs are simple, easy to remember,
and Pascal programs are easy to read. The language has been widely used in schools,
programming clubs, extra-curricular studies, contests, and informatics olympiads. C++
was developed for the industry. The language has tools for developing large scale programs,
such as the Windows and Linux operating systems. In short, Pascal has elements of an
algorithmic language, C++ has elements of a computing language.

Over time, C++ has been increasingly used in schools. Some education policymakers
thought that if you were going to be programming in C++ in the future, you did not need
to learn Pascal. However, it is not about learning a programming language, but about
understanding programming concepts. In Pascal, programming constructs are clear and
systematic, making it much easier for a novice to understand and learn them.

For many years, the IOI has used several languages: Pascal, C++, and Basic. A de-
tailed analysis of how students performed in these languages was carried out in the sixth
International Olympiad, involving students from 49 countries. The data on the programs
written by the students and their evaluation are described in detail by Grigas (1995). The
success of students, measured by the number of medals, is analysed by a number of factors:
usage of programming language, length of program, usage of functions and procedures,
character density, line density, usage of particular reserved words, etc. Let us use these
data to compare student success using Pascal and C++.

A Transformation of the Way of Thinking 749

Table 1
Number of medals awarded depending on the programming language chosen

Programming language Number of participants Relative number of medals Relative average of medals

Pascal 136 156 1.15
C++ 27 26 0.96
Basic 13 0 0

Total 176 182

The number of medals received is a natural indicator of the success of participants in
the Olympiad. The number of bronze (b), silver (s), and gold (g) medals we converted into
the relative number of medals m using the formula m = b+ 2s+ 4g. Dividing m by the
number of participants gives the average relative number of medals per participant shown
in Table 1.

The difference between Pascal and C++ is 0.19 in favour of Pascal. The interpretation
of these findings is subjective in nature. Therefore, we conclude our analysis here and leave
it to the reader for further consideration.

3. Methodology

In this section, we describe the methodology used for the qualitative study, which has been
performed to delve into the memories and insights of the experts involved in program-
ming education development at early stages by utilizing semi-structured interviews with
open-ended questions. The data collected via the interviews was processed by applying
an inductive thematic analysis approach. Descriptive statistical methods and correlation
analysis were used to analyse the outcomes derived from the qualitative data.

3.1. Instrument, Participants, and Data Collection

The experts for the interviews have been selected to cover the widest range of experiences
and perspectives with respect to the early stages of programming education in Lithuanian
schools, contributing to the richness of the collected data. The selected experts represent
three groups:

1. Pioneers (4 experts), i.e., teachers, who started during the first years of informatics
introduction in schools, who contributed to first initiatives to teach programming.

2. JPM teachers (4 experts), who taught in the JPM school.
3. Younger generation teachers (3 experts), who have worked with Pascal in secondary

schools.

In total, 11 experts were interviewed. They are denoted by the following codes: the
first two letters denote a group (PE – teachers-pioneers, JPM – teachers in the Young
Programmers’ School, and YT for younger-generation teachers) and a sequence number,
e.g., 03, after a dash.

The interviewed teachers represent different cases in terms of their age, background,
and teaching experience.

750 V. Dagienė et al.

The instrument for data collection included four open-ended questions, contributing to
the two research questions posed in this paper:

1. Write about yourself and your experience of teaching programming.
2. What ideas from the origins or early stage of programming education are the most

important and innovative, in your opinion?
3. What factors, do you think, have contributed to the emergence and establishment of

programming education in schools?
4. What features of Pascal would you identify as the most significant for teaching program-

ming?

The selected experts shared their perceptions and insights with respect to the interview
questions between winter and spring 2024. The interviews were conducted in written form
by contacting the experts by e-mail or phone. The participation of the experts was on a
written informed consent basis. They were informed about the aim of the research being
conducted, and each of them agreed to provide answers to the interview questions to be
analysed in an anonymized way.

On average, the text of the answers to the interview questions was 7636 characters /
986 words per interview.

3.2. Data Analysis

The interview data underwent thorough qualitative analysis involving coding and catego-
rization. The primary analytical approach was thematic analysis as a method for identifying,
analysing, and reporting patterns (themes) within qualitative data (Braun and Clarke, 2006).
Thematic analysis not only aims to summarize the data but also to identify and interpret key
aspects of it, guided by the study’s research questions (Clarke and Braun, 2017). After the
authors familiarised themselves with the interview texts, a coding process was performed
to identify codes and categorize themes. The interview data of this study was analysed
using an inductive approach to thematic analysis, i.e., a bottom-up data-driven analysis
(Clarke and Braun, 2017).

The coding process was iterative (Byrne, 2022): after the first usage of the code, all
interviews were re-coded to use the best of the codes that emerged from the data. First,
codes were organized into codes and sub-codes and categorized according to the three
interview questions. Then, the codes were reorganized according to the patterns identified
in the data and the themes were derived. To deal with subjectivity, the organization of
codes and themes was discussed by three experts. To ensure effectiveness and reliability in
the data analysis, the coding was performed using the MAXQDA software tools.

4. Results of the Qualitative Study

4.1. Early Innovative Practices

Regarding the second question of the interview (the first research question of our study),
the experts identified several most important early innovative practices in programming

A Transformation of the Way of Thinking 751

Fig. 7. Early innovative practices in programming education, as identified by experts, frequency, % (number of
segments)

education. Figure 7 presents denoting codes, segments and frequencies of mentions). Then,
the meaning of the codes, based on experts’ interview texts, are described.

