
Informatics in Education, 2024, Vol. 23, No. 4, 783–790 783
© 2024 Vilnius University
DOI: https://doi.org/10.15388/infedu.2024.27

Pascal and Recursion

Walter GANDER
Department of Computer Science, ETH Zurich, Switzerland
e-mail: gander@inf.ethz.ch

This historical note is dedicated to the memory of Niklaus Wirth.

Abstract. In this paper, we show the impact of Pascal on numerical software. Using recursion, a
new and elegant algorithm for quadrature could be developed.
Key words: Pascal, recursion, adaptive quadrature.

1. Introduction

In 1968, Heinz Rutishauser founded a specialist group for computer science in the De-
partment of Mathematics at ETH Zurich. Niklaus Wirth, aged 34, just came back from
Stanford and joined this new group together with Peter Läuchli, a local professor of the
Seminar of Applied Mathematics.

In 1964, ETH bought a CDC 1604 computer and students who were interested had the
opportunity to learn programming in Subset Algol 60. I did that with great pleasure and
was quite fluent in Algol in 1968 when I received my diploma in mathematics. Heinz
Rutishauser hired me to work as an assistant and graduate student in his new group.

Unfortunately, Heinz Rutishauser passed away already in 1970, two years after the
foundation of the group. Niklaus Wirth became the new leader of the computer science
group. He developed the first version of his new programming language Pascal. Frankly,
I did not like it, because many features which I appreciated in Algol were missing in
Pascal. For example the block structure was gone, there were no dynamical arrays, no
functions or procedures were allowed as parameters of a procedure, no external code pro-
cedures, no automatic conversions from integers to reals, no goto-statements, etc. This
made the translation of programs from Algol to Pascal difficult.

2. Pascal the Teaching Language

From 1969 to 1989, Urs Hochstrasser was the director of the Swiss Federal Office for
Science and Education. He was a graduate student of Eduard Stiefel, who rented the Z4
computer from Konrad Zuse after World War II. It was installed at ETH and operational
from 1950 to 1955. Urs Hochstrasser used the Z4 for his PhD studies, and therefore he

https://doi.org/10.15388/infedu.2024.27

784 W. Gander

could foresee how important computer science would become. In 1983, he encouraged
high school teachers to introduce computer science into the curriculum. This was the
time when the first personal computers appeared. UCSD Pascal became very popular on
the Apple II. In 1984, I spent a sabbatical in Stanford with the idea to write a book on
numerical algorithms which could be used at secondary schools. During this time, I got a
teaching assignment for the summer to teach Pascal to high school teachers on the IBM
PC. One of the teachers told me about Turbo Pascal, a much better implementation than
the original IBM Pascal.

Indeed Turbo Pascal from Borland turned out to be a wonderful small and effective
system: about 30KB of memory were sufficient for the whole system containing an editor
and a fast compiler. I became a fan of it. My book “Computermathematik” (Gander, 1992)
and the second book (Gander, 1986) with the solutions to all exercises both use Turbo
Pascal for the programs.

Turbo Pascal became the teaching language for programming all over the world, and
even now it is still used as “Free Pascal,” e.g., in Hong Kong.

3. Recursion
“Recursion is a particularly powerful means in
mathematical definitions.” Wirth (1976)

Algol 60 and the original Fortran were both programming languages in which recursion
was not available. So in the numerical software as, e.g., published in the Springer Hand-
book Series (Wilkinson and Reinsch, 1971) and in LINPACK (Dongarra et al., 1979),
recursion was not used. Numerical analysts were therefore not familiar with this feature
of a programming language.

Recursion was also for me a new feature. I discovered it only when I started to seri-
ously use Turbo Pascal. I was not used to think recursively when programming. Like
computational thinking one has to get aware of this possibility and it is important to train
this mode of thinking.

Niklaus Wirth on the other hand was very familiar with recursion. It is certainly a
useful technique when building a compiler. He designed Pascal as a language in which
recursion is natural and available for the programmer. Wirth used recursive programming
also often in examples in his books.

In the book Algorithms + Data Structures = Programs (Wirth, 1976), he writes:

“The power of recursion evidently lies in the possibility of defining an infinite set
of objects by a finite statement. In the same manner, an infinite number of com-
putations can be described by a finite recursive program, even if this program
contains no explicit repetitions.”

This book contains a whole chapter on recursion. Many nice examples like Hilbert
curves or the eight queens problem are implemented as recursive programs and they have
become classical and well known algorithms all around the world.

Pascal and Recursion 785

4. Adaptive Quadrature

The idea of adaptive quadrature is to adapt the integration step-size automatically to the
course of the function. By using different step-sizes, the goal is to have about the same
discretization error for each interval. The possibility to use recursion in Pascal opened
the way for an elegant implementation for me.

Let [a, b] be the interval of integration and f a real function. We wish to numerically
compute

I =

b∫
a

f(x) dx.

Integrating f using two different methods we obtain two approximations I1 and I2. If
the relative difference of I1 and I2 is smaller than some prescribed tolerance, one accepts,
e.g., I1 as the integral value.