Experts most frequently mentioned algorithms without computers as an innovative idea
during the early stages of programming education development. This idea was identified
by all groups of experts. “The strangest and probably most innovative idea was to program
on paper, without any computer that could show syntax errors, structure of the code,
execute the algorithm with different initial values, and allow step-by-step execution with
the mapping of intermediate variable values. [. . .] We checked the algorithms and looked
for errors by running them in our heads.” (PE-04). The experts mention that algorithms or
programming without a computer puts more emphasis on thinking and the algorithm itself:
“It was in the early stages that I really enjoyed programming without a computer. With a
computer, the focus is more on the mechanical work of the computer rather than on the
beauty of the algorithm and its logic. The emphasis is more on abstract thinking.” (PE-03).

This idea, popular nowadays, too, appeared naturally due to the lack of computer
availability and provided many advantages in the development of algorithmic thinking of
students. The idea is related to another innovative idea during the early stages, identified by
experts: programming as thinking and creativity. The experts stress that algorithmic think-
ing helps people in all areas of life. Most of the experts mention creativity in programming,
e.g.: “Programming is first and foremost about creativity” (PE-02), and thinking: “The
important thing was to focus on thinking, on the understanding of data structures and their
selection, rather than on finding a way to write a functioning program faster.” (JPM-03).

The above-mentioned innovative ideas are closely related to game-based learning, also
identified by experts as an important innovative idea that appeared at the early stages.
The experts recall that in the JPM, during face-to-face activities organized for students,
there were game-based algorithmic activities for students adopted as early as 1983. The
activity also involved collaborative learning. One year later, the idea was implemented
as a competition for the groups of participants: “In 1983, in Užupis, in the pouring rain,
Kęstutis taught a game I had never seen before. It was so interesting that while we were
playing, we thought – what if next year we could organize a programming competition
between groups? Each group would create a function that chooses the next move of the

752 V. Dagienė et al.

game, and we would create a program that organizes a tournament of the functions in the
game: each function competes against the other twice. One time one function makes the
first move of the game, and the second time the other. The winner gets a point. The group
whose function wins the tournament is the winner and is rewarded.” (JPM-02).

“The distant mode of teaching (in the JPM) did not directly test students’ theoretical
knowledge, but instead assessed their use of programming constructs and techniques to
solve puzzle-like tasks.” (JPM-04). These types of activities later evolved into well-known
international initiatives, such as the Bebras Challenge.

The second most frequently mentioned innovative idea was the Pascal compiler, de-
signed in Lithuania: “When Albertas Dinda created and distributed the Pascal language
compiler, programming education went to a much higher level.” (PE-02). During the vari-
ous stages of the design of the compiler, the main principles that should help it to fit into
the small memory of the BK-0010 were formulated (PE-04), and included reliability, error
logging, translation until the first error, avoiding duplication, using existing libraries on the
computer, saving RAM, and others. Since they were not cost-effective, long integers were
implemented since they were not cost-effective. This was a compiler, not an interpreter,
with an integrated working environment, which was also an important idea. The compiler
mentioned by the expert is described in more detail in Section 2.2.

The third most mentioned innovative idea were early initiatives of distance program-
ming education, which refers to the JPM analysed in Section 2.1. Distance programming
education initiatives included distance education through correspondence: “Students solved
tasks published in the popular newspaper.” (PE-02), and distance education through televi-
sion broadcasts that were related to the JPM activities and broadcast programming lessons
(YT-02). “Students who completed an interesting task were invited to appear on a TV
show to present it.” (PE-02). As JPM-04 remembers, “In 1986–1988 [. . .], I hosted the
Lithuanian TV program ‘Informatics and Computing Technology,’ and in the studio, I had
to interview almost impromptu (after a short rehearsal) the students who had been invited
to the program, or [. . .] the teachers who had brought them on board.” PE-03 remembers
these initiatives as “one of the most exciting adventures of my life.”

Programming language selection for learning was identified as an important innovative
idea: “An important idea was the choice of the programming language for teaching.” (PE-
04). Experts stress that “When teaching programming to beginners, what matters is not
a powerful language, but a language that is suitable for teaching and has the necessary
features.” (JPM-03). The selection of a programming language was driven by the JPM
activities, and the selected language was Pascal. This choice is regarded as the best decision
at that time: “Selecting Pascal has helped for the JPM teaching methodologies to clarify
programming concepts that are less obvious in other programming languages: data types,
loops, hierarchical structures, functions, and procedures.” (PE-04). Choosing Pascal for
teaching and learning programming contributed to the language-driven programming
methodology development. One former teacher in the JPM, working now in programming
education and students’ preparation for the Olympiads in Informatics (JPM-03), reflects:
“It was my first programming language, which not only inspired my understanding of
programming principles, but also helped shape my methodological approach to the field.”

A Transformation of the Way of Thinking 753

Fig. 8. Factors for the emergence and establishment of programming education in schools, as identified by experts,
frequency, % (number of segments)

Innovative ideas that were developed in teaching programming later in schools, such as
programming style (culture), also originate from selecting Pascal and the work of the JPM
(JPM-01, JPM-03).

Language selection, JPM work, compiler design, and all the initiatives taken together
contribute to the identification of important topics to teach. The most attractive for students
were the ideas of introducing recursion (PE-01), computer graphics, and 3D design (YT-
01). It was identified that it is important to teach algorithmic thinking, programming,
computation, text processing, computer graphics, and website design, which was included
in the informatics course in schools (PE-05).

Society understood the importance of the early introduction to programming in educa-
tion, and this was also one of the innovative ideas of the initial period. Computers were
becoming an important part of life and it was important to get the right qualifications as
early as possible, starting from the school bench (PE-04). “The earlier children start to learn
to program, the better their performance in olympiads and competitions, the better their
academic performance, and the easier it is for them to enter the world of work.” (PE-02).

4.2. Factors for the Emergence and Establishment of Programming Education in Schools

As for the third interview question and second research question of this study, there were
the following main factors for the appearance and establishment of programming education
in schools identified by the experts (see Figure 8).

The most frequently mentioned factor is the success of the JPM (see Section 2.1): “The
success of the Young Programmers’ School, which shows that students are receptive to
programming, and whose graduates outperform experienced programmers in program-
ming competitions, is, I believe, the success factor that led to the emergence of teaching
programming as part of general education.” (JPM-02).

This school attracted especially those students who were interested in maths and the
novelties that were coming along with computers. It was the only way to help those
students interested in programming at that time, providing support and methodological

754 V. Dagienė et al.

materials (PE-03). Later, those students took part in the Olympiad of Informatics (JPM-01).
The experts mention the great impact of the school on students’ motivation to learn to
program (11 mentions by 7 experts in all groups). A valuable role in supporting students’
motivation was the JPM summer camp, where students could meet with each other, see
their teachers in person, solve engaging tasks, and be involved in community-building
activities. As mentioned by most of the experts, some of those experts had studied in
this school themselves (7 mentions). Students’ motivation was one of the main factors for
programming education establishment in schools, and mostly related to the JPM activities.

Besides students’ motivation, teacher training was essential and evolving alongside.
When talking about the effect of the JPM factor, most experts usually mention the JPM
as an informatics teacher training activity (5 mentions): “The JPM also produced an
entire generation of teachers who were able to code. This made programming easy to get
into informatics in schools.” (PE-01). Teachers, involved in the JPM learned themselves,
prepared methodological materials, and valued it as an important practice in their career
(JPM-01–04). Respondents also mentioned a lot of training activities for teachers during
the first years of the informatics school subject: compulsory monthly seminars for teachers
(YT-02), “When the subject of informatics was introduced into Lithuanian schools, I had
to attend many different qualification courses.” (PE-02).

The second most frequently mentioned factor for programming introduction in school
was computer availability: “I think that the most important factor that has helped the
teaching of programming at school is the rapid development and availability of computers,
the rapid and widespread diffusion of computers in all areas, and the cost of computers
falling drastically.” (PE-03). In the early stages, “It was easy to show the advantages of
programming over a calculator.” (PE-01). With the proliferation of computers, it has become
possible to run solutions on the computer and discover even more interesting aspects of the
tasks (JPM-3). First, the appearance of computers stimulated the process of learning and
teaching programming. Second, the limitations of the first available computers free from a
variety of software has also led to learning programming. Computers appeared in schools
in 1987 (PE-01, PE-02), and “the first computers in our schools were practically ‘bare’
if we ignore BASIC or FOCAL.” (PE-01). There was a natural need to program. Some
experts also compare this to later processes: “When IT became an everyday item on almost
everyone’s desk and in every pocket, the reverse happened.” (PE-01).

The experts also mention the compiler availability factor. First, locally developed
compilers were used, especially for teaching in the JPM. Later, computers with Pascal
compilers came to schools, and programming teaching and learning advanced to the next
level. “In addition to the operating system, utilities, and the programs I have already
mentioned, the DVK-2M also included a word processor [. . .] and, much to my delight, a
Pascal language compiler. The most skilled student could sit down at the computer and
program.” (PE-01). Turbo Pascal came to schools with IBM computers (PE-02). As YT-01
recalls, “The user-friendly and modern Borland programming environment and step-by-
step execution capabilities have contributed greatly to its popularity. And of course, the
speed of compilation and execution was also very important. Computers were slower. . . .”

The novelty of the technologies and ideas was one more important factor mentioned by
the experts (7 mentions): “All sorts of innovations have appeared, if not every week, then

A Transformation of the Way of Thinking 755

every month or year. The later it got, the more innovations appeared.” (PT-01). Practical
application and usefulness attracted students and teachers: “Children were very interested
in programming, because they saw the practical benefits in various fields – computing,
information modelling, moving image creation, and others.” (PE-01). As a related factor,
experts mention the natural demand for professionals (6 mentions by 4 experts) as con-
tributing to the establishment of programming education in schools: “With the awareness
of the use of computers in business and institutions, there was a growing demand for people
who know how to use them (programmers).” (JPM-02).

The pioneers mention the lack of literature at the early development stages. However,
due to the efforts of research enthusiasts, the textbooks and methodological materials
appeared rapidly in the national language, and supported the teachers as well as students.
The experts mention early textbooks on the principles of the compiler, a book on formal
languages (PE-01, YT-01). With the JPM activities, the methodological materials for
teachers and students became available (PE-03). There were textbooks translated into
Lithuanian, by JPM teachers and researchers, e.g., “I translated (from Russian) the second
part of the textbook ‘Fundamentals of Informatics and Computing’ and the second part
of the teacher’s book of the same name (1987), which, with the consent of the Ministry
of Education at the time, also included a chapter on Pascal, which was not in the Russian
original [. . .] I also translated from English [. . .] a book for educators ‘Computers in School’
(1989, which was ahead of our reality in terms of its content [. . .].” (JPM-04). The periodical
journal “Informatika” contained mostly programming teaching materials (JPM-04, YT-01).
The fundamental nature of the textbooks and teaching materials is reflected by the younger-
generation teacher’s response (YT-02): “In 1991, the textbook was published by Dagienė
Valentina and Gintautas Grigas: ‘Informatics, Tentative teaching material for grades X-XII.’
A year later, in 1992, the same authors also published a programming task book. These two
tools can still be referred to today, and they have not lost their foundations for informatics
education in school.”

The establishment and successful development of programming education are supported
by various initiatives, being organized in the early stages and today: olympiads, contests,
and programming clubs (5 mentions by 4 experts).

The success of programming education in schools was based on the selection of a
programming language suitable for learning (PE-02, PE-03, JPM-04, YT-03). Pascal was
chosen and used for teaching since 1979 in the JPM (PE-03, JPM-04). “Perhaps most
importantly, Gintautas Grigas’ foresight led to the choice of Pascal for both the JPM and
later for the general education school for teaching the informatics course.” (JPM-04). This
quotation shows the relationship with the next factor.