Otherwise the interval [a, b] is divided in two parts [a,m] and [m, b], where m =

(a+ b)/2, and the two integrals are computed independently:

I =

m∫
a

f(x)dx+

b∫
m

f(x)dx.

Recursion now comes naturally when we compute again two approximations for each
integral and, if necessary, continue to subdivide the smaller intervals.

Every recursion must terminate. Wirth (1976) writes

“Like repetitive statements, recursive procedures introduce the possibility of non-
terminating computations, and thereby also the necessity of considering the
problem of termination. A fundamental requirement is evidently that the re-
cursive calls of a procedure P are subjected to a condition B, which at some
time becomes non-satisfied.”

In our case we could try to test the relative difference of the two approximations I1 and
I2 and stop the recursion when it is small. However, it is easy to show that this criterion
may be too stringent, the difference of the approximations must only be small compared
with the value of the whole integral. How can we do this without knowing the integral?
Well, we do not need the exact value of the integral, a rough estimate is sufficient.

Thus we consider as approximation is = (|(b−a)/6 · (f(a)+4f(m)+ f(b))|+ b−
a)/2. This is the average of a Simpson approximation plus the length of the interval. It is
important that is be nonzero, which is why we add b− a.

The termination criterion would then be

|I1 − I2| < tol · is

with some tolerance tol.

786 W. Gander

More elegant is a machine-independent criterion: terminate recursion if numerically
the difference is too small to change is, that is, if

is+ I1 − I2 = is.

In the following implementation we use for the approximation I1 Simpson’s rule for
the step-size h = (b− a)/2, that is,

I1 =
b− a

6
(f(a) + 4f(m) + f(b)) , m =

b− a

2
,

and for I2 we use Simpson’s rule with half the step-size. To do so we need to compute a
new function value between the values fa = f(a) and fm = f(m) and another between
fm and fb = f(b).

Next we would like to avoid the recomputing of function values. Therefore we pass
the three function values fa, fm, fb as parameters to the next recursion step.

Finally, when we have computed both Simpson Values, we can use one Romberg step
and perform one extrapolation step to improve the approximation. We thus replace the
value of I1 by

I1 :=
16I2 − I1

15
.

This leads to the following Pascal function:

1 FUNCTION adapt(a,b,fa,fm,fb,is: real): real ;
2 VAR h,m,i1,i2,fml,fmr: real ;
3 (* global function f : real *)
4 BEGIN
5 m := (a+b)/2 ; h := (b-a)/4 ;
6 fml := f(a+h) ; fmr := f(b-h) ;
7 i1 := h/1.5*(fa+4*fm+fb) ;
8 i2 := h/3*(fa+4*(fml+fmr)+2*fm+fb) ;
9 i1 := (16*i2-i1)/15 ;

10 IF is + (i1 - i2) = is THEN
11 BEGIN
12 adapt := i1 ;
13 (* print here a, b-a, and i1 for didactical reasons *)
14 END
15 ELSE
16 adapt := adapt(a,m,fa,fml,fm,is) +
17 adapt(m,b,fm,fmr,fb,is) ;
18 END;

With the stopping criterion is + (i1 - i2) = is, the integral is computed to
machine precision. If we wish to obtain a result with less precision, then we can define a

Pascal and Recursion 787

tolerance tol and simply enlarge the rough estimate by replacing

is := is ∗ tol/ε,

where ε denotes the machine precision.

5. Examples

We give two examples for concrete functions and intervals.

1. Integrate f(x) =
√
x over the interval [0, 1].

I =

1∫
0

√
x dx =

2

3
= 0.666666666666

We compute the integral with tol = 1e−5 and get the result 0.66665999490706
with only 38 function evaluations. By printing the quantities a, b-a, and i1 after the
assignment adapt:=i1, we obtain the following table:

a b− a i1

0.0000000 0.0078125 0.00045420327593
0.0078125 0.0078125 0.00084172670019

0.0156250 0.0156250 0.00238076263043
0.0312500 0.0312500 0.00673381360150

0.0625000 0.0625000 0.01904610104346

0.1250000 0.1250000 0.05387050881198
0.2500000 0.2500000 0.15236880834770

0.5000000 0.5000000 0.43096407049588

We needed only 8 sub-intervals. The smallest, the first one, has length 0.0078125

and the length of the last interval is 0.5. Adaptive quadrature is remarkably efficient
for this example.