The early initiatives, including the JPM work, language selection, compiler design,
preparation of teaching materials, and spreading ideas for establishing teaching program-
ming in schools would have been impossible without inspiring scientists and teachers.
This factor is mentioned by 6 experts (7 mentions).

756 V. Dagienė et al.

Fig. 9. Most attractive features of Pascal for teaching programming, as identified by experts, frequency, % (number
of segments)

4.3. Pascal’s Most Significant Features for Teaching Programming

As mentioned in previous subsections, the selection of a suitable programming language for
learning (Pascal) was one of the innovative practices and important factors for informatics
becoming part of general education.

The main features the experts identify as most important for teaching programming are
presented in Figure 9.

Pascal is valued for code structure, elegance, and readability. These features were
mentioned by all experts. “The structure of Pascal programs is elegant.” (JPM-02), and
strictly hierarchical (PE-04). “These elements make it easier and quicker to understand
the structure and operation of algorithms. They also make the code easier to read and
understand.” (PE-04). “The clear structure of a program written in Pascal makes it easier
to analyse, debug, and improve it (a feature that was used in 1982 to prepare students for
the IOI when they were given programs that had just been written by their peers and were
asked to review and improve them, i.e., to fix them so that they would work properly).”
(JPM-04). The readability of the written program was related also to compliance with
elementary logic, including reserved words, operation symbols, etc. (JPM-02). Programs
written in Pascal were close to human language (PE-03), and thus students in baccalaureate
programs nowadays are taught to write programs in pseudocode that is close to Pascal
(JPM-03).

The above-mentioned important feature is tightly related to others identified by the
experts: strictness, concreteness, and safety. “Pascal is strict and concrete. I liked these
features, especially when learning with pen and paper.” (PE-01). Strict syntax and semantics
help to avoid programming errors (PE-01, PE-02, PE-04, JPM-02). Error messages were
clear and logical (PE-01). Safety is also ensured by the important feature of strict data type
separation, as mentioned by the majority of the experts, e.g., “definition of variable data
types (without the ‘default’ types based on the first letter of the variable name)” (JPM-04).
The local and global variables are separated, and the variable definition section is clearly
defined (PE-01, JPM-02).

Pascal is characterized by clear control structures and subroutines. This includes
structured conditional statements (PE-04), loops of different types (PE-04), separation of
functions and procedures, and the possibility of nesting them one into another (PE-01,
PE-04, JPM-02).

A Transformation of the Way of Thinking 757

Table 2
Code organization according to the themes

Society readiness and technological advancements Early innovative national initiatives

Computer availability Young Programmers’ School
Students’ motivation Textbooks and methodological materials
Inspiring scientists and teachers Pascal compiler design
Novelty Teacher training
Demand for professionals Olympiads, contests, programming clubs
Compiler availability Programming language selection for learning
Practical application and usefulness

Programming methodological approaches Pascal attractive features for learning

Algorithms without computers Code structure, elegance and readability
Distance programming education Strictness, concreteness, and safety
Programming as thinking and creativity Advantages over other languages
Game-based learning Clear control structures and subroutines
Identification of important topics to teach Easy language transition
Language-driven programming methodology Designed for learning
Understanding early programming learning importance Powerful data structuring tools
Programming style (culture)

The experts state that Pascal had many advantages over other programming languages
available at that time: “Pascal was very suitable, because it was very modern, new, and had
many good features, outperforming FORTRAN, BASIC, and FOCAL.” (PE-01). C, which
appeared almost at the same time, was close to Assembler (PE-01). “Assembler or Fortran
were not appropriate languages for teaching programming concepts.” (PE-04). The experts
mention advantages of Pascal over languages, which are most popular today, e.g., “Several
features of Pascal that are not found in popular modern programming languages (C++, Java,
C#, Javascript/TypeScript, PHP, or Python) stand out.” (JPM-02). JPM-02 and PE-01 list
these main features as assignment statement, code structure, data type separation, variable
declaration part, and separation of functions and procedures. “For example, Python has no
data type control; the same variable can take on completely different types in the same
program.” (JPM-03, the same stated by PE-01, JPM-02).

Easy language transition, as stated by 6 experts, is an important feature of Pascal to
be the first language for learning, e.g., “However, once you have learned the principles of
writing Pascal-based code, it is easy to switch to most other programming languages.” (PE-
04). Even contemporary popular programming languages, such as Python, are suggested to
be the second programming language after Pascal (PE-01). This easy transition is possible,

Table 3
Pearson’s correlations between the four thematic variables

1 2 3 4

1 –
2 0.370 (p = 0.1314) –
3 0.782 (p = 0.0022) 0.739 (p = 0.0047) –
4 0.611 (p = 0.0230) 0.571 (p = 0.0332) 0.677 (p = 0.0111) –

758 V. Dagienė et al.

Factors for the emergence
and establishment

of programming education
in schools

Early innovative
national initiatives

Programming
methodological

approaches

Society readiness and
technological
advancements

Pascal program-
ming language

features for learning

Fig. 10. The thematic model

because Pascal was designed for learning. “Pascal was designed for teaching, so each
time the student had to make, for example, a ‘queue,’ a ‘stack,’ or a ‘list’ himself.” (PE-01).
This explains the presence of powerful data structuring tools. “Pascal had powerful data
structuring tools that allowed us to describe practically any data structure.” (PE-01).

4.4. Thematic Model: Interrelationships Between Groups of Factors

In the previous subsection, the codes derived from the expert interviews were presented
according to the three key interview questions. However, they are interrelated with each
other. Codes, restructured according to the themes

1. Society readiness and technological advancements;
2. Programming methodological approaches;
3. Early innovative national initiatives; and
4. Pascal’s attractive features for learning

are presented in Table 2. The themes of were derived around research question RQ2, which
relates to the factors that contributed to the emergence and establishment of programming
education in schools. The correlation table presents the Pearson correlation between
variables corresponding to the themes, p-value: 1-tailed, with significant correlations
marked in bold (see Table 3). In the scheme shown in Figure 10 the main themes and their
interrelations are presented.

All the categories examined are structured around RQ2. All other questions of the
interviews supported this question and provided opportunities to look for relationships.
Early national innovative initiatives were related to and fostered by technological advance-
ment and society readiness, including the interest and motivation of teachers and students,
inspired by enthusiastic scientists, novelty, capabilities and applicability of computers, and
demand for professionals. This supported the introduction of innovative national initiatives
like the JPM, the design of the original Pascal compiler, and the preparation of textbooks,
exercise books, and other methodological materials for programming education, in parallel
with teacher training and informatics olympiads, contests, and other activities. One of the

A Transformation of the Way of Thinking 759

important factors was programming language selection, which is related to the theme of
the Pascal features for learning. Innovative national initiatives and Pascal language features
are related to the methodological approaches that appeared in the initial stages and are still
relevant today, e.g., algorithms without computers, distance programming education, and
game-based learning. Pascal drove the formation process of programming methodology.
Focussing on algorithms in programming was possible due to the features of Pascal, such
as structure, strictness, elegance and readability of the program, ability to structure data,
and others.

5. Conclusion and Discussion

The impact of Niklaus Wirth, celebrated (e.g., by receiving the Turing award) for his
development of Pascal and other programming languages, has been essential in shaping
the landscape of programming education in schools globally. As nations have pursued their
individual paths of exploration, this led to shifts in cognitive paradigms.

Significant societal changes seldom unfold abruptly, emerging not on a single day or
within a specific year, but rather through a gradual process. Ideas take root, conversations
ensue, and concepts evolve over time, maturing through discussion and debate before
potential implementation. Only then do tangible outcomes begin to manifest, though not
always in predictable ways. The same incremental progression can be observed in the
evolution of programming education within Lithuanian schools.

An important role in shaping the methodology for teaching programming was under-
taken by a group of scientists from the Institute of Mathematics and Informatics, now
known as the Data Science and Information Technologies Institute of Vilnius University.
In 1979, they designed comprehensive instructional materials, comprising tasks, exercises,
tests, and corresponding answers, aimed at facilitating programming education. Subse-
quently, the Ministry of Education of Lithuania endorsed the pilot implementation of this
methodology in ten schools. Thus, in 1981, the JPM was inaugurated, marking a significant
milestone in programming education.

The scientists at the institute developed a Pascal compiler specifically tailored for the
Russian electronic computing machines ES EVM. This compiler was designed with a
focus on learning, enabling pupils and teachers to input their initial programs and receive
comprehensive feedback on the computer’s execution process and any identified errors.
Notably, the compiler was equipped to automatically correct certain mistakes and provide
detailed reports on the changes made. This functionality was particularly crucial due to
limited access to the computer system and the sizable queue of programs awaiting execution,
which often resulted in lengthy delays in obtaining results, sometimes spanning an entire
day. Additionally, in response to a request from the Petropavlovsk Pedagogical Institute in
Kazakhstan, the compiler was adapted to support the Russian language (Dagienė et al.,
1983). This may well have marked the first case of a Lithuanian software being translated
into another language.

The establishment of the JPM sparked a surge in scientific and methodological publica-
tions, books, contests, and competitions. Despite our inspiring work, we faced significant

760 V. Dagienė et al.

Fig. 11. The first informatics textbook for secondary school, with a chapter on Pascal

challenges due to the scarcity of even the most basic resources. For instance, the entire
institute had only one typewriter with Lithuanian font, and computing machines were few
and far between. Access to the mainframe computer was strictly regulated, with scientists
allotted a mere two hours per week. Nevertheless, despite these limitations, our group of
dedicated scientists pioneered an environment conducive to the development of informatics
education.

Lithuania’s pioneering work in programming methodology for schools garnered recog-
nition throughout the Soviet Union in the late 1970s and early 1980s. The Soviet Union
introduced mandatory programming education in schools in 1985. During this period, we
not only translated the first textbook The Basics of Informatics and Computing Techniques
into Lithuanian, but also included a chapter on Pascal (see Figure 11), a programming
language that had not yet been thoroughly evaluated by Russian scientists at the time. This
endeavour was challenging, as it required permission from Moscow.

Our focus was primarily on teaching programming and fostering algorithmic thinking.
Despite the scarcity of computers in schools, which were limited in functionality, we
emphasized teaching algorithms for problem-solving. Our approach prioritized critical,
structural, and constructive thinking skills. We developed both theoretical methodologies
and practical approaches for programming education in schools, creating hundreds of
engaging and stimulating programming tasks.

Targeted and in-depth teaching of programming using Pascal in schools has helped
students perform well in informatics olympiads. The Lithuanian team returned with medals
from olympiads in informatics during the last three decades.

The first twenty years of informatics education (1986–2006) are presented in the book
A Road of Informatics (Dagienė, 2006). Facts, events, dates, and numbers are illustrated
with pages of pictures: images of publications, compact discs, and facsimiles of documents
– everything that was the most important for that period – are shown.