2. Non continuous function f(x) integrated on [0, 5]:

-x

6
y

1 3 5

1

2 f(x)

�
�@

@
@@

We obtain the following table for a, b-a, and i1:

788 W. Gander

a b− a i1

0.000000000000 0.625000000000 0.820312500000

0.625000000000 0.312500000000 0.556640625000
0.937500000000 0.039062500000 0.076446533203

0.976562500000 0.019531250000 0.038795471191

0.996093750000 0.019531250000 0.038936191134
1.015625000000 0.078125000000 0.151977539062

1.093750000000 0.156250000000 0.285644531250

1.250000000000 1.250000000000 1.406250000000
2.500000000000 0.312500000000 0.107421875000

2.812500000000 0.156250000000 0.017089843750
2.968750000000 0.019531250000 0.000419616699

2.988281250000 0.009765625000 0.000066757202

2.998046875000 0.001220703125 0.000001639127
2.999267578125 0.000610351562 0.000000260770

2.999877929687 0.000076293945 0.000000006402

2.999954223632 0.000076293945 0.000066122492
3.000030517578 0.000152587890 0.000305175781

3.000183105468 0.000305175781 0.000610351562

3.000488281250 0.002441406250 0.004882812500
3.002929687500 0.004882812500 0.009765625000

3.007812500000 0.039062500000 0.078125000000

3.046875000000 0.078125000000 0.156250000000
3.125000000000 0.625000000000 1.250000000000

3.750000000000 1.250000000000 2.500000000000

The exact value of the integral is 7.5. Withtol = 1e−6, we obtain 7.500008477131
for the integral, and we needed 105 function evaluations. Note that the step-size is small
around x = 1 (peak) and around x = 3 (step).

6. Final Remarks

This small, very simple but also effective Pascal function for adaptive quadrature reflects
truly the philosophy of Niklaus Wirth: Small is beautiful and the quote that he often cited:
Make it as simple as possible, but not simpler.

I presented this algorithm the first time in the “Kolloquium über numerische Mathe-
matik” at ETH on December 9, 1982. I demonstrated its performance live on an Apple II
computer with UCSD Pascal. Peter Henrici was very impressed – he had never before
used a programming language which enabled recursion.

Later, Walter Gautschi and I expanded this idea of adaptive quadrature. We pro-
grammed two recursive quadrature functions in Matlab. In the abstract of our paper
(Gander and Gautschi, 2000), we wrote:

“Adaptive quadrature programs being recursive by nature, the choice of a good
termination criterion is given particular attention. Two Matlab quadrature
programs are presented. The first is an implementation of the well-known adap-

Pascal and Recursion 789

tive recursive Simpson’s rule; the second is new and is based on a four-point
Gauss-Lobatto formula and two successive Kronrod extensions.”

Our quadrature functions outperformed the corresponding Matlab functions and
Cleve Moler wrote:

Date: Thu, 27 Apr 2000 17:19:58 -0400 (EDT)
From: Cleve Moler <moler@mathworks.com>
To: gander@inf.ethz.ch, wxg@cs.purdue.edu
Subject: Quadrature routines
Hi, guys --
I am in the process of making your quadrature routines
part of MATLAB 6.

For some years we had convinced even Cleve that recursion is useful. The adaptive
functions for integration are explained in details in our textbook (Gander et al., 2014).

7. Teaching Issues

1. The presented topic, to compute integrals using recursion, is suited to be taught in
focus subjects, mathematics or computer science, at secondary schools. Prerequisite
in mathematics is the concept of a Riemann sum, realized by the Trapezoidal – or
Simpson’s rule, to numerically compute a definite integral. Recursion can be explained
in computer science using examples from the book by Wirth (1976).

2. Many integrals cannot be solved analytically, that is, they cannot be expressed by ele-
mentary functions. A well known example is the error function

erf(x) =
2√
π

∫ x

0
e−t2 dt.

This function can be computed numerically, e.g., by using our function adapt.
3. New programming languages in general allow recursion. Therefore it is straightforward

to translate the Pascal function adapt.
A main program still has to be written, which defines the function to be integrated

together with the necessary initialization.
4. Finally a little challenge: solve the equation

f(x) =

1∫
0

ext
2
dt− 2 = 0

by computing f and f ′ with adapt and by using Newton’s iteration

xk+1 = xk − f(xk)

f ′(xk)
.

Note: the solution is x = 1.674824928512617.

790 W. Gander

References

Dongarra, J., Bunch, J.R., Moler, C.B., Stewart, G.W. (1979). LINPACK Users’ Guide. SIAM.
Gander, W. (1986). Computermathematik, Lösungen der Aufgaben mit Pascal Programmen. Birkhäuser Basel.

Download (free of charge) from https://people.inf.ethz.ch/gander/.
Gander, W. (1992). Computermathematik (2nd ed.). Birkhäuser Basel. Download (free of charge) from https:

//people.inf.ethz.ch/gander/.
Gander, W., Gautschi, W. (2000). Adaptive Quadrature – Revisited. BIT, 40(1), 84–101.
Gander, W., Gander, M.J., Kwok, F. (2014). Scientific Computing, an Introduction Using Maple and Matlab.
Wilkinson, J.H., Reinsch, C. (1971). Linear Algebra. Springer. Part of the book series Grundlehren der mathe-

matischen Wissenschaften (GL, volume 186).
Wirth, N. (1976). Algorithms + Data Structures = Programs. Prentice-Hall, INC.

https://people.inf.ethz.ch/gander/
https://people.inf.ethz.ch/gander/
https://people.inf.ethz.ch/gander/

	Introduction
	Pascal the Teaching Language
	Recursion
	Adaptive Quadrature
	Examples
	Final Remarks
	Teaching Issues