The journey of informatics education in Lithuanian schools spans decades, evolving
from its inception in the 1970s to the present day, with Pascal playing a pivotal role. To
identify the main factors for the emergence and establishment of programming education

A Transformation of the Way of Thinking 761

Fig. 12. Niklaus Wirth and Valentina Dagienė in Zurich in 2007

in schools and the impact of the features of Pascal in teaching programming, a qualitative
study has been conducted, delving into the memories and insights of experts who shaped
the early development of programming education. Semi-structured interviews with open-
ended questions were employed to gather data, which underwent analysis using an inductive
thematic approach. Furthermore, descriptive statistics methods and correlation analysis
were applied to scrutinize the qualitative data. Carefully selected experts, comprising
pioneering teachers, instructors from the JPM, and younger-generation educators with
Pascal expertise, allowed us to collect and analyse valuable insights into the early stages of
programming education in Lithuanian schools. The relationships between technological
advancements and society readiness, early national innovative practices, Pascal’s attractive
features for learning programming, and the development of programming methodologies
have been identified.

By the way, this article has been written by three generations of scientists: the pioneer
of programming education in Lithuanian schools, 88-year-old Gintautas Grigas, his former
PhD student, now Professor Valentina Dagienė (together with Niklaus Wirth in Figure 12),
and her former PhD student, now Associate Professor Tatjana Jevsikova.

Teaching programming in secondary and even primary school is a multifaceted en-
deavour that raises intriguing questions and demands thoughtful consideration (Armoni,
2016; Duncan, 2019; Morris, 2017; Ross et al., 2023; Sun et al., 2022; Webb et al., 2017).
One pressing issue is the integration of programming into heavily-packed school curricula.
How can educators effectively weave informatics including programming lessons into the
educational framework (Gander et al., 2013)? Striking the right balance between theory and
practice is crucial. While understanding programming concepts is vital, students also need
opportunities to apply their knowledge practically. How can educators design programming
lessons that effectively integrate theoretical concepts with real-world applications (Dagienė
et al., 2021)?

Equipping teachers with the necessary skills and confidence to teach programming
effectively is another challenge (Sentance and Csizmadia, 2017; Yadav et al., 2022). Many
educators may lack experience in programming instruction, particularly focusing on the

762 V. Dagienė et al.

understanding of informatics concepts, necessitating robust professional development and
ongoing support systems. Moreover, there is the imperative to ensure equitable access to
programming education. Disparities in technology and resources across schools could
widen existing educational inequalities. How can policymakers ensure that all students,
regardless of their background or school resources, have equal access to programming
instruction?

Lastly, assessment methods must evolve to accurately measure students’ programming
proficiency and problem-solving skills (Hu, 2024). Traditional assessment strategies may
fall short in capturing the nuanced abilities cultivated through programming education.
How can educators develop innovative assessment methods that align with the dynamic
nature of programming education?

Tackling these challenging questions will require collaboration among educators, poli-
cymakers, industry experts, and other stakeholders to ensure that programming education
in schools is inclusive, effective, and reflective of the evolving landscape of programming
languages.

Niklaus Wirth has made a great leap in bridging the gap between computer programs
and human understanding. His innovative approach brought about a paradigm shift in
teaching programming, with a strong emphasis on clarity and readability program texts.
Wirth developed a clear and logical framework of programming language concepts, clarified
the relationships between data and algorithm constructs, and promoted comprehensibility,
readability, accessibility, and user-friendliness of programs to programmers of all levels,
including novices.

Ethics Declaration

The study has been conducted following ethical guidelines outlined by Vilnius University.
Participating experts were informed in advance about the aims of the study, the purposes
of the data and for whom it would be used, and written consent was collected. All data was
anonymized to ensure confidentiality. Participants were assured of their right to withdraw.
All the collected data was safely stored in encrypted facilities and was only used for the
intended research purposes.

Declaration of Interest Statement

The authors report there are no competing interests to declare.

5.1. Data Availability Statement

The anonymized data can be obtained on a reasonable request e-mail to the corresponding
author.

A Transformation of the Way of Thinking 763

A. Appendix

Set of Pascal-based books (textbooks, exercise books, and analyses of tasks of programming
olympiads and contests) published in Lithuania for teaching programming and algorithms
in schools in 1980–2002.

Grigas, G. (1979). Translator jezyka Pascal v operacionoj sisteme DOS/ES i ego ispolzovanije dlia učebnych
celej. Novosibirsk: VC.

Baliūnaitė, A., Dagienė, V., Grigas, G. (1979). Transliator jazyka PASCAL v operacionoj sisteme DOS/EC i jevo
ispolzovanyje dlia učebnych celej. Operativno-informacionyj material. Novosibirsk: SO AN SSSR.

Dagienė, V., Grigas, G., Petrauskienė, A. (1980). Programavimo kalba PASCAL. Vilnius: LTSR MA MKI.
Grigas, G. (1981). Funkcijos ir procedūros. Vilnius: MKI.
Grigas, G. (1982). Programavimo pradmenys. Vilnius: Mokslas.
Dagienė, V., Grigas, G. (1983) Programavimo pradmenų uždavinynas. Vilnius: LTSR MA MKI.
Augutis, K., Dagienė, V., Grigas, G. (1983). Duomenų tipų uždavinynas. Vilnius: LTSR MA MKI.
Dagienė, V., Grigas, G., Petrauskienė, A. (1983). Paskalio programavimo kalba. Vilnius: Mokslas.
Grigas, G. (1984). Duomenų tipai. Vilnius: MKI.
Dagienė, V., Grigas, G., Augutis, K. (1986). Šimtas programavimo uždavinių. Kaunas: Šviesa.
Dagienė, V. (1986). Programavimo pamokos ir uždaviniai. Vilnius: LTSR MA MKI.
Grigas, G. (1986). Duomenų tipai ir struktūros. Vilnius: Mokslas.
Grigas, G. (1987). Načala progrommirovanije. Moskva: Prosveščenije.
Grigas, G. (1987). Programavimo pagrindai. Kaunas: Šviesa.
Dagienė, V., Grigas, G. (1987, 1988). Programavimo uždaviniai. Vilnius: LTSR MA MKI.
Dagienė, V., Dagys, V. (1988). Algoritmų sudarymas I. Vilnius: RMTI.
Dagienė, V., Dagys, V. (1988). Algoritmų sudarymas II. Vilnius: RMTI.
Dagienė, V. (1989). Mokomės programuoti. Kaunas: Šviesa.
Tumasonis, V., Dagienė, V., Grigas, G. (1990). Paskalis. Programuotojo vadovas. Vilnius: Mokslas.
Dagienė, V. (1991). Lietuvos jaunųjų programuotojų olimpiados. Kaunas: Šviesa.
Dagienė, V., Grigas, G. (1991). Informatika. XI–XII klasei. Kaunas: Šviesa.
Dagienė, V., Grigas, G. (1992). Informatikos mokymas. Mokytojo knyga. Kaunas: Šviesa.
Dagienė, V., Grigas, G. (1992). Programavimo uždavinynas. Kaunas: Šviesa.
Tumasonis, V., Dagienė, V., Grigas, G. (1992). Pascal. Rukovodstvo dlia programista. Moskva: Radio i sviaz.
Dagienė, V., Grigas, G., Augutis, K. (1992). 100 zadač programirovanija. Moskva: Prosveščenije.
Dagienė, V., Grigas, G. (1993). Informatyka: Probna pomoc naukowa. Dla klas 10–12. Kaunas: Šviesa.
Dagienė, V., Grigas, G. (1994). Lietuvos jaunųjų programuotojų konkursai. Kaunas: Šviesa.
Dagienė, V., Klupšaitė, A. (1996). Duomenų tipų ir kompiuterinės grafikos uždavinynas. Kaunas: Šviesa.
Grigas, G. (1997). Duomenų tipai. Vilnius: Žuvėdra.
Dagienė, V. (1998). Informatika: Informacija, I dalis / Vadovėlis bendrojo lavinimo mokykloms 9–10 kl. Vilnius:

TEV.
Dagienė, V. (1998). Informatika: Algoritmai, II dalis / Vadovėlis bendrojo lavinimo mokykloms 9–10 kl. Vilnius:

TEV.
Dagienė, V., Skūpienė, J. (1999). Lietuvos moksleivių olimpiadų uždaviniai. I dalis. Vilnius: TEV.
Dagienė, V. (1999). Informatika: Kompiuteris, III dalis / Vadovėlis bendrojo lavinimo mokykloms 9–10 kl.

Vilnius: TEV.
Dagienė, V., Grigas, G. (2000). Programavimo pradmenų uždavinynas / Realinio profilio vidurinėms mokykloms.

Vilnius: TEV.
Dagienė, V., Skūpienė, J. (2001). Lietuvos moksleivių olimpiadų uždaviniai. II dalis. Vilnius: TEV.
Dagienė, V., Blonskis, J. (2001). Programavimo pradmenys / Vadovėlis XI–XII klasėms, Vilnius: TEV.
Dagienė, V. (2001). Informatikos pradmenys. II dalis. Algoritmai / Pataisytas ir papildytas leidimas, Vilnius:

TEV.
Dagienė, V. (2001). Informatikos pradmenys. III dalis. Kompiuteris / Pataisytas ir papildytas leidimas, Vilnius:

TEV.
Dagienė, V., Blonskis, J. (2001). Programavimo pradmenys / Vadovėlis XI–XII kl. Vilnius: TEV.
Dagienė, V. (2002). Informatika: Trumpas informatikos kursas. Vilnius: Gimtinė.

764 V. Dagienė et al.

References

Armoni, M. (2016). Computing in Schools. Computer Science, Computational Thinking, Programming, Coding:
the Anomalies of Transitivity in K-12 Computer Science Education. ACM Inroads, 7(4), 24–27.

Braun, V., Clarke, V. (2006). Using Thematic Analysis in Psychology. Qualitative Research in Psychology, 3(2),
77–101.

Byrne, D. (2022). A Worked Example of Braun and Clarke’s Approach to Reflexive Thematic Analysis. Quality
and Quantity, 56, 1391–1412.

Cheah, C.S. (2020). Factors Contributing to the Difficulties in Teaching and Learning of Computer Programming:
a Literature Review. Contemporary Educational Technology, 12(2).

Clarke, V., Braun, V. (2017). Thematic Analysis. The Journal of Positive Psychology, 12(3), 297–298.
Dagienė, V. (1989). Mokomės Programuoti. Šviesa, Kaunas.
Dagienė, V. (1999). Programming-Based Solution of Problems in Informatics Curricula. In: Communications

and Networking in Education: Learning in a Networked Society, Aulanko, Hämeenlinna, Finland, pp. 88–94.
Dagienė, V. (2006). The Road of Informatics. TEV, Vilnius.
Dagienė, V., Futschek, G. (2008). Bebras International Contest on Informatics and Computer Literacy: Criteria

for Good Tasks. In: Proceedings of the 3rd International Conference on Informatics in Secondary Schools
(ISSEP 2008). Lecture Notes in Computer Science: Vol. 5090. Springer, pp. 19–30.

Dagienė, V., Grigas, G. (1992). Programavimo uždavinynas. Šviesa, Kaunas.
Dagienė, V., Sentance, S. (2016). It’s Computational Thinking! Bebras Tasks in the Curriculum. In: Proceedings

of the 9th International Conference on Informatics in Schools (ISSEP 2016). Lecture Notes in Computer
Science: Vol. 9973. Springer, Cham, pp. 28–39.

Dagienė, V., Stupurienė, G. (2016). Bebras – A Sustainable Community Building Model for the Concept Based
Learning of Informatics and Computational Thinking. Informatics in Education, 15(1), 25–44.

Dagienė, V., Grigas, G., Petrauskienė, A. (1983). Transliator jazyka Pascal, prednaznačenyj dlia učebnych celej.
Programmirovanie, (2), 87–89.

Dagienė, V., Hromkovič, J., Lacher, R. (2021). Designing Informatics Curriculum for K–12 Education: from
Concepts to Implementations. Informatics in Education, 20(3), 333–360.

Dagys, V. (1994). The Work Principles of Lithuanian Young Programmers School by Correspondence. In: Human
Resources, Human Potential, Human Development: the Role of Distance Education, Tallinn, pp. 182–184.

Dagys, V., Klupšaitė, A. (1993). Distance Teaching of Programming and Possibilities of E-Mail. Informatica,
4(3–4), 303–311.

Dagys, V., Dagienė, V., Grigas, G. (2006). Teaching Algorithms and Programming by Distance: Quarter Century’s
Activity in Lithuania. In: Local Proceedings of the 2nd Conference on Information Technologies at School
(ISSEP 2006), pp. 402–412.

Dinda, A. (1990). Paskalis Kompiuteriui BK-0010. Informatika, 15, 47–54.
Duncan, C. (2019). Computer Science and Computational Thinking in Primary Schools. Routledge.
Gander, W., Petit, J., Berry, G., Demo, G., Vahrenhold, J., McGettrick, A., Meyer, B. (2013). Informatics

Education: Europe Cannot Afford to Miss the Boat. Technical report, Informatics Europe & ACM Europe
Working Group on Informatics Education.

Grigas, G. (1989). Informatics and Creative Thinking. In: Proceedings of the International Conference: Children
in the Information Age, Sofia, pp. 229–240.

Grigas, G. (1990). Some Aspects of Teaching the Art of Programming by Correspondence. Informatica, 1(1),
156–166.

Grigas, G. (1995). Investigation of the Relationship Between Program Correctness and Programming Style.
Informatica, 6(3), 265–276.

Grigas, G., Jevsikova, T. (2001). Komponentinio programavimo taikymas informatikos mokyme. Lietuvos
matematikos rinkinys, 41, 278–283. https://doi.org/10.15388/LMR.2001.34505.

Holt, R.C., Wortman, D.B., Barnard, D.T., Cordy, J.R. (1977). SP/k: a System for Teaching Computer Program-
ming. Communications of the ACM, 20(5), 301–309. https://doi.org/10.1145/359581.359586.

Hu, L. (2024). Programming and 21st Century Skill Development in K–12 Schools: a Multidimensional Meta-
Analysis. Journal of Computer Assisted Learning, 40(2), 610–636.

Institute of Mathematics and Informatics (2004). Lokalizuota “Free Pascal” programavimo sistema. Technical
report.

https://doi.org/10.15388/LMR.2001.34505
https://doi.org/10.1145/359581.359586

A Transformation of the Way of Thinking 765

Jevsikova, T. (2007). Understanding Cultural Aspects of ICT for Schools: Naming Issues. In: Informatics,
Mathematics, and ICT: a ‘Golden Triangle’. Working Joint IFIP Conference. Northeastern University, Boston,
Massachusetts, USA, pp. 1–5.

McGill, T.J., Volet, S.E. (1997). A Conceptual Framework for Analyzing Students’ Knowledge of Programming.
Journal of Research on Computing in Education, 29(3), 276–297.

Morris, D. (2017). Teaching Computational Thinking and Coding in Primary Schools. SAGE Publications Ltd,
London.

Nielson, F., Nielson, H.R., Hankin, C. (1999). Principles of Program Analysis. Springer.
Oberon Microsystems (2001). Component Pascal Language Report. Technical report, Oberon Microsystems Inc.,

Switzerland. https://blackbox.oberon.org/cp-lang.pdf.
Robins, A., Rountree, J., Rountree, N. (2003). Learning and Teaching Programming: a Review and Discussion.

Computer Science Education, 13(2), 137–172.
Ross, M.S., Ronan, D., Erdil, D.C., Brylow, D., El-Hamamsy, L., Bruno, B., Parker, M.C. (2023). Computing

Education. ACM Transactions on Computing Education, 23(2).
Sentance, S., Csizmadia, A. (2017). Computing in the Curriculum: Challenges and Strategies from a Teacher’s

Perspective. Education and Information Technologies, 22, 469–495.
Sun, L., Guo, Z., Zhou, D. (2022). Developing K-12 Students’ Programming Ability: a Systematic Literature

Review. Education and Information Technologies, 27(5), 7059–7097.
Webb, M., Davis, N., Bell, T., Katz, Y.J., Reynolds, N., Chambers, D.P., Sysło, M.M. (2017). Computer Science in

K–12 School Curricula of the 21st Century: Why, What and When? Education and Information Technologies,
22, 445–468.

Yadav, A., Connolly, C., Berges, M., Chytas, C., Franklin, D., Hijón-Neira, R., Warner, J.R. (2022). A Review of
International Models of Computer Science Teacher Education. In: Proceedings of the 2022 Working Group
Reports on Innovation and Technology in Computer Science Education (ITiCSE-WGR 2022). Association for
Computing Machinery, pp. 65–93.

https://blackbox.oberon.org/cp-lang.pdf

	Introduction
	Background and Experience Analysis
	Establishment of the Young Programmers' School by Correspondence
	Development of Pascal Compilers
	Short Context-Based Reading Tasks
	Comparison of Pascal with Other Programming Languages for Education

	Methodology
	Instrument, Participants, and Data Collection
	Data Analysis

	Results of the Qualitative Study
	Early Innovative Practices
	Factors for the Emergence and Establishment of Programming Education in Schools
	Pascal's Most Significant Features for Teaching Programming
	Thematic Model: Interrelationships Between Groups of Factors

	Conclusion and Discussion
	Data Availability Statement

	Appendix

